

Supporting material to "An integration test based only on the maximum and minimum Z-scores for meta analysis"

Yuxin Zhang^{1,2*} and Zhengbang Li^{2,3†}

^{1*}School of Mathematics and Statistics, Central China Normal University, No. 152 Luoyu Road, 430000, Wuhan, China.

²School of Mathematics and Statistics, Central China Normal University, No. 152 Luoyu Road, 430000, Wuhan, China.

*Corresponding author(s). E-mail(s): a1443196130@163.com;

Contributing authors: lizhengbang@mail.ccnu.edu.cn;

†These authors contributed equally to this work.

Abstract

In this supporting material, we provide some technical lemmas and detailed proofs for all lemmas and theorems.

Keywords: Z-score value, Maximum value, Minimum value, Asymptotic distribution

1 TECHNICAL LEMMAS AND THEIR PROOFS

Denotes $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$. Let X_1, \dots, X_p independently follow a common standard normal distribution. We can obtain that,

(i) For any real number x and y,

$$\lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} = \exp\{-\exp(-x)\}$$

and

$$\lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\min_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} = \exp\{-\exp(-y)\}$$

(ii) For any real number x and y , $\left[\max_{s=1, \dots, p} (X_s) \right]^2$ and $\left[\min_{s=1, \dots, p} (X_s) \right]^2$ are asymptotically independent, namely,

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x, \frac{\left[\min_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} \\ &= G(x)G(y) \end{aligned}$$

where distribution function $G(x) = \exp\{-\exp(-x)\}$ and $G(y) = \exp\{-\exp(-y)\}$.

Proof. Please refer to literature [1]. \square

If ξ_n is an i.i.d. (standard) normal sequence of r.v.'s, then the asymptotic distribution of $M_n = \max(\xi_1, \xi_2, \dots, \xi_n)$ is of Type I. Specifically,

$$P\{a_n(M_n - b_n) \leq x\} \rightarrow \exp(-e^{-x}),$$

where

$$a_n = (2 \log n)^{1/2}$$

and

$$b_n = (2 \log n)^{1/2} - \frac{1}{2}(2 \log n)^{-1/2}(\log \log n + \log 4\pi)$$

Proof. Please refer to Theorem 1.5.3 in literature [2]. \square

Writing $m_n = \min(\xi_1, \xi_2, \dots, \xi_n)$, clearly $m_n = -\max(-\xi_1, -\xi_2, \dots, -\xi_n)$, then

$$P\{a_n(m_n + b_n) \leq x\} \rightarrow 1 - \exp(-e^x). \quad (1)$$

Suppose $\xi_1, \xi_2, \dots, \xi_n$ are standard normal variables with covariance matrix $\Lambda^1 = (\Lambda_{ij}^1)$, and $\eta_1, \eta_2, \dots, \eta_n$ similarly with covariance matrix $\Lambda^0 = (\Lambda_{ij}^0)$, and let $\sigma_{ij} = \max(|\Lambda_{ij}^1|, |\Lambda_{ij}^0|)$. Then for any real u ,

$$\begin{aligned} & P\{\xi_j \leq u \text{ for } j = 1, \dots, n\} - P\{\eta_j \leq u \text{ for } j = 1, \dots, n\} \\ & \leq \frac{1}{2\pi} \sum_{1 \leq i < j \leq n} (\Lambda_{ij}^1 - \Lambda_{ij}^0)^+ (1 - \sigma_{ij}^2)^{-1/2} \exp\left\{-\frac{u^2}{1 + \sigma_{ij}}\right\} \end{aligned}$$

where $(x)^+ = \max(0, x)$.

Proof. Please refer to Theorem 4.2.1 in literature [2]. \square

First we recall some notations,

$$d_p(z) = [2 - (\log p)^{-1}]z + c_p$$

where z be any real number, and p be any positive integer.

Condition C.1:

$$\lim_{p \rightarrow +\infty} \sum_{1 \leq i < j \leq p} (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(z)}{1 + |\rho_{i,j}|} \right\} = 0.$$

Let sequence $Z = (Z_1, Z_2, \dots, Z_p)^T$ follows a p -dimension multivariate normal distribution with mean vector $\mathbf{u} = (0, 0, \dots, 0)^T$ and covariance matrix $\tilde{R} = (\rho_{q,s})_{q,s=1,\dots,p}$. Suppose the above condition C.1 is satisfied for any real x and y , we can obtain that,

(i) For any real number x and y ,

$$\lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1,\dots,p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} = \exp\{-\exp(-x)\}$$

and

$$\lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\min_{s=1,\dots,p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} = \exp\{-\exp(-y)\}$$

(ii) For any real number x and y , $\left[\max_{s=1,\dots,p} (Z_s) \right]^2$ and $\left[\min_{s=1,\dots,p} (Z_s) \right]^2$ are asymptotically independent, namely,

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1,\dots,p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x, \frac{\left[\min_{s=1,\dots,p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} \\ &= G(x)G(y) \end{aligned}$$

where distribution function $G(x) = \exp\{-\exp(-x)\}$ and $G(y) = \exp\{-\exp(-y)\}$.

Proof. We first prove that (i).

Let $d_p(x) = [2 - (\log p)^{-1}]x + c_p$, $d_p(y) = [2 - (\log p)^{-1}]y + c_p$, then

$$\begin{aligned}
& P \left\{ \frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\
&= P \left\{ \left[\max_{s=1, \dots, p} (X_s) \right]^2 < d_p(x) \right\} \\
&= P \left\{ -\sqrt{d_p(x)} < \max_{s=1, \dots, p} (X_s) < \sqrt{d_p(x)} \right\} \\
&= P \left\{ \max_{s=1, \dots, p} (X_s) < \sqrt{d_p(x)} \right\} - P \left\{ \max_{s=1, \dots, p} (X_s) \leq -\sqrt{d_p(x)} \right\}.
\end{aligned}$$

Similarly, we have

$$\begin{aligned}
& P \left\{ \frac{\left[\max_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\
&= P \left\{ \left[\max_{s=1, \dots, p} (Z_s) \right]^2 < d_p(x) \right\} \\
&= P \left\{ \max_{s=1, \dots, p} (Z_s) < \sqrt{d_p(x)} \right\} - P \left\{ \max_{s=1, \dots, p} (Z_s) \leq -\sqrt{d_p(x)} \right\}.
\end{aligned}$$

Then, we have

$$\begin{aligned}
& P \left\{ \frac{\left[\max_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} - P \left\{ \frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\
&= P \left\{ \max_{s=1, \dots, p} (Z_s) < \sqrt{d_p(x)} \right\} - P \left\{ \max_{s=1, \dots, p} (X_s) < \sqrt{d_p(x)} \right\} \\
&\quad + \left\{ P \left\{ \max_{s=1, \dots, p} (X_s) \leq -\sqrt{d_p(x)} \right\} - P \left\{ \max_{s=1, \dots, p} (Z_s) \leq -\sqrt{d_p(x)} \right\} \right\} \\
&\leq \frac{1}{2\pi} \sum_{1 \leq i < j \leq p} (\rho_{i,j} - a_{i,j})^+ (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\} \\
&\quad + \frac{1}{2\pi} \sum_{1 \leq i < j \leq p} (a_{i,j} - \rho_{i,j})^+ (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\}
\end{aligned}$$

$$\leq \frac{1}{\pi} \sum_{1 \leq i < j \leq p} (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\} \rightarrow 0 \text{ as } p \rightarrow +\infty \quad (2)$$

where the first inequality is obtained by Lemma 1, and the second inequality is due to the condition C.1.

According to formula (2) and Lemma 1, we can obtain

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\ &= \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\ &= \exp\{-\exp(-x)\}. \end{aligned}$$

Similarly, when condition C.1 is satisfied, we can obtain

$$\begin{aligned} & P \left\{ \frac{\left[\min_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} - P \left\{ \frac{\left[\min_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < x \right\} \\ &= P \left\{ \min_{s=1, \dots, p} (Z_s) < \sqrt{d_p(x)} \right\} - P \left\{ \min_{s=1, \dots, p} (X_s) < \sqrt{d_p(x)} \right\} \\ &+ \left\{ P \left\{ \min_{s=1, \dots, p} (X_s) \leq -\sqrt{d_p(x)} \right\} - P \left\{ \min_{s=1, \dots, p} (Z_s) \leq -\sqrt{d_p(x)} \right\} \right\} \\ &\leq \frac{1}{2\pi} \sum_{1 \leq i < j \leq p} (\rho_{i,j} - a_{i,j})^+ (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\} \\ &+ \frac{1}{2\pi} \sum_{1 \leq i < j \leq p} (a_{i,j} - \rho_{i,j})^+ (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\} \\ &\leq \frac{1}{\pi} \sum_{1 \leq i < j \leq p} (1 - \rho_{i,j}^2)^{-1/2} \exp \left\{ -\frac{d_p(x)}{1 + |\rho_{i,j}|} \right\} \rightarrow 0 \text{ as } p \rightarrow +\infty \quad (3) \end{aligned}$$

then, according to formula (3) and Lemma 1, we can obtain

$$\begin{aligned}
& \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\min_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} \\
&= \lim_{p \rightarrow +\infty} P_r \left\{ \frac{\left[\min_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} < y \right\} \\
&= \exp\{-\exp(-y)\}
\end{aligned}$$

Next, we will prove (ii). According to Theorem 11.1.5 in literature [2], we can know that $\max_{s=1, \dots, p} (Z_s)$ and $\min_{s=1, \dots, p} (Z_s)$ are asymptotically independent. Obviously, $\left[\max_{s=1, \dots, p} (Z_s) \right]^2$ and $\left[\min_{s=1, \dots, p} (Z_s) \right]^2$ are also asymptotically independent. \square

Denote $X = (X_1, X_2, \dots, X_p)^\top$ follows a p-dimension multivariate standard normal distribution with mean $\mathbf{u} = (0, 0, \dots, 0)^\top$ and covariance matrix $I_{p \times p} = (a_{q,s})_{q,s=1, \dots, p}$ where $a_{q,q} = 1$ and $a_{q,s} = 0, q \neq s$. Denotes $\widetilde{\lambda}_{1,p} = \exp \left\{ -\frac{\left[\max_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} \right\}$, $\widetilde{\lambda}_{2,p} = \exp \left\{ -\frac{\left[\min_{s=1, \dots, p} (X_s) \right]^2 - c_p}{2 - (\log p)^{-1}} \right\}$ and $\widetilde{T}_5 = -2 \log(1 - e^{-\widetilde{\lambda}_{1,p}}) - 2 \log(1 - e^{-\widetilde{\lambda}_{2,p}})$.

Let the non-zero mean $|\mu_s| \geq \log p, s \in \Omega$. Suppose $0 < v < 1 - \frac{1}{p^{1/2} \log p}$. Under significance level $\alpha > 0$ and alternative hypothesis H'_1 , we can obtain

$$\lim_{p \rightarrow +\infty} P\{R_\alpha(\widetilde{T}_5) = 1\} = 1.$$

Proof.

$$\begin{aligned}
& P\{R_\alpha(\widetilde{T}_5) = 1\} \\
&= P\{\widetilde{T}_5 > C_\alpha\} \\
&= P\left\{ -2 \log(1 - e^{-\widetilde{\lambda}_{1,p}}) - 2 \log(1 - e^{-\widetilde{\lambda}_{2,p}}) > C_\alpha \right\} \\
&\geq P\left\{ -2 \log(1 - e^{-\widetilde{\lambda}_{1,p}}) > C_\alpha \right\} \\
&= P\left\{ \log(1 - e^{-\widetilde{\lambda}_{1,p}}) < -\frac{C_\alpha}{2} \right\} \\
&= P\left\{ 1 - e^{-\widetilde{\lambda}_{1,p}} < e^{-\frac{C_\alpha}{2}} \right\}
\end{aligned}$$

$$\begin{aligned}
&= P \left\{ e^{-\widetilde{\lambda_{1,p}}} > 1 - e^{-\frac{C_\alpha}{2}} \right\} \\
&= P \left\{ -\widetilde{\lambda_{1,p}} > \log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right\} \\
&= P \left\{ \widetilde{\lambda_{1,p}} < -\log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right\} \\
&= P \left\{ \exp \left(-\frac{\left(\max_{s=1, \dots, p} (X_s) \right)^2 - c_p}{2 - (\log p)^{-1}} \right) < -\log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right\} \\
&= P \left\{ \frac{\left(\max_{s=1, \dots, p} (X_s) \right)^2 - c_p}{2 - (\log p)^{-1}} > -\log \left(-\log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right) \right\}, \tag{4}
\end{aligned}$$

where we let $h_\alpha = -\log \left(-\log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right)$, h_α is a constant about α , then we have

$$\begin{aligned}
&P \left\{ \frac{\left(\max_{s=1, \dots, p} (X_s) \right)^2 - c_p}{2 - (\log p)^{-1}} > -\log \left(-\log \left(1 - e^{-\frac{C_\alpha}{2}} \right) \right) \right\} \\
&= P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\
&= 1 - P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\
&= 1 - P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 \leq d_p(h_\alpha) \right\} \\
&= 1 - P \left\{ -[d_p(h_\alpha)]^{\frac{1}{2}} \leq \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&\geq 1 - P \left\{ \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= 1 - P \left\{ \max_{s \in \Omega} \left[\max_{s \in \Omega} (X_s), \max_{s \in \Omega^c} (X_s) \right] \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= 1 - P \left\{ \max_{s \in \Omega} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \times P \left\{ \max_{s \in \Omega^c} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&\geq 1 - P \left\{ \max_{s \in \Omega} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\}. \tag{5}
\end{aligned}$$

The reciprocal third equation is derived from the alternative hypothesis H'_1 .

We first prove the limit of $P \left\{ \max_{s \in \Omega} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0$ when $p \rightarrow +\infty$, then, by Lemma1, we have

$$\begin{aligned}
& P \left\{ \max_{s \in \Omega} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= P \left\{ \max_{s \in \Omega} (X_s - \mu_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} - \mu_s \right\} \\
&\leq P \left\{ \max_{s \in \Omega} (X_s - \mu_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} - \log p \right\} \\
&= P \left\{ a_{p^v} \left[\max_{s \in \Omega} (X_s - \mu_s) - b_{p^v} \right] \leq a_{p^v} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^v} \right] \right\} \\
&\rightarrow \exp \left\{ -\exp \left\{ -a_{p^v} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^v} \right] \right\} \right\},
\end{aligned}$$

where $a_{p^v} = (2 \log p^v)^{1/2}$, $b_{p^v} = (2 \log p^v)^{1/2} - \frac{1}{2}(2 \log p^v)^{-1/2}(\log \log p^v + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^v} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^v} \right] = O \left(-\sqrt{2v} (\log p)^{\frac{3}{2}} \right) \rightarrow -\infty,$$

which means that

$$\exp \left\{ -\exp \left\{ -a_{p^v} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^v} \right] \right\} \right\} \rightarrow 0.$$

So, we have

$$P \left\{ \max_{s \in \Omega} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (6)$$

Next, according to formula (5) and (6), applying the squeeze theorem, we have

$$\lim_{p \rightarrow +\infty} \left\{ 1 - P \left\{ \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \right\} = 1. \quad (7)$$

According to formulas (4) and (5), we have the following inequalities

$$1 \geq P \{ R_\alpha(\widetilde{T}_5) = 1 \} \geq 1 - P \left\{ \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\},$$

applying the squeeze theorem, by formula (7), we have

$$\lim_{p \rightarrow +\infty} P \{ R_\alpha(\widetilde{T}_5) = 1 \} = 1.$$

□

Let the non-zero mean $|\mu_s| \geq \log p$, $s \in \Omega$. Suppose $0 < v < 1 - \frac{1}{p^{1/2} \log p}$. Under significance level $\alpha > 0$ and alternative hypothesis H_1 , we can obtain

$$\lim_{p \rightarrow +\infty} P\{R_\alpha(\widetilde{T}_5) = 1\} = 1.$$

Proof. According to the proof of Lemma 1, by applying formula (4) and (5), we have

$$\begin{aligned}
& P\{R_\alpha(\widetilde{T}_5) = 1\} \\
&= P\{\widetilde{T}_5 > C_\alpha\} \\
&= P\left\{-2 \log(1 - e^{-\widetilde{\lambda}_{1,p}}) - 2 \log(1 - e^{-\widetilde{\lambda}_{2,p}}) > C_\alpha\right\} \\
&\geq P\left\{-2 \log(1 - e^{-\widetilde{\lambda}_{1,p}}) > C_\alpha\right\} \\
&= P\left\{\frac{\left(\max_{s=1,\dots,p}(X_s)\right)^2 - c_p}{2 - (\log p)^{-1}} > -\log\left(-\log\left(1 - e^{-\frac{C_\alpha}{2}}\right)\right)\right\} \\
&= 1 - P\left\{-[d_p(h_\alpha)]^{\frac{1}{2}} \leq \max_{s=1,\dots,p}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \tag{8} \\
&\geq 1 - P\left\{\max_{s=1,\dots,p}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \\
&= 1 - P\left\{\max\left[\max_{s \in \Omega_1}(X_s), \max_{s \in \Omega_2}(X_s), \max_{s \in \Omega^c}(X_s)\right] \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \\
&= 1 - P\left\{\max_{s \in \Omega_1}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \times P\left\{\max_{s \in \Omega_2}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \times \\
&\quad P\left\{\max_{s \in \Omega^c}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \\
&\geq 1 - P\left\{\max_{s \in \Omega_1}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\}.
\end{aligned}$$

The reciprocal third equation is derived from the alternative hypothesis H_1 .

We first prove the limit of $P\left\{\max_{s \in \Omega_1}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \rightarrow 0$ when $p \rightarrow +\infty$, then, by Lemma 1, we have

$$\begin{aligned}
& P\left\{\max_{s \in \Omega_1}(X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}}\right\} \\
&= P\left\{\max(X_s - \mu_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} - \mu_s\right\}
\end{aligned}$$

$$\begin{aligned}
&\leq P \left\{ \max_{s \in \Omega_1} (X_s - \mu_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} - \log p \right\} \\
&= P \left\{ a_{p^{v_1}} \left[\max_{s \in \Omega_1} (X_s - \mu_s) - b_{p^{v_1}} \right] \leq a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^{v_1}} \right] \right\} \\
&\rightarrow \exp \left\{ -\exp \left\{ -a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^{v_1}} \right] \right\} \right\},
\end{aligned}$$

where $a_{p^{v_1}} = (2 \log p^{v_1})^{1/2}$, $b_{p^{v_1}} = (2 \log p^{v_1})^{1/2} - \frac{1}{2}(2 \log p^{v_1})^{-1/2}(\log \log p^{v_1} + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v_1 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p - b_{p^{v_1}} \right] = O \left(-\sqrt{2v_1} (\log p)^{\frac{3}{2}} \right) \rightarrow -\infty,$$

which means that

$$\exp \left\{ -\exp \left\{ -a_{p^{v_1}} \left[(h_\alpha (2 - (\log p)^{-1}) + c_p)^{\frac{1}{2}} - \log p - b_{p^{v_1}} \right] \right\} \right\} \rightarrow 0.$$

So, we have

$$P \left\{ \max_{s \in \Omega_1} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (9)$$

According to formula (8), we have the following inequalities

$$1 \geq P\{R_\alpha(\widetilde{T}_5) = 1\} \geq 1 - P \left\{ \max_{s \in \Omega_1} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\},$$

applying the squeeze theorem, by formula (9) we have

$$\lim_{p \rightarrow +\infty} P\{R_\alpha(\widetilde{T}_5) = 1\} = 1.$$

□

2 PROOFS OF LEMMAS AND THEOREMS

Proof of Theorem 1. For convenience, let $W_1 = \max_{s=1, \dots, p} \{Z_s\}$, $W_2 = \min_{s=1, \dots, p} \{Z_s\}$. According to Lemma 1, for any real numbers x and y ,

$$\begin{aligned}
c_p &= 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)} \\
\lim_{p \rightarrow +\infty} P_r \left(\frac{W_1^2 - c_p}{2 - (\log p)^{-1}} < x \right) &= \exp\{-\exp(-x)\} = G(x) \\
\lim_{p \rightarrow +\infty} P_r \left(\frac{W_2^2 - c_p}{2 - (\log p)^{-1}} < y \right) &= \exp\{-\exp(-y)\} = G(y)
\end{aligned}$$

and W_1^2 and W_2^2 are asymptotically independent we can obtain that,

$$P_{W_1^2} = 1 - G\left(\frac{W_1^2 - c_p}{2 - (\log p)^{-1}}\right) = 1 - \exp\left\{-\exp\left(-\frac{W_1^2 - c_p}{2 - (\log p)^{-1}}\right)\right\},$$

$$P_{W_2^2} = 1 - G\left(\frac{W_2^2 - c_p}{2 - (\log p)^{-1}}\right) = 1 - \exp\left\{-\exp\left(-\frac{W_2^2 - c_p}{2 - (\log p)^{-1}}\right)\right\}.$$

Denote $\lambda_{1,p} = \exp\left(-\frac{W_1^2 - c_p}{2 - (\log p)^{-1}}\right)$ and $\lambda_{2,p} = \exp\left(-\frac{W_2^2 - c_p}{2 - (\log p)^{-1}}\right)$, we can obtain that,

$$P_{W_1^2} = 1 - e^{-\lambda_{1,p}} \sim U(0, 1)$$

$$P_{W_2^2} = 1 - e^{-\lambda_{2,p}} \sim U(0, 1).$$

Then, according to the literature [3], we have

$$-2 \log(P_{W_1^2}) = -2 \log(1 - e^{-\lambda_{1,p}}) \sim \chi^2(2)$$

$$-2 \log(P_{W_2^2}) = -2 \log(1 - e^{-\lambda_{2,p}}) \sim \chi^2(2),$$

where $\chi^2(2)$ denotes the chi-square distribution with degrees of freedom 2, and the distribution function is $F(x, n) = \int_0^x \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} t^{\frac{n}{2}-1} e^{-\frac{t}{2}} dt$.

Because W_1^2 and W_2^2 are asymptotically independent when $p \rightarrow +\infty$, and $-2 \log(1 - e^{-\lambda_{1,p}})$ and $-2 \log(1 - e^{-\lambda_{2,p}})$ are functions of W_1^2 and W_2^2 , respectively, then $-2 \log(1 - e^{-\lambda_{1,p}})$ and $-2 \log(1 - e^{-\lambda_{2,p}})$ are also asymptotically independent when $p \rightarrow +\infty$.

Through the regeneration of chi-square distribution, when $p \rightarrow +\infty$, we can obtain that,

$$T_5 = -2 \log(1 - e^{-\lambda_{1,p}}) - 2 \log(1 - e^{-\lambda_{2,p}}) \sim \chi^2(4).$$

□

Next is the proof of the asymptotic power $R_\alpha(T_5)$ of T_5 . Before the proof, we first recall some symbols about T_5 .

$$c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)},$$

$$\lambda_{1,p} = \exp\left(-\frac{\left[\max_{s=1, \dots, p} (Z_s)\right]^2 - c_p}{2 - (\log p)^{-1}}\right),$$

$$\lambda_{2,p} = \exp \left(- \frac{\left[\min_{s=1, \dots, p} (Z_s) \right]^2 - c_p}{2 - (\log p)^{-1}} \right),$$

$$T_5 = -2 \log(1 - e^{-\lambda_{1,p}}) - 2 \log(1 - e^{-\lambda_{2,p}}).$$

Proof of Theorem 2.

$$\begin{aligned}
& P\{R_\alpha(T_5) = 1\} \\
&= P\{T_5 > C_\alpha\} \\
&= P\{-2 \log(1 - e^{-\lambda_{1,p}}) - 2 \log(1 - e^{-\lambda_{2,p}}) > C_\alpha\} \\
&\geq P\{-2 \log(1 - e^{-\lambda_{1,p}}) > C_\alpha\} \\
&= P\left\{\log(1 - e^{-\lambda_{1,p}}) < -\frac{C_\alpha}{2}\right\} \\
&= P\left\{-\lambda_{1,p} > \log\left(1 - e^{-\frac{C_\alpha}{2}}\right)\right\} \\
&= P\left\{\lambda_{1,p} < -\log\left(1 - e^{-\frac{C_\alpha}{2}}\right)\right\} \\
&= P\left\{\exp\left(-\frac{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 - c_p}{2 - (\log p)^{-1}}\right) < -\log\left(1 - e^{-\frac{C_\alpha}{2}}\right)\right\} \\
&= P\left\{\frac{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 - c_p}{2 - (\log p)^{-1}} > -\log\left(-\log\left(1 - e^{-\frac{C_\alpha}{2}}\right)\right)\right\} \\
&= P\left\{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p\right\} \\
&= 1 - P\left\{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p\right\} \tag{10}
\end{aligned}$$

Since condition C.1 holds, according to (2), we can deduce that

$$\begin{aligned}
& \lim_{p \rightarrow +\infty} P\left\{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p\right\} \\
&= \lim_{p \rightarrow +\infty} P\left\{\left(\max_{s=1, \dots, p} (X_s)\right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p\right\}. \tag{11}
\end{aligned}$$

According to the formulas (5) and (7), applying the Squeeze Theorem, we have

$$\lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} = 0$$

According to (11), we have

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1. \end{aligned}$$

According to formula (10), we can obtain the following inequalities

$$1 \geq P\{R_\alpha(T_5) = 1\} \geq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\}, \quad (12)$$

applying the squeeze theorem, we have

$$\lim_{p \rightarrow +\infty} P\{R_\alpha(T_5) = 1\} = 1$$

□

Proof of Theorem 3. The proof of Theorem 3.2 and Lemma 1 is similar. According to (10), we have

$$\begin{aligned} & P\{R_\alpha(T_5) = 1\} \\ &= P\{T_5 > C_\alpha\} \\ &= P\{-2 \log(1 - e^{-\lambda_{1,p}}) - 2 \log(1 - e^{-\lambda_{2,p}}) > C_\alpha\} \\ &\geq P\{-2 \log(1 - e^{-\lambda_{1,p}}) > C_\alpha\} \\ &= P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1 - P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \end{aligned}$$

$$=1 - P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 \leq d_p(h_\alpha) \right\}$$

Since condition C.1 holds, according to (2), (8) and (9), under the alternative hypothesis H_1 , we have

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > d_p(h_\alpha) \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 \leq d_p(h_\alpha) \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (X_s) \right)^2 \leq d_p(h_\alpha) \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ -[d_p(h_\alpha)]^{\frac{1}{2}} \leq \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &\geq 1 - \lim_{p \rightarrow +\infty} P \left\{ \max_{s=1, \dots, p} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \max \left[\max_{s \in \Omega_1} (X_s), \max_{s \in \Omega_2} (X_s), \max_{s \in \Omega^c} (X_s) \right] \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &\geq 1 - \lim_{p \rightarrow +\infty} P \left\{ \max_{s \in \Omega_1} (X_s) \leq [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= 1 - 0 \\ &= 1. \end{aligned}$$

Which means that

$$\lim_{p \rightarrow +\infty} P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > d_p(h_\alpha) \right\} = 1.$$

According to the inequality

$$1 \geq P\{R_\alpha(T_5) = 1\} \geq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > d_p(h_\alpha) \right\},$$

applying the squeeze theorem, we have

$$\lim_{p \rightarrow +\infty} P\{R_\alpha(T_5) = 1\} = 1.$$

□

Proof of Theorem 4. Since $P(T_5 > C_\alpha) = P\{R_\alpha(T_5) = 1\}$, according to the above proof of Theorem 3, we can get the following inequality

$$\beta_{T_5} \geq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\}, \quad (13)$$

there the inequality follow from (12), C_α is a constant about α , and it may represent different constants at different positions.

$$\begin{aligned} \beta_{T_4} &= P \left\{ \frac{\left(\max_{s=1, \dots, p} (Z_s) \right)^2 + \left(\min_{s=1, \dots, p} (Z_s) \right)^2 - 2c_p}{2 - (\log p)^{-1}} > C_\alpha \right\} \\ &= P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 + \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\} \\ &\leq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\} + \\ &\quad P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\} \end{aligned} \quad (14)$$

Because when α is fixed, $p \rightarrow +\infty$, we have

$$C_\alpha [2 - (\log p)^{-1}] + 2c_p \geq h_\alpha [2 - (\log p)^{-1}] + c_p.$$

Then when $p \rightarrow +\infty$, we have

$$\begin{aligned} &P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\} \\ &\leq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &\leq P(T_5 > C_\alpha) \\ &= \beta_{T_5} \end{aligned} \quad (15)$$

there the second inequality follow from (13).

Similarly, we can also conclude that

$$P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\}$$

$$\leq P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \quad (16)$$

Since condition C.1 holds, according to (3), we can deduce that

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 \leq h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\}. \end{aligned} \quad (17)$$

First we recall some notations. Under alternative hypothesis H_1 , denote the index set of nonzero signals by $\Omega = \{i : 1 \leq i \leq p, \mu_i \neq 0\}$ and let the total number of nonzero signals be p^v , where the parameter $v (0 < v < 1)$ measures the sparsity of the nonzero mean. Similarly, denote the index set of zero signals by $\Omega^c = \{i : 1 \leq i \leq p, \mu_i = 0\}$ and let the total number of zero signals be p^k , where $0 < k < 1$ and $p^v + p^k = p$. Since non-zero signals include positive and negative, we divide Ω into two parts, where $\Omega_1 = \{i : 1 \leq i \leq p, \mu_i > 0\}$ represents the index set of positive non-zero signals, and let the total number of non-zero signals be p^{v_1} ($0 < v_1 < v$), $\Omega_2 = \{i : 1 \leq i \leq p, \mu_i < 0\}$ represents the index set of negative non-zero signals, and let the total number of non-zero signals be p^{v_2} ($0 < v_2 < v$), $p^{v_1} + p^{v_2} = p^v$.

Now, we have

$$\begin{aligned} & P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > h_\alpha [2 - (\log p)^{-1}] + c_p \right\} \\ &= P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > d_p(h_\alpha) \right\} \\ &= P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} + P \left\{ \min_{s=1, \dots, p} (X_s) < -[d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &\leq P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ \min \left[\min_{s \in \Omega_1} (X_s), \min_{s \in \Omega_2} (X_s), \min_{s \in \Omega^c} (X_s) \right] > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \times P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \times \end{aligned}$$

$$P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\}. \quad (18)$$

The penultimate equation is from is obtained under the alternative hypothesis H_1 .

We first prove the limit of $P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 1$ when $p \rightarrow +\infty$, then, by formula (1), we have

$$\begin{aligned} & P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ \min_{s \in \Omega_1} (X_s - \mu_s) > [d_p(h_\alpha)]^{\frac{1}{2}} - \mu_s \right\} \\ &\geq P \left\{ \min_{s \in \Omega_1} (X_s - \mu_s) > [d_p(h_\alpha)]^{\frac{1}{2}} - \log p \right\} \\ &= P \left\{ a_{p^{v_1}} \left[\min_{s \in \Omega_1} (X_s - \mu_s) + b_{p^{v_1}} \right] > a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \\ &\rightarrow \exp \left\{ -\exp \left\{ a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \right\}, \end{aligned}$$

where $a_{p^{v_1}} = (2 \log p^{v_1})^{1/2}$, $b_{p^{v_1}} = (2 \log p^{v_1})^{1/2} - \frac{1}{2}(2 \log p^{v_1})^{-1/2}(\log \log p^{v_1} + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v_1 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] = O \left(-\sqrt{2v_1} (\log p)^{\frac{3}{2}} \right) \rightarrow -\infty,$$

which means that

$$\exp \left\{ -\exp \left\{ a_{p^{v_1}} \left[(d_p(h_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \right\} \rightarrow 1,$$

So, we have

$$P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 1, \text{ as } p \rightarrow +\infty. \quad (19)$$

Secondly, we prove that $P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0$ as $p \rightarrow +\infty$, then, by formula (1), we have

$$\begin{aligned} & P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ \min_{s \in \Omega_2} (X_s - \mu_s) > [d_p(h_\alpha)]^{\frac{1}{2}} - \mu_s \right\} \\ &\leq P \left\{ \min_{s \in \Omega_2} (X_s - \mu_s) > [d_p(h_\alpha)]^{\frac{1}{2}} + \log p \right\} \end{aligned}$$

$$\begin{aligned}
&= P \left\{ a_{p^{v_2}} \left[\min_{s \in \Omega_2} (X_s - \mu_s) + b_{p^{v_2}} \right] > a_{p^{v_2}} \left[(d_p(h_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \\
&\rightarrow \exp \left\{ -\exp \left\{ a_{p^{v_2}} \left[(d_p(h_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \right\},
\end{aligned}$$

where $a_{p^{v_2}} = (2 \log p^{v_2})^{1/2}$, $b_{p^{v_2}} = (2 \log p^{v_2})^{1/2} - \frac{1}{2}(2 \log p^{v_2})^{-1/2}(\log \log p^{v_2} + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v_2 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^{v_2}} \left[(d_p(h_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] = O \left(\sqrt{2v_2} (\log p)^{\frac{3}{2}} \right) \rightarrow +\infty,$$

which means that

$$\exp \left\{ -\exp \left\{ a_{p^{v_2}} \left[(d_p(h_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty.$$

So, we have

$$P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (20)$$

Finally, we prove the limit of $P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0$ when $p \rightarrow +\infty$. By formula (1), we have

$$\begin{aligned}
&P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= P \left\{ a_{p^k} \left[\min_{s \in \Omega^c} (X_s) + b_{p^k} \right] > a_{p^k} \left[(d_p(h_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \\
&\rightarrow \exp \left\{ -\exp \left\{ a_{p^k} \left[(d_p(h_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \right\},
\end{aligned}$$

where $a_{p^k} = (2 \log p^k)^{1/2}$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$, $b_{p^k} = (2 \log p^k)^{1/2} - \frac{1}{2}(2 \log p^k)^{-1/2}(\log \log p^k + \log 4\pi)$.

Since $0 < k < 1$, it is obvious that

$$a_{p^k} \left[(d_p(h_\alpha))^{\frac{1}{2}} + b_{p^k} \right] = O \left(2\sqrt{k} \log p \right) \rightarrow +\infty, \text{ as } p \rightarrow +\infty.$$

which means that

$$\exp \left\{ -\exp \left\{ a_{p^k} \left[(d_p(h_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty.$$

So, we have

$$P \left\{ \max_{s \in \Omega^c} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (21)$$

Next, according to formula (18),(19),(20) and (21) we have

$$\begin{aligned}
& \lim_{p \rightarrow +\infty} P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= \lim_{p \rightarrow +\infty} P \left\{ \min \left[\min_{s \in \Omega_1} (X_s), \min_{s \in \Omega_2} (X_s), \min_{s \in \Omega^c} (X_s) \right] > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \times \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \times \\
&\quad \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(h_\alpha)]^{\frac{1}{2}} \right\} \\
&= 1 \times 0 \times 0 \\
&= 0.
\end{aligned} \tag{22}$$

Next, according to formula (16), (17) and (18), applying the squeeze theorem, we have

$$\lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 \geq C_\alpha [2 - (\log p)^{-1}] + 2c_p \right\} = 0. \tag{23}$$

Now, according to (14),(15) and (23),we have

$$\beta_{T_4} \leq \beta_{T_5} + o(1).$$

□

Proof of Theorem 5.

$$\begin{aligned}
\beta_{T_5} &= P\{T_5 > C_\alpha\} \\
&= P\{-2 \log(1 - e^{-\lambda_{1,p}}) - 2 \log(1 - e^{-\lambda_{2,p}}) > C_\alpha\} \\
&\geq P\{-4 \log(1 - e^{-\lambda_{1,p}}) > C_\alpha\} \\
&= P\left\{\log(1 - e^{-\lambda_{1,p}}) < -\frac{C_\alpha}{4}\right\} \\
&= P\left\{1 - e^{-\lambda_{1,p}} < e^{-\frac{C_\alpha}{4}}\right\} \\
&= P\left\{e^{-\lambda_{1,p}} > 1 - e^{-\frac{C_\alpha}{4}}\right\} \\
&= P\left\{-\lambda_{1,p} > \log\left(1 - e^{-\frac{C_\alpha}{4}}\right)\right\} \\
&= P\left\{\lambda_{1,p} < -\log\left(1 - e^{-\frac{C_\alpha}{4}}\right)\right\} \\
&= P\left\{\exp\left(-\frac{\left(\max_{s=1, \dots, p} (Z_s)\right)^2 - c_p}{2 - (\log p)^{-1}}\right) < -\log\left(1 - e^{-\frac{C_\alpha}{4}}\right)\right\}
\end{aligned}$$

$$\begin{aligned}
&= P \left\{ \frac{\left(\max_{s=1, \dots, p} (Z_s) \right)^2 - c_p}{2 - (\log p)^{-1}} > -\log \left(-\log \left(1 - e^{-\frac{C_\alpha}{4}} \right) \right) \right\} \\
&= P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > d_p(g_\alpha) \right\}, \tag{24}
\end{aligned}$$

where $g_\alpha = -\log \left(-\log \left(1 - e^{-\frac{C_\alpha}{4}} \right) \right) = -\log \left(-\log \left(1 - e^{-\frac{x_\alpha^2(4)}{4}} \right) \right)$.

$$\begin{aligned}
\beta_{T_2} &= P \left\{ \max_{s=1, \dots, p} (Z_s^2) - 2 \log p + \log(\log p) > C_\alpha \right\} \\
&= P \left\{ \max_{s=1, \dots, p} (Z_s^2) > C_\alpha + 2 \log p - \log(\log p) \right\} \\
&= P \left\{ \max \left[\left(\max_{s=1, \dots, p} (Z_s) \right)^2, \left(\min_{s=1, \dots, p} (Z_s) \right)^2 \right] > C_\alpha + \log \frac{p^2}{\log p} \right\} \\
&\leq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha + \log \frac{p^2}{\log p} \right\} + \\
&\quad P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha + \log \frac{p^2}{\log p} \right\}, \tag{25}
\end{aligned}$$

where $C_\alpha = -2 \log[-\sqrt{\pi} \log(1 - \alpha)]$.

For a fixed α , we have

$$\begin{aligned}
&\lim_{p \rightarrow +\infty} C_\alpha + \log \frac{p^2}{\log p} - g_\alpha [2 - (\log p)^{-1}] - c_p \\
&= \lim_{p \rightarrow +\infty} C_\alpha - g_\alpha [2 - (\log p)^{-1}] + \log 4\pi - \frac{\log(\log p) + \log 4\pi}{2 \log p} \\
&= C_\alpha - 2g_\alpha + \log 4\pi \\
&= -2 \log[-\sqrt{\pi} \log(1 - \alpha)] + 2 \log \left(-\log \left(1 - e^{-\frac{x_\alpha^2(4)}{4}} \right) \right) + \log 4\pi \\
&> 0
\end{aligned}$$

This means that when $p \rightarrow +\infty$, $C_\alpha + \log \frac{p^2}{\log p} > d_p(g_\alpha)$.
Then when $p \rightarrow +\infty$, we have

$$P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha + \log \frac{p^2}{\log p} \right\}$$

$$\begin{aligned}
&\leq P \left\{ \left(\max_{s=1, \dots, p} (Z_s) \right)^2 > d_p(g_\alpha) \right\} \\
&\leq P (T_5 > C_\alpha) \\
&= \beta_{T_5}
\end{aligned} \tag{26}$$

there the second inequality follow from (24).

Similarly, we can also conclude that

$$\begin{aligned}
&P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > C_\alpha + \log \frac{p^2}{\log p} \right\} \\
&\leq P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > d_p(g_\alpha) \right\}
\end{aligned} \tag{27}$$

Since condition C.1 holds, according to (3), we can deduce that

$$\begin{aligned}
&\lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 > d_p(g_\alpha) \right\} \\
&= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 \leq d_p(g_\alpha) \right\} \\
&= 1 - \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 \leq d_p(g_\alpha) \right\} \\
&= \lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > d_p(g_\alpha) \right\}.
\end{aligned} \tag{28}$$

First we recall some notations. Under alternative hypothesis H_1 , denote the index set of nonzero signals by $\Omega = \{i : 1 \leq i \leq p, \mu_i \neq 0\}$ and let the total number of nonzero signals be p^v , where the parameter $v (0 < v < 1)$ measures the sparsity of the nonzero mean. Similarly, denote the index set of zero signals by $\Omega^c = \{i : 1 \leq i \leq p, \mu_i = 0\}$ and let the total number of zero signals be p^k , where $0 < k < 1$ and $p^v + p^k = p$. Since non-zero signals include positive and negative, we divide Ω into two parts, where $\Omega_1 = \{i : 1 \leq i \leq p, \mu_i > 0\}$ represents the index set of positive non-zero signals, and let the total number of non-zero signals be p^{v_1} ($0 < v_1 < v$), $\Omega_2 = \{i : 1 \leq i \leq p, \mu_i < 0\}$ represents the index set of negative non-zero signals, and let the total number of non-zero signals be p^{v_2} ($0 < v_2 < v$), $p^{v_1} + p^{v_2} = p^v$.

Now, we have

$$P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > d_p(g_\alpha) \right\}$$

$$\begin{aligned}
&= P \left\{ \left(\min_{s=1, \dots, p} (X_s) \right)^2 > d_p(g_\alpha) \right\} \\
&= P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} + P \left\{ \min_{s=1, \dots, p} (X_s) < -[d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\
&\leq P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\
&= P \left\{ \min \left[\min_{s \in \Omega_1} (X_s), \min_{s \in \Omega_2} (X_s), \min_{s \in \Omega^c} (X_s) \right] > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\
&= P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \times P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \times \\
&\quad P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\}. \tag{29}
\end{aligned}$$

The penultimate equation is from is obtained under the alternative hypothesis H_1 .

We first prove the limit of $P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 1$ when $p \rightarrow +\infty$, then, by formula (1), we have

$$\begin{aligned}
&P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\
&= P \left\{ \min_{s \in \Omega_1} (X_s - \mu_s) > [d_p(g_\alpha)]^{\frac{1}{2}} - \mu_s \right\} \\
&\geq P \left\{ \min_{s \in \Omega_1} (X_s - \mu_s) > [d_p(g_\alpha)]^{\frac{1}{2}} - \log p \right\} \\
&= P \left\{ a_{p^{v_1}} \left[\min_{s \in \Omega_1} (X_s - \mu_s) + b_{p^{v_1}} \right] > a_{p^{v_1}} \left[(d_p(g_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \\
&\rightarrow \exp \left\{ - \exp \left\{ a_{p^{v_1}} \left[(d_p(g_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \right\},
\end{aligned}$$

where $a_{p^{v_1}} = (2 \log p^{v_1})^{1/2}$, $b_{p^{v_1}} = (2 \log p^{v_1})^{1/2} - \frac{1}{2} (2 \log p^{v_1})^{-1/2} (\log \log p^{v_1} + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v_1 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^{v_1}} \left[(d_p(g_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] = O \left(-\sqrt{2v_1} (\log p)^{\frac{3}{2}} \right) \rightarrow -\infty,$$

which means that

$$\exp \left\{ - \exp \left\{ a_{p^{v_1}} \left[(d_p(g_\alpha))^{\frac{1}{2}} - \log p + b_{p^{v_1}} \right] \right\} \right\} \rightarrow 1, \text{ as } p \rightarrow +\infty.$$

So, we have

$$P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 1, \text{ as } p \rightarrow +\infty. \quad (30)$$

Secondly, we prove that $P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0$ as $p \rightarrow +\infty$, then, by formula (1), we have

$$\begin{aligned} 0 &\leq P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ \min_{s \in \Omega_2} (X_s - \mu_s) > [d_p(g_\alpha)]^{\frac{1}{2}} - \mu_s \right\} \\ &\leq P \left\{ \min_{s \in \Omega_2} (X_s - \mu_s) > [d_p(g_\alpha)]^{\frac{1}{2}} + \log p \right\} \\ &= P \left\{ a_{p^{v_2}} \left[\min_{s \in \Omega_2} (X_s - \mu_s) + b_{p^{v_2}} \right] > a_{p^{v_2}} \left[(d_p(g_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \\ &\rightarrow \exp \left\{ -\exp \left\{ a_{p^{v_2}} \left[(d_p(g_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \right\}, \end{aligned}$$

where $a_{p^{v_2}} = (2 \log p^{v_2})^{1/2}$, $b_{p^{v_2}} = (2 \log p^{v_2})^{1/2} - \frac{1}{2}(2 \log p^{v_2})^{-1/2}(\log \log p^{v_2} + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < v_2 < v < 1 - \frac{1}{p^{1/2} \log p}$, when $p \rightarrow +\infty$, it is obvious that

$$a_{p^{v_2}} \left[(d_p(g_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] = O \left(\sqrt{2v_2} (\log p)^{\frac{3}{2}} \right) \rightarrow +\infty,$$

which means that

$$\exp \left\{ -\exp \left\{ a_{p^{v_2}} \left[(d_p(g_\alpha))^{\frac{1}{2}} + \log p + b_{p^{v_2}} \right] \right\} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty.$$

So, we have

$$P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (31)$$

Finally, we prove the limit of $P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0$ when $p \rightarrow +\infty$. By formula (1), we have

$$\begin{aligned} &P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\ &= P \left\{ a_{p^k} \left[\min_{s \in \Omega^c} (X_s) + b_{p^k} \right] > a_{p^k} \left[(d_p(g_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \\ &\rightarrow \exp \left\{ -\exp \left\{ a_{p^k} \left[(d_p(g_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \right\}, \end{aligned}$$

where $a_{p^k} = (2 \log p^k)^{1/2}$, $b_{p^k} = (2 \log p^k)^{1/2} - \frac{1}{2}(2 \log p^k)^{-1/2}(\log \log p^k + \log 4\pi)$, $c_p = 2 \log(p) - [\log(\log p) + \log(4\pi)] + \frac{\log(\log p) + \log(4\pi)}{2 \log(p)}$.

Since $0 < k < 1$, it is obvious that

$$a_{p^k} \left[(d_p(g_\alpha))^{\frac{1}{2}} + b_{p^k} \right] = O\left(2\sqrt{k} \log p\right) \rightarrow +\infty, \text{ as } p \rightarrow +\infty.$$

which means that

$$\exp \left\{ -\exp \left\{ a_{p^k} \left[(d_p(g_\alpha))^{\frac{1}{2}} + b_{p^k} \right] \right\} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty.$$

So, we have

$$P \left\{ \max_{s \in \Omega^c} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \rightarrow 0, \text{ as } p \rightarrow +\infty. \quad (32)$$

Next, according to formula (29),(30),(31) and (32) we have

$$\begin{aligned} & \lim_{p \rightarrow +\infty} P \left\{ \min_{s=1, \dots, p} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\ &= \lim_{p \rightarrow +\infty} P \left\{ \min \left[\min_{s \in \Omega_1} (X_s), \min_{s \in \Omega_2} (X_s), \min_{s \in \Omega^c} (X_s) \right] > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\ &= \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega_1} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \times \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega_2} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \times \\ & \quad \lim_{p \rightarrow +\infty} P \left\{ \min_{s \in \Omega^c} (X_s) > [d_p(g_\alpha)]^{\frac{1}{2}} \right\} \\ &= 1 \times 0 \times 0 \\ &= 0. \end{aligned} \quad (33)$$

Next, according to formula (27), (28),(29)and (33),applying the squeeze theorem, we have

$$\lim_{p \rightarrow +\infty} P \left\{ \left(\min_{s=1, \dots, p} (Z_s) \right)^2 \geq C_\alpha + \log \frac{p^2}{\log p} \right\} = 0. \quad (34)$$

Now, according to (25),(26) and (34),we have

$$\beta_{T_2} \leq \beta_{T_5} + o(1).$$

□

References

[1] Li, Z., Qin, S., Li, Q.: A novel test by combining the maximum and minimum values among a large number of dependent z-scores with application to genome wide association study. *Statistics in Medicine* **40**(10), 2422–2434 (2021)

- [2] Leadbetter, M.R., Lindgren, G., Rootzén, H.: *Extremes and Related Properties of Random Sequences and Processes*. Springer,
- [3] Fisher, R.A., et al.: *Statistical methods for research workers. Statistical methods for research workers.* (6th Ed) (1936)