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Abstract

In this supporting material, we provide some technical lemmas and detailed proofs
for all lemmas and theorems.
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1 TECHNICAL LEMMAS AND THEIR PROOFS

Denotes cp = 2 log(p) − [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) . Let X1, · · · , Xp

independently follow a common standard normal distribution. We can obtain that,
(i) For any real number x and y,

lim
p→+∞

Pr


[

max
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x

 = exp{− exp(−x)}
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and

lim
p→+∞

Pr


[

min
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< y

 = exp{− exp(−y)}

(ii) For any real number x and y,

[
max

s=1,··· ,p
(Xs)

]2
and

[
min

s=1,··· ,p
(Xs)

]2
are asymptoti-

cally independent,namely,

lim
p→+∞

Pr


[

max
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x,

[
min

s=1,··· ,p
(Xs)

]2
− cp

2− (log p)−1
< y


= G(x)G(y)

where distribution function G(x) = exp{− exp(−x)} and G(y) = exp{− exp(−y)}.

Proof. Please refer to literature [1].

If ξn is an i.i.d.(standard) normal sequence of r.v.’s, then the asymptotic distribu-
tion of Mn = max(ξ1, ξ2, · · · , ξn) is of Type I. Specifically,

P {an(Mn − bn) ≤ x} → exp
(
−e−x

)
,

where
an = (2 log n)1/2

and

bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n+ log 4π)

Proof. Please refer to Theorem 1.5.3 in literature [2].

Writing mn = min(ξ1, ξ2, · · · , ξn), clearly mn = −max(−ξ1,−ξ2, · · · ,−ξn), then

P {an(mn + bn) ≤ x} → 1− exp (−ex) . (1)

Suppose ξ1, ξ2, · · · , ξn are standard normal variables with covariance matrix Λ1 =
(Λ1

ij), and η1, η2, · · · , ηn similarly with covariance matrix Λ0 = (Λ0
ij),and let σij =

max(|Λ1
ij |, |Λ0

ij |). Then for any real u ,

P{ξj ≤ u for j = 1, · · · , n} − P{ηj ≤ u for j = 1, · · · , n}

≤ 1

2π

∑
1≤i<j≤n

(Λ1
ij − Λ0

ij)
+(1− σ2

ij)
−1/2 exp

{
− u2

1 + σij

}

where (x)+ = max(0, x).
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Proof. Please refer to Theorem 4.2.1 in literature [2].

First we recall some notations,

dp(z) = [2− (log p)−1]z + cp

where z be any real number, and p be any positive integer.
Condition C.1:

lim
p→+∞

∑
1≤i<j≤p

(1− ρ2i,j)
−1/2 exp

{
− dp(z)

1 + |ρi,j |

}
= 0.

Let sequence Z = (Z1, Z2, · · · , Zp)
T follows a p-dimension multivariate nor-

mal distribution with mean vector u = (0, 0, · · · , 0)T and covariance matrix R̃ =
(ρq,s)q,s=1,··· ,p. Suppose the above condition C.1 is satisfied for any real x and y, we
can obtain that,
(i) For any real number x and y,

lim
p→+∞

Pr


[

max
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x

 = exp{− exp(−x)}

and

lim
p→+∞

Pr


[

min
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< y

 = exp{− exp(−y)}

(ii) For any real number x and y,

[
max

s=1,··· ,p
(Zs)

]2
and

[
min

s=1,··· ,p
(Zs)

]2
are asymptotically

independent,namely,

lim
p→+∞

Pr


[

max
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x,

[
min

s=1,··· ,p
(Zs)

]2
− cp

2− (log p)−1
< y


= G(x)G(y)

where distribution function G(x) = exp{− exp(−x)} and G(y) = exp{− exp(−y)}.

Proof. We first prove that (i).
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Let dp(x) = [2− (log p)−1]x+ cp, dp(y) = [2− (log p)−1]y + cp, then

P


[

max
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x


=P

{[
max

s=1,··· ,p
(Xs)

]2
< dp(x)

}

=P

{
−
√

dp(x) < max
s=1,··· ,p

(Xs) <
√

dp(x)

}
=P

{
max

s=1,··· ,p
(Xs) <

√
dp(x)

}
− P

{
max

s=1,··· ,p
(Xs) ≤ −

√
dp(x)

}
.

Similarly, we have

P


[

max
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x


=P

{[
max

s=1,··· ,p
(Zs)

]2
< dp(x)

}

=P

{
max

s=1,··· ,p
(Zs) <

√
dp(x)

}
− P

{
max

s=1,··· ,p
(Zs) ≤ −

√
dp(x)

}
.

Then, we have

P


[

max
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x

− P


[

max
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x


=P

{
max

s=1,··· ,p
(Zs) <

√
dp(x)

}
− P

{
max

s=1,··· ,p
(Xs) <

√
dp(x)

}
+

{
P

{
max

s=1,··· ,p
(Xs) ≤ −

√
dp(x)

}
− P

{
max

s=1,··· ,p
(Zs) ≤ −

√
dp(x)

}}
≤ 1

2π

∑
1≤i<j≤p

(ρi,j − ai,j)
+(1− ρ2i,j)

−1/2 exp

{
− dp(x)

1 + |ρi,j |

}

+
1

2π

∑
1≤i<j≤p

(ai,j − ρi,j)
+(1− ρ2i,j)

−1/2 exp

{
− dp(x)

1 + |ρi,j |

}
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≤ 1

π

∑
1≤i<j≤p

(1− ρ2i,j)
−1/2 exp

{
− dp(x)

1 + |ρi,j |

}
→ 0 as p → +∞ (2)

where the first inequality is obtained by Lemma 1, and the second inequality is due
to the condition C.1.

According to formula (2) and Lemma 1, we can obtain

lim
p→+∞

Pr


[

max
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x


= lim

p→+∞
Pr


[

max
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x


=exp{− exp(−x)}.

Similarly, when condition C.1 is satisfied, we can obtain

P


[

min
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< x

− P


[

min
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< x


=P

{
min

s=1,··· ,p
(Zs) <

√
dp(x)

}
− P

{
min

s=1,··· ,p
(Xs) <

√
dp(x)

}
+

{
P

{
min

s=1,··· ,p
(Xs) ≤ −

√
dp(x)

}
− P

{
min

s=1,··· ,p
(Zs) ≤ −

√
dp(x)

}}
≤ 1

2π

∑
1≤i<j≤p

(ρi,j − ai,j)
+(1− ρ2i,j)

−1/2 exp

{
− dp(x)

1 + |ρi,j |

}

+
1

2π

∑
1≤i<j≤p

(ai,j − ρi,j)
+(1− ρ2i,j)

−1/2 exp

{
− dp(x)

1 + |ρi,j |

}

≤ 1

π

∑
1≤i<j≤p

(1− ρ2i,j)
−1/2 exp

{
− dp(x)

1 + |ρi,j |

}
→ 0 as p → +∞ (3)

then, according to formula (3) and Lemma 1, we can obtain
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lim
p→+∞

Pr


[

min
s=1,··· ,p

(Zs)

]2
− cp

2− (log p)−1
< y


= lim

p→+∞
Pr


[

min
s=1,··· ,p

(Xs)

]2
− cp

2− (log p)−1
< y


=exp{− exp(−y)}

Next, we will prove (ii). According to Theorem 11.1.5 in literature [2], we can
know that max

s=1,··· ,p
(Zs) and min

s=1,··· ,p
(Zs) are asymptotically independent. Obviously,[

max
s=1,··· ,p

(Zs)

]2
and

[
min

s=1,··· ,p
(Zs)

]2
are also asymptotically independent.

Denote X = (X1, X2, · · · , Xp)
⊤ follows a p-dimension multivariate stan-

dard normal distribution with mean u = (0, 0, · · · , 0)⊤ and covariance matrix

Ip×p = (aq,s)q,s=1,··· ,p where aq,q = 1 and aq,s = 0, q ̸= s. Denotes λ̃1,p =

exp

−

[
max

s=1,··· ,p
(Xs)

]2

−cp

2−(log p)−1

, λ̃2,p = exp

−

[
min

s=1,··· ,p
(Xs)

]2

−cp

2−(log p)−1

 and T̃5 = −2 log(1 −

e−λ̃1,p)− 2 log(1− e−λ̃2,p).
Let the non-zero mean |µs| ≥ log p, s ∈ Ω. Suppose 0 < v < 1 − 1

p1/2 log p
. Under

significance level α > 0 and alternative hypothesis H
′

1, we can obtain

lim
p→+∞

P{Rα(T̃5) = 1} = 1.

Proof.

P{Rα(T̃5) = 1}

=P{T̃5 > Cα}

=P
{
−2 log(1− e−λ̃1,p)− 2 log(1− e−λ̃2,p) > Cα

}
≥P

{
−2 log(1− e−λ̃1,p) > Cα

}
=P

{
log(1− e−λ̃1,p) < −Cα

2

}
=P

{
1− e−λ̃1,p < e−

Cα
2

}
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=P
{
e−λ̃1,p > 1− e−

Cα
2

}
=P

{
−λ̃1,p > log

(
1− e−

Cα
2

)}
=P

{
λ̃1,p < − log

(
1− e−

Cα
2

)}

=P

exp

−

(
max

s=1,··· ,p
(Xs)

)2

− cp

2− (log p)−1

 < − log
(
1− e−

Cα
2

)
=P


(

max
s=1,··· ,p

(Xs)

)2

− cp

2− (log p)−1
> − log

(
− log

(
1− e−

Cα
2

)) , (4)

where we let hα = − log
(
− log

(
1− e−

Cα
2

))
, hα is a constant about α, then we

have

P


{

max
s=1,··· ,p

(Xs)

}2

− cp

2− (log p)−1
> − log

(
− log

(
1− e−

Cα
2

))
=P

{(
max

s=1,··· ,p
(Xs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=1− P

{(
max

s=1,··· ,p
(Xs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

=1− P

{(
max

s=1,··· ,p
(Xs)

)2

≤ dp(hα)

}

=1− P

{
− [dp(hα)]

1
2 ≤ max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
≥1− P

{
max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
=1− P

{
max

[
max
s∈Ω

(Xs),max
s∈Ωc

(Xs)

]
≤ [dp(hα)]

1
2

}
=1− P

{
max
s∈Ω

(Xs) ≤ [dp(hα)]
1
2

}
× P

{
max
s∈Ωc

(Xs) ≤ [dp(hα)]
1
2

}
≥1− P

{
max
s∈Ω

(Xs) ≤ [dp(hα)]
1
2

}
. (5)
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The reciprocal third equation is derived from the alternative hypothesis H
′

1.

We first prove the limit of P

{
max
s∈Ω

(Xs) ≤ [dp(hα)]
1
2

}
→ 0 when p → +∞, then,

by Lemma1, we have

P

{
max
s∈Ω

(Xs) ≤ [dp(hα)]
1
2

}
=P

{
max
s∈Ω

(Xs − µs) ≤ [dp(hα)]
1
2 − µs

}
≤P

{
max
s∈Ω

(Xs − µs) ≤ [dp(hα)]
1
2 − log p

}
=P

{
apv

[
max
s∈Ω

(Xs − µs)− bpv

]
≤ apv

[
(dp(hα))

1
2 − log p− bpv

]}
→ exp

{
− exp

{
−apv

[
(dp(hα))

1
2 − log p− bpv

]}}
,

where apv = (2 log pv)1/2, bpv = (2 log pv)1/2 − 1
2 (2 log p

v)−1/2(log log pv + log 4π),

cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v < 1− 1
p1/2 log p

, when p → +∞ , it is obvious that

apv

[
(dp(hα))

1
2 − log p− bpv

]
= O

(
−
√
2v(log p)

3
2

)
→ −∞,

which means that

exp
{
− exp

{
−apv

[
(dp(hα))

1
2 − log p− bpv

]}}
→ 0.

So, we have

P

{
max
s∈Ω

(Xs) ≤ [dp(hα)]
1
2

}
→ 0, as p → +∞. (6)

Next, according to formula (5) and (6), applying the squeeze theorem, we have

lim
p→+∞

{
1− P

{
max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}}
= 1. (7)

According to formulas (4) and (5), we have the following inequalities

1 ≥ P{Rα(T̃5) = 1} ≥ 1− P

{
max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
,

applying the squeeze theorem, by formula (7), we have

lim
p→+∞

P{Rα(T̃5) = 1} = 1.
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Let the non-zero mean |µs| ≥ log p, s ∈ Ω. Suppose 0 < v < 1 − 1
p1/2 log p

. Under

significance level α > 0 and alternative hypothesis H1, we can obtain

lim
p→+∞

P{Rα(T̃5) = 1} = 1.

Proof. According to the proof of Lemma 1, by applying formula (4) and (5) , we have

P{Rα(T̃5) = 1}

=P{T̃5 > Cα}

=P
{
−2 log(1− e−λ̃1,p)− 2 log(1− e−λ̃2,p) > Cα

}
≥P

{
−2 log(1− e−λ̃1,p) > Cα

}

=P


(

max
s=1,··· ,p

(Xs)

)2

− cp

2− (log p)−1
> − log

(
− log

(
1− e−

Cα
2

))
=1− P

{
− [dp(hα)]

1
2 ≤ max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
≥1− P

{
max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
=1− P

{
max

[
max
s∈Ω1

(Xs),max
s∈Ω2

(Xs),max
s∈Ωc

(Xs)

]
≤ [dp(hα)]

1
2

}
=1− P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
× P

{
max
s∈Ω2

(Xs) ≤ [dp(hα)]
1
2

}
×

P

{
max
s∈Ωc

(Xs) ≤ [dp(hα)]
1
2

}
≥1− P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
.

(8)

The reciprocal third equation is derived from the alternative hypothesis H1.

We first prove the limit of P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
→ 0 when p → +∞, then,

by Lemma1, we have

P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
=P

{
max
s∈Ω1

(Xs − µs) ≤ [dp(hα)]
1
2 − µs

}

9



≤P

{
max
s∈Ω1

(Xs − µs) ≤ [dp(hα)]
1
2 − log p

}
=P

{
apv1

[
max
s∈Ω1

(Xs − µs)− bpv1

]
≤ apv1

[
(dp(hα))

1
2 − log p− bpv1

]}
→ exp

{
− exp

{
−apv1

[
(dp(hα))

1
2 − log p− bpv1

]}}
,

where apv1 = (2 log pv1)1/2, bpv1 = (2 log pv1)1/2 − 1
2 (2 log p

v1)−1/2(log log pv1 +

log 4π), cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v1 < v < 1− 1
p1/2 log p

, when p → +∞ , it is obvious that

apv1

[
(dp(hα))

1
2 − log p− bpv1

]
= O

(
−
√
2v1(log p)

3
2

)
→ −∞,

which means that

exp
{
− exp

{
−apv1

[(
hα

(
2− (log p)−1

)
+ cp

) 1
2 − log p− bpv1

]}}
→ 0.

So, we have

P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
→ 0, as p → +∞. (9)

According to formula (8), we have the following inequalities

1 ≥ P{Rα(T̃5) = 1} ≥ 1− P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
,

applying the squeeze theorem, by formula (9) we have

lim
p→+∞

P{Rα(T̃5) = 1} = 1.

2 PROOFS OF LEMMAS AND THEOREMS

Proof of Theorem 1. For convenience, let W1 = max
s=1,··· ,p

{Zs}, W2 = min
s=1,··· ,p

{Zs}
According to Lemma 1, for any real numbers x and y,

cp = 2 log(p)− [log(log p) + log(4π)] +
log(log p) + log(4π)

2 log(p)

lim
p→+∞

Pr

(
W1

2 − cp
2− (log p)−1

< x

)
= exp{− exp(−x)} = G(x)

lim
p→+∞

Pr

(
W2

2 − cp
2− (log p)−1

< y

)
= exp{− exp(−y)} = G(y)

10



and W1
2 and W2

2 are asymptotically independent we can obtain that,

PW1
2 = 1−G

(
W1

2 − cp
2− (log p)−1

)
= 1− exp

{
− exp

(
− W1

2 − cp
2− (log p)−1

)}
,

PW2
2 = 1−G

(
W2

2 − cp
2− (log p)−1

)
= 1− exp

{
− exp

(
− W2

2 − cp
2− (log p)−1

)}
.

Denote λ1,p = exp
(
− W1

2−cp
2−(log p)−1

)
and λ2,p = exp

(
− W2

2−cp
2−(log p)−1

)
, we can obtain

that,

PW1
2 = 1− e−λ1,p ∼ U(0, 1)

PW2
2 = 1− e−λ2,p ∼ U(0, 1).

Then, according to the literature [3], we have

−2 log(PW1
2) = −2 log(1− e−λ1,p) ∼ χ2(2)

−2 log(PW2
2) = −2 log(1− e−λ2,p) ∼ χ2(2),

where χ2(2) denotes the chi-square distribution with degrees of freedom 2, and the
distribution function is F (x, n) =

∫ x

0
1

2
n
2 Γ(n

2 )
t
n
2 −1e−

t
2 dt.

Because W1
2 and W2

2 are asymptotically independent when p → +∞, and
−2 log(1− e−λ1,p) and −2 log(1− e−λ2,p) are functions of W1

2 and W2
2, respectively,

then −2 log(1 − e−λ1,p) and −2 log(1 − e−λ2,p) are also asymptotically independent
when p → +∞.

Through the regeneration of chi-square distribution,when p → +∞, we can obtain
that,

T5 = −2 log(1− e−λ1,p)− 2 log(1− e−λ2,p) ∼ χ2(4).

Next is the proof of the asymptotic power Rα(T5) of T5. Before the proof, we first
recall some symbols about T5.

cp = 2 log(p)− [log(log p) + log(4π)] +
log(log p) + log(4π)

2 log(p)
,

λ1,p = exp

−

[
max

s=1,··· ,p
(Zs)

]2
− cp

2− (log p)−1

 ,

11



λ2,p = exp

−

[
min

s=1,··· ,p
(Zs)

]2
− cp

2− (log p)−1

 ,

T5 = −2 log(1− e−λ1,p)− 2 log(1− e−λ2,p).

Proof of Theorem 2.

P{Rα(T5) = 1}
=P{T5 > Cα}
=P

{
−2 log(1− e−λ1,p)− 2 log(1− e−λ2,p) > Cα

}
≥P

{
−2 log(1− e−λ1,p) > Cα

}
=P

{
log(1− e−λ1,p) < −Cα

2

}
=P

{
−λ1,p > log

(
1− e−

Cα
2

)}
=P

{
λ1,p < − log

(
1− e−

Cα
2

)}

=P

exp

−

(
max

s=1,··· ,p
(Zs)

)2

− cp

2− (log p)−1

 < − log
(
1− e−

Cα
2

)
=P


(

max
s=1,··· ,p

(Zs)

)2

− cp

2− (log p)−1
> − log

(
− log

(
1− e−

Cα
2

))
=P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=1− P

{(
max

s=1,··· ,p
(Zs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}
(10)

Since condition C.1 holds, according to (2),we can deduce that

lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

= lim
p→+∞

P

{(
max

s=1,··· ,p
(Xs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}
. (11)
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According to the formulas (5) and (7), applying the Squeeze Theorem, we have

lim
p→+∞

P

{(
max

s=1,··· ,p
(Xs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}
= 0

According to (11),we have

lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=1− lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

=1− lim
p→+∞

P

{(
max

s=1,··· ,p
(Xs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}
=1.

According to formula (10), we can obtain the following inequalities

1 ≥ P{Rα(T5) = 1} ≥ P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}
, (12)

applying the squeeze theorem, we have

lim
p→+∞

P{Rα(T5) = 1} = 1

Proof of Theorem 3. The proof of Theorem 3.2 and Lemma 1 is similar. According
to (10), we have

P{Rα(T5) = 1}
=P{T5 > Cα}
=P

{
−2 log(1− e−λ1,p)− 2 log(1− e−λ2,p) > Cα

}
≥P

{
−2 log(1− e−λ1,p) > Cα

}
=P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=1− P

{(
max

s=1,··· ,p
(Zs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

13



=1− P

{(
max

s=1,··· ,p
(Zs)

)2

≤ dp(hα)

}

Since condition C.1 holds, according to (2), (8) and (9), under the alternative
hypothesis H1, we have

lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

> dp(hα)

}

=1− lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

≤ dp(hα)

}

=1− lim
p→+∞

P

{(
max

s=1,··· ,p
(Xs)

)2

≤ dp(hα)

}

=1− lim
p→+∞

P

{
− [dp(hα)]

1
2 ≤ max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
≥1− lim

p→+∞
P

{
max

s=1,··· ,p
(Xs) ≤ [dp(hα)]

1
2

}
=1− lim

p→+∞
P

{
max

[
max
s∈Ω1

(Xs),max
s∈Ω2

(Xs),max
s∈Ωc

(Xs)

]
≤ [dp(hα)]

1
2

}
≥1− lim

p→+∞
P

{
max
s∈Ω1

(Xs) ≤ [dp(hα)]
1
2

}
=1− 0

=1.

Which means that

lim
p→+∞

P

{(
max

s=1,··· ,p
(Zs)

)2

> dp(hα)

}
= 1.

According to the inequality

1 ≥ P{Rα(T5) = 1} ≥ P

{(
max

s=1,··· ,p
(Zs)

)2

> dp(hα)

}
,

applying the squeeze theorem, we have

lim
p→+∞

P{Rα(T5) = 1} = 1.
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Proof of Theorem 4. Since P (T5 > Cα) = P{Rα(T5) = 1},according to the above
proof of Theorem 3, we can get the following inequality

βT5
≥ P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}
, (13)

there the inequality follow from (12), Cα is a constant about α, and it may represent
different constants at different positions.

βT4
= P


(

max
s=1,··· ,p

(Zs)

)2

+

(
min

s=1,··· ,p
(Zs)

)2

− 2cp

2− (log p)−1
> Cα


=P

{(
max

s=1,··· ,p
(Zs)

)2

+

(
min

s=1,··· ,p
(Zs)

)2

> Cα[2− (log p)−1] + 2cp

}

≤P

{(
max

s=1,··· ,p
(Zs)

)2

> Cα[2− (log p)−1] + 2cp

}
+

P

{(
min

s=1,··· ,p
(Zs)

)2

> Cα[2− (log p)−1] + 2cp

}
(14)

Because when α is fixed, p → +∞, we have

Cα[2− (log p)−1] + 2cp ≥ hα

[
2− (log p)−1

]
+ cp.

Then when p → +∞, we have

P

{(
max

s=1,··· ,p
(Zs)

)2

> Cα[2− (log p)−1] + 2cp

}

≤P

{(
max

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}
≤P (T5 > Cα)

=βT5
(15)

there the second inequality follow from (13).
Similarly, we can also conclude that

P

{(
min

s=1,··· ,p
(Zs)

)2

> Cα[2− (log p)−1] + 2cp

}
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≤P

{(
min

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}
(16)

Since condition C.1 holds, according to (3),we can deduce that

lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=1− lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

=1− lim
p→+∞

P

{(
min

s=1,··· ,p
(Xs)

)2

≤ hα

[
2− (log p)−1

]
+ cp

}

= lim
p→+∞

P

{(
min

s=1,··· ,p
(Xs)

)2

> hα

[
2− (log p)−1

]
+ cp

}
. (17)

First we recall some notations.Under alternative hypothesis H1, denote the index
set of nonzero signals by Ω = {i : 1 ≤ i ≤ p, µi ̸= 0} and let the total number of
nonzero signals be pv, where the parameter v(0 < v < 1) measures the sparsity of
the nonzero mean. Similarly, denote the index set of zero signals by Ωc = {i : 1 ≤
i ≤ p, µi = 0} and let the total number of zero signals be pk, where 0 < k < 1 and
pv + pk = p. Since non-zero signals include positive and negative, we divide Ω into
two parts, where Ω1 = {i : 1 ≤ i ≤ p, µi > 0} represents the index set of positive
non-zero signals, and let the total number of non-zero signals be pv1 (0 < v1 < v),
Ω2 = {i : 1 ≤ i ≤ p, µi < 0} represents the index set of negative non-zero signals, and
let the total number of non-zero signals be pv2 (0 < v2 < v), pv1 + pv2 = pv.

Now, we have

P

{(
min

s=1,··· ,p
(Xs)

)2

> hα

[
2− (log p)−1

]
+ cp

}

=P

{(
min

s=1,··· ,p
(Xs)

)2

> dp(hα)

}

=P

{
min

s=1,··· ,p
(Xs) > [dp(hα)]

1
2

}
+ P

{
min

s=1,··· ,p
(Xs) < − [dp(hα)]

1
2

}
≤P

{
min

s=1,··· ,p
(Xs) > [dp(hα)]

1
2

}
=P

{
min

[
min
s∈Ω1

(Xs), min
s∈Ω2

(Xs), min
s∈Ωc

(Xs)

]
> [dp(hα)]

1
2

}
=P

{
min
s∈Ω1

(Xs) > [dp(hα)]
1
2

}
× P

{
min
s∈Ω2

(Xs) > [dp(hα)]
1
2

}
×
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P

{
min
s∈Ωc

(Xs) > [dp(hα)]
1
2

}
. (18)

The penultimate equation is from is obtained under the alternative hypothesis H1.

We first prove the limit of P

{
min
s∈Ω1

(Xs) > [dp(hα)]
1
2

}
→ 1 when p → +∞, then,

by formula (1), we have

P

{
min
s∈Ω1

(Xs) > [dp(hα)]
1
2

}
=P

{
min
s∈Ω1

(Xs − µs) > [dp(hα)]
1
2 − µs

}
≥P

{
min
s∈Ω1

(Xs − µs) > [dp(hα)]
1
2 − log p

}
=P

{
apv1

[
min
s∈Ω1

(Xs − µs) + bpv1

]
> apv1

[
(dp(hα))

1
2 − log p+ bpv1

]}
→ exp

{
− exp

{
apv1

[
(dp(hα))

1
2 − log p+ bpv1

]}}
,

where apv1 = (2 log pv1)1/2, bpv1 = (2 log pv1)1/2 − 1
2 (2 log p

v1)−1/2(log log pv1 +

log 4π), cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v1 < v < 1− 1
p1/2 log p

, when p → +∞, it is obvious that

apv1

[
(dp(hα))

1
2 − log p+ bpv1

]
= O

(
−
√
2v1(log p)

3
2

)
→ −∞,

which means that

exp
{
− exp

{
apv1

[
(dp(hα))

1
2 − log p+ bpv1

]}}
→ 1,

So, we have

P

{
min
s∈Ω1

(Xs) > [dp(hα)]
1
2

}
→ 1, as p → +∞. (19)

Secondly, we prove that P

{
min
s∈Ω2

(Xs) > [dp(hα)]
1
2

}
→ 0 as p → +∞, then, by

formula (1), we have

P

{
min
s∈Ω2

(Xs) > [dp(hα)]
1
2

}
=P

{
min
s∈Ω2

(Xs − µs) > [dp(hα)]
1
2 − µs

}
≤P

{
min
s∈Ω2

(Xs − µs) > [dp(hα)]
1
2 + log p

}

17



=P

{
apv2

[
min
s∈Ω2

(Xs − µs) + bpv2

]
> apv2

[
(dp(hα))

1
2 + log p+ bpv2

]}
→ exp

{
− exp

{
apv2

[
(dp(hα))

1
2 + log p+ bpv2

]}}
,

where apv2 = (2 log pv2)1/2, bpv2 = (2 log pv2)1/2 − 1
2 (2 log p

v2)−1/2(log log pv2 +

log 4π), cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v2 < v < 1− 1
p1/2 log p

, when p → +∞, it is obvious that

apv2

[
(dp(hα))

1
2 + log p+ bpv2

]
= O

(√
2v2(log p)

3
2

)
→ +∞,

which means that

exp
{
− exp

{
apv2

[
(dp(hα))

1
2 + log p+ bpv2

]}}
→ 0, as p → +∞.

So, we have

P

{
min
s∈Ω2

(Xs) > [dp(hα)]
1
2

}
→ 0, as p → +∞. (20)

Finally,we prove the limit of P

{
min
s∈Ωc

(Xs) > [dp(hα)]
1
2

}
→ 0 when p → +∞. By

formula (1), we have

P

{
min
s∈Ωc

(Xs) > [dp(hα)]
1
2

}
=P

{
apk

[
min
s∈Ωc

(Xs) + bpk

]
> apk

[
(dp(hα))

1
2 + bpk

]}
→ exp

{
− exp

{
apk

[
(dp(hα))

1
2 + bpk

]}}
,

where apk = (2 log pk)1/2,cp = 2 log(p) − [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) ,

bpk = (2 log pk)1/2 − 1
2 (2 log p

k)−1/2(log log pk + log 4π).
Since 0 < k < 1, it is obvious that

apk

[
(dp(hα))

1
2 + bpk

]
= O

(
2
√
k log p

)
→ +∞, as p → +∞.

which means that

exp
{
− exp

{
apk

[
(dp(hα))

1
2 + bpk

]}}
→ 0, as p → +∞.

So, we have

P

{
max
s∈Ωc

(Xs) > [dp(hα)]
1
2

}
→ 0, as p → +∞. (21)
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Next, according to formula (18),(19),(20) and (21) we have

lim
p→+∞

P

{
min

s=1,··· ,p
(Xs) > [dp(hα)]

1
2

}
= lim

p→+∞
P

{
min

[
min
s∈Ω1

(Xs), min
s∈Ω2

(Xs), min
s∈Ωc

(Xs)

]
> [dp(hα)]

1
2

}
= lim

p→+∞
P

{
min
s∈Ω1

(Xs) > [dp(hα)]
1
2

}
× lim

p→+∞
P

{
min
s∈Ω2

(Xs) > [dp(hα)]
1
2

}
×

lim
p→+∞

P

{
min
s∈Ωc

(Xs) > [dp(hα)]
1
2

}
=1× 0× 0

=0. (22)

Next, according to formula (16), (17) and (18),applying the squeeze theorem, we
have

lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

≥ Cα[2− (log p)−1] + 2cp

}
= 0. (23)

Now, according to (14),(15) and (23),we have

βT4 ≤ βT5 + o(1).

Proof of Theorem 5.

βT5
=P{T5 > Cα}
=P

{
−2 log(1− e−λ1,p)− 2 log(1− e−λ2,p) > Cα

}
≥P

{
−4 log(1− e−λ1,p) > Cα

}
=P

{
log(1− e−λ1,p) < −Cα

4

}
=P

{
1− e−λ1,p < e−

Cα
4

}
=P

{
e−λ1,p > 1− e−

Cα
4

}
=P

{
−λ1,p > log

(
1− e−

Cα
4

)}
=P

{
λ1,p < − log

(
1− e−

Cα
4

)}

=P

exp

−

(
max

s=1,··· ,p
(Zs)

)2

− cp

2− (log p)−1

 < − log
(
1− e−

Cα
4

)
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=P


(

max
s=1,··· ,p

(Zs)

)2

− cp

2− (log p)−1
> − log

(
− log

(
1− e−

Cα
4

))
=P

{(
max

s=1,··· ,p
(Zs)

)2

> dp(gα)

}
, (24)

where gα = − log
(
− log

(
1− e−

Cα
4

))
= − log

(
− log

(
1− e−

χ2
α(4)

4

))
.

βT2
= P

{
max

s=1,··· ,p
(Z2

s )− 2 log p+ log(log p) > Cα

}
=P

{
max

s=1,··· ,p
(Z2

s ) > Cα + 2 log p− log(log p)

}
=P

{
max

[(
max

s=1,··· ,p
(Zs)

)2

,

(
min

s=1,··· ,p
(Zs)

)2
]
> Cα + log

p2

log p

}

≤P

{(
max

s=1,··· ,p
(Zs)

)2

> Cα + log
p2

log p

}
+

P

{(
min

s=1,··· ,p
(Zs)

)2

> Cα + log
p2

log p

}
, (25)

where Cα = −2 log[−
√
π log(1− α)].

For a fixed α, we have

lim
p→+∞

Cα + log
p2

log p
− gα

[
2− (log p)−1

]
− cp

= lim
p→+∞

Cα − gα
[
2− (log p)−1

]
+ log 4π − log(log p) + log 4π

2 log p

=Cα − 2gα + log 4π

=− 2 log[−
√
π log(1− α)] + 2 log

(
− log

(
1− e−

χ2
α(4)

4

))
+ log 4π

>0

This means that when p → +∞, Cα + log p2

log p > dp(gα).
Then when p → +∞, we have

P

{(
max

s=1,··· ,p
(Zs)

)2

> Cα + log
p2

log p

}
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≤P

{(
max

s=1,··· ,p
(Zs)

)2

> dp(gα)

}
≤P (T5 > Cα)

=βT5
(26)

there the second inequality follow from (24).
Similarly, we can also conclude that

P

{(
min

s=1,··· ,p
(Zs)

)2

> Cα + log
p2

log p

}

≤P

{(
min

s=1,··· ,p
(Zs)

)2

> dp(gα)

}
(27)

Since condition C.1 holds, according to (3),we can deduce that

lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

> dp(gα)

}

=1− lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

≤ dp(gα)

}

=1− lim
p→+∞

P

{(
min

s=1,··· ,p
(Xs)

)2

≤ dp(gα)

}

= lim
p→+∞

P

{(
min

s=1,··· ,p
(Xs)

)2

> dp(gα)

}
. (28)

First we recall some notations.Under alternative hypothesis H1, denote the index
set of nonzero signals by Ω = {i : 1 ≤ i ≤ p, µi ̸= 0} and let the total number of
nonzero signals be pv, where the parameter v(0 < v < 1) measures the sparsity of
the nonzero mean. Similarly, denote the index set of zero signals by Ωc = {i : 1 ≤
i ≤ p, µi = 0} and let the total number of zero signals be pk, where 0 < k < 1 and
pv + pk = p. Since non-zero signals include positive and negative, we divide Ω into
two parts, where Ω1 = {i : 1 ≤ i ≤ p, µi > 0} represents the index set of positive
non-zero signals, and let the total number of non-zero signals be pv1 (0 < v1 < v),
Ω2 = {i : 1 ≤ i ≤ p, µi < 0} represents the index set of negative non-zero signals, and
let the total number of non-zero signals be pv2 (0 < v2 < v), pv1 + pv2 = pv.

Now, we have

P

{(
min

s=1,··· ,p
(Xs)

)2

> dp(gα)

}
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=P

{(
min

s=1,··· ,p
(Xs)

)2

> dp(gα)

}

=P

{
min

s=1,··· ,p
(Xs) > [dp(gα)]

1
2

}
+ P

{
min

s=1,··· ,p
(Xs) < − [dp(gα)]

1
2

}
≤P

{
min

s=1,··· ,p
(Xs) > [dp(gα)]

1
2

}
=P

{
min

[
min
s∈Ω1

(Xs), min
s∈Ω2

(Xs), min
s∈Ωc

(Xs)

]
> [dp(gα)]

1
2

}
=P

{
min
s∈Ω1

(Xs) > [dp(gα)]
1
2

}
× P

{
min
s∈Ω2

(Xs) > [dp(gα)]
1
2

}
×

P

{
min
s∈Ωc

(Xs) > [dp(gα)]
1
2

}
. (29)

The penultimate equation is from is obtained under the alternative hypothesis H1.

We first prove the limit of P

{
min
s∈Ω1

(Xs) > [dp(gα)]
1
2

}
→ 1 when p → +∞, then,

by formula (1), we have

P

{
min
s∈Ω1

(Xs) > [dp(gα)]
1
2

}
=P

{
min
s∈Ω1

(Xs − µs) > [dp(gα)]
1
2 − µs

}
≥P

{
min
s∈Ω1

(Xs − µs) > [dp(gα)]
1
2 − log p

}
=P

{
apv1

[
min
s∈Ω1

(Xs − µs) + bpv1

]
> apv1

[
(dp(gα))

1
2 − log p+ bpv1

]}
→ exp

{
− exp

{
apv1

[
(dp(gα))

1
2 − log p+ bpv1

]}}
,

where apv1 = (2 log pv1)1/2, bpv1 = (2 log pv1)1/2 − 1
2 (2 log p

v1)−1/2(log log pv1 +

log 4π), cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v1 < v < 1− 1
p1/2 log p

, when p → +∞, it is obvious that

apv1

[
(dp(gα))

1
2 − log p+ bpv1

]
= O

(
−
√
2v1(log p)

3
2

)
→ −∞,

which means that

exp
{
− exp

{
apv1

[
(dp(gα))

1
2 − log p+ bpv1

]}}
→ 1, as p → +∞.
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So, we have

P

{
min
s∈Ω1

(Xs) > [dp(gα)]
1
2

}
→ 1, as p → +∞. (30)

Secondly, we prove that P

{
min
s∈Ω2

(Xs) > [dp(gα)]
1
2

}
→ 0 as p → +∞, then, by

formula (1), we have

0 ≤P

{
min
s∈Ω2

(Xs) > [dp(gα)]
1
2

}
=P

{
min
s∈Ω2

(Xs − µs) > [dp(gα)]
1
2 − µs

}
≤P

{
min
s∈Ω2

(Xs − µs) > [dp(gα)]
1
2 + log p

}
=P

{
apv2

[
min
s∈Ω2

(Xs − µs) + bpv2

]
> apv2

[
(dp(gα))

1
2 + log p+ bpv2

]}
→ exp

{
− exp

{
apv2

[
(dp(gα))

1
2 + log p+ bpv2

]}}
,

where apv2 = (2 log pv2)1/2, bpv2 = (2 log pv2)1/2 − 1
2 (2 log p

v2)−1/2(log log pv2 +

log 4π), cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < v2 < v < 1− 1
p1/2 log p

, when p → +∞, it is obvious that

apv2

[
(dp(gα))

1
2 + log p+ bpv2

]
= O

(√
2v2(log p)

3
2

)
→ +∞,

which means that

exp
{
− exp

{
apv2

[
(dp(gα))

1
2 + log p+ bpv2

]}}
→ 0, as p → +∞.

So, we have

P

{
min
s∈Ω2

(Xs) > [dp(gα)]
1
2

}
→ 0, as p → +∞. (31)

Finally,we prove the limit of P

{
min
s∈Ωc

(Xs) > [dp(gα)]
1
2

}
→ 0 when p → +∞. By

formula (1), we have

P

{
min
s∈Ωc

(Xs) > [dp(gα)]
1
2

}
=P

{
apk

[
min
s∈Ωc

(Xs) + bpk

]
> apk

[
(dp(gα))

1
2 + bpk

]}
→ exp

{
− exp

{
apk

[
(dp(gα))

1
2 + bpk

]}}
,
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where apk = (2 log pk)1/2, bpk = (2 log pk)1/2 − 1
2 (2 log p

k)−1/2(log log pk + log 4π),

cp = 2 log(p)− [log(log p) + log(4π)] + log(log p)+log(4π)
2 log(p) .

Since 0 < k < 1, it is obvious that

apk

[
(dp(gα))

1
2 + bpk

]
= O

(
2
√
k log p

)
→ +∞, as p → +∞.

which means that

exp
{
− exp

{
apk

[
(dp(gα))

1
2 + bpk

]}}
→ 0, as p → +∞.

So, we have

P

{
max
s∈Ωc

(Xs) > [dp(gα)]
1
2

}
→ 0, as p → +∞. (32)

Next, according to formula (29),(30),(31) and (32) we have

lim
p→+∞

P

{
min

s=1,··· ,p
(Xs) > [dp(gα)]

1
2

}
= lim

p→+∞
P

{
min

[
min
s∈Ω1

(Xs), min
s∈Ω2

(Xs), min
s∈Ωc

(Xs)

]
> [dp(gα)]

1
2

}
= lim

p→+∞
P

{
min
s∈Ω1

(Xs) > [dp(gα)]
1
2

}
× lim

p→+∞
P

{
min
s∈Ω2

(Xs) > [dp(gα)]
1
2

}
×

lim
p→+∞

P

{
min
s∈Ωc

(Xs) > [dp(gα)]
1
2

}
=1× 0× 0

=0. (33)

Next, according to formula (27), (28),(29)and (33),applying the squeeze theorem,
we have

lim
p→+∞

P

{(
min

s=1,··· ,p
(Zs)

)2

≥ Cα + log
p2

log p

}
= 0. (34)

Now, according to (25),(26) and (34),we have

βT2
≤ βT5

+ o(1).
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