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Regulating the asymmetric diffusion channel in MnCo2O4 spinel enables accelerated hydrogen bond reaction kinetics of ammonia ion batteries
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1. Supplementary Figures
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Figure S1. SEM image of (a) MCO/CNTs and (b) Ro-MCO/CNTs.
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Figure S2. (a) TEM image with corresponding (b) HRTEM image of MCO/CNTs. (c) TEM image with corresponding (d) HRTEM image of Ro-MCO/CNTs.
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Figure S3. (a) Mn 2p, (b) Co 2p, and (c) O 1s XPS spectra of MCO/CNTs, Vo-MCO/CNTs, and Ro-MCO/CNTs.
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Figure S4. FT-IR of MCO/CNTs, Vo-MCO/CNTs, and Ro-MCO/CNTs.
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Figure S5. (a) The average oxidation states of Mn sites in Mn foil, Vo-MCO/CNTs, MCO/CNTs, MnO, Ro-MCO/CNTs, and Mn2O3, respectively. (b) The average oxidation states of W sites in Co foil, CoO, Vo-MCO/CNTs, MCO/CNTs, Ro-MCO/CNTs, and Co2O3, respectively.
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Figure S6. (a) FT-EXAFS spectra of Mn and (b) Co.
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Figure S7. (a) Mn K-edge EXAFS oscillation function of MCO, Vo-MCO, Ro-MCO, Mn foil, MnO, and Mn2O3, respectively. (b) Co K-edge EXAFS oscillation function of MCO, Vo-MCO, Ro-MCO, Co foil, CoO, and Co2O3, respectively.
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Figure S8. (a) GCD curves at 0.1 A g−1 and (b) EIS of MCO/CNTs-1, 2 and 3.
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Figure S9. EIS spectra of MCO/CNTs, Vo-MCO/CNTs, and Ro-MCO/CNTs.
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Figure S10. (a) GCD curves at 0.1 A g−1. (b) GCD curves at different current densities. (c) Capacitive contribution of Vo-MCO/CNTs.
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Figure S11. (a) GCD curves at 0.1 A g−1. (b) GCD curves at different current densities. (c) CV curves at different scan rates from 0.2 to 1.0 mV s−1. Inset is the log i versus log v plots based on the CV curves at four different oxidation/reduction states. (d) Capacitive contribution of MCO/CNTs.
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Figure S12. (a) GCD curves at 0.1 A g−1. (b) GCD curves at different current densities. (c) CV curves at different scan rates from 0.2 to 1.0 mV s−1. Inset is the log i versus log v plots based on the CV curves at four different oxidation/reduction states. (d) Capacitive contribution of Ro-MCO/CNTs.
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Figure S13. GITT profiles and the calculated NH4+ diffusion coefficient of (a) MCO/CNTs and (b) Vo-MCO/CNTs.
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Figure S14. EIS spectra at different temperatures of the (a) MCO/CNTs, (b) Vo-MCO/CNTs, and (c) Ro-MCO/CNTs.
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Figure S15. EIS spectra of the Vo-MCO/CNTs during cycle stability test.
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Figure S16. Ex-suit XPS of (a) Mn 2p and (b) O 1s for Vo-MCO/CNTs at different state.
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Figure S17. SEM images of Vo-MCO/CNTs at different state in the GCD cycle.
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Figure S18. Schematic diagram of (a) hydrate NH4+ and N–H···O bonds, (b) intercalation sites for hydrate NH4+ in MnCo2O4 spinel.
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Figure S19. Schematic diagram of three MnCo2O4 samples with different metal–O bond lengths.
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Figure S20. (a) CV curves, (b) GCD curves, and (c) EIS spectra of PTCDI.
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Figure S21. CV curves of Vo-MCO/CNTs//1 M (NH4)2SO4//PTCDI full cell at 0.2 mV s–1.
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Figure S22. EIS spectra of Vo-MCO/CNTs//1 M (NH4)2SO4//PTCDI full cell at 0.2 mV s–1.
2. Supplementary tables

Table S1. Elemental content of Vo-MCO/CNTs
	Element
	C
	Mn
	Co
	O

	Content (%)
	43.5
	12.2
	21.5
	22.8


Table S2. Comparison of representative electrode materials for AIBs
	Host material
	Electrolyte
	V vs. SCE
	Capacity (mAh g–1)
	Ref.

	VOPO4·2H2O
	1 M (NH4)2SO4
	–0.2 — 1.1 V
	154.6 mAh g–1 (0.1 A g–1)
	

1



	Mn3Al1-LDH
	0.5 M (NH4)2SO4
	–0.2 — 1.0 V
	183.7 mAh g–1 (0.1 A g–1)
	2


	PBAs
	21 M NH4TFSI
	0 — 1.2 V
	101.2 mAh g–1 (0.1 A g–1)
	3


	MnOx
	0.5 M NH4Ac
	0 — 0.8 V
	176.0 mAh g–1 (0.1 A g–1)
	4


	h-MoO3
	1 M NH4Cl
	–0.5 — 0.6 V
	115.0 mAh g–1 (0.1 A g–1)
	

5



	V2O5
	0.5 M (NH4)2SO4
	–0.2 — 0.8 V
	119.0 mAh g–1 (0.1 A g–1)
	6


	Vo-MCO/CNTs
	2 M (NH4)2SO4
	–0.5 — 0.9 V
	219.2 mAh g–1 (0.1 A g–1)
	This work


Table S3. Fitted EIS component values of the MCO/CNTs, Vo-MCO/CNTs, and Ro-MCO/CNTs
	Sample
	Temperature (K)
	Solution resistance (Ω)
	Charge transfer resistance (Ω)
	Warburg impedance (Ω)

	MCO/CNTs
	303.15
	4.59
	6.31
	24.8

	
	308.15
	4.33
	5.51
	22.7

	
	313.15
	4.32
	4.69
	18.5

	
	323.15
	3.71
	3.70
	15.2

	
	333.15
	3.82
	2.86
	13.6

	Vo-MCO/CNTs
	303.15
	2.65
	11.2
	9.36

	
	308.15
	2.61
	10.29
	9.19

	
	313.15
	2.28
	9.72
	7.35

	
	323.15
	2.33
	7.83
	6.63

	
	333.15
	2.70
	6.56
	7.51

	Ro-MCO/CNTs
	303.15
	5.64
	4.67
	20.7

	
	308.15
	5.68
	3.61
	15.7

	
	313.15
	5.41
	3.30
	14.7

	
	323.15
	5.15
	1.94
	9.40

	
	333.15
	4.45
	1.26
	6.45
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