Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Revolutionizing Plant Disease Detection in
Agriculture: a Comparative Study of Yolov5 and
Yolov8 Deep Learning Models

Vaibhav Hawaldar

vaibhav. hawaldarl97@nmims.,.edu, in

Narsee Monijee Institute of Management Studies

Rishabh Jain
Narsee Monjee Institute of Management Studies

Mihir Mengde
Narsee Monjee Institute of Management Studies

Supriya Agrawal
Narsee Monijee Institute of Management Studies

Research Article

Keywords: Object detection, Deep-learning, YOLO, YOLOv5, YOLOv8, Comparative study
Posted Date: March 5th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3936780/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.


https://doi.org/10.21203/rs.3.rs-3936780/v1
https://doi.org/10.21203/rs.3.rs-3936780/v1
https://creativecommons.org/licenses/by/4.0/

REVOLUTIONIZING PLANT DISEASE
DETECTION IN AGRICULTURE: A
COMPARATIVE STUDY OF YOLOv5 AND
YOLOvS DEEP LEARNING MODELS

Vaibhav Hawaldar'”, Rishabh Jain?f, Mihir Mengde®t,
Supriya Agrawalf

lComputer Engineering, SVKM’s Mukesh Patel School of Technology
Management and Engineering, Mumbai, 400056, Maharashtra, India.
2Computer Engineering, SVKM’s Mukesh Patel School of Technology
Management and Engineering, Mumbai, 400056, Maharashtra, India.
3Computer Engineering, SVKM’s Mukesh Patel School of Technology
Management and Engineering, Mumbai, 400056, Maharashtra, India.
4Computer Engineering, SVKM’s Mukesh Patel School of Technology
Management and Engineering, Mumbai, 400056, Maharashtra, India.

Contributing authors: vaibhav.hawaldar197@nmims.edu.in;
rishabh.jain117@nmims.edu.in; mihir.mengde055@nmims.edu.in;
Supriya.agrawal@nmims.edu;

TThese authors contributed equally to this work.

Abstract

Object detection stands as a pivotal task within computer vision, finding exten-
sive use across various domains. Recent years have witnessed a transformative
shift in object detection thanks to deep learning methodologies, with You Only
Look Once(YOLO) emerging as a prominent algorithm in this field. In this
research paper, our focus lies in conducting an in-depth comparative analy-
sis between two advanced deep learning models, You Only Look Once Version
5(YOLOv5) and You Only Look Once Version 8 (YOLOVS), to assess their
applicability in the context of plant leaf disease detection within the agri-
cultural sector. Our results unequivocally establish YOLOvS8 as the superior
performer, exhibiting exceptional precision, recall, and class differentiation, and
notably, outperforming YOLOvV5 by approximately 3% in mean average precision



(mAP). This study demonstrates the prowess of YOLOv8 as a state-of-the-art
object detection algorithm, offering implications for diverse applications beyond
agriculture.

Keywords: Object detection, Deep-learning, YOLO, YOLOv5, YOLOvVS,
Comparative study

1 Introduction

Agriculture occupies a pivotal position in the global economy, with its contribution
extending to both economic growth and livelihood sustenance. According to World
Bank, globally, this sector constitutes approximately 4% of the gross domestic product
(GDP), emphasizing its substantial role in economic activities. It is worth noting that
in certain least-developed countries, agriculture assumes an even more pronounced
significance, accounting for over 25% of their GDP. The significant variation highlights
agriculture’s diverse impact on economies and its vital role in addressing economic,
social, and environmental challenges. Tailored strategies are crucial for recognizing
and utilizing agriculture’s full importance in sustainable development.

However, this crucial sector could have made a more substantial contribution if it
could effectively tackle various challenges, such as nematodes, insect pests, diseases,
and weeds that harm plants, reduce crop quality and yield, and consequently result in
significant economic losses for the agricultural industry and farming community [1][2].
To prevent further crop damage and maintain overall plant health, early detection of
diseases is vital [3]. This practice helps reduce the spread of diseases and allows for
effective agricultural management. Traditional methods of disease detection, primarily
relying on visual scouting, are time-consuming and can lead to lower crop yields,
diminishing profits[4]. Therefore, to meet the increasing demands of our agriculture
sector and efficiently resolve these issues, modernizing agriculture has become more
critical than ever [5].

Deep learning has emerged as a game-changing solution by integrating object
detection methods with its capabilities, particularly in identifying crop diseases. This
technology significantly enhances decisions related to crop management. Advanced
deep-learning models like YOLO have different versions like YOLOv5 and YOLOv8
which accurately detect diseases and assess the overall health of plant leaves. These
models save time and effort while providing more accurate results in identifying crop
diseases, ultimately maximizing profits and yields [6] [7][8].

This paper focuses on implementing various deep-learning models, with a promi-
nent emphasis on YOLOv5 and YOLOvVS. Our first objective involves comprehensively
training these models and conducting a meticulous comparative analysis of their per-
formance. Our study’s second contribution is introducing a unique, custom-annotated
dataset. This dataset, previously unavailable in the context of YOLO-based plant
disease detection, offers an invaluable resource for comparing YOLO models, setting
benchmarks, and tackling agricultural challenges.



Throughout this research, our primary focus remains on conducting a rigorous
comparative analysis of YOLOv5 and YOLOvS to shed light on the most effective
approach for advancing agricultural outcomes.

2 Literature Review

In the early stages of plant disease detection, researchers relied solely on visual aids
to determine whether a plant was diseased or healthy. As technology progressed,
they turned to image analysis, primarily centered around color-based distinctions and
machine learning techniques used after extracting features from the images, to enhance
their accuracy.

Zhang, Y., Yin, X., Xu, T., Zhao, J.(2009) employ PCA (Principle Compo-
nent Analysis) and LDA (Linear Discriminant Analysis) for cherry tomato maturity
determination. Using three images from different angles per tomato, PCA and LDA
differentiate ripe states (immature, half-ripe, full-ripe), achieving 94.9% accuracy. This
methodology captures the color and quality features of tomatoes. This study show-
cases the efficacy of machine vision for real-time sorting and maturity assessment of
cherry tomatoes [9]. Meenu Dadwal, V.K.Banga(2012) integrates RGB (Red-Green-
Blue) color analysis and fuzzy logic to estimate fruit ripeness. After color segmentation
(of color image) and mean value calculation (for red, blue, and green layers), fuzzy logic
classification assigns ripeness levels, addressing the lighting variation of images due to
changes in the environment. This approach yields accurate fruit ripeness assessment
by accounting for uncertainty in color changes [10].

Van Huy Pham and Byung Ryong Lee(2014) introduce a two-step fruit defect
detection methodology. Initial k-means clustering segments images, followed by a
graph-based algorithm that refines results by enhancing accuracy. This balancing
method improves accuracy and slightly increases the consumption time. The combi-
nation of k-means clustering and graph-based refinement proves effective for robust
fruit defect detection [11].

Traditional methods for plant disease detection encountered limitations due to
occlusion, complex patterns, and variable lighting conditions, rendering their results
unreliable. To address these challenges, researchers turned to deep learning mod-
els, harnessing their capabilities to overcome occlusion and intricate disease patterns,
ultimately enhancing the effectiveness of plant disease detection.

Murk Chohan, Adil Khan, Rozina Chohan, Saif Hassan Katpar, Muhammad
Saleem Mahar(2020) introduces a deep learning model for plant disease detection.
With over 95% accuracy on a real-world dataset (PlantVillage Dataset), the model
displays promising potential for on-site plant disease identification. The study utilizes
a Convolutional Neural Network (CNN) architecture, trained on a publicly available
dataset.

Despite challenges in varying conditions, the model demonstrates accurate disease
classification, raising prospects for integration into live disease identification systems
[12]. Mahmoud Bakr, Sayed Abdel-Gaber, Mona Nasr, and Maryam Hazman(2022)
highlight a comprehensive methodology that leverages DenseNet201 architecture and
preprocessing techniques to surpass existing methods on PlantVillage plant datasets.



This proposed model achieves an impressive average accuracy of 98.23 percent by
integrating preprocessing steps like k-means clustering.

In comparison research, DenseNet201 outperforms VGG16, Inception V3, and
ResNet152V2, even with transfer learning. It serves as the feature extraction phase in
the suggested model, followed by a CNN classifier, ultimately demonstrating the high-
est accuracy among the models considered. Thus, the proposed DenseNet201-based
model emerges as the most effective choice for accurate plant disease detection [13].

While these models showed promise in mitigating occlusion and lighting problems,
they struggled when confronted with the intricacies of complex patterns inherent in
plant diseases. This dilemma led to the exploration of more advanced deep learning
models, such as Faster R-CNN (Faster Region-Convolutional Neural Network) and the
YOLO family, in the quest for improved plant disease detection.

Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, Ab Nasir
AF, P.P. Abdul Majeed A.(2021) presents a real-time solution for rice leaf disease
diagnosis, leveraging the Faster R-CNN framework with deep learning. Methodologi-
cally robust, the study encompasses data augmentation, annotation, and multi-phase
training. By integrating deep learning and Faster R-CNN, the approach holds promise
for revolutionizing real-time disease diagnosis in agriculture. The process involves
CNN feature extraction, RPN-based (Region Proposal Network) candidate region gen-
eration, classification, and regression. Multi-phase training refines accuracy through
iterative iterations. With the potential to mitigate crop loss, this approach amal-
gamates deep learning and innovation to enable precise real-time rice leaf disease
diagnosis [14].

One-stage methods, exemplified by the YOLO series, directly pinpoint the target
without generating numerous candidate boxes as required by two-stage methods like
Faster R-CNN. In practical plant disease detection applications, one-stage methods
exhibit higher effectiveness. For instance, despite the potential of Faster R-CNN, its
two-stage approach posed limitations on overall efficacy, reinforcing the superiority of
one-stage YOLO family models, particularly in the context of plant disease detection.
One-stage models streamline the process, leading to improved efficiency and accuracy
in identifying plant diseases.

Zhaoyi Chen, Ruhui Wu, Yiyan Lin, Chuyu Li, Siyu Chen, Zhineng Yuan, Shi-
wei Chen, Xiangjun Zou(2022) focused on enhancing the performance of the YOLOv5
model for the critical task of detecting rubber tree diseases in visible light images.
To achieve this goal, they made significant modifications to the model architecture.
Key improvements included replacing the conventional Bottleneck module with the
more efficient InvolutionBottleneck module within the backbone network. Addition-
ally, they integrated the SE (Squeeze-and-Excitation) module into the final layer of
the backbone, facilitating more effective feature fusion. Further boosting accuracy, the
authors switched from the Generalized Intersection over Union (GIOU) loss function
to the Efficient Intersection over Union (EIOU) loss function, which accounted for vari-
ations in target frame dimensions and confidence levels. These meticulous refinements
resulted in remarkable precision rates, with the enhanced YOLOv5 achieving 86.5
percent precision for powdery mildew detection and 86.8% precision for anthracnose
detection [15].



Sajitha P, Alwin John, V L Devika, Gayathri S V, Nafla Sakhir(2023) introduces
a comprehensive solution for plant disease detection, combining YOLO v7 and GPT-
3. YOLO v7 accurately identifies leaf diseases with 96% accuracy. The integration of
GPT-3, with its natural language processing prowess, generates actionable recommen-
dations encompassing cultural practices, chemical treatments, and biological controls.
This dual model approach not only detects diseases but also offers effective remedies,
enhancing the system’s utility. Outperforming traditional models, this amalgamation
provides a holistic disease management solution, contributing to efficient crop health
management [16].

Ping Li, Jishu Zheng, Peiyuan Li, Hanwei Long, Mai Li, and Lihong Gao (2023)
showcase the transformative potential of MHSA- YOLOvS8 in tomato assessment.
Through meticulous image annotation, the study categorizes datasets into maturity
grading and counting segments. Maturity grading involves labels like immature (IM),
semi-mature (SM), and mature (M). In contrast, the counting segment simply uses
”tomato” as the label. Central to the paper is the MHSA-YOLOv8 model, ingeniously
integrating Multi-Head Self-Attention within its architecture. The paper highlights the
model’s dual applications: accurately grading tomato maturity and efficiently count-
ing tomatoes while handling complexities. The validation of these models reaffirms
their effectiveness in real-world applications, reflecting a significant advancement in
agricultural innovation [17].

Within the YOLO family, several variants, including YOLOv5, YOLOv6, and
YOLOv7, were put to the test in various studies. However, as technology evolved,
YOLOvS8 emerged as the newer and more advanced contender in the field. Recent
research findings have highlighted the superiority of YOLOvV8 over not only previous
YOLO models but also other plant disease detection methods in general.

Hence, by applying Yolo:

e It improves object detection, can identify complex patterns, and can adapt to
varying lighting.

e It offers accurate object localization and real-time performance.

e Its adaptability enhances accuracy and reliability, making it superior to
traditional methods and other conventional deep learning models.

3 YOLOv5
3.1 Model Overview

YOLOV5, a cutting-edge one-stage target recognition algorithm leveraging Convolu-
tional Neural Networks (CNNs), stands out for its exceptional speed and accuracy
in object detection[18][19]. Originating in 2015 as YOLO under Joseph Redmon, the
series evolved through versions 1 to 3, incorporating innovations like anchor boxes
and feature pyramids. Glenn Jocher at Ultralytics transitioned YOLOv3 to PyTorch,
resulting in the development of YOLOv5, marked by a flexible Pythonic structure
and collaborative enhancements[20][21].A standout feature in YOLOv5 is the intro-
duction of auto-learning bounding box anchors. This mechanism adapts anchor box
dimensions based on the dataset’s bounding box distribution, enhancing the model’s
adaptability. Key equations guide this process, contributing to YOLOvV5’s exceptional



Table 1 Comparison of Models and Accuracy

‘ Models Used ‘ Dataset ‘ Accuracy

PCA and LDA [9] The samples were hand-harvested | 94.9%
on 23rd November 2007 from the
experimental orchard in ”Jin Rui”
Institute of Agricultural, Zhen-

jlang
RGB Color Analysis | - -
Fuzzy Logic [10]
K-means  Clustering, | - -
Graph-based Algo-
rithms [11]
CNN [12] PlantVillage dataset 95%
ImageNet, PlantVillage dataset 98.23%
DenseNet201, VGG16,
Inception V3,
Resnet152V2 [13]
Faster R-CNN [14] Kaggle database and a collected | 98.88%
dataset created by capturing dis-
eased rice leaf images in the labora-
tory, collected by the authors from
actual rice fields
Improved Yolo v5 [15] | The images were collected from a | 86.5% precision for
rubber plantation in Shengli State | powdery  mildew
Farm, Maoming City, China detection and

86.8% precision for
anthracnose detec-
tion

Yolo v7 and GPT3 [16] | The dataset named PlantLeaf was | 96%

collected in real-life scenarios by
our team under the supervision of
plant pathologists

Yolo v8, MHSA (Multi- | The dataset was collected from | -
Head Self-Attention) | Shouguang Smart Agricultural Sci-
[17] ence and Technology Park in Shan-
dong Province, China, using RGB
cameras

performance in handling diverse datasets.YOLOv5 combines the efficiency of one-
stage target recognition with the evolutionary principles of YOLO. Originating in the
Darknet framework and transitioning to PyTorch, its collaborative development under
Ultralytics underscores its state-of-the-art status. The incorporation of auto-learning
bounding box anchors further solidifies YOLOvV5 as a formidable choice for precise
and adaptable object detection across various datasets.[22][23][24][8]

3.2 An Overview of YOLO Training Procedures

YOLOv5 employs innovative training procedures to optimize model performance. Two
key aspects are:

1)Data Augmentation: YOLOv5 uses sophisticated data augmentation tech-
niques, including scaling, color space adjustments, and mosaic augmentation. Mosaic
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Fig. 1 Evolution of Yolo Models

augmentation, in particular, combines multiple images into composite tiles, address-
ing the ”small object problem” and enhancing model robustness[25][24].

2) Loss Calculations and Loss Function:YOLOvV5 utilizes a carefully crafted
loss function that unifies several critical elements, including Generalized Intersection
over Union (GIoU), objectness (obj), and class losses (cls). This mathematically
defined loss function is instrumental in optimizing the model during the training
process, as described by the equations (1) to (4) in our paper [25].

The loss function is mathematically expressed as:

loss = lpox + lcls + lobj (1)
lbox = coord Z Z IObJ . 2 wj - hl)
=0 j=0
X |(@s = oA + (i = yAd)? + (wi — wA)? + (i — hAD)?] 2)
lcls = )\class Z Z IObJ Z Di (C) IOg (p;\ (C)) (3)
1=0 5=0 c€Eclasses
Ob_] = )\DOObJ Z Z InOObJ - CAi)2
=0 j=0
(4)
+)\Ob_] ZZIObJ _CAi)2
=0 j=0

Where:

lbox Tepresents the localization loss,
which accounts for the spatial accuracy of predicted bounding boxes.

lo1s represents the classification loss,
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Fig. 3 In feature network design: (a) FPN incorporates a top-down pathway for merging multi-
scale features from levels 3 to 7 (P3 - P7). (b) PANet enhances FPN by adding an extra bottom-up
pathway. (c¢) NAS-FPN employs neural architecture search to discover an unconventional feature
network structure and applies it repeatedly. (d) Our approach, BiFPN, achieves improved accuracy
and efficiency trade-offs compared to the others.[28]

which measures the accuracy of predicted class labels.
lobj is the objectness loss,

which evaluates the confidence of object predictions.

3.3 Architectural Details

YOLOv5 utilizes a Convolutional Neural Network (CNN) architecture comprising
three essential components: the Backbone, Neck, and Head[21][24].

3.3.1 Backbone

The Backbone plays a pivotal role as the initial feature aggregator, meticulously
extracting image features at varying granularities. YOLOv5 adopts the Cross-
Stage Partial (CSP) network architecture, particularly the New CSP- Darknet53[26]
structure. This architecture enhancement is further complemented by the incorpo-
ration of the spatial pyramid pooling fast (SPPF) module into the CSPDarknet53
structure[21][24]. This integration empowers YOLOV5 to excel in extracting global
information crucial for accurate object detection.



3.3.2 Neck

The Neck component acts as a bridge between the Backbone and the prediction layer,
facilitating precise object identification. YOLOvV5 further optimizes this critical func-
tion by introducing the PA-Net (Path Aggregation Network) structure within the
Neck. The PA-Net is responsible for intricate feature fusion and multi-scale predic-
tion across distinct layers, which significantly strengthens the propagation of semantic
features and positional information within the model[25][29].

3.3.3 Head

The Head component synthesizes the refined features from the Neck to produce the
final output, including bounding boxes and class predictions. YOLOvV5 offers four pri-
mary versions: small (s), medium (m), large (1), and extra-large (x), each progressively
enhancing accuracy[30]. The model’s evolution includes architectural improvements,
such as the adoption of the New CSP-Darknet53 structure in the Backbone, the inte-
gration of SPPF and New CSP-PAN structures in the Neck, and the replacement of
the Focus structure with a 6x6 Conv2d structure for increased efficiency. Addition-
ally, YOLOVS5 replaces the SPP structure with SPPF, effectively doubling processing
speed|[25][21].This model offers superior accuracy and efficiency, making it a promising
tool for researchers and practitioners alike[25][21].

4 YOLOvS

4.1 Introduction

YOLOVS, a cutting-edge algorithm developed by Ultralytics, is designed for real-
time crop disease detection, integrating object detection, image classification, and
instance segmentation. As an evolution from the influential YOLO series, especially
YOLOv5, YOLOvVS8 achieves a notable leap in both accuracy and efficiency within
computer vision. Its versatility spans tasks like with a user-friendly Python package
and command-line interface, supported by a robust expert community[31][22].Notably,
YOLOvVS adopts an anchor-free detection strategy, predicting object centers directly
for improved accuracy and efficiency. The inclusion of mosaic augmentation during
training further underscores its commitment to innovation, exposing the model to
diverse scenarios for comprehensive learning[32][18][19].YOLOvS8 stands at the fore-
front of real-time crop disease detection, offering a powerful combination of accuracy,
efficiency, and versatility, fueled by its evolutionary lineage and innovative approaches
to object detection.

4.2 Enhanced Loss Function for Precision

YOLOvVS8’s success lies in its meticulously crafted loss function, a critical component for
fine-tuning network parameters, thus achieving superior object detection performance.
This customized loss function seamlessly integrates three essential components:



e Classification Loss: YOLOv8 employs VFL(Varifocal Loss), an asymmetric
weighting scheme that effectively balances positive and negative samples to enhance
classification accuracy.

Formula:

—q(qlog(p) + (1 — q)log(1 —p)), if¢>0;
—plos(1—p) if g=0.

VFL(p,q) = { (5)

e Localization Loss: DFL(Distribution Focal Loss) transforms single-value coor-
dinate regression into a probability distribution centered around the target, optimizing
localization accuracy.

Formula:

DFL(S;, 8 +1) = = ((yi + 1 — y) 1og(5:) + (y — y:) log(Si + 1)) (6)
e Confidence Loss: Complete Intersection over union (CIoU) builds upon Dis-
tance Intersection over Union loss (DIoU), incorporating an additional influence factor
to enhance object localization precision.
Formula:

&~ -+ v*(1 — IoU) (7)

ClIoULoss =1—CloU =1—IoU + —

c

These integrated components collectively contribute to YOLOvS8’s precision,

enabling it to focus on target areas and achieve more accurate and reliable object
detection, a crucial aspect for research and practical applications[19][22].

4.3 Architectural Details

In this section, we delve into the architectural refinements that underscore YOLOvS&’s
efficacy in object detection. These strategic changes are meticulously designed to
enhance gradient flow, improve computational efficiency, and elevate overall model
performance while staying true to the model’s foundational strengths[23].

4.3.1 Backbone Optimization

One noteworthy enhancement within the backbone involves the replacement of a
6x6 convolution in the stem with a more efficient 3x3 convolution. This adaptation
aligns YOLOvV8 with contemporary computational efficiency paradigms, streamlining
its feature extraction process[32][18].

4.3.2 C2f Enhancement

YOLOVS introduces a novel approach in its architecture, termed C2f, as a replacement
for its predecessor, C3. Within C2f, outputs from two 3x3 convolutions with residual
connections are concatenated. This innovative alteration responds to evolving research
findings and effectively optimizes feature representation[32][18].

10
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Fig. 4 Architecture of Yolov8[32]

4.3.3 Detection Head Transformation

While YOLOvS8 retains the foundational Bottleneck architecture from YOLOvV5, it
implements a pivotal change by modifying the first convolution’s kernel size from 1x1
to 3x3. This strategic adjustment aligns YOLOvS8 with the ResNet block design from
2015, showcasing its adaptability and responsiveness to architectural evolution[32][18].

4.4 Classification and Detection Separation

YOLOvVS introduces a structural refinement by separating the classification and detec-
tion heads. This architectural leap enhances the model’s sophistication and positions it
as a formidable asset for object detection, delivering both precision and efficiency|[18].

These architectural refinements play a pivotal role in YOLOvS8’s success, making
it invaluable for research and practical applications.

Model Versions: YOLOvS is available in four primary versions: small (s), medium
(m), large (1), and extra-large (x), each progressively enhancing accuracy. YOLOVS is
a remarkable milestone in the field of object detection and computer vision, especially
for plant leaf disease detection.

11
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5 Material and Methods

In this section, we provide a comprehensive account of our implementation process for
training and evaluating YOLOv5 and YOLOvS8 models for plant disease recognition.
Our methodology encompasses the following steps:

5.1 Dataset Acquisition

We sourced our dataset from Kaggle, known as the ” Plant disease recognition dataset.”
This dataset consists of 1530 images, each meticulously labeled with one of three
distinct conditions: ”Healthy,” ”Powdery,” and ”Rust.” To elucidate these condi-
tions, " Healthy” signifies plant leaves without any disease symptoms, while ” Powdery”
denotes leaves affected by powdery mildew, characterized by a white, powdery growth
on the leaf surface, and "Rust” indicates leaves afflicted by rust disease, typically
manifesting as reddish-brown or orange pustules on the leaf surface. Subsequently, we
partitioned the dataset into three sets: the training set (comprising 60 percent of the
total images), the validation set (30 percent), and the test set (10 percent).

5.2 Custom Annotation for Disease Spots

To refine the granularity of our dataset and prepare it for effective training with
YOLOv5 and YOLOvVS8, we implemented custom annotation. We employed the
Roboflow custom annotation software for this purpose. The primary objective was to

12



pinpoint the precise regions of interest (ROIs) on plant leaves where diseases such as
”"Powdery” and ”"Rust” were present. In addition to manual annotation, we harnessed
Roboflow Label Assist, a tool that harnesses model checkpoints from a previous ver-
sion of the model to recommend annotations, ensuring that our dataset was labeled
with high precision.

5.3 Model Training

Armed with our meticulously annotated dataset, we embarked on the training of both
YOLOv5 and YOLOv8 models. This training was conducted within Google Colab
notebooks, leveraging the platform’s Graphics processing unit(GPU) capabilities for
swift and efficient model training with carefully configuring the models, and specifying
hyperparameters, network architectures, and training schedules. This encompassed the
selection of appropriate loss functions, optimizers, and learning rates. The enriched
dataset, fortified with custom annotations, was then partitioned into training, valida-
tion, and test subsets, adhering to the predetermined ratios. The models underwent
iterative training on the annotated dataset, with weights fine-tuned to optimize
performance. The training process spanned multiple epochs to ensure convergence.

5.4 Experimental Setup

In our research, we conducted model training on Google Colab, harnessing the pro-
vided GPU and Central Processing unit(CPU) resources. Google Colab typically offers
access to a high-performance GPU, particularly the NVIDIA Tesla T4, for acceler-
ated model training. The YOLOv5 model was trained with 100 epochs, a batch size
of 16, and an image size of 416 pixels. Similarly, for the YOLOvV8 model, we utilized
the same GPU, with 20 epochs, a batch size of 16, and an image size of 100 pixels.
Furthermore, it’s important to note that our Google Colab notebook was executed
on a MacBook Pro M1 with 512GB storage and 8GB RAM, providing a stable and
resourceful environment for our experiments.

6 Results

This section presents a comprehensive evaluation of YOLOv5 and YOLOv8 models
for plant leaf disease detection. Our investigation begins with training YOLOv5 and
YOLOVS8 models on our custom annotated dataset. YOLOv5 was trained on 100
epochs, while YOLOvS8 was trained on 20 epochs. We then evaluate the model perfor-
mance in terms of various metrics, such as confusion matrices, Fl-confidence curves,
precision-recall curves, accuracy metrics, mAP, and losses in the bounding box.

6.1 Image Analysis

To provide a visual context for our results, we have conducted image analysis, gener-
ating visual representations of YOLOv5 and YOLOvS8’s detection capabilities. These
images showcase bounding boxes that denote the location and classification of crop
diseases. The top-left corner of each bounding box contains the label for the detected
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Fig. 7 YOLOv8 Accurately Combines Class Images with Bounding Boxes

class. In Figure 6 and 7, we present these images to help readers better understand
the models performance.

6.2 Confusion Matrix

A confusion matrix is a table used in machine learning and classification tasks to
evaluate the performance of a classification model. It helps us understand how well
the model is performing by showing the number of true positives, true negatives,
false positives, and false negatives for each class in the dataset. Let’s break down the
confusion matrices for YOLOv5 and YOLOvS8 and compare their performance for the
different classes: Healthy, Powdery, Rust, and Background.

1) Healthy:

e YOLOvVS has a higher true positive rate (0.71) compared to YOLOv5 (0.62),
indicating that it is better at correctly identifying healthy instances.
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Fig. 8 YOLOvV5 confusion matrix

e YOLOv5 has a lower false positive rate (0.01) compared to YOLOv8 (0.24),
indicating that it makes fewer incorrect predictions for the healthy class.

2) Powdery:

e YOLOv8 has a higher true positive rate (0.70) compared to YOLOv5 (0.62),
indicating that it is better at correctly identifying powdery instances.

e YOLOV5 has a slightly lower false positive rate (0.04) compared to YOLOv8
(0.21) for the Powdery class.

3) Rust:

e YOLOvV5 has a higher true positive rate for the Rust class (0.80) compared to
YOLOvS8 (0.74), indicating that it is better at correctly identifying instances of rust.

e YOLOV5 also has a higher false positive rate for the Rust class (0.94) compared
to YOLOv8 (0.55), indicating that it makes more incorrect predictions for this class.

4) Background:

e YOLOVS8 has a higher true positive rate (0.55) for the Background class compared
to YOLOv5 (0.21), indicating that it is better at identifying the background class.

e YOLOv5 has a lower false positive rate (0.02) compared to YOLOv8 (0.29) for
the Background class.

YOLOVS performs better than YOLOv5 in correctly identifying instances of the
Healthy and Background classes. YOLOv) performs slightly better in the Rust class
in terms of true positives but has a higher false positive rate. The performance for the
Powdery class is quite similar between the two models. Ultimately, the choice between
the models depends on the specific priorities of your application and whether you value
precision (fewer false positives) or recall (higher true positives) for different classes.

In Fig 8 and 9, we present the confusion matrices for both YOLOv5 and YOLOvS.
These matrices provide a detailed breakdown of the models’ predictions across differ-
ent disease classes, namely Healthy, Powdery, Rust, and the Background class. These
visual representations allow readers to observe how the models perform in distin-
guishing between different crop diseases, further enhancing their understanding of the
models’ strengths and areas for improvement.
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6.3 Precision and Recall Curve

In our pursuit to assess the effectiveness of YOLOv5 and YOLOVS for crop disease
detection, it is essential to consider key evaluation metrics that provide a comprehen-
sive view of their performance. This section discusses the Precision-Recall (PR) Curve
highlighting its significance in evaluating detection capabilities.

Precision and Recall are fundamental metrics in object detection. Precision quan-
tifies the ratio of true positives (instances correctly identified) to the sum of true
positives and false positives (instances incorrectly identified). Recall measures the ratio
of true positives to the sum of true positives and false negatives (instances of the class
not detected). The formulas for Precision and Recall are as follows:

TP
Precision = TP FP (8)
TP
l= ———
Recall = Z 5 7N )

Precision-Recall Curve, presented in Figure 10 and 11, provides a visual represen-
tation of the trade-off between precision and recall as the confidence threshold varies.
It enables a detailed analysis of how different confidence thresholds impact the models’
precision-recall dynamics. The area under this curve for each class, known as Average
Precision (AP), quantifies the precision-recall trade-off for that class.

6.4 Mean Average Precision (mAP)

It takes the evaluation a step further. It is calculated as the average of the AP values
computed for each class. The formula for calculating mAP is as follows:

1 n
AP = — AP; 1
m n; l (10)

Here, 'n’ represents the number of classes, and denotes the Average Precision for class

737

1
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Fig. 11 YOLOvS8 Precision-Recall Curve

The significance of mAP lies in its ability to offer a consolidated measure of the
models’ detection capabilities across all classes and confidence thresholds. It pro-
vides a comprehensive assessment of the overall performance. For instance, YOLOv5
achieved a mean average precision of 0.716 at a confidence threshold of 0.5, indicat-
ing strong overall detection performance. In comparison, YOLOvS surpassed it with a
mean average precision of 0.744 at the same threshold, reflecting even better detection
capabilities.

By examining the PR curve and calculating mAP, we gain valuable insights into
the precision-recall dynamics of our models, enabling us to assess their ability to detect
and classify crop diseases accurately. These metrics are pivotal for understanding the
trade-offs between precision and recall, ultimately contributing to the optimization of
model performance for practical applications.

6.5 F1-Confidence Curve

In our comparative study of YOLOv5 and YOLOVS for object detection, we evaluated
model performance using the F1 score. The F1 score is a metric that combines precision
and recall, calculated as the harmonic mean of these two measures. Precision represents
the ratio of true positive predictions to all positive predictions, while recall represents
the ratio of true positive predictions to all actual positive instances. The F1 score
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Fig. 13 YOLOvS8 F1-Confidence Curve

provides a balanced assessment of classification performance, taking into account both
false positives and false negatives

The F1 score, a balanced metric considering both precision and recall, is calculated
using the formula:

Pl 2 - Precision - Recall

11
Precision + Recall (11)

To elucidate the relationship between confidence thresholds and F1 scores, we
present Fl-confidence curves in Figure 12,13. These curves illustrate how F1 scores
change as the confidence threshold varies. For YOLOV5, all classes achieve an F1 score
of 0.70 when the confidence threshold is set at 0.262.

Similarly, for YOLOvS, all classes attain an F1 score of 0.72 at a confidence thresh-
old of 0.411. These curves help readers comprehend how different confidence thresholds
impact the models’ precision and recall.

6.6 Training Progress and Loss Analysis

In our comparative research evaluating the performance of YOLOv5 and YOLOvS8
for crop disease detection, a pivotal aspect of our investigation involved a meticu-
lous examination of the training progress and loss trends exhibited by these models.
The insights garnered from this analysis shed light on the learning dynamics and
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convergence rates of the two models, providing valuable information for the effective
deployment of crop disease detection systems.

6.6.1 Loss Trends

We scrutinized several key loss values throughout the training process, each of which
played a distinctive role in assessing the models’ capabilities. The loss components
included:

eBounding Box and Segmentation Loss: We monitored the Training Box Loss
(train/box loss) and Validation Box Loss (val/box loss), which quantify the alignment
of predicted bounding boxes with ground truth coordinates.

eClassification Loss: The Training Class Loss (train/cls loss) and Validation
Class Loss (val/cls loss) were pivotal in determining the models classification capabil-
ities. These metrics indicated how effectively each model predicted the correct class
for a given image, providing insights into their classification accuracy.

eObjectness Loss: The Objectness Loss (Obj loss)assesses how accurately the
model predicts whether an object is present or absent within a given bounding box.
This loss penalizes the model for misclassifying the presence or absence of an object in
a box, helping to refine the model’s ability to determine object locations and improve
overall object detection performance.

6.6.2 Interpreting Loss Trends

The evolution of these loss metrics over the training epochs unveiled compelling
insights into the convergence dynamics of YOLOv5 and YOLOvS. Notably, the Train-
ing Box Loss exhibited a consistent downward trend, signifying that both models
adeptly optimized their ability to predict crop disease locations with increasing train-
ing. This trend underscored the models’ proficiency in aligning predicted bounding
box coordinates with ground truth coordinates.

Similarly, the Validation Box Loss followed distinct trajectories. This loss trend
analysis was pivotal in understanding the pace at which Validation Box Loss decreased.
Rapid descent indicated swift model convergence, suggesting that the models quickly
adapted to the data. In contrast, a gradual decline implied a more cautious learning
process, potentially necessitating adjustments to hyperparameters or model archi-
tectures.Images related to the analysis are available for reference in Figure 14 and
15.

A visual examination of the indicators used to assess our YOIOv5 and YOLOvS
model performances during training, covering model iterations from 0 to 100 for
YOIOv5 and 0 to 20 for YOLOVS.

In conclusion, our in-depth analysis of the training progress and loss trends of
YOLOv5 and YOLOvVS serves as a cornerstone in understanding the capabilities of
these models for crop disease detection. These findings enable data-driven decisions
in model selection and refinement, ensuring the effective deployment of crop dis-
ease detection systems in agricultural applications. This systematic evaluation of loss
trends underscores the importance of considering multiple loss components to gain
comprehensive insights into model performance during training.
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7 Discussion

7.1 Model Comparison and Analysis

Our comparative analysis of YOLOv5 and YOLOvS reveals the strong detection
capabilities of both models. Notably, YOLOvS8 exhibits better performance in distin-
guishing between various crop diseases, as indicated by the confusion matrices and
higher F1 scores. Due to the adoption of an anchor-free detection and newly optimized
architecture approach in YOLOVS, it took fewer epochs to reach a higher mAP which
as compared to YOLOv5 though YOLOvV5 took 8 hours to train for 100 epochs and
YOLOvS8 took 4 hours for just 25 epochs YOLOvVS training took more time though
YOLOVS less time than it would due to switching of mosaic augmentation at last 10
epochs. However, it’s essential to acknowledge some instances of misclassification in
both models, indicating opportunities for further refinement. Finally, the adoption of
an anchor-free detection approach in YOLOvS8 further enhances its robustness and
computational efficiency, making it a compelling choice for real-world deployment. A
proposed model with a more specific dataset containing more categories of plants and
diseases is needed to make the plant disease detector more accurate and better.
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8 Conclusion

Our paper delves into the remarkable potential of YOLOv5 and YOLOvVS to revo-
lutionize crop disease detection within the agricultural sector, leveraging a custom
annotated dataset. Among these models, YOLOvVS8 emerges as the standout performer,
boasting exceptional accuracy, precision, recall, and class differentiation. Its real-time
processing capabilities, anchor-free approach, customized loss functions, and architec-
tural refinements position it as the leading choice for object detection in this domain
and its related applications.

Through rigorous experimentation, we consistently demonstrate that both
YOLOvS8 and YOLOvV5 achieve an F1 score of 0.70 when the confidence threshold is
set at 0.262, utilizing our meticulously curated custom annotated dataset. Further-
more, for YOLOVS, all classes attain an F1 score of 0.72 at a confidence threshold of
0.411, reinforcing the effectiveness of our approach. These performance curves offer
valuable insights into how different confidence thresholds impact the models’ precision
and recall. This robust performance underscores their pivotal role in addressing the
urgent challenge of crop disease detection, providing invaluable tools for farmers and
researchers alike.

Our paper makes a significant contribution to the ever-expanding field of deep
learning-based agricultural applications, offering novel insights and laying the ground-
work for further exploration and advancement in this critical area. Beyond academia,
the implications of our research are profound, as it has the potential to transform
agricultural technology, promote sustainable crop management practices, and bol-
ster global food security. In essence, our work represents a pivotal step forward in
harnessing cutting-edge technology, alongside our custom annotated dataset, for the
betterment of agriculture and, by extension, society as a whole. Statements and
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