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Abstract

In this supporting material, we provide some technical lemmas and detailed proofs
for all lemmas and theorems.
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1 TECHNICAL LEMMAS AND THEIR PROOFS

Denotes ¢, = 2log(p) — [log(logp) + log(4n)] + W' Let Xp,---,X,

independently follow a common standard normal distribution. We can obtain that,
(i) For any real number x and y,

s=1,

2
max (XS)} —¢p
p

lim P. [
p—rtoo 2 — (logp)—!

< x p =exp{—exp(—x)}
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2
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S=1,,p
lim P, — exp{ — exp(—
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2
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(i) For any real number x and y, [ max
s=1e

min
P s=1,---,p
cally independent,namely,
2 2
[ max (XS)} —¢p [ min (XS)} —¢p
lim P, LT <, TP <y
ot T2 (logp) ! 2= (logp)

= G(2)G(y)

where distribution function G(x) = exp{—exp(—x)} and G(y) = exp{—exp(—y)}.
Proof. Please refer to literature [1]. O
If &, is an i.i.d.(standard) normal sequence of r.v.’s, then the asymptotic distribu-

tion of M,, = max(&1,&s,- - ,&,) is of Type 1. Specifically,

P{an(M, —by) < a} — exp (—e™7),

where
an = (2logn)'/?
and i
b, = (2logn)'/? — 5(2 logn) ™% (loglogn + log 47)
Proof. Please refer to Theorem 1.5.3 in literature [2]. O
Writing m,, = min(&,&a, - -+ ,&,), clearly m,, = — max(—&;, —&2, -+ ,—&,), then
P{an(mn + bn) < 'T} —1—exp (7695) . (1)
Suppose &1, &2, - -+ , &, are standard normal variables with covariance matrix A =
(A}j), and 11,72, ,1, similarly with covariance matrix A° = (A?j),and let 0, =

max(|A11j|, |A?j\). Then for any real u ,

P{¢ <u forj=1,---,n}y—P{n; <u forj=1,---,n}
1 1 0 \+ 2\—1/2 u?
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1+ 0y
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where (z)* = max(0, z).



Proof. Please refer to Theorem 4.2.1 in literature [2]. O

First we recall some notations,
dp(2) = [2— (logp) "]z + ¢,

where z be any real number, and p be any positive integer.
Condition C.1:

) _ dp(z)
lim 1—p2.)" /2 = L _p
p—os 2 (=piy) e L+ |pil

1<i<j<p
Let sequence Z = (Z1,Za,++,Z,)T follows a p-dimension multivariate nor-
mal distribution with mean vector u = (0,0,---,0)7 and covariance matrix R =

(Pg.s)q.s=1,- p- Suppose the above condition C.1 is satisfied for any real x and y, we
can obtain that,
(i) For any real number x and y,

2
[ max (ZS)} —¢p
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(ii) For any real number x and y, { max
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independent,namely,
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= G(2)G(y)

where distribution function G(x) = exp{—exp(—=)} and G(y) = exp{—exp(—y)}.
Proof. We first prove that (i).
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J& + ¢p, dp(y) = [2 — (logp) "

Let dy(z) = [2 — (logp)~"

Similarly, we have

2 — (logp)~

Then, we have

L+ |pil



1
< 2
i<j

_ ) 1/2exp{_p

dy () }
—0asp— 4 2)
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where the first inequality is obtained by Lemma 1, and the second inequality is due

to the condition C.1.

According to formula (2) and Lemma 1, we can obtain

2
{ max (Zs)} —¢p
lim P, Tl <z
potoo 2 — (logp)~!
2
[ max (Xs)} —¢p
— lim P L7 <z
potoo 2 — (logp)~t
= exp{—exp(—z)}.

Similarly, when condition C.1 is satisfied, we can obtain

2 2
Jmin (Z)| — ¢ Jmin (X))~
{ 2 - (logj)1 D { 2 (logzjl =
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then, according to formula (3) and Lemma 1, we can obtain
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lim P, L2 <
poo” " 2 — (logp)~* Y
- 2
min (XS)] —¢p
— lim P, { LT <y
potoo 2 — (logp)~!

= exp{—exp(—y)}

Next, we will prove (ii). According to Theorem 11.1.5 in literature [2], we can
know that max (Zs) and I{lin (Zs) are asymptotically independent. Obviously,
s=1p s=1,+ p

2 2
[ max (ZS)] and [ min (ZS)} are also asymptotically independent.
S

s=1,-.p s=1,,p

O
Denote X = (X7,X5, - ,Xp)T follows a p-dimension multivariate stan-
dard normal distribution with mean u = (0,0,---,0)" and covariance matrix
Inxp = (Gq,5)qs=1,..p Where a5, = 1 and aqs = 0,9 # s. Denotes /\1p =

2

L;}{@;f»p(&)} — L;ln,}gp(X )]
exp W s )‘2713 = exp —W and T5 = —210g(1 —

e_’\fhvp) —2log(1 — e_;;l’).

Let the non-zero mean |us| > logp, s € Q. Suppose 0 < v < 1 — m. Under

significance level a > 0 and alternative hypothesis Hi, we can obtain

lim P{R, (T5) 1} =1.

p—+oo

Proof.
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:P{7210g(1767m’)7210g(1 A“) > Cy }

2log(l —e™ /\1”)>C }

{ C
P{log e Mr) < —“}
{

2

P11 - )‘1P<e CTQ}



)
E
vV
—_
\
®
‘Q
| =

2
( max (Xs)> —¢p
—p T >—1o <flo (1 - 67%>) (4)
2 — (logp)~* BATE ’
where we let h, = —log (f log (1 — e’cTa)>, hq is a constant about «, then we

have

2
=1-P ( 311?_’_‘,}7( s)) < ho [2—(logp)~'] + c,,}
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The reciprocal third equation is derived from the alternative hypothesis H 1

We first prove the limit of P {meag(XS) < [dp(ha)]é} — 0 when p — +o0, then,
S
by Lemmal, we have

N|=

P {Teaéc(Xs) < [dp(ha)] }

= {6, = ) < [y 0] =}

se

<p {meaéc(Xs — 11s) < [dy(ha)]® — logp}

S

=P {ap” |:I§1€a§§(Xs - /f"s) - bp“:| < QApv {(dp(h(x))i - 1ng - bp“} }

where a,» = (2logp®)!/2, bye = (2logp¥)/? — L(2logp¥) ~1/%(loglog p* + log 4r),

¢p = 2log(p) — [log(log p) + log(4m)] + W.

Since 0 <v<1-— m, when p — 400 , it is obvious that

apr [(dp(ha))% _logp — bpv} -0 (—m(logp)%) oo,

which means that

exp {— exp {—apu [(dp(ha))% —logp — bpv] }} — 0.

So, we have

N

P {maé{(Xs) < [dp(ha)]

} — 0,as p — +oo. (6)
ES

Next, according to formula (5) and (6), applying the squeeze theorem, we have

ho o

According to formulas (4) and (5), we have the following inequalities

N
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applying the squeeze theorem, by formula (7), we have

lim P{R.(T5) =1} =1.
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Let the non-zero mean |us| > logp, s € Q. Suppose 0 < v < 1 — . Under

pl/2logp
significance level a > 0 and alternative hypothesis H;, we can obtain

lim P{R, (T5) 1} =1.

p—+oo
Proof. According to the proof of Lemma 1, by applying formula (4) and (5) , we have
P{Ro(T5) = 1}
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SEQN,

P {0 < 0001 |

seNe

21— P () < 4y )

seQ

The reciprocal third equation is derived from the alternative hypothesis H;.
We first prove the limit of P {m%X(XS) < [dp(ha)]i‘} — 0 when p — +o0, then,
selly

by Lemmal, we have



<P {Hel%x(Xs — 116) < [dp(ha))? — logp}

=P {apvl [Hé%X(Xs — ps) — bpvl} < apn {(dp(ha))% —logp — bpvl} }
SEQ
— exp {— exp {—apul [(dp(ha)P —logp — bpvl} }} ,
where ap = (2logp")Y/2, by = (2logp)/2 — 1(2logp¥)~1/%(loglogp* +

log 47), ¢, = 2log(p) — [log(logp) + log(4n)] + log(log p) +log(dm)

2log(p)
Since 0 < vy <v<1— when p — 400 , it is obvious that

1
P2 logp’
5 3
ap'v1 [(dp(ha))Q — logp — bpv1:| = O (—\/21}1(10gp)2) — —00,

which means that

1
2

exp {76XP {*apul |:(h’a (2 (logp)™") +¢)* —logp — b”vl} }} -0

So, we have

P {Ig%?))f(Xs) < [dp(ha)]é} — 0,as p — +00. (9)

According to formula (8), we have the following inequalities

[N

12 PR = 1) 2 1= P {max(X.) < Gyt }.

applying the squeeze theorem, by formula (9) we have

lim P{R.(T5) =1} =1.

p—+4oo

2 PROOFS OF LEMMAS AND THEOREMS

Proof of Theorem 1. For convenience, let W; = max {Zs}, Wy = rilin {Zs}
s=1,p s=1,,p

According to Lemma 1, for any real numbers x and vy,

log(log p) + log(4n)
2log(p)

lim P, M < x| =exp{—exp(—z)} = G(x)
p=+oo "\ 2 — (logp)~! - P B

¢cp = 2log(p) — [log(log p) + log(4m)] +

2
W2 7Cp

Jin P (e <) = el en(-0)} = 6
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and W12 and Wa? are asymptotically independent we can obtain that,

W12 —c W12 —c
Pp2=1-G|——2L)=1- - T
w2 “ (2— (1ogp)—1> eXp{ eXp( 2~ (logp)1 ) J

W22—C WQQ_C
Py:=1-G|——L2_ ) =1— - -2 P _ ).
W G<2—<logp>—1> eXp{ eXp( 2 — (logp) !

2 2
Denote A;, = exp (—%V[&)T_;)”_l) and g, = exp (_%%)T_:f—l)’ we can obtain
that,

Py2=1-e?» ~U(0,1)
Py,:=1—e 22 ~U(0,1).

Then, according to the literature [3], we have

—2log(Pyy,2) = —2log(1 — e *1r) ~ x2(2)
—2log(Pyy,2) = —2log(1 — e M2r) ~ X2 (2),

where x2(2) denotes the chi-square distribution with degrees of freedom 2, and the

distribution function is F(x,n) = foac Q%E(n)t%_le—% dt.
3

Because W12 and W2 are asymptotically independent when p — +oo, and
—2log(1 — e~ *1») and —2log(1 — e~**») are functions of W12 and Wy?, respectively,
then —2log(1 — e~*1») and —2log(1 — e~ *27) are also asymptotically independent
when p — 400.

Through the regeneration of chi-square distribution,when p — 400, we can obtain
that,

T5 = —210g(1 — 6_)\1*1’) — 2]0g(1 — 6_A2,p) ~ X2(4)

O

Next is the proof of the asymptotic power R, (T5) of Ts. Before the proof, we first
recall some symbols about T5.

log(log p) + log(4r)
2log(p) ’

cp = 2log(p) — [log(log p) + log(4m)] +

11



2
[ min (ZS)] —¢p
=1, p

2 — (logp)—! ’

A2,p = €xp

Ts = —2log(1 — e~ 7)) — 2log(1 — e~ A27),
Proof of Theorem 2.

P{R.(T5) = 1}
=P{T5 > C,}
=P {-2log(1 — e Mr) —2log(l — e P27) > Cao}
>P {—210g(1 — e*’\lﬂ”) > Ca}

=P {log(l —e M) < —C;a}

Ca
{7)\171, > log (1 —e "z }

-p )
—p {Al,p < —log (1 - e—cT“)}
2

( max (Zs)| —c¢p
=Pexp| — mhep — < —log (1 — 67%>
2 — (logp)~t
2
i (Lo (20) ~e, (1)
2 — (logp)~*

=1,:"p

=P { (S max (Zs)>2 > he [2— (logp)~'] + cp}

o

=1-P { (S_r]flu,mw(zs))2 < ho [2— (logp)~'] + c,,}

Since condition C.1 holds, according to (2),we can deduce that

lim P { ( Irllafi,p(zs)>2 < ha [2— (logp)~'] + cp}

= lim P{( max (Xé)) < ho [2—(logp)*1] —|—Cp}.

12

(10)



According to the formulas (5) and (7), applying the Squeeze Theorem, we have

2
. _ -1 _
pkffmp{(s;???f,p(@) < ha [2- (logp) J+cp} 0

According to (11),we have

p——+oo =1,---

lim P { (S max’p(Zs)) > ho [2— (logp) '] + cp}

p—+oo =1,

)

2
=1— lim P { (s maxvp(ZS)> < ha [2 - (logp)_l} + Cp}

2
—1 _ 3 — -1
i e (e 0] <ot e
=1.

According to formula (10), we can obtain the following inequalities

s=1

1> P{R.(T5)=1} > P {( mf.i.).(,p(Zs)> > he [2— (logp)™'] + cp} , (12)

applying the squeeze theorem, we have

lim P{Ra(T5) =1} =1

p——+oo

Proof of Theorem 3. The proof of Theorem 3.2 and Lemma 1 is similar. According
to (10), we have

P{R,(T5) = 1}
=P{T5 > C,}
=P {—2log(l — e *7) —2log(l — e *7) > C, }
>P {—2log(l —e 7)) > Cy}

=P { (szrrllax,p(Zs)>2 > ho [2— (logp)~'] + cp}

Jeee

=1-P { <s_Hll,E-L--,p(ZS)>2 < ho [2— (logp)~'] + Cp}

13



—1-P { <S—H1lfl-)-(,p(z‘§)) 2 < dp(ha)}

Since condition C.1 holds, according to (2), (8) and (9), under the alternative
hypothesis Hy, we have

s=1,,p
1
=1— lim P Xs), max(X;), max(X;) | < [dp(ha)]?
i P s ). ) | et
1
>1— li ) < 2
1= i, P {000 < 6}
=1-0
=1.

Which means that

2
JHQP{L£¥J&O >%““}:L

According to the inequality

1> P{Ry(T5) =1} > P {( ma_}_(yp(zs)f > dp(ha)} ,

s=1,-
applying the squeeze theorem, we have

lim P{R.(T3) =1} =1.

p—+o0o

14



Proof of Theorem 4. Since P (T5 > C,) = P{R,(T5) = 1},according to the above
proof of Theorem 3, we can get the following inequality

o ZP{(SPR%JZS)) > ha [2 = (logp) '] +} -

there the inequality follow from (12), C,, is a constant about «, and it may represent
different constants at different positions.

=P { (rnlla;;’p(zs))Q + ( r{l}i_.r.l’p(Zs)>2 > Cy[2 — (logp) ™1 + 2cp}

2
=r { (siﬁla?F’p(Zs)) > Ca2 - (logp)_l] + QCp} 4

2
r { ( r{ﬂn (Zs)> > Cy[2 — (logp) '] + 2(:1,} (14)
s=T1, p
Because when « is fixed, p — 400, we have

Cul2 - (logp)_l] +2¢, > hyg [2 — (logp)_l] + ¢p.

Then when p — +o00, we have

s=1,-

S

P { ( maxw(zs))2 > Cy[2 — (logp) ™1 + 2c,,}

=1,

<P { (S ma ,p(Zs)) > ho [2— (logp) '] + cp}

<P(Ts > C,)
:BTs (15)

there the second inequality follow from (13).
Similarly, we can also conclude that

p { (S_ql’i“_ ’p(Zs))Q > Co[2 = (logp) '] + 2%}

15



<P { (S_ql)@g)p(zs)) > he [2— (logp) '] + cp} (16)

Since condition C.1 holds, according to (3),we can deduce that

p——+0o0 =1,--

lim P { ( min’p(Zs))z > ho [2— (logp) '] + c,,}

p——+oo =1,

)

2
—1— lim P { < min7p(Zs)> < ha [2— (logp)~'] + Cp}

p—+oo =1, ,p

=1— lim P { ( min (XS)>2 < hq [2— (logp)™'] + cp}

2
:pEI}}OOP { (s—nin )p(Xs)> > ho [2— (logp)~'] + cp} . (17)

First we recall some notations.Under alternative hypothesis H;, denote the index
set of nonzero signals by @ = {i : 1 < i < p,u; # 0} and let the total number of
nonzero signals be p¥, where the parameter v(0 < v < 1) measures the sparsity of
the nonzero mean. Similarly, denote the index set of zero signals by Q¢ = {i : 1 <
i < p,pu; = 0} and let the total number of zero signals be p*, where 0 < k < 1 and
p” + p* = p. Since non-zero signals include positive and negative, we divide € into
two parts, where Q; = {i : 1 <1 < p,u; > 0} represents the index set of positive
non-zero signals, and let the total number of non-zero signals be p”* (0 < v; < v),
Qo ={i:1<i<p,pu; <0} represents the index set of negative non-zero signals, and
let the total number of non-zero signals be p”2 (0 < vo < v), p** + p¥2 = p*.

Now, we have

:P{ min (X,) " dp(ha)}

—p{_pin () > gy + P{_pin () <~ dy(na ) |
<p{ v (X > (01}

=P{min min(X.,), min (X, ,gelgz(Xs)] > [dp(ha)]é}

= { min() > a1t b x P min () > dy |



D=

P{ain(x) > 4,01} (19

The penultimate equation is from is obtained under the alternative hypothesis H;.

We first prove the limit of P { nel%ln (Xs) > [dp(ha)}é} — 1 when p — +o0, then,
SEQ

by formula (1), we have

Nl

P{min(x0 > )}

=P L (X, = ) > Gy 0]

(NI

zp{min(Xs — i) > [dp(ha)]? — 1ogp}

SEN

seily

%exp{iexp{apvl {(dp(ha))% 710gp+bpvl]}}7

=P {apvl {m})n (Xs —ps) + bpn} > apo [(dp(ha))% —logp + bpvl] }

where a,n = (2logpU)Y/2, by = (2logp™)/2 — L(2logp¥t) /% (loglog p** +
log 4m), ¢, = 2log(p) — [log(log p) + log(4m)] + W.
Since0< vy <v<1-—

m, when p — 400, it is obvious that

apr [(dp(ha))% —logp + bp“1:| =0 (—\/ﬂ(logp)%) — —00,

which means that

[SE

exp {— exp {apul {(dp(ha)) —logp + bpul} }} -1,

So, we have

P {gelgi(Xs) > [dp(ha)]é} — 1,as p — +o0. (19)

Nl=

Secondly, we prove that P{min (Xs) > [dp(ha)]

} — 0 as p — +o0, then, by
SEQN

formula (1), we have

Nl

p {ggi(xs) > [dp(ha)] }

N

= {min (X, - 1) > )l

SP{nggl(Xs — 1) > [dp(ha)]? + logp}
SEN

17



=P {apvg [miQn (Xs — ps) + bp’Uz:| > apea {(dp(ha))% +logp + pr2:| }

sl

%exp{_exp{ai’”z {(dp(ha))% +10gp+bpvz}}}7

where apv. = (2logp”2)'/2, by, = (2logp¥2)/? — %(2log‘pW)_l/z(loglogp“2 +
log 47), ¢, = 2log(p) — [log(log p) + log(4m)] + log(log p) +log(dm)

2log(p)
Since 0 <wvy <v<1-— when p — 400, it is obvious that

N S
pl/2logp’
Qpv2 [(dp(ha))% +logp + bpvz} =0 (\/E(logp)%) — 400,
which means that
exp {f exp {apv2 [(dp(ha))% + logp + bpvz] }} — 0,as p — +oo.

So, we have

N

P { min (X,) > [dy(he)]

0 . 20
min }—) ,as p — +00 (20)

Finally,we prove the limit of P {Hg}{%(xs) > [dp(ha)}é} — 0 when p — +00. By

formula (1), we have

P{ (x> a1 |

seqe

=P {apk |:H€1%IHC(X9) + bpk:l > Qe {(dp(ha))% + bpk:|}
— exp {— exp {apk [(dp(ha)ﬁ + bpk:| }} ,
where a,. = (2logp*)'/2,c, = 2log(p) — [log(logp) + log(4m)] + log(log p)+log(4m)

2log(p) ’
by = (2log p*)1/2 — 1 (21og p*)~1/2(loglog p* + log 4r).
Since 0 < k < 1, it is obvious that

ap [(dp(ha))% n bpk} -0 (zﬁlogp) s 400, a8 p — +00.
which means that
exp { = exp {a [(dp(ha))* + by |} } = 0,05 p = +o0.
So, we have

seQe

P {max(Xs) > [dp(ha)ﬁ} —0,as p — +00. (21)

18



Next, according to formula (18),(19),(20) and (21) we have

|

=

p—+oo

lim P{ min (Xs)>[dp(ha)]

~ 3
—pklfoop{mm [m ) 525;“ ) 6| > 401
— i 3 ; : 3
i P {60 > @01 ) i P {ain (0 > (4,001 |
lim P { min ( (ha)]é}
p—+o00 GEQC
=1x0x0
=0. (22)

Next, according to formula (16), (17) and (18),applying the squeeze theorem, we
have

pli}r_‘r_loop { <s_r{un’p(Zs)) > Cyl2 — (logp) 1] + ZCp} =0. (23)

Now, according to (14),(15) and (23),we have

Br, < Br, +o(1).

Proof of Theorem 5.

/6T5 :P{T5 > Ca}
=P {—2log(l — e 7)) —2log(l — e *27) > C, }
>P{—4log(l —e 7)) > C,}

=P {log(l —e M) < C:f}

Ca

1—e e < 677}
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2
( max (ZS)> —¢p
_p )=t
B 2 — (logp)~*

= {(sgﬁ_’p(Zs))Q > dp(ga)} ,

> —log (—log (1 — e*%’)>

_Ca _xa@
Wherega:flog(flog(lfe 4))1og(log<1e 1 ))

s=1,---,p

ﬁTQZP{

max (Z2) —2logp + log(logp) > C’a}

—P{ max (Z2) > Cy +2logp — log(logp)}
s=1,,p

P {mx [(S_nllagpws)f , <S_I{1,i}},p(Zs))2

2 2
<P { < max (ZS)> > Cq + log P } +
s=1,-,p logp

2 2
P { ( min (Zs)> > C, + log P } )
s=1,,p log p

where C,, = —2log[—+/mlog(1 — )]
For a fixed a, we have

2

lim C, + log 2
p—oo logp

— 9o [2— (logp) ']

= lim Cy — ¢ga [2 — (logp)_l] + log4m —

p—r—+o0

=Cy — 294 + logdm

log p

2
> Cy + log P }

—cp

log(log p) + log 4x

2logp

X2 (4)
= —2log[—v/Tlog(1l — a)] + 2log (10g (1 —e” T )) + log 4w

>0

This means that when p — +o0, C, + log kf;p >
Then when p — 400, we have

2 2
P { < max (ZS)> > C, + log P }
5217...71) logp
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<P { <5—H11,&-1~)~(,p(zs)>2 > dp(ga)}

<P(T5 > C,)
=P, (26)

there the second inequality follow from (24).
Similarly, we can also conclude that

2 2
P { < mi (Zs)> > Cq +log P }
s=1,-,p logp

<P { (S_I{{i.gpws)f > dp<ga>} @)

Since condition C.1 holds, according to (3),we can deduce that

2
. P { (in 20) > d”(g“)}
2
= p { (i 20) < d”(g“)}
2
=1-,lim P { (i x0) < ‘"‘p‘g")}

= ] (i 00) > o -

First we recall some notations.Under alternative hypothesis H;, denote the index
set of nonzero signals by Q = {i : 1 <4 < p,u; # 0} and let the total number of
nonzero signals be p¥, where the parameter v(0 < v < 1) measures the sparsity of
the nonzero mean. Similarly, denote the index set of zero signals by Q¢ = {i : 1 <
i < p,p; = 0} and let the total number of zero signals be p*, where 0 < k < 1 and
p” + p* = p. Since non-zero signals include positive and negative, we divide  into
two parts, where Q; = {i : 1 < i < p,u; > 0} represents the index set of positive
non-zero signals, and let the total number of non-zero signals be p”* (0 < v < v),
Qo ={i:1<1i<p,pu; <0} represents the index set of negative non-zero signals, and
let the total number of non-zero signals be p¥2 (0 < v < v), p** 4 p¥2 = p*.

Now, we have
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= {mp () > 01t b x P { i ) > B0}
P { i () > @001} (29

The penultimate equation is from is obtained under the alternative hypothesis H;.
We first prove the limit of P {miQn (Xs) > [dp(ga)]é} — 1 when p — +o0, then,
sefdy

by formula (1), we have

Nl

P L) > ()t}

= { i (%, = ) > (ol .

N

> { mip (X, = 1) > dy )]~ losn

=P {apvl [miﬂn (Xs —ps) + bprvl} > aper [(dp(ga))% —logp + bpvl] }

seily

—exp {_ exp {ai’” [(dp(ga))% —logp + bpvl} }} ’

where a,n1 = (21log p¥1)'/2, bpn = (2logp¥)1/? — %(210gp”1)*1/2(10g10gp”1 +
log 47), ¢, = 2log(p) — [log(log p) + log(4mr)] + ‘eellesp)tlostin),

2log(p)
Since 0 < vy <v<1-— when p — 400, it is obvious that

1
p1/2 1ng7
Apv [(dp(ga))% —logp + bp”1:| =0 (—\/ﬂ(logp)%) — —00,
which means that

exp {—exp {apvl {(dp(ga))% —logp+ bpul} }} —1,as p — +oo.
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So, we have

N

P {?elgi(Xs) > [dp(ga)] } — 1,as p — +o0. (30)

Nl

Secondly, we prove that P{min (Xs) > [dp(9a)]

SEQN

} — 0 as p — +o0, then, by
formula (1), we have

(NI

0 <P () > 001

=P{min (Xs — p1s) > [dp(90)]? — us}

sEN

gp{%n(xs — 1) > [dp(g0)]? + logp}

S 2

=P { [ngg)n (X, — o) + b] >y [(dp(9a))* +10gp + byes }
S 2

— exp {f exp {ap'ug [(dp(ga))% + logp + wa} }} ,
where apve = (2logp®2)'/2, by = (2logp¥2)1/2 — 1(2logp¥2)~1/%(loglog p*2 +

log 47), ¢, = 2log(p) — [log(log p) + log(4r)] + elesp)tlos(in)

2log(p)
Since 0 < vy <v<1— m, when p — +o0, it is obvious that

Apv2 [(dp(ga))% +logp + bpv2:| =0 (\/%(logp)%> — 400,

which means that

exp {— exp {CLPT’Q [(dp(ga))% + logp + bp"2:| }} — 0,as p — +oo.

So, we have

N

r {?elézg(Xs) > [dp(ga)] } — 0,as p — +o0. (31)

Finally,we prove the limit of P {Helbn (Xs) > [dp(ga)]i‘} — 0 when p = +o0. By
s€Qe
formula (1), we have

P { i () > (@001}

seQe
_p {a,,k [gg(xs) + bpk} > aye [(dylga)) + by }

— exp {_exp {ai”“ {(dp(ga))% + bpk] }} ’
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where a,x = (2 log p*)'/2, bpr = (2 log p*)1/2 — %(210gpk)_1/2(10g log p* + log 47),

¢p = 2log(p) — [log(log p) + log(4m)] + W.

Since 0 < k < 1, it is obvious that
ph [(dp(ga))% + bpk-:| =0 (2\/Elogp> — +00,as p — +00.
which means that

exp {—exp {apk [(dp(ga))% + bpk} }} —0,as p — +oo.

So, we have
P {rré%>§(xs) > [d,,(ga)}%} 5 0,as p — +00. (32)

Next, according to formula (29),(30),(31) and (32) we have

|

Nl

p——+oo

lim P{ min (Xs) [dp(9a)]

= lim P (Xs) X X z
R {mm {5251 ) g g (50| > Btal
o 3 : 2
_pgglmp{snégi dp(9a)] }ngglmP{ge%g(X ) > [dp(9a)] }X
1

lim P )2

Jtm P { i) > o
=1x0x0
=0. (33)

Next, according to formula (27), (28),(29)and (33),applying the squeeze theorem,
we have

p——+oo s=1,---

2 2
lim P{( min (Zs)> > O, + log 2 }:o. (34)
P logp
Now, according to (25),(26) and (34),we have

Br, < Bry +o(1).
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