Supplementary Material to Early Warning Signals of Complex
Critical Transitions in Deterministic Dynamaics

Methods
Regime boundary detection algorithm

In order to determine where regimes such as a chaotic regime end and start, the periodicity of the
timeseries needs to be determined for each value of the bifurcation parameter. Ideally, the exact moment
of transition is found analytically, yet for complex bifurcations whose timing depends sensitively on the
initial condition and rate of parameter change, this is not possible [86]. We thus resort to numerical
methods.

Given that most EWS studies into complex bifurcations rely on only one or a few simulations [62,
65, 66], no systematic way of finding regime boundaries seems to be used in the literature. For some
bifurcations it is possible to find the critical transition point analytically, but this will not correspond to
the simulated transition under intrinsic noise. Empirical studies into transitions may rely on change point
analysis [147, 148], which detects a shift in statistical properties such as the mean or variance. Though
this may work well for simple bifurcations, these methods are not well suited for complex bifurcations,
where the difference between regimes may be subtle (e.g. period-doubling bifurcations) and differences
within the regime are substantial. Given the lack of guidance in the literature, we thus developed our
own algorithm for detecting regime boundaries.

Algorithm 1: Regime boundary detection

Data: Timeseries with step-wise changes in bifurcation parameter range s
Result: Regime boundaries

1 Find peaks and troughs in timeseries

2 for each step s; in the bifurcation parameter range s do

3 Get peaks and troughs p = pj,...,pn corresponding to step s;

4 for period k=1,..., K do

5 Group p according to group indices g = 5 mod k with j =1,...,. N

6 Compute Euclidean distance D; = ||p;|| for each group g,

7 Set fit f as maximum distance max(D) across groups

8

9

end
if Distance between fits is less than d,.4. then
10 ‘ Set behaviour as node
11 else
12 Choose best k based on best fit f* weighted by d
13 if Best fit f* > dampt & [* > 6iar then
14 ‘ Set behaviour as chaotic
15 else
16 ‘ Set behaviour as period k
17 end
18 end
19 end

20 Smooth over exceptions in behaviour (dsmooth )

21 Flag steps which touch basin boundary [Zmin, Tmax]

22 Flag chaotic behaviour where the spread of peaks and troughs covers an area larger than dpang
23 Find regimes by grouping consecutive sequences in behaviour which are of length | > §;




Rather than analysing the complete timeseries, a more efficient method finds the periodicity by using
the amplitude and timing of the timeseries’ peaks and troughs [149]. A first intuitive approach to finding
the timeseries’ periodicity may be to count the number of distinct peak coordinates using a histogram.
However, this only works for simple oscillations with clearly separable peak coordinates which do not
repeat. For instance, an oscillation with a pattern [a,b, a, c| is not the same as [a,b, ¢|, yet a histogram
will depict both as a period-3 oscillation. The order of the peaks thus needs to be included to accurately
identify the period, which a histogram discards.

Incorporating a temporal aspect, a second approach to determining periodicity may be to find peaks
in the autocorrelation function. However, repeated peak coordinates in the oscillation again make such
an approach difficult. The first local maximum in the autocorrelation does not correspond to the period
in patterns such as [a, b, a, |, where the autocorrelation will peak at lag 2 and more strongly at lag 4.
Oscillations with a long period and subtle differences between peak amplitudes are again difficult to pick
up.

The present paper used a third, more computationally expensive approach because of its greater
accuracy over the former two approaches. The period k was determined by assessing which & had the best
fit when the peaks and troughs are partitioned according to their position in the period. For instance,
to test whether the timeseries is of period k = 3, its peaks and troughs y; are grouped using ¢ mod k,
resulting in a grouping sequence g = 1,2,3,1,2,3,... which correspond to indices in an oscillation of
period k = 3 (Algorithm 1, line 5). For each group g, the (Euclidean) distance between peaks is computed
(Algorithm 1, line 6). If the timeseries is indeed period-3, the distance for all groups yg—1,yg=2, Yg=3
should be minimal. The maximum distance across groups is taken as an indicator of fit (Algorithm 1, line
7), such that the best fit (i.e. the smallest maximum distance) across all k = 1,..., K yields the period
of the signal. This procedure can be completed for both the amplitudes of the peaks and troughs (i.e.
coordinates) as well as their timing (i.e. indices).

Completing this procedure for all timeseries per step in the bifurcation parameter gives the evolving
order of periodicity across the bifurcation range. Some parameters were added to account for several
weakness. Firstly, a timeseries was identified as a node if all fits were the same within some margin of
error dnode (Algorithm 1, line 10). Secondly, as multiples of the true period will lead to a better fit simply
because each group g will have fewer peaks resulting in smaller distances, a penalty Jy is added for higher
k (Algorithm 1, line 12). This ensures that a higher k needs to result in a better fit than lower k. Thirdly,
as the algorithm will always find a best-fitting k even when the timeseries is chaotic, behaviour was
defined as chaotic if the best fit exceeded the maximum thresholds ampl, diax for the allowed maximum
distance in the amplitude and timing of the peak (Algorithm 1, line 13). Finally, the maximum period
K to look for is defined as the maximum period which still repeats at least once given the length of the
timeseries N: K = floor(IN/2).

To add more granularity to the regimes, we distinguish between regimes which touch the basin bound-
ary and those that do not, as well as between different types of chaos. More fine-grained behaviours help
to identify more critical transitions. To help detect boundary crises, the algorithm flags timeseries of
which a chosen variable reaches a specified minimum i, and maximum z,,x (Algorithm 1, line 21).
These correspond to the edges of the basin that are touched right before a boundary crisis happens, which
are Tmin = 0 and xyax = 1 for variable x7 and 3, in our case. Secondly, to help detect interior crises,
the algorithm separates chaotic timeseries that have well separated chaotic bands and those that cover
the entire area between the lowest and highest value (dpana, Algorithm 1, line 22).

The result of this procedure yields the type of behaviour corresponding to each step in the bifurcation
parameter. To finally identify regime boundaries across the parameter range, we defined regimes as a
consecutive sequence of the same behaviour of a minimal length ¢; which may be interrupted by behaviours
of length less than ¢; (Algorithm 1, line 23). This ensured that brief outliers given some flaws in the
algorithm or the parameter settings were not seen as transition points, which may also be smoothed
using dsmooth (Algorithm 1, line 20). Though the algorithm of course has its weaknesses (e.g. too high
periodicity is classified as chaos if only short timeseries are available), it detected regime boundaries quite



well as assessed visually (Supplementary Figures S1-S3). Even for limit cycles with growing amplitude
across the bifurcation range, in which case peak coordinates do not match, the algorithm identified the
whole stretch as belonging to the same cycle.

Simulation details

Default parameter settings for the regime boundary detection algorithm which yielded good performance
as found via experimentation may be found in Table 5. Some deviations from the defaults needed to be
made in order to either obtain the desired type of critical transition, or simply to save computational
power and storage space (Table 6). For instance, as the default method was not able to generate a
Boundary Crisis, the time step and solver were changed to A; = .1 and Euler integration only for this
bifurcation type.

Table 5 Default parameter settings of regime boundary detection algorithm

Parameter  Default value Meaning

Ok 1 Penalty term to fit for higher k

Osmooth 0 Number of steps in bifurcation parameter to smooth regimes over

Onode .001 Maximum difference between fit for each k& below which
timeseries is classified as a node

Jampl .025 Distance between peak amplitudes above which timeseries is
classified as chaotic

Gidx 2 Distance between peak indices above which timeseries is
classified as chaotic

Oband .85 Maximum percentage of area covered between minimum and
maximum value to be flagged as separated (cf. merged) chaotic
bands

1 1 Minimum length for a consecutive sequence of the same
behaviour to be classified as a regime

ZTrmin 0 Minimum edge of basin boundary

Tmax 1 Maximum edge of basin boundary

Table 6 Details of simulation parameters per bifurcation

s Ag Bifurcation Changes to default settings

[1.15,.9] -.0001 Saddle-node 0r = 1;T = 100, Npoise = 250; Ngimy = 1
[.6,.85] .001 Hopf (Period 1 to 2) 0x = 1; T = 200; Npoise = 250; Ngim = 1
[.85,.985] .0001 Period 2 to 4 6 =8

Period 4 to 8
Period 8 to 16
Mixed-Periodic to Chaotic
[.985,.8] -.0001 Chaotic to Mixed-Periodic 0k = .01; 0gmp1 = .01
Period 16 to 8
Period 8 to 4
Period 4 to 2
Reverse Hopf (Period 2 to 1)
[1.01,1.02] .00005 Interior Crisis: Chaotic Expansion dsmooth = 5;; = 1
[1.03,1.01] -.0001 Interior Crisis: Chaotic Reduction &; = 1;dsmooth = 10; dampr = .01
[1.1,1.3] .001 Boundary Crisis A; = .1;6; = 20; Euler simulation




Algorithm 2: Data simulation and EWS analysis

Result: Performance as measured by AUC per EWS per bifurcation type
1 for each range s do

// Simulate transition and null models and compute EWS
2 for each simulation in 1 : Ng;,, do
3 Generate timeseries of a GLV forced through range s
4 Apply regime boundary detection algorithm to find regime boundaries [s1, s2] and initial
condition x( of desired critical transitions
5 for each desired critical transition do
6 for transition and null model do
7 Generate timeseries using [s1, s2| and zg
8 for each downsampling frequency fs do
9 for each observational noise intensity o,ps do
10 for each noise iteration in 1 : Nypise dO
11 Distort timeseries by downsampling to fs; and adding observational
noise oy
12 for each step in [s1, s2] do
13 ‘ Compute all EWS on distorted timeseries
14 end
15 end
16 end
17 end
18 end
19 end
20 end
// Compute performance
21 for each desired critical transition do
22 for each metric in EWS do
23 for each downsampling frequency fs do
24 for each observational noise intensity o,ps do
25 Compute ROC curve by finding the number of false positives in null models
and true positives in transition models for each critical cut-off value o¢ until
FPR=0and TPR =0
26 Integrate ROC curve to obtain AUC
27 Find the optimal critical cut-off value ¢, corresponding to the maximum
Youden’s J statistic, J = TPR — FPR
28 Save warnings in transition models when setting o ;;
29 end
30 end
// Summarise across conditions
31 Compute median timing of saved warning signals
32 Assess whether saved warnings either all fell above, all below, or both above and
below the confidence band
33 end
34 end
35 end

Note that to fairly evaluate which bifurcation types are able to be anticipated, we chose to have same
amount of data for each bifurcation. However, as some bifurcations are inherently faster than others (e.g.



a period-4 to period-8 bifurcation is intrinsically shorter than a period-2 to period-4 bifurcation because
of Feigenbaum’s constant), the step size A; in the bifurcation parameter could not be held constant.
That is, the transition and null models of each bifurcation type had the same number of steps in the
bifurcation parameter, the same number of timepoints for each step, the same time step, and the same
sampling frequency, but had different Ag.

Bifurcation diagrams

The bifurcation diagrams of the all variables for s € [.6,1.3], s € [1.3,.6] (reverse order of s), and of the
saddle-node bifurcation are shown in Figures S1-S3.

Chaotic features: Intermittency

A typical feature within chaotic dynamics is intermittency: recurrent switches between two or more
attractors. Intermittent switches may occur between a periodic and chaotic attractor (Supplementary
Figure S4, left), or between two chaotic attractors (Supplementary Figure S4, right). Intermittency in
a subduction is related to the traditional Pomeau—-Manneville dynamics intermittency [101], whereas
interior crises show crisis-induced intermittency [100].

Importantly, these intermittent switches change in character as a bifurcation point is approached
(Supplementary Figure S4, bottom). For instance, the intermittency route to chaos contains short bursts of
chaotic behaviour amidst regularity, which increase in length and frequency until the system fully occupies
the chaotic attractor after the bifurcation point. Approached from the other direction, a dominant chaotic
attractor may show brief bursts of regularity of increasing length and frequency as the bifurcation point
is approached. Though the study of how these changes in intermittency express themselves in warning
signs is beyond the scope of this paper, they offer a potential warning sign for chaotic bifurcations.

Results

Performance per condition (downsampling frequency fs € [10,1,.1] and observational noise intensity
Oobs € [0.0001,.02,.04]) for each critical transition is shown in Figures S5-S10. The direction of EWS
when setting an optimal cut-off value o, using Youden’s J statistic is shown in Figure S11. Finally,
some examples of complex warning patterns are illustrated in Figure S12.
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Fig. S1 Numerically obtained bifurcation diagram of all variables with range s € [.6,1.3]. Bifurcation diagram of all
variables in the GLV showing the peaks and troughs (i.e. local minima and maxima, indicated in black) corresponding to
each value of the bifurcation parameter s (x-axis). Coloured bars indicate the periodicity of the timeseries as found using

our regime boundary detection algorithm, where white indicates chaotic regimes. Note that transients are included in the
diagram to show the full transitional process
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Fig. S2 Numerically obtained bifurcation diagram of all variables with range s € [1.25,.6]. Bifurcation diagram of all
variables in the GLV showing the peaks and troughs (i.e. local minima and maxima, indicated in black) corresponding to
each value of the bifurcation parameter s (x-axis). Coloured bars indicate the periodicity of the timeseries as found using

our regime boundary detection algorithm, where white indicates chaotic regimes. Note that transients are included in the
diagram to show the full transitional process
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Fig. S3 Numerically obtained bifurcation diagram of all variables with range s € [1.15,.9]. Bifurcation diagram of all
variables in the GLV showing the peaks and troughs (i.e. local minima and maxima, indicated in black) corresponding to
each value of the bifurcation parameter s (x-axis). Coloured bars indicate the periodicity of the timeseries as found using
our regime boundary detection algorithm, where white indicates chaotic regimes. Note that transients are included in the
diagram to show the full transitional process
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Fig. S10 AUC per condition (brighter, yellow colours indicate better performance, whereas darker, purple colours indicate
worse performance)
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Fig. S11 Direction of Early Warning Signals (EWS) when setting an optimal cut-off value o ;,. A warning may be given
by a signal that peaks above (i.e. an increase) or below (i.e. a decrease) the confidence band. Across simulations, warnings
may show a consistent pattern of either increasing (brown-red) or decreasing (blue), or both may occur (mixed, white)
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Fig. S12 Complex warning patterns that are not detected well by standard methods. Warning signs are shown for a
period-doubling bifurcation (period-4 to period-8, top), period-halving bifurcation (period-4 to period-2, middle), and a
period-halving cascade from chaos to periodic behaviour (bottom). The transition period in which s is changing is indicated
in red, which is preceded by a baseline period. Confidence bands are constructed with oy = 2
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