

Supplementary Information for “Observation of the Magnonic Dicke Superradiant Phase Transition”

Dasom Kim^{1,2,3†}, Sohail Dasgupta^{4†}, Xiaoxuan Ma^{5†}, Joong-Mok Park³, Hao-Tian Wei⁴, Liang Luo³, Jacques Doumani^{1,2}, Xinwei Li⁶, Wanting Yang⁵, Di Cheng^{3,7}, Richard H. J. Kim³, Henry O. Everitt^{2,8,9}, Shojiro Kimura¹⁰, Hiroyuki Nojiri¹⁰, Jigang Wang^{3,7}, Shixun Cao^{5*}, Motoaki Bamba¹¹, Kaden R. A. Hazzard^{4,8,12}, and Junichiro Kono^{2,4,8,13*}

¹ *Applied Physics Graduate Program, Smalley–Curl Institute, Rice University, Houston, TX 77005, USA*

² *Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA*

³ *Ames National Laboratory, Ames, IA 50011, USA*

⁴ *Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA*

⁵ *Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University, Shanghai, 200444, China*

⁶ *Department of Physics, National University of Singapore, 117551, Singapore*

⁷ *Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA*

⁸ *Smalley–Curl Institute, Rice University, Houston, TX 77005, USA*

⁹ *DEVCOM Army Research Laboratory-South, Houston, TX 77005, USA*

¹⁰ *Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan*

¹¹ *Department of Physics, Yokohama National University, Yokohama 240-8501, Japan*

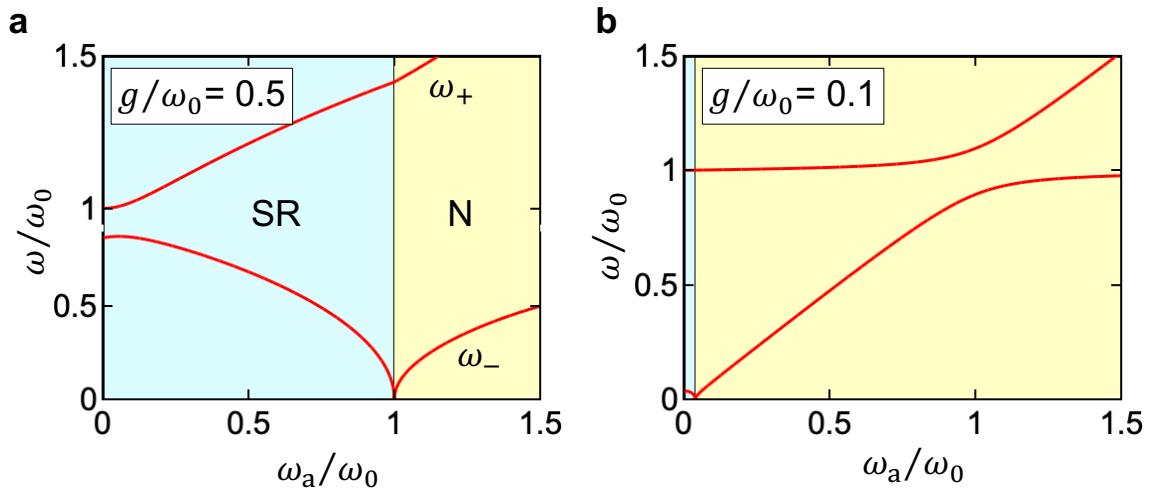
¹² *Department of Physics and Astronomy, University of California, Davis, CA 95616, USA*

¹³ *Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA*

†These authors contributed equally to this work

*Corresponding author. Email: kono@rice.edu (J.K.); sxcao@shu.edu.cn (S.C.)

¹ **1 SRPT at finite detuning.**


² An anti-crossing of two polaritons occurs at the zero-detuning point ($\omega_0 = \omega_a$). When the
³ normalized coupling strength ($\eta \equiv g/\omega_0$) reaches the critical value of 0.5, the system undergoes
⁴ the SRPT, and ω_- becomes zero. As shown in Fig. S1a, for $\eta = 0.5$ the SRPT occurs when
⁵ $\omega_0 = \omega_a$. For $\eta = 0.1$ (Fig. S1b), a situation more comparable to ErFeO₃, we find the phase
⁶ boundary moves to the $\omega_a < \omega_0$, while the anti-crossing still occurs at the zero-detuning point.
⁷ Thus one can achieve the SRPTs with a small η as long as $\nu \equiv \omega_a/\omega_0$ is small enough to satisfy
⁸ the inequality in Eq. (2) in main text. By contrast, when $\nu > 1$, the η_c becomes higher than 0.5.

⁹ **2 THz absorption spectra at high temperatures.**

¹⁰ Extended Data Fig. 1a shows temperature-dependent absorption spectra of the qAFM mode of
¹¹ Fe³⁺. The kink occurs at 4 K which is the superradiant phase boundary at 0 T. Below this
¹² temperature, the Fe³⁺ order parameter $\langle S_y^{A/B} \rangle$ becomes finite. Extended Data Fig. 1b shows
¹³ magnetic field dependence of the qAFM mode of Fe³⁺ at 10 K. Only a slight change was ob-
¹⁴ served at low magnetic fields without any signature of the phase transition, consistent with our
¹⁵ phase diagram. Meanwhile, two modes that emerge at high fields are Er³⁺ EPR modes. As
¹⁶ described in main text, ErFeO₃ can be modeled by the two-sublattice model. This implies we
¹⁷ should expect four modes in total: the qFM and qAFM modes for Fe³⁺ spins, and in-phase
¹⁸ and out-of-phase EPR modes for Er³⁺ spins. Here, we are considering the relative phase of
¹⁹ precession of two Er³⁺ spins. A detailed derivation is in Methods and follows that in Ref.¹. Our
²⁰ theory finds the lowest mode is the out-of-phase mode that is coupled to qAFM, establishing a
²¹ magnon-spin system. Due to the polarization selection rule described in Fig. 2b, the qFM mode
²² does not appear in Extended Data Fig. 1.

References

1. Bamba, M., Li, X., Marquez Peraca, N. & Kono, J. Magnonic superradiant phase transition. *Commun. Phys.* **5**, 3 (2022).

Fig. S1. Occurrence of the superradiant phase transition at finite detuning. **a, b,** Normalized frequencies of the upper-polariton (ω_+) and lower-polariton (ω_-) modes as a function of ω_a/ω_0 calculated using the Dicke model without the A^2 term with $g/\omega_0 = 0.5$ (**a**) and with $g/\omega_0 = 0.1$ (**b**).