
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Supplementary Information: Optimizing

expected cross value for genetic

introgression

Pouya Ahadi1, Balabhaskar Balasundaram2, Juan S. Borrero2, and

Charles Chen∗3

1H. Milton Stewart School of Industrial and Systems Engineering, Georgia

Institute of Technology, Atlanta, Georgia, USA. 2School of Industrial

Engineering and Management, Oklahoma State University, Stillwater,

Oklahoma, USA. 3Department of Biochemistry and Molecular Biology,

Oklahoma State University, Stillwater, Oklahoma, USA.

Proofs

Proof of Proposition 1

We model the random vector J that follows an inheritance distribution as a discrete time

Markov chain (DTMC) with J =
{
Jn : n ≥ 0

}
where Jn represents the state of the process

∗Corresponding author: charles.chen@okstate.edu
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at n-th step, i.e., the value of the random vector J in the n-th position, with the state space

{0, 1}. This process is not a time-homogeneous DTMC. According to Equation (4) in the

main article, the transition probability matrix from step k to step k + 1 is as follows:

Pk:k+1 =


0 1

0 1− rk rk

1 rk 1− rk

 ∀k ∈ [N − 1].

The transition probability matrix from the first step 1 to step i ∈ [N − 1] is then given by:

P1:i =

i−1∏
k=1

Pk:k+1.

We claim that:

P1:i =

1− φi(r) φi(r)

φi(r) 1− φi(r)

 , (21)

where φi(r) is defined in Equations (5) and (6) in the main article. We prove this claim by

induction on i . The claim holds for the base case i = 2 by definition, because according to

Equation (5) in the main article, φ2(r) = r1. Let us suppose Equation (21) holds for step

i = n. By induction hypothesis, we know that:

P1:n =

1− φn(r) φn(r)

φn(r) 1− φn(r)

 .
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As P1:n+1 = P1:nPn:n+1, we obtain the following:

P1:n+1 =

1− φn(r) φn(r)

φn(r) 1− φn(r)


1− rn rn

rn 1− rn


=

1− rn − φn(r) + 2rnφn(r) rn − 2rnφn(r) + φn(r)

rn − 2rnφn(r) + φn(r) 1− rn − φn(r) + 2rnφn(r)

 .
=

1− φn+1(r) φn+1(r)

φn+1(r) 1− φn+1(r)

 ,
establishing the claim in Equation (21).

The DTMC J satisfies the following property (Kulkarni 2016):

Pr(Ji = j) =
(
α⊤P1:i

)
j

∀i ∈ {2, 3, . . . , N}, j ∈ {0, 1}, (22)

where α⊤ = [α0, α1] is the vector of initial probabilities and
(
α⊤P1:i

)
j

denotes the (j +1)-th

component of the row vector α⊤P1:i . Thus, for every i ∈ {2, 3, . . . , N},

Pr(Ji = 0)
Pr(Ji = 1)


⊤

=

α0
α1


⊤ 1− φi(r) φi(r)

φi(r) 1− φi(r)

 =
α0 + (α1 − α0)φi(r)
α1 + (α0 − α1)φi(r)


⊤

.

Proposition 1 follows by noting that α0 + α1 = 1.

Proof of Theorem 1

We use the definition in Equation (14) in the main article to find a closed-form expression for

the ECV. Let L1 and L2 be the genotype matrices for the selected pair of individuals, and

let J1 ,J2 and J3 be three independent samples from the inheritance distribution. We know

that g3 = gam
([
g1, g2

]
, J3
)

where g1 = gam
(
L1, J1

)
and g2 = gam

(
L2, J2

)
. Based on

3
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the definition of inheritance distribution in Definition 3 in the main article, we have,

g1i = L
1
i ,1(1− J1i ) + L1i ,2J1i ∀i ∈ [N], (23)

g2i = L
2
i ,1(1− J2i ) + L2i ,2J2i ∀i ∈ [N], and, (24)

g3i = g
1
i (1− J3i ) + g2i J3i ∀i ∈ [N]. (25)

Substitutions in Equation (25) using Equations (23) and (24) yields the expected cross value

for the target trait as:

E

(
N∑
i=1

g3i

)
= E

(
N∑
i=1

[
L1i ,1(1− J1i ) + L1i ,2J1i

]
(1− J3i ) +

[
L2i ,1(1− J2i ) + L2i ,2J2i

]
J3i

)

= E

(
N∑
i=1

L1i ,1 +
(
L1i ,2 − L1i ,1

)
J1i − L1i ,1J3i −

(
Lk,i ,2 − L

1
i ,1

)
J1i J

3
i +

L2i ,1J
3
i +

(
L2i ,2 − L2i ,1

)
J2i J

3
i

)

=

N∑
i=1

[
L1i ,1 +

(
L1i ,2 − L1i ,1

)
E(J1i )− L1i ,1E(J3i )−

(
L1i ,2 − L1i ,1

)
E(J1i J3i )+

L2i ,1E(J3i ) +
(
L2i ,2 − L2i ,1

)
E(J2i J3i )

]
.

From Proposition 1 we know that,

E(J1i ) = E(J2i ) = E(J3i ) = α1 + (α0 − α1)φi(r) ∀i ∈ [N].

As J1, J2 and J3 are independent, we know that,

E(J1i J3i ) = E(J1i )E(J3i ) = (α1 + (α0 − α1)φi(r))2 ∀i ∈ [N],

E(J2i J3i ) = E(J2i )E(J3i ) = (α1 + (α0 − α1)φi(r))2 ∀i ∈ [N].
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Thus,

E

(
N∑
i=1

g3i

)
=

N∑
i=1

(
L1i ,1 + [α1 + (α0 − α1)φi(r)](L1i ,2 − 2L1i ,1 + L2i ,1)

+ [α1 + (α0 − α1)φi(r)]2(L2i ,2 + L1i ,1 − L1i ,2 − L2i ,1)
)
. (26)

Assuming α0 = α1 = 0.5 based on Mendel’s second law, Equation (26) reduces to Equa-

tion (15) claimed in the main article.

Mathematical formulation for single-trait parental

selection

Following Han et al. (2017), we use the following notations in our integer programming (IP)

formulation (27). We use ECV as our objective function and add constraints to restrict

inbreeding.

Parameters:

• K ∈ Z≥0: Number of individuals in the population

• N ∈ Z≥0: Number of QTL for the target trait

• G: K ×K genomic matrix of inbreeding values with elements gk,k ′ for k, k ′ ∈ [K]

• ϵ ∈ R+: Inbreeding tolerance on a pair of selected individuals

Decision variables:

5



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

• t ∈ B2×K representing the parental selection decision where,

tm,k =

 1, if k-th individual is selected as m-th parent,

0, otherwise,
∀m ∈ [2], k ∈ [K].

• x ∈ BN×4 representing genotypes of selected individuals. If we suppose that the k-th

and k ′-th individuals are selected as first and second parents respectively, i.e., t1,k = 1

and t2,k ′ = 1, then:

xi ,j = L
k
i,j , ∀i ∈ [N], j ∈ {1, 2},

xi ,j = L
k ′

i ,j , ∀i ∈ [N], j ∈ {3, 4}.

Objective function: Using Equation (15) in the main article, the ECV can be expressed as

a function of the decision variables as: f (t, x) = 0.25
N∑
i=1

4∑
j=1

xi ,j .

Formulation:

max 0.25

N∑
i=1

4∑
j=1

xi ,j (27a)

s.t.
K∑
k=1

tm,k = 1 ∀m ∈ [2] (27b)

xi ,j =

K∑
k=1

t1,kL
k
i,j ∀i ∈ [N], j ∈ {1, 2} (27c)

xi ,j =

K∑
k=1

t2,kL
k
i,j−2 ∀i ∈ [N], j ∈ {3, 4} (27d)

t1,k + t2,k ′ ≤ 1 ∀k, k ′ ∈ [K] such that gk,k ′ ≥ ϵ (27e)

tm,k ∈ {0, 1} ∀m ∈ [2], k ∈ [K] (27f)

xi ,j ∈ {0, 1} ∀i ∈ [N], j ∈ [4] (27g)
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The objective function (27a) maximizes the ECV. Constraint (27b) ensures that exactly two

individuals will be selected for the crossing. Constraints (27c) and (27d) assign genotypic infor-

mation in genotype matrices of the selected individuals to the xi ,j variables. Constraint (27e)

ensures that two individuals with genomic relationship coefficient greater than the tolerance ϵ

will not be selected simultaneously as parents. As the genomic relationship coefficient between

any individual with itself has the highest value of one, this set of constraints will prevent

self-crossing between individuals for any value of ϵ less than one. Finally, constraints (27f)

and (27g) force decision variables to take binary values.

Algorithm for selecting multiple parental pairs

Suppose we are interested in finding nc different parental pairs from the population. Assuming

that self-crossing is not allowed, we denote the number of feasible solutions (crosses) by nf ,

which is bounded above by
(
K
2

)
. As we impose a constraint for controlling inbreeding, the

number of feasible crosses might be strictly less than
(
K
2

)
. Specifically, the number of feasible

solutions (feasible crosses) is precisely half the number of off-diagonal elements in matrix G

that are smaller than ϵ.

If there is no element in matrix G that is smaller than ϵ, then nf = 0 and formulation (27)

is infeasible. In this case, we need to increase the value of tolerance ϵ such that there might

be at least nf possible crosses for the selection. Then, any positive integer value for nc such

that nc ≤ nf is suitable for our approach.

Assume that after solving the single-trait formulation (27), we find that in the optimal

solution we have t∗1,k = t∗2,k ′ = 1. This solution means that k-th and k ’-th individuals are

optimal parents that should be crossed. To obtain another pair of parents from the model, we

can add the following “conflict constraints” to the single-parent single-trait formulation (27):

t1,k + t2,k ′ ≤ 1 and t1,k ′ + t2,k ≤ 1. (28)

7
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These two constraints will exclude this pair of individuals, k, k ′, from being selected if

we reoptimize formulation (27) with these additional conflict constraints. We can repeat

this procedure to find nc pairs by accumulating the appropriate set of conflict constraints

corresponding to individuals selected in the previous iteration. The procedure is summarized

in Algorithm 1.

Algorithm 1 Finding multiple pairs for the parental selection problem
1: Input: Appropriate nc (assumed to be no larger than nf ), G, P, ϵ
2: Output: Set S of selected parental pairs
3: S ← ∅
4: while |S| < nc do
5: Solve formulation (27) and obtain optimal solutions t∗1,k = t∗2,k ′ = 1.
6: Add the pair {k, k ′} to set S.
7: Update the formulation by adding the constraints: t1,k + t2,k ′ ≤ 1, t1,k ′ + t2,k ≤ 1.
8: end while
9: return S

Mathematical formulation for multi-trait parental

selection

Additional parameters:

• M ∈ Z≥0: Number of target traits for the breeding program

• Nℓ ∈ Z≥0: Number of QTL for the ℓ-th trait ∀ℓ ∈ [M]

Additional decision variables:

• x ℓ ∈ BNℓ×4 representing genotypes of selected individuals for each trait ℓ ∈ [M]. If we

suppose k-th and k ′-th individuals are selected as first and second parents, so t1,k = 1

8
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and t2,k ′ = 1, then:

x ℓi,j = L
k,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {1, 2}, ℓ ∈ [M],

x ℓi,j = L
k ′,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {3, 4}, ℓ ∈ [M].

Objective function: We define the ECV corresponding to the ℓ-th trait as a function

of the decision variables as: fℓ(t, x ℓ) = 0.25
Nℓ∑
i=1

4∑
j=1

x ℓi,j . The components of the objective

function vector F (t, x) = ⟨f1(t, x1), . . . , fM(t, xM)⟩ are in decreasing order of importance.

Thus, trait ℓ is more important than trait ℓ+ 1, for each ℓ ∈ [M − 1]. Note that we denote

the collection of variables ⟨x1, . . . , xM⟩ succinctly as x .

Formulation:

lexmax F (t, x) = ⟨f1(t, x1), . . . , fM(t, xM)⟩, (29a)

s.t.
K∑
k=1

tm,k = 1 ∀m ∈ {1, 2} (29b)

x ℓi,j =

K∑
k=1

t1,kL
k,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {1, 2}, ℓ ∈ [M] (29c)

x ℓi,j =

K∑
k=1

t2,kL
k,ℓ
i ,j−2 ∀i ∈ [Nℓ], j ∈ {3, 4}, ℓ ∈ [M] (29d)

t1,k + t2,k ′ ≤ 1 ∀k, k ′ ∈ [K] such that gk,k ′ ≥ ϵ (29e)

tm,k ∈ {0, 1} ∀m ∈ {1, 2}, k ∈ [K] (29f)

x ℓi,j ∈ {0, 1} ∀i ∈ [Nℓ], j ∈ [4], ℓ ∈ [M] (29g)

The multi-objective optimization formulation (29) for the multi-trait parental selection

problem lexicographically maximizes the vector of ECV functions corresponding to each trait.

We describe this approach in greater detail in the next section. Constraint (29b) states

9
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that exactly two individuals will be selected for crossing. Constraints (29c) and (29d) will

assign genotypes of selected individuals to x ℓi,j variables. Constraint (29e) implies that any

two individuals with an inbreeding coefficient greater than tolerance ϵ can not be selected

as parents for the crossing program. Note that since the inbreeding coefficient between any

individual and itself has the highest value (which equals one), for any value of ϵ less than one,

this set of constraints will prevent self-crossing between individuals. Finally, constraints (29f)

and (29g) enforce decision variables to take binary values.

Lexicographic multi-objective optimization with degradation

tolerances

Define a vector of tolerances τ = (τ1, τ2, . . . , τM) such that τℓ ∈ [0, 1] for all ℓ ∈ [M]. Since

we do not need degradation for the last objective, we set τM = 0. Tolerance τℓ represents

the allowable degradation for the ℓ-th objective function. Let us assume that χ1 is the set

of feasible solutions based on the constraints of formulation (29). Let z∗1 be the optimal

objective value for the first objective function f1(t, x1) over all feasible solutions in set χ1.

That is,

z∗1 = max{f1(t, x1) | (t, x) ∈ χ1}. (30)

As the tolerance for the first objective is τ1, the set of feasible solutions for the second

objective is given by:

χ2 = {(t, x) ∈ χ1 | f1(t, x1) ≥ (1− τ1)z∗1}, (31)

10
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and the best objective value for the second objective function is:

z∗2 = max{f2(t, x2) | (t, x) ∈ χ2}. (32)

Generally, the set of feasible solutions for the ℓ+1-th objective function and its best objective

value are as follows:

χℓ+1 = {(t, x) ∈ χℓ | fℓ(t, x ℓ) ≥ (1− τℓ)z∗ℓ } ∀ℓ ∈ [M − 1], (33)

z∗ℓ+1 = max{fℓ+1(t, x ℓ+1) | (t, x) ∈ χℓ+1} ∀ℓ ∈ [M − 1]. (34)

The set of “tolerance-optimal” solutions for the problem is given by:

χ∗ = argmax
(t,x)∈χM

fM(t, x
M). (35)

By construction, the feasible sets satisfy the following relationship:

χ∗ ⊆ χM ⊆ χM−1 ⊆ · · · ⊆ χ2 ⊆ χ1. (36)

An optimal solution in multi-objective optimization is called an efficient or non-dominated

solution based on some domination structure chosen by the decision maker (Sawaragi et al.

1985). Arguably, the most well-known notion of efficiency is Pareto optimality. We say that

the solution (t̂ , x̂) is Pareto optimal (or non-dominated) if there is no feasible solution (t, x)

to Formulation (29) such that F (t, x) ≥ F (t̂ , x̂) and fℓ(t, x) > fℓ(t̂ , x̂) for at least one trait

ℓ (Miettinen et al. 2016).

As we show using the next result, the set of tolerance-optimal solutions χ∗ is guaranteed

to contain Pareto optimal solutions. Furthermore, if (t, x) ∈ χ∗ then, either (t, x) is Pareto

optimal or it is dominated by a Pareto optimal solution in χ∗.
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Proposition 1. Every solution (t∗, x∗) ∈ χ∗ is either Pareto optimal, or it is dominated by a

Pareto optimal solution in χ∗.

Proof. If (t∗, x∗) ∈ χ∗ is not Pareto optimal, then there exists a Pareto optimal solution

(t ′, x ′) ∈ χ1 that dominates (t∗, x∗). Note that the existence of such a solution follows from

the finiteness of χ1. We prove that (t ′, x ′) ∈ χ∗ by contradiction.

Suppose (t ′, x ′) /∈ χ∗. Then, there exists i ∈ [M] such that (t ′, x ′) ∈ χi and (t ′, x ′) /∈ χi+1

(where χM+1 = χ∗). Therefore,

fi(t
′, x ′i) < (1− τi)z∗i . (37)

If i = M, we arrive at a contradiction because inequality (37) implies that (t ′, x ′) does not

dominate (t∗, x∗). (Recall that τM = 0.)

Now suppose, i ∈ [M − 1]. By Equation (36), we know that (t∗, x∗) ∈ χ∗ ⊆ χi+1, and

that,

(1− τi)z∗i ≤ fi(t∗, x∗i). (38)

Inequalities (37) and (38) imply that,

fi(t
′, x ′i) < fi(t

∗, x∗i). (39)

Again, contradicting the assumption that (t ′, x ′) dominates (t∗, x∗). This implies that every

Pareto optimal solution (t ′, x ′) that dominates (t∗, x∗) belongs to χ∗.

Based on Proposition 1, if we seek a Pareto optimal solution, we can guarantee the

identification of one by carrying out an additional step and solving one more optimization

12
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problem given by:

max

∑
ℓ∈[M]

fℓ(t, x
ℓ) | (t, x) ∈ χ∗

 .
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