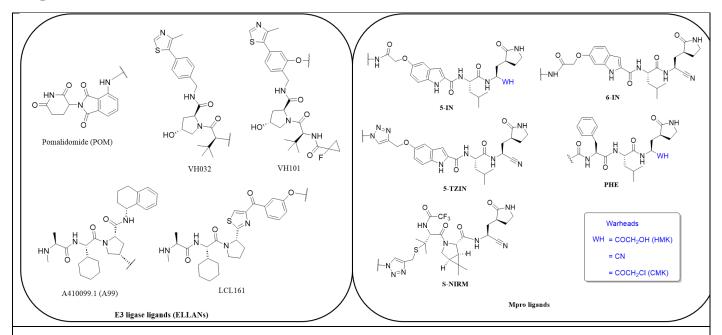


Supplementary Figure 1

(A) Vialight cell viability results demonstrating no toxicity of the TPD candidates at 20 μ M. Data is presented as the % luminescence vs DMSO controls \pm S.E.M. (B) Western blot analysis demonstrating the ubiquitination of Mpro following 4 h of drug treatment in the presence of 5 μ M of proteasomal inhibitor MG132 followed by HiBiT immunoprecipitation and blotting for pan Ub and Mpro. (C) Combined HiBiT detection and Vialight cell viability analysis of HEK293T LVX Mpro-HiBiT cells treated with titrated MG132 or TAK-243 for 24 h. Data is presented as % luminescence vs DMSO controls \pm S.E.M. (D) HiBiT detection results and (E) orthogonal western blot verification results for singular TPD testing at 20 μ M for 24 h in the HEK293T LVX Mpro-HiBiT reporter expressed on a wildtype or VHL KO background. Data for HiBiT detection are presented as % luminescence vs DMSO controls \pm S.E.M. **** indicates P<0.0001 significant difference to matched wildtype control by one-way ANOVA. n.s. = not significant.



Supplementary Figure 2

(A) xCELLigence real time cellular response profiles of VeroE6/TMPRSS2 cells treated with 10 μ M of each drug to confirm a lack of toxicity of the candidates in this cell model. Data are presented as normalised cell index (measuring cellular impedance) over time \pm S.E.M. (B) Microscopic images of VeroE6/TMPRSS2 cells treated with DMSO, BP-198 or BP-206 control at multiple concentrations at 51 hpi. Cytopathic effect of the virus can be observed in DMSO infected vs non-infected cells. Scale bar = 100 μ m. (C) Microscopic images of Calu-3 cells treated with DMSO, BP-198 or BP-206 control at 10 μ M at 37 hpi. Cytopathic effect of the virus can be observed in DMSO infected vs non-infected cells. Scale bar = 100 μ m. (D) IC $_{50}$ for each drug calculated at 15 min intervals over the course of infection from experiments in Figure 3A and 3B. Data is presented as IC $_{50}$ of each drug in μ M \pm S.E.M over time. (E) xCELLigence real time cellular response profiles of Calu-3 cells treated with DMSO or 30 μ M of each drug in the absence of SARS-CoV-2 infection confirming a lack of toxicity of the candidates in this cell model. Data are presented as normalised cell index (measuring cellular impedance) over time \pm S.E.M.

Supplementary Table 1: Summary of biochemical and degrader screening assay data for test compounds.

				Enzyme ^a	% Mprob
BP-#	ELLAN	Linker	Mpro ligand	IC50/nM	% vs DMSO
121	-	-	Nirmatrelvir	7.3	124
95	-	-	PF-008353231	4.3	89
100	POM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5IN-HMK	165	96.7
82	POM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5IN-CN	3336	98.1
108	POM	\\0_0\\	5IN-CN	1910	91.1
22	VH032	NH	5IN-CMK	45 ^{aa}	90
96	VH032	V _{NH} O	5IN-CN	1590	80
110	VH032	/NH 0000	5IN-CN	2570	80
138	VH101	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5IN-CN	5750	86
114	A99	VNH O O O O O O O O O O O O O O O O O O O	5IN-CN	1490	89
148	POM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6IN-CN	1890	78.8
157	POM	\\0_0\\\	6IN-CN	2550	87.5
158	VH032	direct	6IN-CN	1770	88.5
147	VH032	VNH O	6IN-CN	948	57.8
153	VH032	V _{NH} 0 0 0 0 √)	6IN-CN	1760	77.9
151	VH101	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6IN-CN	6820	84.7
75	POM		5TZIN-CN	1030	93.3
84	VH032	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5TZIN-CN	1080	73.3
28	VH032	Z _{NH}	Phe-CMK	15	89

122	VH032		Phe-CN	570	90
155	POM		S-NIRM	8.7	98.2
181	POM	0 3 3	S-NIRM	7.1	85.7
142	VH032	\NH \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S-NIRM	8.6	88.9
177	VH032	/NH 0000	S-NIRM	10.1	97.8
178	VH032	VNH OO OO	S-NIRM	7.4	88.6
172	VH101	/ √₀~°√	S-NIRM	7.6	61.5
164	A99	\NH\ O	S-NIRM	7.0	72.9
179	A99	VNH OO OO	S-NIRM	5.6	78
174	LCL161	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S-NIRM	6.7	36.8
196	VH101	\\\\\	S-NIRM	9.9	96 ^{bb}
197	VH101		S-NIRM	7.3	95 ^{bb}
198	LCL161	<	S-NIRM	7.3	28
199	LCL161		S-NIRM	8.1	80^{bb}
203	VH101	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S-NIRM	9.3	100
204	LCL161	0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S-NIRM	8.3	98.2 ^{bb}
200	VH101 ^{cis-Hyp}	\\\\\\\	S-NIRM	8.0	92.3
202	LCL161 ^{N-Me}	\\0_0\\	S-NIRM	8.2	67.6
206	LCL161 ^{N-Me}	∀ ~~>	S-NIRM	8.8	65

^a Enzyme inhibition assays were performed as described in the Methods section. All results are $n \ge 2$, (SEM pIC50 < 0.1); ^{aa} n=1

 $[^]b$ Mpro degradation assays were performed as described in the Methods section. %Mpro refers to % HiBiT luminescence readout relative to DMSO control @ 20 μ M (bb @ 10 μ M). Lower percentage indicates greater degradation and target loss.

Supplementary Methods

1	Cor	npound Synthesis and Analysis General Methods	2
	1.1	Synthesis of Azido-Linked VH101 Derivative	3
	1.2	Synthesis of Azido-Linked cis-Hyp VH101 Derivative by Mitsunobu Inversion	4
	1.3	Synthesis of Azido-Linked LCL-161 Derivatives	6
	1.4	Synthesis of Azido-Linked N-Methyl LCL-161 Derivatives	7
	1.5	Synthesis of Nirmatrelvir Derivative (S15)	. 10
	1.6	Synthesis of Target Compounds (BP-172, 198, and 174)	. 12
	1.7	Synthesis of Non-PROTAC Control Compounds (BP-200, 206, and 202)	. 15
2	Sele	ected NMR, HPLC, and HRMS spectra	. 19
	2.1	S15	. 19
	2.2	BP-172	. 22
	2.3	BP-198	. 26
3	Ref	erences	. 30

1 Compound Synthesis and Analysis General Methods

Commercial solvents and reagents were used as received unless otherwise indicated. Anhydrous tetrahydrofuran (THF), dichloromethane (DCM), toluene, and N,N-Dimethylformamide (DMF) were purchased from Sigma Aldrich. All air- and/or moisture-sensitive liquid reagents were transferred via a syringe. Solvents were concentrated under reduced pressure by rotary evaporation or using a stream of N_2 . Thin layer chromatography (TLC) was performed using Aluminium TLC plate, silica gel coated with fluorescent indicator F_{254} (Merck KGA). TLC plates were visualised under ultraviolet light or by potassium permanganate (KMnO₄) stain. Flash column chromatography were carried out following the procedure described by Still et al., using Silica gel 60 Å, 0.04-0.063 mm (400-230 mesh, Carl Roth). Preparative reversed-phase high-performance liquid chromatography (RP-HPLC) was performed on a Phenomenex Luna C18 column (5 μ m, 100 Å, 150 x 21.2 mm) using a water 600 semi-prep HPLC incorporating a water 486 UV detector, with 0.1% trifluoroacetic acid (TFA) in H2O (mobile phase A) and 0.1% TFA in acetonitrile (MeCN) (mobile phase B) as eluents, purified fractions were combined and concentrated by lyophilisation.

¹H nuclear magnetic resonance (NMR), ¹³C NMR, and ¹⁹F NMR spectra were recorded using Bruker Avance III Nanobay 400 MHz NMR spectrometer coupled to the BACS 60 automatic sample changer at room temperature. The spectrometer was equipped with a 5 mm PABBO BB-1H/D Z- GRD probe. All chemical shifts were reported in parts per million (ppm, δ scale). According to Fulmer et al.,² ¹H NMR spectra were referenced relative to residual protium in the deuterated solvent (CHCl₃, δ 7.26 ppm; Methanol-d₃, 3.31 ppm; DMSO- d_5 , δ 2.50 ppm; Acetone- d_5 , δ 2.05 ppm; Acetonitrile- d_2 , δ 1.94 ppm). ¹³C NMR spectra were referenced to carbon resonances of deuterated solvent (CDCl₃, δ 77.16 ppm; CD₃OD, δ 49.00 ppm; DMSO-d₆, δ 39.52 ppm; Acetone-d₆, δ 29.84 ppm; CD₃CN, δ 118.26 ppm). ¹H NMR spectra were reported in the following order: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dddd = doublet of doublet of doublets, ddt = doublet of doublet of triplets, dt = doublet of triplets, dq = doublet of quartets, td = triplet of doublets, tdd = triplet of doublet of doublets, tt = triplet of triplets, app = apparent, m = multiplet), coupling constant in Hz (if available), and integration. ¹³C NMR spectra were reported in the following order: chemical shift, distortionless enhancement by polarization transfer quaternary (DEPTQ, if available), multiplicity (if available), and coupling constant in Hz (if available). ¹⁹F NMR spectra were reported in the following order: chemical shift, multiplicity (if available), and coupling constant in Hz (if available). All literature compounds have references after the chemical names, the NMR spectra are in agreement with the reported data unless otherwise stated.

Liquid chromatography-mass spectrometry (LCMS) were performed with an Agilent 1260 Infinity II LCMS SQ. Pump: 1260 Infinity II G7111B Quat pump. Autosampler: 1260 Infinity II G7129A 1260 Vialsampler. Detector: 1260 Infinity II G7117C DAD HS. Column: Poroshell 120 EC-C18, 3.0×50 mm, $2.7 \mu m$. Column temperature: 35°C. Solvent A: 0.1% formic acid in H₂O; solvent B: 0.1% formic acid in MeCN. Gradient: 5-100% B over 5 mins. Ion source: Quadrupole. Ion mode: MM-ES-APCI. Drying gas temperature: 350°C. Capillary voltage (V): 4000 (positive and negative).

High resolution mass spectrometry (HRMS) were performed with an Agilent 6224 TOF LC/MS Mass Spectrometer coupled to an Agilent 1290 Infinity (Agilent, Palo Alto, CA). All data were acquired, and reference mass was corrected via a dual-spray electrospray ionisation (ESI) source.

Purities were determined by Method A (Agilent 1260 Infinity Analytical HPLC coupled with a Zorbax Eclipse Plus C18 column (95 Å, 4.6×100 mm, $3.5 \mu m$)) or Method B (Shimadzu LCMS-2020 system coupled with a

Phenomenex Luna C8 column (100 Å, 2.0 x 100 mm, 3 μ m)). The purities of all final compounds are >95% unless otherwise indicated.

Reaction general procedures

General procedure A: O-alkylation

A reaction vial was charged with phenol, cesium carbonate (Cs_2CO_3), and anhydrous DMF. The mixture was stirred under an N_2 atmosphere at room temperature for 10 mins before the alkyl halide/pseudohalide was added. The reaction mixture was stirred at room temperature for the indicated period. The resulting mixture was quenched with H_2O and concentrated. The mixture was partitioned between ethyl acetate (EtOAc) and H_2O , the separate aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over magnesium sulfate ($MgSO_4$), filtered, and concentrated under reduced pressure to give a crude residue, which was purified by flash column chromatography.

General procedure B: tert-butyloxycarbonyl (Boc) deprotection

A reaction vial was charged with Boc-amine, 4 M hydrochloride (HCl) in 1,4-dioxane, and DCM (if indicated). The reaction mixture was stirred at room temperature for 2 h. The resulting mixture was concentrated and dried under reduced pressure to provide the amine hydrochloride salt product, which was used for next step without further purification.

General procedure C: copper-catalysed azide—alkyne cycloaddition (CuAAC) reaction

A reaction vial was charged with alkyne, azide, sodium ascorbate, copper sulfate pentahydrate ($CuSO_4.5H_2O$), and a 2:1 mixture of *tert*-butanol (t-BuOH) and H_2O . The reaction vial was capped and sealed. The reaction mixture was stirred at 40-45°C for indicated period. The resulting mixture was cooled to room temperature and concentrated. The residue was partitioned between EtOAc and H_2O , the separate aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure to give a crude residue, which was purified by flash column chromatography (or preparative TLC and preparative RP-HPLC if indicated).

1.1 Synthesis of Azido-Linked VH101 Derivative

Scheme S1 Reagents and conditions: (a) Cs₂CO₃, alkyl bromide, DMF, rt, 95%.

(2S,4R)-N-(2-(2-(2-(2-Azidoethoxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide (**S2**)

Following general procedure A, (2S,4R)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(2-hydroxy-4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, $S1^3$ (50.0 mg, 0.94 mmol), Cs_2CO_3 (55.1 mg, 0.17 mmol), 1-azido-2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethane (42.5 mg, 0.18 mmol), and DMF (0.3 mL) gave a light-yellow clear mixture. After 48 h, workup and flash column chromatography (EtOAc/petroleum ether/MeOH (methanol), gradient, 80:20:0 to 90:0:10) provided S2 as a colourless clear solid (61.5 mg, 95%).

TLC: $R_f = 0.26$ (EtOAc/MeOH, 90:10)

¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 6.1 Hz, 1H), 7.02 (dd, J = 8.8, 2.7 Hz, 1H), 6.97 (dd, J = 7.7, 1.6 Hz, 1H), 6.91 (d, J = 1.6 Hz, 1H), 4.68 (t, J = 7.9 Hz, 1H), 4.52 (app br d, J = 8.0 Hz, 2H), 4.48 (dd, J = 6.0, 2.7 Hz, 2H), 4.27 – 4.15 (m, 2H), 4.02 – 3.97 (m, 1H), 3.96 – 3.88 (m, 2H), 3.80 – 3.75 (m, 2H), 3.72 – 3.62 (m, 5H), 3.37 (t, J = 5.0 Hz, 2H), 2.53 (s, 3H), 2.44 (ddd, J = 12.8, 7.7, 4.7 Hz, 1H), 2.14 – 2.06 (m, 1H), 1.36 – 1.25 (m, 4H, assumed; partially obscured by solvent peak), 0.96 (s, 9H).

 19 F NMR (377 MHz, CDCl₃) δ -197.51.

¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.6, 170.3, 157.0, 150.5, 132.2, 130.0, 122.2, 113.0, 71.0, 70.9, 70.5, 70.2, 69.9, 68.2, 58.6, 57.7, 56.7, 50.9, 39.2, 36.4, 35.4, 26.5, 16.1, 13.9, 13.8. Four carbons not observed.

HPLC t_R (Method A): 8.8 min.

HRMS: Calc m/z for ([C₃₂H₄₄FN₇O₇S] + H)⁺ 690.3080, found 690.3086.

1.2 Synthesis of Azido-Linked cis-Hyp VH101 Derivative by Mitsunobu Inversion

Scheme S2 Reagents and conditions: (a) Di-tert-butyl azodicarboxylate (DTBAD), diphenyl-2-pyridylphosphine (Ph₂PyP), 4-nitrobenzoic acid, THF, 0°C to rt. (b) Lithium hydroxide monohydrate (LiOH.H₂O), THF, MeOH, H₂O, rt, 60% over two steps.

A reaction vial was charged with DTBAD (58.4 mg, 0.25 mmol), Ph_2PyP (66.8 mg, 0.25 mmol), and anhydrous THF (1.0 mL). The yellow clear mixture was stirred under an N_2 atmosphere at 0°C for 5 mins to form the light-yellow cloudy betaine, which was transferred to a separated reaction vial containing **\$2** (50 mg, 0.072 mmol) and 4-nitrobenzoic acid (20.6 mg, 0.12 mmol). The yellow clear mixture was stirred at 0°C to room temperature for 18 h. The resulting light-yellow clear mixture was concentrated using a stream of N_2 , diluted in DCM, and purified by flash column chromatography (EtOAc/petroleum ether/MeOH, gradient, 80:20:0 to 95:0:5). **\$3** was obtained as a colourless clear gum and used for the next step without further purification.

A reaction vial was charged with \$3, LiOH.H $_2$ O (5.5 mg, 0.13 mmol), and MeOH/THF/H $_2$ O (0.3 mL, 1:1:1). The slightly yellow clear mixture was stirred at 0°C to room temperature for 18 h. The resulting light yellow clear mixture was placed at 0°C and acidified by HCl (0.27 mL, 0.27 mmol, 1 M in H $_2$ O). The mixture was concentrated using a stream of N $_2$, partitioned between EtOAc (20 mL) and H $_2$ O (10 mL). The separate aqueous layer was extracted with EtOAc (15 mL x 3). The combined organic layer was washed with brine (5 mL), dried over MgSO $_4$, filtered, and concentrated under reduced pressure to give a slightly yellow clear residue, which was purified by flash column chromatography (EtOAc/petroleum ether/MeOH, gradient, 80:20:0 to 90:0:10 followed by DCM/MeOH, gradient, 100:0 to 95:0). **S4** was obtained as a colourless clear solid (29.9 mg, 60% over two steps).

TLC: $R_f = 0.17$ (DCM/MeOH, 95:5)

¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.58 (t, J = 6.2 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 6.97 (dd, J = 7.7, 1.6 Hz, 1H), 6.95 – 6.90 (m, 2H), 5.81 (d, J = 10.3 Hz, 1H), 4.68 (d, J = 8.6 Hz, 1H), 4.60 – 4.51 (m, 2H), 4.47 – 4.38 (m, 2H), 4.29 – 4.17 (m, 2H), 3.99 – 3.89 (m, 2H), 3.88 – 3.80 (m, 2H), 3.80 – 3.75 (m, 2H), 3.72 – 3.64 (m, 4H), 3.37 (t, J = 5.0 Hz, 2H), 2.52 (s, 3H), 2.26 (d, J = 14.1 Hz, 1H), 2.17 (ddd, J = 14.0, 9.0, 4.8 Hz, 1H), 1.40 – 1.23 (m, 4H, assumed; partially obscured by solvent peak), 0.91 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -197.56.

 13 C NMR (100 MHz, CDCl₃) δ 172.5, 171.3, 169.9, 169.7, 156.9, 150.5, 148.6, 132.7, 131.8, 130.0, 126.2, 122.2, 113.0, 82.9, 81.7, 79.6, 78.8, 71.2, 71.0, 70.9, 70.2, 69.9, 68.1, 60.0, 58.6, 57.0, 50.8, 42.4, 41.0, 39.4, 35.5, 26.3, 25.6, 24.0, 21.0, 20.3, 17.6, 17.4, 16.2, 14.8, 13.8, 13.7, 13.6.

HPLC t_R (Method A): 9.2 min.

HRMS: Calc m/z for ([C₃₂H₄₄FN₇O₇S] + H)⁺ 690.3080, found 690.3089.

1.3 Synthesis of Azido-Linked LCL-161 Derivatives

Scheme S3 Reagents and conditions: (a) Cs_2CO_3 , alkyl tosylate/bromide, DMF, rt, 59-77%. (b) HCl, 1,4-dioxane, DCM, rt, quant.

tert-Butyl ((S)-1-(((S)-2-(4-(3-(3-azidopropoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (**S6a**)

Following general procedure A, tert-butyl ((S)-1-(((S)-1-cyclohexyl-2-((S)-2-(4-(S)-4-(S)-1-cyclohexyl-2-(S)-2-(S)-2-(4-(S)-4-(S)-4-(S)-2-(S)

TLC: R_f = 0.28 (EtOAc/petroleum ether, 70:30).

¹H NMR (400 MHz, MeOD) reporting the major isomer δ 8.33 (s, 1H), 7.78 – 7.63 (m, 2H), 7.44 (dd, J = 8.3, 7.5 Hz, 1H), 7.23 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 5.49 (dd, J = 7.8, 3.1 Hz, 1H), 4.63 – 4.45 (m, 2H), 4.15 (t, J = 6.0 Hz, 2H), 4.03 – 3.92 (m, 1H), 3.95 – 3.85 (m, 1H), 3.54 (t, J = 6.6 Hz, 2H), 2.86 (s, 3H), 2.44 – 2.11 (m, 4H), 2.08 (p, J = 6.3 Hz, 2H), 1.76 – 1.54 (m, 6H), 1.46 (s, 9H), 1.36 – 1.32 (m, 3H), 1.17 – 0.99 (m, 5H).

LCMS (APCI): Calc m/z for ($[C_{34}H_{47}N_7O_6S] + H$)⁺ 682.3, found 682.3.

HRMS: Calc m/z for ([C₃₄H₄₇N₇O₆S] + Na)⁺ 704.3201, found 704.3214.

(S)-N-((S)-2-((S)-2-(4-(3-(3-Azidopropoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)-2-(methylamino)propanamide hydrochloride (S7a)

Following general procedure B, **S6a** (17.0 mg, 0.025 mmol), HCl (0.1 mL, 0.40 mmol, 4 M in 1,4-dioxane), and DCM (0.1 mL) gave a slightly yellow clear turned opaque mixture. Concentration and drying under reduced pressure provided **S7a** as an off-white foamy solid, which was used for the next step without further purification.

tert-Butyl ((S)-1-(((S)-2-(4-(3-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (**S6b**)

Following general procedure A, **S5** (52.3 mg, 0.087 mmol), Cs_2CO_3 (68.3 mg, 0.21 mmol), 1-azido-2-(2-(2-bromoethoxy)ethoxy)ethane (54.0 mg, 0.23 mmol), and DMF (0.4 mL) gave a brown-orange opaque mixture. After 18 h, workup and flash column chromatography (EtOAc/petroleum ether, 50:50 to 100:0) provided **S6b** as a pale yellow clear residue (39.1 mg, 59%).

TLC: $R_f = 0.30$ (EtOAc, 100).

¹H NMR (400 MHz, MeOD) reporting the major isomer δ 8.32 (s, 1H), 7.78 – 7.68 (m, 2H), 7.44 (t, J = 7.9 Hz, 1H), 7.24 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 5.49 (dd, J = 7.8, 3.2 Hz, 1H), 4.64 – 4.46 (m, 2H), 4.25 – 4.18 (m, 2H), 4.03 – 3.86 (m, 4H), 3.77 – 3.70 (m, 2H), 3.71 – 3.64 (m, 4H), 3.35 (t, J = 4.9 Hz, 2H), 2.86 (s, 3H), 2.43 – 2.09 (m, 4H), 1.78 – 1.55 (m, 6H), 1.47 (s, 9H), 1.34 (d, J = 7.2 Hz, 3H), 1.21 – 1.00 (m, 5H).

LCMS (APCI): Calc m/z for ([C₃₇H₅₃N₇O₈S] + H)⁺ 756.4, found 756.3.

HRMS: Calc m/z for ([C₃₇H₅₃N₇O₈S] + Na)⁺ 778.3569, found 778.3576.

Following general procedure B, **S6** (17.7 mg, 0.023 mmol), HCl (0.1 mL, 0.40 mmol, 4 M in 1,4-dioxane), and DCM (0.1 mL) gave a colourless clear turned opaque mixture. Concentration and drying under reduced pressure provided **S7b** as a pale yellow solid, which was used for the next step without further purification.

1.4 Synthesis of Azido-Linked N-Methyl LCL-161 Derivatives

Scheme S4 Reagents and conditions: (a) Sodium hydride (NaH), iodomethane (MeI), DMF, rt, 72-79%. (b) HCl, 1,4-dioxane, DCM, rt, quant.

tert-Butyl ((S)-1-(((S)-2-(4-(3-(3-azidopropoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)(methyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (S8a)

A reaction vial was charged with **S6a** (31.1mg, 0.046 mmol), NaH (4.6 mg, 0.11 mmol, 60 % dispersion in mineral oil), and anhydrous DMF (0.15 mL). The yellow turned brown-red clear mixture was stirred under an N_2 atmosphere at 0°C for 5 mins before MeI (19.4 mg, 0.14 mmol) was added. The red-brown clear reaction mixture was stirred at room temperature for 1 h. Another NaH (3.1 mg, 0.078 mmol, 60 % dispersion in mineral oil) was again added, stirring was continued at room temperature for another 3 h. The resulting yellow cloudy mixture was placed at ice bath, quenched with saturated NH₄Cl solution (0.5 mL), and concentrated using a stream of N_2 . The mixture was partitioned between EtOAc (20 mL) and H₂O (10 mL), the separate aqueous layer was extracted with EtOAc (15 mL x 3). The combined organic layer was washed with brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give a light-brown crude residue, which was purified by flash column chromatography (EtOAc/petroleum ether, gradient, 20:80 to 80:20). **S8a** was obtained as a light-yellow clear gum (22.7 mg, 72%). The product was co-eluted with impurities and used for the next step without further purification.

TLC: $R_f = 0.43$ (EtOAc/petroleum ether, 70:30).

¹H NMR (400 MHz, MeOD) reporting characteristic signals δ 8.32 (s, 1H), 7.77 – 7.61 (m, 2H), 7.44 (t, J = 7.9 Hz, 1H), 7.25 – 7.21 (m, 1H), 5.47 – 5.41 (m, 1H, assumed; partially obscured by impurities), 5.17 – 5.07 (m, 2H, assumed; partially obscured by impurities), 4.15 (t, J = 6.0 Hz, 2H), 4.01 – 3.75 (m, 2H), 3.58 – 3.52 (m, 2H, assumed; partially obscured by impurities), 3.05 (s, 3H), 2.82 (s, 3H), 2.11 – 1.92 (m, 6H, assumed; partially obscured by impurities), 1.67 – 1.50 (m, 6H), 1.48 – 1.44 (m, 9H), 1.30 – 1.28 (m, 3H, assumed; partially obscured by impurities), 1.20 – 1.12 (m, 5H, assumed; partially obscured by impurities).

LCMS (APCI): Calc m/z for ([C₃₅H₄₉N₇O₆S] + H)⁺ 696.4, found 696.3.

HRMS: Calc m/z for ([C₃₅H₄₉N₇O₆S] + Na)⁺ 718.3357, found 718.3357.

(S)-N-((S)-2-((S)-2-(4-(3-(3-Azidopropoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)-N-methyl-2-(methylamino)propenamide hydrochloride (<math>N-Me-LCL161 **S9a**)

Following general procedure B, **S8a** (16.0 mg, 0.023 mmol), HCl (0.1 mL, 0.40 mmol, 4 M in 1,4-dioxane), and DCM (0.1 mL) gave a light-yellow clear turned opaque mixture. Concentration and drying under reduced pressure provided **S9a** as a light yellow clear solid, which was used for the next step without further purification.

tert-Butyl ((S)-1-(((S)-2-(4-(3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)(methyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (**S8b**)

A reaction vial was charged with **S6b** (35.4mg, 0.047 mmol), NaH (4.7 mg, 0.12 mmol, 60 % dispersion in mineral oil), and anhydrous DMF (0.16 mL). The yellow turned brown clear mixture was stirred under an N_2 atmosphere at room temperature for 5 mins before the MeI (19.9 mg, 0.14 mmol) was added. The brown reaction mixture was stirred at room temperature for 1 h. The resulting yellow cloudy mixture was placed at ice bath, quenched with saturated NH₄Cl solution (0.5 mL), and concentrated using a stream of N_2 . The mixture was partitioned between EtOAc (20 mL) and H_2O (10 mL), the separate aqueous layer was extracted with EtOAc (15 mL x 3). The combined organic layer was washed with brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give a dark-brown crude residue, which was purified by flash column chromatography (EtOAc/petroleum ether, gradient, 1:2 to 100:0). **S8b** was obtained as a yellow clear gum (28.5 mg, 79%). The product was co-eluted with impurities and used for the next step without further purification.

TLC: $R_f = 0.32$ (EtOAc/petroleum ether, 80:20).

¹H NMR (400 MHz, MeOD) reporting the major isomer δ 8.31 (s, 1H), 7.79 – 7.63 (m, 2H), 7.44 (t, J = 8.0 Hz, 1H), 7.24 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 5.44 (dd, J = 8.1, 3.1 Hz, 1H), 5.15 (d, J = 11.0 Hz, 1H), 5.10 – 5.01 (m, 1H), 4.24 – 4.19 (m, 2H), 3.93 – 3.80 (m, 4H), 3.75 – 3.71 (m, 2H), 3.69 – 3.65 (m, 4H), 3.35 (t, J = 4.9 Hz, 2H), 3.05 (s, 3H), 2.82 (s, 2H), 2.44 – 2.34 (m, 1H), 2.33 – 2.24 (m, 1H), 2.23 – 2.14 (m, 1H), 2.13 – 2.04 (m, 1H, assumed; partially obscured by impurities), 1.47 (s, 6H), 1.45 (s, 3H), 1.30 – 1.28 (m, 3H), 1.22 – 0.93 (m, 5H, assumed; partially obscured by impurities).

LCMS (APCI): Calc m/z for ([C₃₈H₅₅N₇O₈S] + H)⁺ 770.4, found 770.3.

HRMS: Calc m/z for ([C₃₈H₅₅N₇O₈S] + 5Na)⁵⁺ 176.8659, found 176.8657.

Following general procedure B, **S8b** (19.4 mg, 0.025 mmol), HCl (0.1 mL, 0.40 mmol, 4 M in 1,4-dioxane), and DCM (0.1 mL) gave a light-yellow clear turned opaque mixture. Concentration and drying under reduced pressure provided **S9b** as a light yellow clear solid, which was used for the next step without further purification.

1.5 Synthesis of Nirmatrelvir Derivative (S15)

Scheme S5 Reagents and conditions: (a) Propargyl bromide, sodium hydroxide (NaOH), H₂O, ethanol (EtOH), rt, 96%.

(R)-2-((tert-Butoxycarbonyl)amino)-3-methyl-3-(prop-2-yn-1-ylthio)butanoic acid (S11)

A reaction vial was charged with (R)-2-((tert-butoxycarbonyl)amino)-3-mercapto-3-methylbutanoic acid, **S10** (176 mg, 0.71 mmol), NaOH (0.51 mL, 1.41 mmol, 10% aqueous solution), and EtOH (2.5 mL). The mixture was stirred at room temperature for 5 mins before propargyl bromide (0.080 mL, 0.71 mmol, 80% in toluene) was added. The light-yellow clear mixture was stirred at room temperature for 18 h. The reaction mixture was concentrated using a stream of N_2 . The resulting mixture was partitioned between EtOAc (40 mL) and 0.1 M HCl (7.0 mL), aqueous layer was extracted with EtOAc (30 mL x 3). The combined organic layer was washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give **S11** as a slightly yellow clear gum (195 mg, 96%).

TLC: $R_f = 0.39$ (EtOAc/petroleum ether/AcOH, 69:30:1)

¹H NMR (400 MHz, CDCl₃) δ 5.45 (d, J = 7.6 Hz, 1H), 4.39 (d, J = 8.6 Hz, 1H), 3.34 (d, J = 2.7 Hz, 2H), 2.24 (t, J = 2.7 Hz, 1H), 1.47 (s, 6H), 1.45 (s, 9H).

LCMS (APCI): Calc m/z for ([C₁₃H₂₁NO₄S] – H)⁻ 286.1, found 286.0.

HRMS: Calc m/z for $(2[C_{13}H_{21}NO_4S] + K)^+ 613.2014$, found 613.2023.

Scheme S6 Reagents and conditions: (a) HCl, 1,4-dioxane, DCM, rt. (b) **S11**, hexafluorophosphate azabenzotriazole tetramethyl uronium (HATU), *N*-methylmorpholine (NMM), DMF, 0°C to rt, 76% over two steps. (c) TFA, DCM, rt. (d) (Trifluoroacetyl)benzotriazole (TFABt), triethylamine (Et₃N), THF, rt, 99% over two steps. (e) Burgess reagent, DCM, rt, 74%.

tert-Butyl ((R)-1-((1R,2S,5S)-2-(((S)-1-amino-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)carbamoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-3-yl)-3-methyl-1-oxo-3-(prop-2-yn-1-ylthio)butan-2-yl)carbamate (**S13**)

Following general procedure B, tert-butyl (1R,2S,5S)-2-(((S)-1-amino-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)carbamoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-3-carboxylate, **S12**⁵ (260 mg, 0.64 mmol) in DCM (0.5 mL), and HCl (2.39 mL, 0.96 mmol, 4 M in 1,4-dioxane) gave a light-yellow clear turned white cloudy mixture. After concentration and drying under reduced pressure provided (1R,2S,5S)-N-((S)-1-amino-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide hydrochloride as an off-white solid and used in the next step without further purification.

A reaction vial was charged with **S11** (192 mg, 0.67 mmol), HATU (266 mg, 0.70 mmol), NMM (193 mg, 0.21 mmol), and anhydrous DMF (1 mL) and was stirred under an N_2 atmosphere at room temperature for 5 mins. The preactivated carboxylic acid cocktail was then transferred to (1R,2S,5S)-N-((S)-1-amino-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide hydrochloride and rinsed with anhydrous DMF (1 mL x 2). The resulting yellow-opaque mixture was stirred at room temperature for 18 h. The reaction mixture was poured into pre-cooled saturated NaHCO₃ solution (3 mL) and concentrated using a stream of N_2 . The resulting mixture was partitioned between EtOAc (60 mL) and H_2O (10 mL), aqueous layer was extracted with EtOAc (30 mL x 3). The combined organic layer was washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give a crude residue, which was purified by flash column chromatography (EtOAc/MeOH/ H_2O , gradient, 100:0:0 to 85:10:5). **S13** was obtained as an off-white solid (279 mg, 76% over two steps).

TLC: $R_f = 0.30$ (EtOAc/MeOH/H₂O, 85:10:5)

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 1H), 7.09 (s, 1H), 5.71 (s, 1H), 5.40 (s, 1H), 5.27 (d, J = 10.4 Hz, 1H), 4.62 (d, J = 10.2 Hz, 1H), 4.46 (ddd, J = 10.4, 7.1, 5.4 Hz, 1H), 4.29 (s, 1H), 4.18 (dd, J = 10.4, 5.5 Hz, 1H), 4.01 (d, J = 10.4 Hz, 1H), 3.44 (t, J = 2.4 Hz, 2H), 3.40 – 3.37 (m, 1H), 3.37 – 3.35 (m, 1H), 2.45 – 2.41 (m, 1H), 2.41 – 2.37 (m, 1H), 2.30 (t, J = 2.6 Hz, 1H), 2.12 – 2.07 (m, 2H), 1.96 – 1.87 (m, 1H, assumed; partially obscured by solvent peak), 1.49 – 1.44 (m, 8H), 1.41 (s, 9H), 1.04 (s, 3H), 0.88 (s, 3H).

HRMS: Calc m/z for ($[C_{28}H_{43}N_5O_6S] + H$)⁺ 578. 3007, found 578.3011.

(1R,2S,5S)-N-((S)-1-Amino-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)-6,6-dimethyl-3-((R)-3-methyl-3-(prop-2-yn-1-ylthio)-2-(2,2,2-trifluoroacetamido)butanoyl)-3-azabicyclo[3.1.0]hexane-2-carboxamide (**S14**)

A reaction vial was charged with **\$13** (147 mg, 0.25 mmol), DCM (0.6 mL), and TFA (768 mg, 7.61 mmol). The resulting light-yellow clear mixture was stirred at room temperature for 2.5 h. After concentration and drying under reduced pressure provided the residue was treated with TFABt (246 mg, 1.14 mmol, prepared from 1*H*-benzo[d][1,2,3]triazole and trifluoroacetic anhydride (TFAA)⁶), Et₃N (77.0 mg, 0.76 mmol), and THF (1.5 mL). The resulting yellow clear mixture was stirred under an N₂ atmosphere at room temperature for 18 h. The reaction mixture was concentrated using a stream of N₂ and then purified by flash column chromatography (EtOAc/MeOH, gradient, 100:0 to 90:10). **\$14** was obtained as an off-white solid (144 mg, 99% over two steps).

TLC: $R_f = 0.27$ (EtOAc/MeOH/H₂O, 85:10:5)

¹H NMR (400 MHz, DMSO) δ 9.58 (d, J = 8.3 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 7.55 (s, 1H), 7.32 (s, 1H), 7.03 (s, 1H), 4.78 (d, J = 8.2 Hz, 1H), 4.34 – 4.27 (m, 1H), 4.26 (s, 1H), 3.96 (dd, J = 10.3, 5.4 Hz, 1H), 3.69 (d, J = 10.4

Hz, 1H), 3.40 (d, J = 2.6 Hz, 2H), 3.18 - 3.07 (m, 2H), 3.04 (q, J = 8.6 Hz, 1H), 2.44 - 2.31 (m, 1H), 2.19 - 2.09 (m, 1H), 1.97 - 1.89 (m, 1H), 1.71 - 1.61 (m, 1H), 1.55 - 1.45 (m, 5H), 1.40 (d, J = 7.7 Hz, 1H), 1.36 (s, 3H), 1.02 (s, 3H), 0.84 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -73.01.

HRMS: Calc m/z for ([C₂₅H₃₄F₃N₅O₅S] + H)⁺ 574.2306, found 574.2308.

(1R,2S,5S)-N-((S)-1-Cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-6,6-dimethyl-3-((R)-3-methyl-3-(prop-2-yn-1-ylthio)-2-(2,2,2-trifluoroacetamido)butanoyl)-3-azabicyclo[3.1.0]hexane-2-carboxamide (**S15**)

A reaction vial was charged with **S14** (141 mg, 0.25 mmol), Burgess reagent (199 mg, 0.84 mmol), and anhydrous DCM (1.2 mL). The light-yellow clear mixture was stirred under an N_2 atmosphere for 2 h before quenching with MeOH (0.5 mL). The resulting mixture was concentrated under reduced pressure and purified by flash column chromatography (EtOAc/petroleum ether, gradient, 80:20 to 100:0). **S15** was obtained as a white foamy solid (101 mg, 74%).

TLC: $R_f = 0.28$ (EtOAc, 100)

¹H NMR (400 MHz, DMSO) δ 9.60 (d, J = 8.3 Hz, 1H), 9.01 (d, J = 8.5 Hz, 1H), 7.67 (s, 1H), 4.97 (ddd, J = 10.6, 8.4, 5.3 Hz, 1H), 4.77 (d, J = 8.4 Hz, 1H), 4.14 (s, 1H), 3.99 (dd, J = 10.4, 5.5 Hz, 1H), 3.71 (d, J = 10.4 Hz, 1H), 3.40 (d, J = 2.7 Hz, 2H), 3.17 – 3.11 (m, 2H), 3.09 – 3.01 (m, 1H), 2.44 – 2.34 (m, 1H), 2.18 – 2.05 (m, 2H), 1.78 – 1.67 (m, 2H), 1.59 (dd, J = 7.6, 5.4 Hz, 1H), 1.50 (s, 3H), 1.37 – 1.32 (m, 4H), 1.03 (s, 3H), 0.85 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -73.00.

 13 C NMR (100 MHz, DMSO) δ 177.4, 170.4, 166.1, 120.2, 119.5, 80.9, 73.5, 60.2, 56.1, 48.8, 47.6, 37.9, 36.8, 34.0, 30.2, 27.2, 26.8, 25.6, 25.6, 23.8, 18.8, 16.0, 12.2. Two carbons not observed.

HRMS: Calc m/z for ([C₂₅H₃₂F₃N₅O₄S] + H)⁺ 556.2200, found 556.2209.

1.6 Synthesis of Target Compounds (BP-172, 198, and 174)

Scheme S7 (a) ELLAN-Linker-N₃, CuSO₄.5H₂O, sodium ascorbate, t-BuOH, H₂O, 40-45°C.

 5-(4-methylthiazol-5-yl)phenoxy)ethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)methyl)thio)-3-methyl-2-(2,2,2-trifluoroacetamido)butanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide (**BP-172**)

Following general procedure C, **S15** (13.7 mg, 0.025 mmol), **S2** (17.2 mg, 0.025 mmol), sodium ascorbate (2.9 mg, 0.015 mmol), CuSO₄.5H₂O (1.9 mg, 0.0074 mmol), and a degassed mixture of t-BuOH and H₂O (1 mL) gave a slightly yellow clear mixture. After 18 h, workup and flash column chromatography (CHCl₃/MeOH, gradient, 100:0 to 94:6) provided **BP-172** as a white solid (12.7 mg, 41%).

TLC: $R_f = 0.27$ (CHCl₃/MeOH, 90:10)

¹H NMR (400 MHz, DMSO) δ 9.58 (d, J = 8.3 Hz, 1H), 9.05 – 8.94 (m, 2H), 8.46 (t, J = 5.8 Hz, 1H), 7.89 (s, 1H), 7.64 (s, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.27 (br d, J = 9.2 Hz, 1H), 7.03 (d, J = 1.2 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 5.15 (d, J = 3.6 Hz, 1H), 5.04 – 4.91 (m, 1H), 4.72 (d, J = 8.1 Hz, 1H), 4.59 (d, J = 9.4 Hz, 1H), 4.51 (t, J = 8.2 Hz, 1H), 4.46 (t, J = 5.2 Hz, 2H), 4.36 – 4.31 (m, 1H), 4.29 (d, J = 6.1 Hz, 1H), 4.23 (d, J = 5.6 Hz, 1H), 4.19 – 4.15 (m, 2H), 4.15 (s, 1H), 3.97 (dd, J = 10.3, 5.5 Hz, 1H), 3.84 (s, 2H), 3.80 (t, J = 5.2 Hz, 2H), 3.76 (t, J = 4.6 Hz, 2H), 3.70 – 3.63 (m, 2H), 3.62 – 3.58 (m, 3H), 3.57 – 3.53 (m, 2H), 3.12 (t, J = 8.9 Hz, 1H), 3.03 (q, J = 8.7 Hz, 1H), 2.46 (s, 3H), 2.41 – 2.33 (m, 1H), 2.18 – 2.03 (m, 3H), 1.96 – 1.88 (m, 1H), 1.77 – 1.64 (m, 2H), 1.57 (app t, J = 6.5 Hz, 1H), 1.47 (s, 3H), 1.41 – 1.31 (m, 6H), 1.25 – 1.20 (m, 2H), 1.03 (s, 3H), 0.95 (s, 9H), 0.84 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -73.01, -196.20.

HPLC t_R (Method B): 16.1 min.

HRMS: Calc m/z for ([C₅₇H₇₆F₄N₁₂O₁₁S₂] + H)⁺ 1245.5238, found 1245.5207.

(1R,2S,5S)-N-((S)-1-Cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-3-((R)-3-(((1-(3-(3-(2-((S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)pyrrolidin-2-yl)thiazole-4-carbonyl)phenoxy)propyl)-1<math>H-1,2,3-triazol-4-yl)methyl)thio)-3-methyl-2-(2,2,2-trifluoroacetamido)butanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide trifluoroacetic acid (**BP-198**)

Following general procedure C, **S15** (14.1 mg, 0.025 mmol), **S7a** (0.025 mmol), sodium ascorbate (9.9 mg, 0.050 mmol), CuSO₄.5H₂O (9.3 mg, 0.037 mmol), and a degassed mixture of t-BuOH and H₂O (0.6 mL) gave a light-yellow-brown opaque mixture. After 18 h, workup (neutralised using NaHCO₃ solution), flash column chromatography (CHCl₃/7M NH₃ in MeOH, gradient, 100:0 to 96:4) and preparative RP-HPLC provided **BP-198** as a white solid (4.8 mg, 15% over two steps).

TLC: $R_f = 0.22$ (CHCl₃/7M NH₃ in MeOH, 95:5)

¹H NMR (400 MHz, DMSO) δ 9.61 (d, J = 8.3 Hz, 1H), 9.01 (d, J = 8.6 Hz, 1H), 8.78 (br s, 2H), 8.72 (d, J = 8.0 Hz, 1H), 8.49 (s, 1H), 7.99 (s, 1H), 7.73 – 7.64 (m, 2H), 7.62 (t, J = 2.1 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 7.23 (dd, J = 8.1, 2.7 Hz, 1H), 5.39 (dd, J = 7.3, 3.6 Hz, 1H), 4.96 (ddd, J = 10.4, 8.3, 5.4 Hz, 1H), 4.69 (d, J = 8.5 Hz, 1H), 4.55 – 4.43 (m, 3H), 4.14 (s, 1H), 4.05 (t, J = 6.0 Hz, 2H), 3.96 (dd, J = 10.6, 4.9 Hz, 1H), 3.91 – 3.71 (m, 5H), 3.66 (d, J = 10.6 Hz, 1H), 3.15 – 3.09 (m, 1H), 3.06 – 2.99 (m, 1H), 2.51 – 2.50 (m, 3H, assumed; partially obscured by solvent peak), 2.40 – 2.34 (m, 1H), 2.32 – 2.26 (m, 2H), 2.25 – 2.17 (m, 2H), 2.14 – 2.02 (m, 4H), 1.83 – 1.51 (m, 9H), 1.48 (s, 3H), 1.42 – 1.19 (m, 7H), 1.16 – 0.91 (m, 8H), 0.83 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -72.99, -74.04.

HPLC t_R (Method B): 15.4 min.

HRMS: Calc m/z for ([C₅₄H₇₁F₃N₁₂O₈S₂] + H)⁺ 1137.4984, found 1137.5003.

Following general procedure C, **S15** (13.0 mg, 0.023 mmol), **S7b** (0.023 mmol), sodium ascorbate (9.3 mg, 0.047 mmol), CuSO₄.5H₂O (8.8 mg, 0.035 mmol), and a degassed mixture of t-BuOH and H₂O (1 mL) gave a light-yellow-brown clear mixture. After 18 h, workup (neutralised using NaHCO₃ solution) and flash column chromatography (CHCl₃/7M NH₃ in MeOH, gradient, 100:0 to 96:4) provided **BP-174** as an off-white foamy solid (7.7 mg, 27% over two steps).

TLC: $R_f = 0.23$ (CHCl₃/7M NH₃ in MeOH, 95:5)

¹H NMR (400 MHz, DMSO) δ 9.60 (s, 1H), 9.00 (d, J = 8.4 Hz, 1H), 8.48 (s, 1H), 7.97 – 7.85 (m, 2H), 7.75 – 7.60 (m, 3H), 7.46 (t, J = 8.0 Hz, 1H), 7.24 (dd, J = 8.3, 2.3 Hz, 1H), 5.38 (dd, J = 7.9, 3.0 Hz, 1H), 5.01 – 4.93 (m, 1H), 4.72 (s, 1H), 4.54 – 4.42 (m, 3H), 4.19 – 4.10 (m, 3H), 3.97 (dd, J = 10.7, 5.6 Hz, 1H), 3.88 – 3.75 (m, 6H), 3.74 (t, J = 4.6 Hz, 2H), 3.68 (d, J = 10.6 Hz, 1H), 3.60 – 3.52 (m, 4H), 3.14 – 3.08 (m, 1H, assumed; partially obscured by solvent peak), 3.06 – 3.01 (m, 1H, assumed; partially obscured by solvent peak), 2.96 (q, J = 6.8 Hz, 1H, assumed; partially obscured by solvent peak), 2.40 – 2.36 (m, 1H), 2.30 – 2.22 (m, 2H), 2.17 (s, 3H), 2.14 – 1.98 (m, 4H), 1.80 – 1.51 (m, 9H), 1.47 (s, 3H), 1.37 – 1.30 (m, 4H), 1.18 – 1.05 (m, 6H), 1.02 (s, 3H), 1.00 – 0.94 (m, 2H), 0.83 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -73.00.

HPLC t_R (Method B): 15.6 min.

HRMS: Calc m/z for ($[C_{57}H_{77}F_3N_{12}O_{10}S_2] + H$)⁺ 1211.5352, found 1211.5342.

1.7 Synthesis of Non-PROTAC Control Compounds (BP-200, 206, and 202)

Following general procedure C, **S15** (13.5 mg, 0.024 mmol), **S4** (16.0 mg, 0.023 mmol), sodium ascorbate (2.8 mg, 0.014 mmol), CuSO₄.5H₂O (1.7 mg, 0.0070 mmol), and a degassed mixture of t-BuOH and H₂O (0.6 mL) gave a slightly yellow clear mixture. After 18 h, workup and preparative TLC (EtOAc/MeOH/H₂O, 85:10:5) provided **BP-200** as a white solid (13.9 mg, 48%).

TLC: $R_f = 0.28$ (EtOAc/MeOH/H₂O, 85:10:5)

¹H NMR (400 MHz, DMSO) δ 9.61 (d, J = 8.2 Hz, 1H), 9.01 (d, J = 8.5 Hz, 1H), 8.98 (s, 1H), 8.55 (t, J = 6.0 Hz, 1H), 7.89 (s, 1H), 7.65 (s, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.30 (dd, J = 8.9, 2.7 Hz, 1H), 7.04 (d, J = 1.7 Hz, 1H), 6.95 (dd, J = 7.8, 1.6 Hz, 1H), 5.44 (d, J = 7.3 Hz, 1H), 5.01 – 4.92 (m, 1H), 4.72 (d, J = 8.0 Hz, 1H), 4.55 (d, J = 8.9 Hz, 1H), 4.49 – 4.41 (m, 3H), 4.33 (dd, J = 16.5, 6.2 Hz, 1H), 4.27 – 4.19 (m, 2H), 4.17 (t, J = 4.7 Hz, 2H), 4.14 (s, 1H), 3.97 (dd, J = 10.4, 5.4 Hz, 1H), 3.90 – 3.82 (m, 3H), 3.80 (t, J = 5.2 Hz, 2H), 3.76 (t, J = 4.7 Hz, 2H), 3.68 (d, J = 10.5 Hz, 1H), 3.62 – 3.57 (m, 2H), 3.57 – 3.52 (m, 2H), 3.46 (dd, J = 10.1, 5.3 Hz, 1H), 3.12 (t, J = 9.0 Hz, 1H), 3.02 (q, J = 9.2, 8.7 Hz, 1H), 2.46 (s, 3H), 2.40 – 2.32 (m, 2H), 2.18 – 2.02 (m, 2H), 1.79 – 1.65 (m, 3H), 1.59 – 1.55 (m, 1H), 1.47 (s, 3H), 1.40 – 1.28 (m, 6H), 1.25 – 1.20 (m, 2H), 1.02 (s, 3H), 0.97 (s, 9H), 0.84 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -72.98, -196.17.

HPLC t_R (Method B): 16.1 min.

HRMS: Calc m/z for ([C₅₇H₇₆F₄N₁₂O₁₁S₂] + H)⁺ 1245.5207, found 1245.5265.

(1R,2S,5S)-N-((S)-1-Cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-3-((R)-3-(((1-(3-(3-(2-((S)-1-((S)-2-cyclohexyl-2-((S)-N-methyl-2-(methylamino)propanamido)acetyl)pyrrolidin-2-yl)thiazole-4-carbonyl)phenoxy)propyl)-1<math>H-1,2,3-triazol-4-yl)methyl)thio)-3-methyl-2-(2,2,2-trifluoroacetamido)butanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide trifluoroacetic acid (**BP-206**, N-Me-LCL161 linked)

Following general procedure C, **S15** (12.8 mg, 0.023 mmol), **S9a** (0.023 mmol), sodium ascorbate (9.1 mg, 0.046 mmol), CuSO₄.5H₂O (7.5 mg, 0.030 mmol), and a degassed mixture of t-BuOH and H₂O (0.5 mL) gave a light-yellow opaque mixture. After 18 h, workup (neutralised using NaHCO₃ solution), flash column chromatography (CHCl₃/7M NH₃ in MeOH, gradient, 100:0 to 96:4), and preparative RP-HPLC provided **BP-206** as a white solid (3.9 mg, 13% over two steps, NMR indicated 10% residual ammonium trifluoroacetate).

TLC: $R_f = 0.18$ (CHCl₃/7M NH₃ in MeOH, 95:5)

¹H NMR (400 MHz, DMSO) δ 9.61 (d, J = 8.4 Hz, 1H), 9.01 (d, J = 8.4 Hz, 1H), 8.93 (br s, 1H), 8.74 (br s, 1H), 8.48 (s, 1H), 7.99 (s, 1H), 7.72 – 7.63 (m, 2H), 7.61 (app s, 1H), 7.46 (t, J = 8.0 Hz, 1H), 5.39 – 5.34 (m, 1H), 5.05 (d, J = 10.8 Hz, 1H), 4.99 – 4.94 (m, 1H), 4.69 (d, J = 8.2 Hz, 1H), 4.55 – 4.49 (m, 2H), 4.41 – 4.36 (m, 1H), 4.14 (s, 1H), 4.06 (t, J = 6.0 Hz, 2H), 3.99 – 3.94 (m, 1H), 3.85 (s, 2H), 3.82 – 3.75 (m, 2H), 3.66 (d, J = 9.9 Hz, 1H), 3.15 – 3.12 (m, 1H), 3.06 – 3.01 (m, 1H), 2.94 (s, 3H), 2.50 (s, 3H, assumed; partially obscured by solvent peak), 2.31 – 2.22 (m, 3H), 2.20 – 2.13 (m, 2H), 2.11 – 2.04 (m, 2H), 2.00 – 1.92 (m, 2H), 1.79 – 1.51 (m, 9H), 1.48 (s, 3H), 1.38 (d, J = 6.8 Hz, 3H), 1.35 – 1.26 (m, 4H), 1.20 – 1.04 (m, 5H), 1.02 (s, 3H), 0.83 (s, 3H).

¹⁹F NMR (377 MHz, DMSO) δ -72.99, -73.47.

HPLC t_R (Method B): 15.6 min.

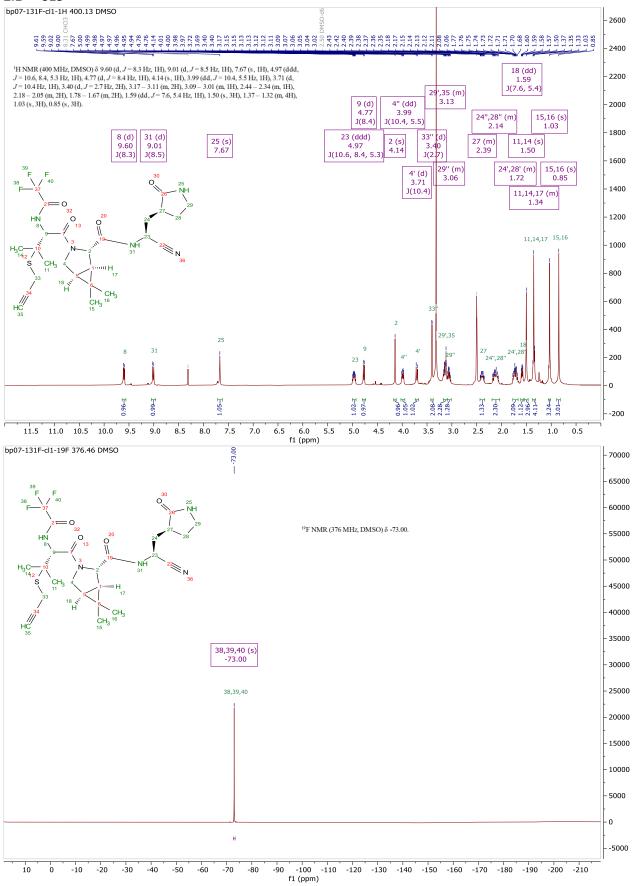
HRMS: Calc m/z for ([C₅₅H₇₃F₃N₁₂O₈S₂] + H)⁺ 1151.5141, found 1151.5140.(1R,2S,5S)-N-((S)-1-Cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-3-((R)-3-(((1-(2-(2-(3-(2-((S)-1-((S)-2-cyclohexyl-2-((S)-N-methyl-2-(methylamino)propanamido)acetyl)pyrrolidin-2-yl)thiazole-4-carbonyl)phenoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-3-methyl-2-(2,2,2-trifluoroacetamido)butanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide trifluoroacetic acid (**BP-202**, N-Me-LCL161 linked)

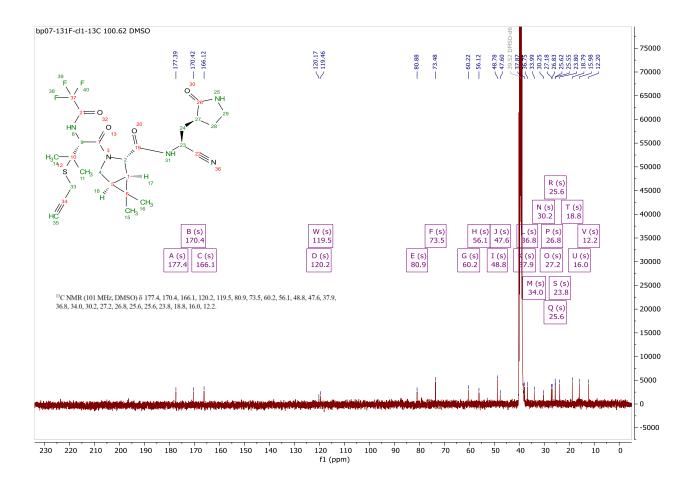
$$F_3C \xrightarrow{O}OH \\ HN \xrightarrow{O}O \xrightarrow{N}N=N$$

Following general procedure C, **S15** (13.0 mg, 0.023 mmol), **S9b** (0.023 mmol), sodium ascorbate (10.0 mg, 0.050 mmol), CuSO₄.5H₂O (9.4 mg, 0.038 mmol), and a degassed mixture of t-BuOH and H₂O (0.6 mL) gave a light-yellow-brown clear mixture. After 18 h, workup (neutralised using NaHCO₃ solution), preparative-TLC (CHCl₃/7M NH₃ in MeOH, 95:5) and preparative RP-HPLC provided **BP-202** as a white solid (6.2 mg, 18% over two step).

TLC: $R_f = 0.17$ (CHCl₃/7M NH₃ in MeOH, 95:5)

¹H NMR (400 MHz, DMSO) δ 9.62 (d, J = 8.5 Hz, 1H), 9.01 (d, J = 8.5 Hz, 1H), 8.94 (br s, 1H), 8.75 (br s, 1H), 8.47 (s, 1H), 7.90 (s, 1H), 7.73 – 7.64 (m, 2H), 7.64 – 7.59 (m, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.27 – 7.22 (m, 1H), 5.36 (dd, J = 8.1, 2.9 Hz, 1H), 5.05 (d, J = 10.9 Hz, 1H), 4.99 – 4.92 (m, 1H), 4.72 (d, J = 8.5 Hz, 1H), 4.47 (t, J = 5.3 Hz, 2H), 4.39 (q, J = 6.3 Hz, 1H), 4.18 – 4.10 (m, 3H), 3.96 (dd, J = 10.4, 5.5 Hz, 1H), 3.84 (s, 2H), 3.83 – 3.70 (m, 5H), 3.67 (d, J = 10.6 Hz, 1H), 3.55 (m, 2H), 3.50 – 3.44 (m, 1H, assumed; partially obscured by solvent peak), 3.37 – 3.37 (m, 2H, assumed; partially obscured by solvent peak), 3.15 – 3.09 (m, 1H), 3.06 – 2.99 (m, 1H), 2.93 (s, 3H), 2.51 – 2.50 (m, 3H, assumed; partially obscured by solvent peak), 2.40 – 2.34 (m, 1H), 2.30 – 2.19 (m, 2H), 2.17 – 1.92 (m, 5H), 1.79 – 1.49 (m, 8H), 1.47 (s, 3H), 1.38 (d, J = 6.9 Hz, 3H), 1.35 – 1.25 (m, 4H), 1.24 – 1.10 (m, 3H), 1.02 (s, 3H), 0.96 – 0.88 (m, 2H), 0.83 (s, 3H).


¹⁹F NMR (377 MHz, DMSO) δ -72.98, -73.99.


HPLC t_R (Method B): 15.5 min.

HRMS: Calc m/z for ([C₅₈H₇₉F₃N₁₂O₁₀S₂] + H)⁺ 1225.5508, found 1225.5515.

2 Selected NMR, HPLC, and HRMS spectra

2.1 S15

Compound Report

Sample Information

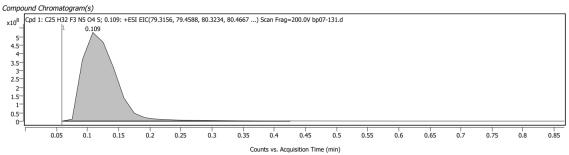

bp07-131 Data File Path D:\DATA\2022\May 23\bp07-131.d Name Sample ID Acq. Time (Local) 23/05/2022 11:30:14 AM (UTC+10:00) Instru Instrument 1 Method Path (Acq) D:\MassHunter\Methods\Monash_Direct.m 6200 series TOF/6500 series Q-TOF 10.1 (48.0) MS Type TOF Version (Acq SW) IRM Status Inj. Vol. (ul) 0.2 Success P2-D5 Method Path (DA) $\label{lem:decomposition} D:\DATA\2022\May\ 23\bp07-131.d\AcqData\MethodDA\Monash_Accuracy.m$

 Plate Pos.
 Target Source Path
 C25H32F3N504S

 Operator
 Dr Jason Dang
 Result Summary
 1 qualified (1 targets)

Compound Summary

Formula	RT	Mass	Area	Algorithm	Score	Diff (Tgt, ppm)
C25 H32 F3 N5 O4 S	0.109	555.2139	1930097431	FBF	99.85	2.18

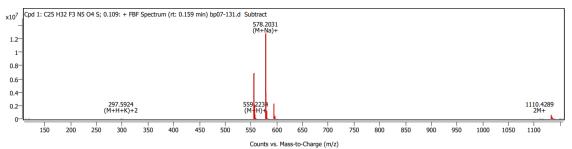
Compound Spectra

x107

Ppd 1: C25 H32 F3 N5 O4 S; 0.109: + Scan (rt: 0.159 min) bp07-131.d Subtract

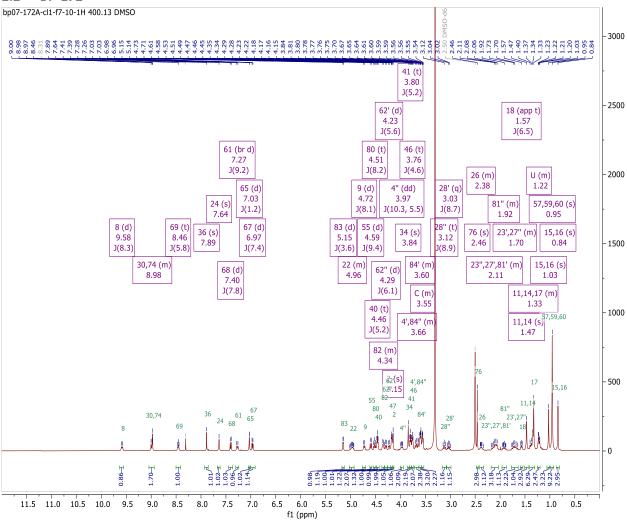
([C25H32F3NSO4S]+Na)+

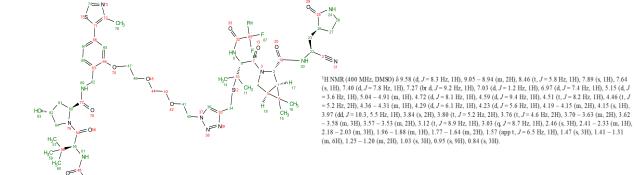
1.210.80.60.40.2([C25H32F3NSO4S]+7K)+7

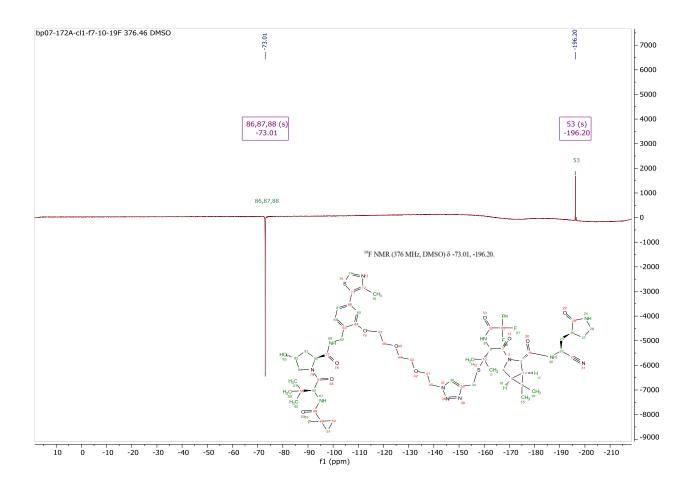

([C25H32F3NSO4S]+7K)+7

([C25H32F3NSO4S]+Na)+

([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S]+Na)+
([C25H32F3NSO4S


Counts vs. Mass-to-Charge (m/z)


Compound Spectra



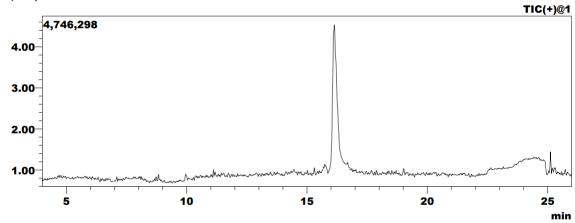
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
556.2209	556.2200	1.73	6910750	100.00	100.00	(M+H)+	1
578.2031	578.2019	2.07	12711490	100.00	100.00	(M+Na)+	1
579.2058	579.2048	1.72	4044811	31.82	30.18	(M+Na)+	1
ectrum Peaks (Max	. 3)						
•	,						
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
•	,	Diff (ppm) 1.73	Abund 6910750	Height % 100.00	Height % (Calc) 100.00	Ion Species (M+H)+	Z 1
m/z	m/z (Calc)						z 1

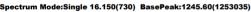
2.2 BP-172

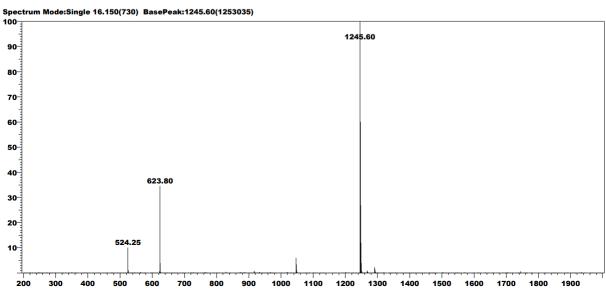

Sample Name Month-Day Acquired : bp07-172A-cl1-f7-10

: 8/07/2022 Time Acquired : 8:28:52 AM

Method File : LCMS 0-100B 15 min Pos.lcm


LC Profile at 214nm





MS Chromatogram

(x1,000,000)

Compound Report

Sample Information

 Name
 bp07-172A

 Sample ID
 Instrument 1

 MS Type
 TOF

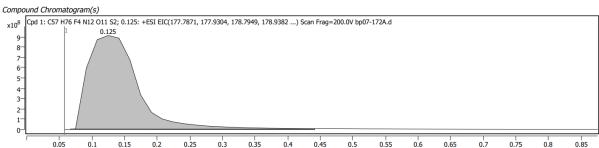
 Inj. Vol. (ul)
 0.1

 Position
 P1-A1

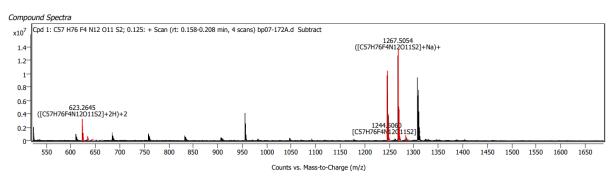
 Plate Pos.

Data File Path
Acq. Time (Local)
Method Path (Acq)
Version (Acq SW)
IRM Status
Method Path (DA)

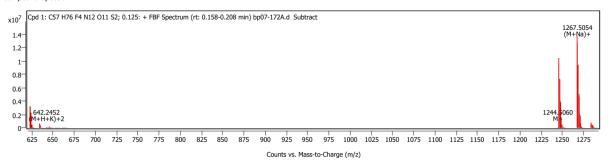
Target Source Path


D:\DATA\2022\July 18\bp07-172A.d 18/07/2022 8:37:50 PM (UTC+10:00) D:\MassHunter\Methods\Monash_Direct.m 6200 series TOF/6500 series Q-TOF 10.1 (48.0) Some ions missed

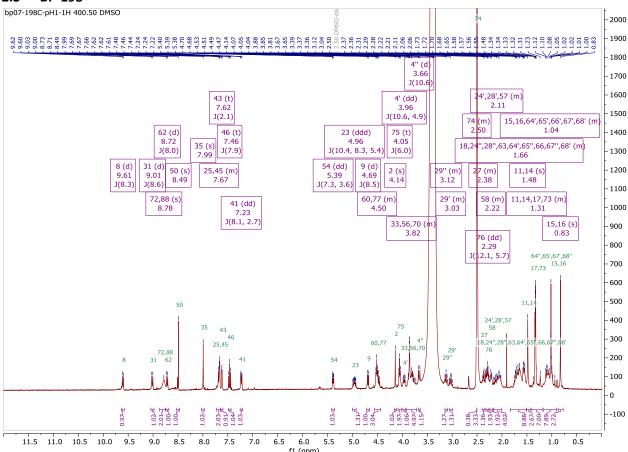
 $\label{local_Data} D:\DATA\|\2022\] uly 18\|\bp07-172A.d\|\AcqData\|\MethodDA\|\Monash_Accuracy.m$ C57H76F4N12O11S2

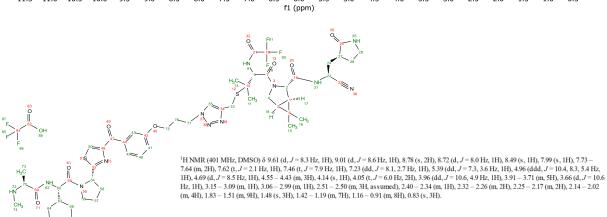

C57H76F4N12O11S2 1 qualified (1 targets)

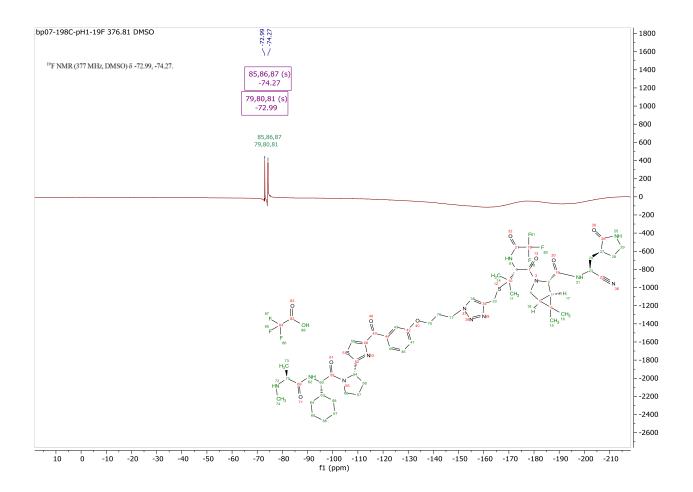
Compound Summary


Formula	RT	Mass	Area	Algorithm	Score	Diff (Tgt, ppm)
C57 H76 F4 N12 O11 S2	0.125	1244.5152	4846794679	FBF	99.48	1.46

Counts vs. Acquisition Time (min)




Compound Spectra

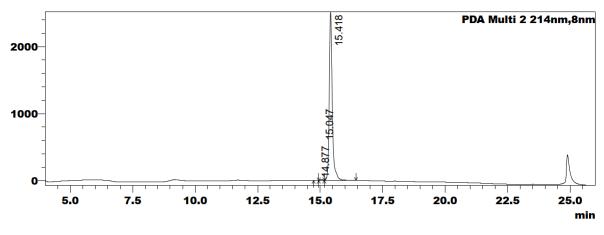


Spectrum Peaks (M	1ax. 3)						
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
1245.5238	1245.5207	2.53	9744758	100.00	100.00	(M+H)+	1
1267.5054	1267.5026	2.16	12732351	100.00	100.00	(M+Na)+	1
1268.5067	1268.5055	0.94	9457869	74.28	68.91	(M+Na)+	1
Spectrum Peaks (M	1ax. 3)						
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
1245.5238	1245.5207	2.53	9744758	100.00	100.00	(M+H)+	1
1267.5054	1267.5026	2.16	12732351	100.00	100.00	(M+Na)+	1
1268,5067	1268.5055	0.94	9457869	74.28	68.91	(M+Na)+	1

2.3 BP-198

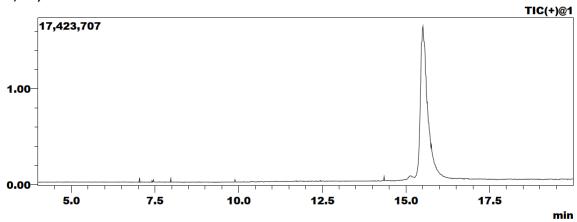
Sample Name Month-Day Acquired Time Acquired Method File : bp07-198C-p1-ccc

: 4/19/2023 : 5:24:52 PM

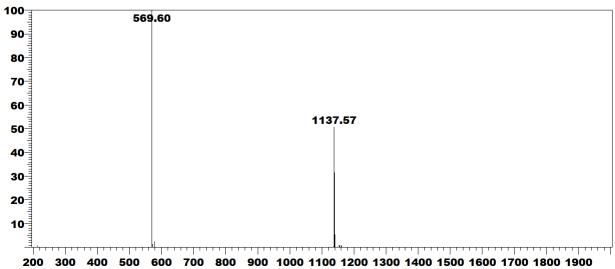

: LCMS 0-100B 15 min Pos.lcm

LC Profile at 214nm

Peak Table


	I can I a	010
PDA Ch2	214nm	
Peak#	Ret. Time	Area%
1	14.877	0.068
2	15.047	0.681
3	15.418	99.251
Total		100.000

mAU



MS Chromatogram

Spectrum Mode:Single 15.507(864) BasePeak:569.60(6988195)

m/z

Compound Report

Sample Information

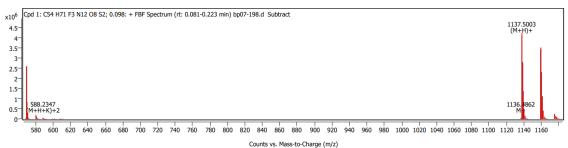
bp07-198 Data File Path Name Sample ID Acq. Time (Local) Instrument Instrument 1 Method Path (Acq) Version (Acq SW) MS Type TOF IRM Status Inj. Vol. (ul) 0.2 P1-D4 Method Path (DA) Plate Pos. Target Source Path

Dr Jason Dang

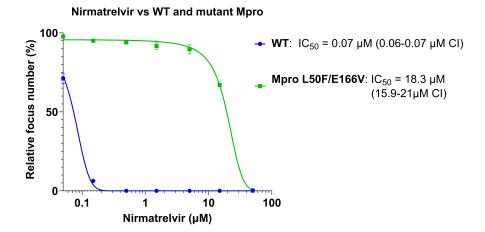
D:\DATA\2023\April26\bp07-198.d 26/04/2023 10:45:11 PM (UTC+10:00) D:\MassHunter\Methods\Monash_Direct.m 6200 series TOF/6500 series Q-TOF 10.1 (48.0) Some ions missed

C54H71F3N12O8S2 **Result Summary** 1 qualified (1 targets)

Compound Summary


Operator

Compound Spectra x10⁶ Cpd 1: C54 H71 F3 N12 O8 S2; 0.098: + Scan (rt: 0.081-0.223 min, 18 scans) bp07-198.d Subtract 1137.5003 ([C54H71F3N12O8S2]+H)+ 4.5 3.5 569.2548 ([C54H71F3N12O8S2]+2H)+2 2.5 2-1.5-163 208S2]+2 568. [C54H71F3] 1136.486 [C54H71F3112 600 700 1200 1250 1300 1450 1550 500 550 650 750 800 850 900 950 1000 1050 1100 1150 1350 1400 1500 Counts vs. Mass-to-Charge (m/z)


Compound Spectra

Spectr	um Peaks (Max.	3)						
	m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
	1137.5003	1137.4984	1.64	4124054	100.00	100.00	(M+H)+	1
	1138.5032	1138.5013	1.65	2831444	68.66	65.50	(M+H)+	1
	1159.4821	1159.4804	1.54	3439468	100.00	100.00	(M+Na)+	1
Spectr	um Peaks (Max.	3)						
	m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
	1137.5003	1137.4984	1.64	4124054	100.00	100.00	(M+H)+	1
	1138.5032	1138.5013	1.65	2831444	68.66	65.50	(M+H)+	1
	1159.4821	1159.4804	1.54	3439468	100.00	100.00	(M+Na)+	1

3 References

- 1. Still, W. C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. *J. Org. Chem.* **1978**, 43, 2923-2925.
- 2. Fulmer, G. R.; Miller, A. J.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M., et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics* **2010**, 29, 2176-2179.
- 3. Zoppi, V.; Hughes, S. J.; Maniaci, C.; Testa, A.; Gmaschitz, T.; Wieshofer, C., et al. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel–Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. *J. Med. Chem.* **2019**, 62, 699-726.
- 4. Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T., et al. In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). *J Biol Chem* **2017**, 292, 4556-4570.
- 5. Owen, D. R.; Pettersson, M. Y.; Reese, M. R.; Sammons, M. F.; Tuttle, J. B.; Verhoest, P. R., et al. Nitrile-containing antiviral compounds. WO2021250648, 2021.
- 6. Katritzky, A. R.; Yang, B.; Semenzin, D. (Trifluoroacetyl)benzotriazole: A Convenient Trifluoroacetylating Reagent. *J. Org. Chem.* **1997**, 62, 726-728.

Supplementary Figure 3

Focus reduction assays in VeroE6/TMPRSS2 cells infected with SARS-CoV-2 Delta variant harbouring either wildtype Mpro or Mpro possessing the nirmatrelvir-resistant mutations E166V + L50F and treated with increasing doses of nirmatrelvir. Data is presented as the number of foci per dose of drug as a % of the DMSO control \pm S.E.M. The IC $_{50}$ dose response for each drug was calculated \pm 95% CI.