Feasibility of transanal minimally invasive surgery when performing sacrectomy for advanced primary and recurrent pelvic malignancies

Naohito Beppu (beppu-n@hyo-med.ac.jp)
Hyogo College of Medicine

Kazuma Ito
Hyogo College of Medicine

Masaki Otani
Hyogo College of Medicine

Ayako Imada
Hyogo College of Medicine

Takaaki Matsubara
Hyogo College of Medicine

Jihyung Song
Hyogo College of Medicine

Kei Kimura
Hyogo College of Medicine

Kozo Kataoka
Hyogo College of Medicine

Ryuichi Kuwahara
Hyogo College of Medicine

Yuki Horio
Hyogo College of Medicine

Motoi Uchino
Hyogo College of Medicine

Hiroki Ikeuchi
Hyogo College of Medicine

Masataka Ikeda
Hyogo College of Medicine

Research Article

Keywords: Extended pelvic surgery, Transanal minimally invasive surgery, Sacrectomy, Pelvic malignancies
Abstract

Background

This study aimed to clarify the efficacy and safety of minimally invasive transabdominal surgery (MIS) with transanal minimally invasive surgery (TAMIS) for sacrectomy in advanced primary and recurrent pelvic malignancies.

Methods

Using a prospectively collected database, we retrospectively analyzed the clinical, surgical, and pathological outcomes of MIS with TAMIS for sacrectomies. Surgery was performed between February 2019 and May 2023. The median follow-up period was 27 months (5-46 months).

Results

Fifteen consecutive patients were included in this analysis. The diagnoses were as follows: recurrent rectal cancer, n=11 (73%); primary rectal cancer, n=3 (20%); and recurrent ovarian cancer, n=1 (7%). Seven patients (47%) underwent pelvic exenteration with sacrectomy, six patients (40%) underwent abdominoperineal resection (APR) with sacrectomy, and two patients (13%) underwent tumor resection with sacrectomy. The median intraoperative blood loss was 235 ml (range, 45–1320 ml). The postoperative complications (Clavien–Dindo grade ≥3a) were graded as follows: 3a, n=6 (40%); 3b, n=1 (7%); and ≥4, n=0 (0%). Pathological examinations demonstrated that R0 was achieved in 13 patients (87%). During the follow-up period, 2 patients (13%) developed local re-recurrence due to recurrent cancer. The remaining 13 patients (87%) had no local disease. Fourteen patients (93%) survived.

Conclusions

MIS with TAMIS could lead to a very small amount of blood loss, a low incidence of severe postoperative complications, and an acceptable R0 resection rate, indicating that this novel surgical approach is feasible for selected patients who undergo sacrectomy. Further studies are needed to clarify the long-term oncological feasibility.

Introduction

Sacrectomy is the ultimate surgical technique for pelvic malignancies with posterior pelvic invasion, and acceptable oncologic outcomes are achieved by R0 resection. Nevertheless, sacrectomy is only performed at highly selective centers, due to the fact that the major volume of intraoperative blood loss and high incidence of major perioperative complications remain serious problems.¹²

Minimally invasive transabdominal surgery (MIS) has become widespread in pelvic surgeries because it offers improved visualization of the operative field, allowing for precision in dissection and vascular control, and consequently reducing perioperative complications. In addition, the innovative concept of
transanal minimally invasive surgery (TAMIS), represented by transanal total mesorectal excision (TaTME), was proposed to overcome the poor surgical view from the transabdominal approach in the narrow male pelvis and in obese patients by offering direct visualization of deep pelvic structures.3 TAMIS further enables down-to-up dissection of the pelvic organs without the need for a wide skin incision on the perineal side. Due to these benefits, TaTME with MIS has become one of the standard options for total mesorectal excision (TME) in rectal cancer.4,5

These advantages of MIS with TAMIS encourage the widespread use of extended pelvic surgeries, such as total pelvic exenteration (TPE) and posterior pelvic exenteration (PPE), and the clinical benefits of these operations have been reported.6–8 However, no studies have reported the reliable technique, landmarks, or clinical outcomes of sacrectomy. This study aimed to demonstrate the standardized surgical technique and treatment results of MIS with TAMIS for sacrectomy.

Materials and methods

This single-center retrospective cohort study assessed the efficacy and safety of MIS with TAMIS for sacrectomy for advanced primary and recurrent pelvic malignancies in patients who underwent surgery between February 2019 and May 2023. Intimal staging was performed by total colonoscopy; contrast-enhanced computed tomography (CT) of the lungs, chest, abdomen, and pelvis; and rectal magnetic resonance imaging (MRI). Positron emission tomography-computed tomography (PET-CT) was performed in all recurrent cases.

Sacrectomy is indicated for cases that meet the following criteria: 1) there is no distant recurrence; 2) R0 resection is possible by preoperative imaging; 3) the sacral transection level is below the lower edge of S2 or under level; 4) there is no invasion to the common iliac or external iliac artery; 5) patient tolerability has been confirmed by a multidisciplinary conference; and 6) informed consent has been obtained from the patient and family.

MIS with TAMIS is routinely used when performing sacrectomy; however, patients who do not meet the indications for TAMIS due to the fact that they have a surgical view on the perineal side could be maintained by direct vision by performing a wide perineal skin incision due to tumor invasion.

Preoperative therapy was determined by a multidisciplinary team meeting and oxaliplatin-based chemotherapy or 45 Gy chemoradiotherapy (CRT). Flap reconstruction was performed on patients who had a large pelvic dead space due to TPE with sacrectomy or for patients with a large skin defect on the perineal side. A rectus abdominis myocutaneous flap is the first choice for flap reconstruction.

Ethical approval

Ethical approval for this study was obtained from Hyogo Medical University (Approval number: 2798).

Surgical technique of TAMIS for sacrectomy
a. TAMIS in the Lloyd–Davies position

We previously reported the surgical procedure of TAMIS for sacrectomy.\(^9\) We performed a two-team approach using transabdominal and anal approaches. In the transanal approach, the anus is closed and the skin around the anus is incised circumferentially. In patients with recurrent disease after abdominoperineal resection (APR), a 5 cm skin incision is made on the perineal side. The coccyx is identified, and the dorsal aspect of the coccyx is dissected using an open approach. The ischiorectal fat is dissected toward the lateral side to identify the gluteus maximus muscles at the attachment of the coccyx. After achieving poor visual field and insufficient mobility in a narrow surgical field using an open approach, multiple access ports (GelPOINT V-Path®, Applied Medical, Rancho Santa Margarita, CA, USA) are placed at the start of TAMIS using Airseal® (ConMed, Utica, NY, USA) at a pressure of 10–15 mmHg. The gluteus maximus muscles are transected at the attachment of the coccyx, and the ventral side of the gluteus maximus muscles is dissected to the lateral side (Fig. 1a,b). We can identify the sacrotuberous ligament, which is located at the surface of the gluteus maximus muscles and attached between the coccyx, sacrum, and ischial tuberosity (Fig. 1c). Dissection of this ligament opens the lesser sciatic foramen (Fig. 1d). The internal obturator muscle is identified on the lateral side, and dissection along the internal obturator muscle reaches the tendinous arch of the levator ani (Fig. 1e). This point is used as the rendezvous point between the transabdominal and anal approaches. In addition, in cases requiring combined dissection of the internal obturator muscle, this muscle was resected through a transanal approach.

b. Transabdominal approach

Before surgery, the distance between the promontory and the upper edge of the tumor are measured using MRI (sagittal section). During surgery, this length is used as a guide for the dissection border of the posterior side (Fig. 2a). After the dissection reaches the dissection border on the posterior side, the branch of the sciatic nerve at the sacral transection level is taped, making it the landmark of the dissection line on the lateral side (Fig. 2b).

Using the transabdominal approach, the parietal fascia is dissected and the routes of the internal iliac vessels and internal pudendal vessels are clarified to prevent injury to those vessels from the transabdominal approach (Fig. 2c). After the rendezvous between the two approaches at the tendinous arch of the levator ani, the levator ani is dissected dorsally using a transabdominal and anal approach. In particular, at the 4 and 8 o'clock positions, the internal pudendal vessels pass through the supra-levator space to the infra-levator space, which is called the pudendal canal. The route of the internal pudendal vessels is clarified by dissecting the ventral side of the pudendal canal, which consists of the coccygeus muscle and sacrospinous ligament (Fig. 1f, 2d). Internal pudendal vessels are routinely dissected using a transabdominal and anal approach; however, in cases in which a dissection margin can be secured, these vessels are preserved. Additionally, the piriformis muscle and presacral tissue are dissected at the sacral transection level.
In the case of the S2 transection, the sacrum is transected at the lower border of the sacroiliac joint, and the superior gluteal vessels pass through this point. Thus, in cases where the S2 sacrum is required to transect the lower border of the sacroiliac joint to maintain the dissection margin, the superior gluteal vessels are dissected. In cases where the sacrum can transect the caudal side of the sacroiliac joint while maintaining the dissection margin, the superior gluteal vessels are preserved.

c. TAMIS in the prone position

The sacral level is marked on the skin on the radiographs before surgery (Fig. 3a). The sacral transection approach differs according to the level of transection. When S2 and S3 are transected, the patient is repositioned in the prone position, and further dissection of the attachment to the sacrum (gluteus maximus muscles, sacrotuberous ligament, and sacrospinous ligament) is performed using a transanal approach (Fig. 3b).

After reaching the level of transection, where taping of the sciatic nerve using the transabdominal approach is detected (Fig. 3c), an 8-cm skin incision is made at the sacral transection level on the lower back side. The sacroiliac joint is palpated to check the distance between the joint and the sacrum transection level (Fig. 3d). In addition, pulsation of the superior gluteal artery is palpated to prevent vessel injury. An osteotome is then used to transect the sacrum (Fig. 3e), and the perineal and lower back sides of the incision are closed (Fig. 3f).

The position is changed to the Lloyd-Davies position, and the resected specimen is removed. Reconstruction is subsequently performed. Omental flap transposition is routinely performed. Urinary diversion is performed by creating an ileal conduit, and the perineal incision and dead space are covered by the rectus abdominis myocutaneous flap, if necessary.

When the transection level is S4 or lower, sacral transection is performed in the Lloyd–Davies position (without prone position) using a Gigli wire saw. After the Gigli wire saw is positioned at the sacral transection level, it is used to transect the sacrum. This procedure has been described previously.10

We have provided a video of the TAMIS technique of TAMIS for sacrectomy (Supplementary Data).

Definitions

Postoperative complications were classified using the Clavien–Dindo (CD) classification. Surgical site infection (SSI) was classified into three criteria: superficial incisional SSI, deep incisional SSI and organ/space SSI, as defined by the Center for Disease Control and Prevention/National Healthcare Safety Network.11 Cases with negative bacterial cultures were diagnosed with pelvic fluid collection. In the pathological examination of the resected specimens, we followed the Japanese Clinical and Pathological Guidelines 2019 for the Colon, Rectum and Anus.12

Results
Patient characteristics

During the study period, 16 patients underwent sacrectomy via MIS at our institution. After excluding one patient who did not undergo TAMIS since a wide perineal skin incision had to be performed due to tumor invasion, 15 patients were included in this study. The patient characteristics are summarized in Table 1. The median age was 64 years (48-82 years), and nine (60%) of the patients were female. Recurrent rectal cancer was observed in 11 (73%) patients. Preoperative treatment was performed in 13 (87%) patients. The reasons for not receiving preoperative therapy were patient refusal (n=1) and recurrent ovarian cancer (n=1).

Surgical outcomes

The surgical outcomes are presented in Table 2. The sacral dissection levels were as follows: S2, n=3 (20%); S3, n=9 (60%); S4, n=2 (13%); and S5, n=1 (7%). Twelve patients had a sacral transection level of S2 or 3 and underwent transection by osteotome in the prone position; three patients had a sacral transection level of S4 or 5 and underwent transection by Gigli wire saw in the Lloyd–Davies position. Five patients (33%) required reconstruction of the rectus muscle flap. None of the patients required conversion to a laparotomy. The median operative time was 936 min (range, 606–1319 min) and the median intraoperative blood loss was 235 ml (45–1320 ml).

Postoperative outcomes

The postoperative outcomes are summarized in Table 3. The CD classifications of the postoperative complications were as follows: grade 0-2, n=10 (67%); 3a, n=6 (40%); 3b, n=1 (7%); and ≥4, n=0 (0%), with some overlap. All six patients with CD3a received percutaneous drainage, and three were culture-positive, while three were culture-negative at the time of discharge. A patient with grade 3b bleeding had postoperative bleeding from the branch of the internal iliac vessels 15 days after surgery, and bleeding was successfully stopped by interventional radiography (IVR).

Pathological and oncological outcomes

The pathological outcomes are summarized in Table 4. Two patients (13%) were diagnosed with R1; therefore, the R0 rate was 87%. The R1 location was the sacral transection edge and the lateral side of the dissection margin.

During the median follow-up period of 27 months (5-46 months), local re-recurrence (re-LR) developed in 2 patients (13%) (intrapelvic dissemination, n=1; skip metastasis between the coccygeus and gluteus maximus muscles in the right gluteal region, n=1) for recurrent rectal cancer. Among the two patients with re-LR, the former died due to their current illness and the latter was treated for a re-LR lesion with focal carbon-ion radiotherapy. Six patients (40%) developed distant metastases. The locations of distant metastasis were as follows: lung, n=2 (13%); peritoneum, n=2 (13%); inguinal lymph nodes, liver and inner side of gluteus maximus muscles, n=1 (7%) (with some overlap). Fourteen patients remained alive at the end of the follow-up period.
Discussion

This study demonstrates the surgical technique and treatment results of TAMIS for sacrectomy, along with the outcomes of 15 patients who were successfully treated using this approach and who were followed for a median period of 27 months. CD≥3b complications were observed in 1 patient (7%). No patients required reoperation, and no patients required conversion to laparotomy. The median blood loss was 235 ml, and the maximum blood loss was 1320 ml. The median operating time was 15.5 hours, and the R0 rate was 87%. On the other hand, the largest single center retrospective study of conventional sacrectomy was summarized by Milne et al, which included 100 patients. The outcomes demonstrated that major complications requiring reintervention or causing long-term disability occurred in 43% of cases. Reoperation was performed in 23% of cases. The median blood loss was 4500 ml and the maximum blood loss was 14500 ml. The median operating time was 12 hours and the R0 rate was 72%. A direct comparison is not appropriate. However, these outcomes indicate that MIS with TAMIS for sacrectomy is associated with low blood loss, reduced complications, and an acceptable R0 rate. Thus, this novel approach is of sufficient value based on the clinical outcomes of sacrectomy. To the best of our knowledge, this is the first observational study to assess the feasibility of MIS combined with TAMIS for sacrectomy.

Sacrectomy for MIS with TAMIS is a highly difficult and complex surgical procedure. The key points of this surgical technique are as follows: 1. The rendezvous point between the transabdominal and anal approaches is set as the tendinous arch of the levator ani. This point is the lateral edge of the levator ani, which maintains the dissection margin. In addition, the levator ani becomes quite thin at this point and thus is easy to penetrate. Furthermore, when considering operability, dissecting the distal part of the levator ani tends to be relatively easy in the transanal approach, although it this is often a highly demanding procedure in the transabdominal approach. 2. Maintaining the lateral margin is crucial in sacrectomy. The sacrospinous and sacrotuberous ligament are dissected at the attachment of the ischial spine and ischial tuberosity, which is the lateral edge of these ligaments. The transanal approach can provide a good surgical view of these ligaments. Additionally, the internal obturator muscle, which is the outermost connective tissue on the lateral side, can be dissected with a good surgical view using a transanal approach. 3. The internal pudendal vessels must be dissected to maintain the dissection margin. We have clarified the anatomical route of these vessels from the transanal view. This knowledge is important for reducing the risk of bleeding when TAMIS is performed for such extended pelvic surgery. 4. Transection of the sacrum is performed using a small incision. Thus, the length from the promontory to the posterior edge of the tumor on preoperative imaging is used as a guide for the dissection border at the posterior side, the sacral level is marked on the skin before surgery, and the sacral nerve at the sacral transection level is taped as a landmark. In addition, the sacroiliac joint is palpated in the prone position in order to check the distance between the joint and sacrum transection level.

Superficial and deep incisional SSIs are serious complications after sacrectomy. Imaizumi et al. demonstrated that a wide range of perineal incision is an independent risk factor for superficial and deep incisional SSIs after extended pelvic surgery. Then, TAMIS for sacrectomy enables the perineal side...
of the skin incision to be minimized. In addition, this approach enables separation between the lower back side of the clean skin incision near the sacral transection edge and perineal side of the contaminated skin incision near the anus. Furthermore, minimizing the perineal side of the skin incision by TAMIS reduces the use of flap reconstruction. Indeed, flap reconstruction is useful for preventing perineal wound complications. However, the incidence of complications such as flap dehiscence and flap necrosis is relatively high.15-17

Additionally, major uncontrolled intraoperative bleeding is a feared complication when performing sacrectomy. The low amount of blood loss observed in our study can be attributed to both MIS and TAMIS. Regarding the transabdominal approach, the internal iliac vein and its branches are common points of bleeding. We therefore identified and dissected along the three pelvic sidewall fasciae (ureterohypogastric, umbilical prevesical and parietal pelvic fascia), which are located in the non-vascular spaces in the pelvic sidewall in order to clarify the route of the internal iliac veins.18,19 In addition, to prevent any injury to the internal iliac vein, we identified the internal iliac vein at the level of the common iliac vessels and carried out dissection along the medial anterior surface of the internal iliac before transecting the vein, which has been described previously.20 For the transanal approach, several studies have demonstrated that the combined use of TAMIS for extended pelvic surgery significantly reduces the amount of blood loss due the ability to obtain a good surgical view with this approach.21,22 Particularly useful points are located around the pudendal canal because this canal passes through the inferior pudendal vessels. The dissection of this point is demonstrated in a video which is provided as a supplemental file.

The present study was associated with some limitations. First, this was a retrospective study that analyzed a relatively small case series. Second, the follow-up period was insufficient, and oncological safety was not fully assessed. Third, the incidence of CD3a complications was relatively high (40%). This is because in surgery we only inserted one drainage tube at the pelvic floor, and CT was routinely performed every week after surgery. Percutaneous drainage was routinely performed when fluid collection was identified. Thus, three of six patients who underwent percutaneous drainage were found to be culture-negative. Finally, TAMIS for sacrectomy must be performed in centralized, high-volume centers with dedicated multidisciplinary teams and operators, because this approach is technically challenging.

In conclusion, MIS with TAMIS could lead to a very small amount of blood loss, a low incidence of severe postoperative complications, and an acceptable R0 resection rate, indicating that this novel surgical approach is feasible for selected patients who undergo sacrectomy. Further studies are needed to clarify the long-term oncological feasibility.

Declarations

Funding: none

Conflicts of interest: The authors declare that they have no conflict of interest.
Competing Interests: none

Ethics approval: Ethics committee approval from our institution was obtained.

Consent to participate: Consent to participate from each patient was obtained.

Consent for publication: Consent for publication was obtained.

Availability of data and material: The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Code availability: none

Acknowledgments: none

All the authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by Ito, Otani, Imada, Matsubara, Song, and Kimura. The first draft of the manuscript was written by Naohito Beppu, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Ethical approval was waived by the local Ethics Committee of Hyogo Medical University (approval number: 2798) in view of the retrospective nature of the study, and all the procedures performed were part of the routine care.

Informed consent was obtained from all individual participants included in the study.

Author Contribution

All the authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by Ito, Otani, Imada, Matsubara, Song, and Kimura. The first draft of the manuscript was written by Naohito Beppu, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

References

reconstruction of large pelviperineal defects following oncologic resection. J Surg Oncol. 2022;126:1383-1388.

Tables

Table 1. Patient characteristics
BMI: body mass index
ASA: American Society of Anesthesiology
CRT: Chemoradiotherapy
Numerical data are indicated as medians. Values in parentheses are the percentages.

Table 2. Surgical outcomes
Type of surgery. n (%)

<table>
<thead>
<tr>
<th>Type of Surgery</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR with sacrectomy</td>
<td>6</td>
<td>(40)</td>
</tr>
<tr>
<td>TPE with sacrectomy</td>
<td>4</td>
<td>(27)</td>
</tr>
<tr>
<td>PPE with sacrectomy</td>
<td>3</td>
<td>(20)</td>
</tr>
<tr>
<td>Tumor resection with sacrectomy</td>
<td>2</td>
<td>(13)</td>
</tr>
</tbody>
</table>

Sacral transection level. n (%)

<table>
<thead>
<tr>
<th>Level</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>3</td>
<td>(20)</td>
</tr>
<tr>
<td>S3</td>
<td>9</td>
<td>(60)</td>
</tr>
<tr>
<td>S4</td>
<td>2</td>
<td>(13)</td>
</tr>
<tr>
<td>S5</td>
<td>1</td>
<td>(7)</td>
</tr>
</tbody>
</table>

Sacral dissection approach. n (%)

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteotome at prone position</td>
<td>12</td>
<td>(80)</td>
</tr>
<tr>
<td>Gigli wire saw at Lloyd-Davies position</td>
<td>3</td>
<td>(20)</td>
</tr>
<tr>
<td>Dissection of internal obturator muscle*</td>
<td>6</td>
<td>(40)</td>
</tr>
<tr>
<td>Dissection of superior gluteal vessels**</td>
<td>1</td>
<td>(7)</td>
</tr>
<tr>
<td>Dissection of internal pudendal vessels***</td>
<td>13</td>
<td>(87)</td>
</tr>
<tr>
<td>Rectus muscle flap reconstruction. n (%)</td>
<td>5</td>
<td>(33)</td>
</tr>
<tr>
<td>Conversion to laparotomy. n (%)</td>
<td>0</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Operative time (min). median [range]

<table>
<thead>
<tr>
<th>Time</th>
<th>Median [Range]</th>
</tr>
</thead>
<tbody>
<tr>
<td>936</td>
<td>[606, 1319]</td>
</tr>
</tbody>
</table>

Intraoperative blood loss (ml). median [range]

<table>
<thead>
<tr>
<th>Blood Loss</th>
<th>Median [Range]</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>[45, 1320]</td>
</tr>
</tbody>
</table>

Intraoperative transfusion. n (%)

<table>
<thead>
<tr>
<th>Transfusion</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(13)</td>
<td></td>
</tr>
</tbody>
</table>

APR: abdominoperineal resection

TPE: Total pelvic exenteration

PPE: posterior pelvic exenteration

*: Cases in which muscles on at least one side were dissected.

**: Cases in which at least one artery or vein was dissected.
Numerical data are presented as medians. Values in parentheses are percentages and values in brackets are ranges.

Table 3. Postoperative outcomes

<table>
<thead>
<tr>
<th>Postoperative complication. n (%)<sup>※</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 0</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>CD 1</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>CD 2</td>
<td>10</td>
<td>(67)</td>
</tr>
<tr>
<td>Superficial and deep incisional SSI</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Organ/Space SSI</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Urinary infection</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ileus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CD 3a</td>
<td>6</td>
<td>(40)</td>
</tr>
<tr>
<td>Organ/Space SSI</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pelvic fluid collection</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CD 3b</td>
<td>1</td>
<td>(7)</td>
</tr>
<tr>
<td>Postoperative bleeding→IVR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CD4,5</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>CO2 embolism. n (%)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>Reoperation. n (%)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>Mortality. n (%)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>Postoperative hospital stays (days). median [range]</td>
<td>53</td>
<td>[29, 97]</td>
</tr>
<tr>
<td>Adjuvant chemotherapy. n (%)</td>
<td>5</td>
<td>(33)</td>
</tr>
</tbody>
</table>

CD: Clavien–Dindo

SSI: Surgical site infection

IVR; Interventional radiology

CO2: carbon dioxide
Numerical data are presented as medians. Values in parentheses are percentages and values in brackets are ranges.

Table 4. Pathological outcomes

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology.</td>
<td></td>
</tr>
<tr>
<td>tub</td>
<td>12</td>
</tr>
<tr>
<td>muc</td>
<td>2</td>
</tr>
<tr>
<td>adeno</td>
<td>1</td>
</tr>
<tr>
<td>Pathological N category.</td>
<td></td>
</tr>
<tr>
<td>(y)pN0</td>
<td>11</td>
</tr>
<tr>
<td>(y)pN</td>
<td>4</td>
</tr>
<tr>
<td>Radicality.</td>
<td></td>
</tr>
<tr>
<td>R0</td>
<td>13</td>
</tr>
<tr>
<td>R1</td>
<td>2</td>
</tr>
</tbody>
</table>

tub: tubular type
muc: mucinous type
adeno: adenocarcinoma

Values in parentheses are percentages.

Figures
Figure 1

TAMIS for lithotomy position (left side of patient)

TAMIS: transanal minimally invasive surgery

a: The posterior aspect of the coccyx is dissected.
b: The gluteus maximus muscles are transected at the attachment of the coccyx, and the ventral side of the gluteus maximus muscles is dissected laterally.

c: The sacrotuberous ligament can be identified.

d: The dissection of sacrotuberous ligament opens the lesser sciatic foreman.

e: Dissection along the internal obturator muscle reaching the tendinous arch of the levator ani.

f: The pudendal canal is opened by dissecting the coccygeus and sacrospinous ligaments.

※: Sacrotuberous ligament (dissected)

Figure 2

Transabdominal approach (left side of patient)

a: The distance between the promontory and upper edge of tumor were measured.
b: The branch of the sciatic nerve at the sacral transection level is taped.

c: The parietal fascia is dissected.

d: The coccygeus muscle and sacrospinous ligament are dissected to open the pudendal canal

※※ Coccygeus muscle and sacrospinous ligament
Figure 3

TAMIS for prone position

TAMIS: transanal minimally invasive surgery

a: The sacral level is marked on the skin.

b: The dissection of the attachment to the sacrum (gluteus maximus muscles, sacrotuberous ligament, and sacrospinous ligament).

c: The transection level can be confirmed by the taping of sciatic nerve.

d: The sacroiliac joint was palpated.

e: The osteotome is used to transect the sacrum.

f: The perineal side and lower-back side of incision is closed.

※※※ Attachment to the sacrum

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [240207Tpsacrectomy.mp4](#)