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This is the supplementary material of the paper entitled as “Fast renormalizing the structures
and dynamics of ultra-large systems via random renormalization group”. In Sec. I, we introduce the
code implementation of the RRG program and present instances of its usage. In Sec. II, we present
the code for analyzing macroscopic observables and scaling behaviours. In Sec. III, we validate
the ability of the RRG to classify different random network models according to scale-invariance
property.

I. CODE IMPLEMENTATION OF THE RRG

The RRG is programed in Python, whose open-source code can be seen in https://github.com/Asuka-Research-
Group/Random-renormalization-group and used for research. The RRG depends on several external libraries listed
below. Users should prepare these libraries before using the RRG.

A. Environment preparation

1 ## Dependency libraries used for the RRG:

2 import networkx as nx

3 import faiss

4 import time

5 import scipy as spy

6 from datasketch import MinHash

7 import copy

8

9 ## Dependency libraries used for the scaling analysis:

10 from scipy.optimize import curve_fit

11 import statsmodels.api as sm

12 from scipy.stats import ks_2samp

Among these libraries, some users who prefer to use CPU for computation may meet difficulties in installing faiss
via pip. This is a common problem faced by the faiss environment. The following conda-based command may help
resolve the problem in most cases

1 conda install -c conda -forge faiss

B. Main function and usage of the RRG framework

In application, we have a system, X, to process. We denote X Initial as X in the program. For structure renor-
malization, we need to ensure that X Initial is a graph object in the networkx library. For dynamics renormalization,
X Initial is expected as an array in the numpy, where each row corresponds to the dynamics of one unit.
To run the RRG for T iterations, we let Iteration Num be T . Meanwhile, we set TargetDim as h to make each

hashed binary vector Z
(l)
i have a dimension of h. To chose the signed random hyperplane projection [1], the signed

random Fourier feature [2, 3], or the signed Cauchy projection [4], we need to set Method Type as Linear Kernel,
Gaussian Kernel, or Cauchy Kernel, respectively. Finally, the inform the program about the data type, we set
Data Type as Structure or Dynamics to start structure or dynamics renormalization.
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1 def Renormalization_Flow(X_Initial ,Iteration_Num ,TargetDim ,Method_Type ,Data_Type):

2 RG_Flow =[]

3 RG_Flow.append(X_Initial)

4 Corase_ID_list =[]

5 for Iter in range(Iteration_Num):

6 StartT=time.time()

7 X_Current=RG_Flow[Iter]

8 if Data_Type =="Dynamics":

9 X_New , Corase_ID=Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type)

10 elif Data_Type =="Structure":

11 X_New , Corase_ID=Network_Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type)

12 if nx.number_of_edges(X_New)==0:

13 break

14 RG_Flow.append(X_New)

15 Corase_ID_list.append(Corase_ID)

16 EndT=time.time()

17 print([’The’, Iter+1, ’time of renormalization costs -’, EndT -StartT ])

18 Tracked_ID_list=Tracking_System(Corase_ID_list)

19 return RG_Flow ,Tracked_ID_list

The main function of the RRG generates two outputs after computation. The first one is RG Flow, the list of
system X on different scales. For instance, the first element of RG Flow is X = X(1), the second one is X(2), and so
on. The number of elements in RG Flow is determined by both Iteration Num and system properties (i.e., the RRG
stops iteration when there remain only one unit). The data types of all elements of RG Flow keep the same as X.

The second output of the main function is Tracked ID list, which is used to indicate the indexes of the initial units
aggregated into each macro-unit after every iteration of the RRG. Below, we present a simple instance where system
X contains only six units

1 Tracked_ID_list [0]=[[0 ,1] ,[2] ,[3 ,5] ,[4]]

2 Tracked_ID_list [1]=[[0 ,1 ,2] ,[3 ,5] ,[4]]

3 Tracked_ID_list [2]=[[0 ,1 ,2 ,4] ,[3 ,5]]

Before renormalization, each macro-unit only contains itself, which is represented by a list [[0],[1],[2],[3],[4],[5]] (note
that this trivial list is not included in Tracked ID list for convenience). This list contains six lists as its elements, where
the i-th element contains the indexes of initial units aggregated into the i-th macro-unit. As shown in the instance
above, the first element of Tracked ID list is [[0,1],[2],[3,5],[4]], which means that there remain four macro-units after
the first time of renormalization. The first macro-unit is formed by two initial units whose indexes are 0 and 1. The
second element of Tracked ID list is [[0,1,2],[3,5],[4]], suggesting that there are three macro-units after two times of
renormalization. The first macro-units contains three initial units whose indexes are 0, 1, and 2. Other elements of
Tracked ID list can be understood in a similar way.

To run the RRG, one can consider the following instances:

1 ## Structure renormalization

2 X_Initial=nx.random_tree (10000) # Generate a random tree with 10000 units

3

4 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,100,50,"Linear_Kernel","Structure") # Run a

RRG for 100 iterations , where the dimension of hased binary vectors is 50

5

6 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,50,10,"Gaussian_Kernel","Structure") # Run a

RRG for 50 iterations , where the dimension of hased binary vectors is 10

7

8 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,200,100,"Cauchy_Kernel","Structure") # Run a

RRG for 200 iterations , where the dimension of hased binary vectors is 100

9

10 ## Dynamics renormalization

11 X_Initial = np.random.randn (10000 , 50000) # Generate a system with 10000 units , where each unit

exhibits random dynamics for 50000 time steps

12

13 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,100,50,"Linear_Kernel","Dynamics") # Run a

RRG for 100 iterations , where the dimension of hased binary vectors is 50

14

15 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,50,10,"Gaussian_Kernel","Dynamics") # Run a

RRG for 50 iterations , where the dimension of hased binary vectors is 10

16

17 RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial ,200,100,"Cauchy_Kernel","Dynamics") # Run a

RRG for 200 iterations , where the dimension of hased binary vectors is 100
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C. Full code implementation

For convenience, we attach the full code implementation below. One can also see https://github.com/Asuka-
Research-Group/Random-renormalization-group for the official release of our framework, where we provide instances
in the Jupyter notebook.

1 def Random_Fourier_Feature_Hashing(X,TargetDim):

2 N = np.size(X,0)

3 d = np.size(X,1)

4 W = np.random.normal(loc=0, scale=1, size=(d, TargetDim))

5 b = np.random.uniform(0, 2*np.pi , size=TargetDim)

6 B = np.repeat(b[:, np.newaxis], N, axis =1).T

7 Z = 1/2* (1+ np.sign(np.cos(X @ W + B)))

8 Z = np.uint8(Z)

9 return Z

10

11 def Random_Cauchy_Feature_Hashing(X,TargetDim):

12 N = np.size(X,0)

13 d = np.size(X,1)

14 W = spy.stats.cauchy.rvs(loc=0, scale=1, size=(d, TargetDim))

15 b = np.random.uniform(0, 2*np.pi , size=TargetDim)

16 B = np.repeat(b[:, np.newaxis], N, axis =1).T

17 Z = 1/2* (1+ np.sign(np.cos(X @ W + B)))

18 Z = np.uint8(Z)

19 return Z

20

21 def Random_Hyperplane_Hashing(X,TargetDim):

22 d = np.size(X,1)

23 W = np.random.normal(loc=0, scale=1, size=(d, TargetDim))

24 Z = 1/2* (1+ np.sign(X @ W))

25 Z = np.uint8(Z)

26 return Z

27

28 def Random_Min_Hashing(X,TargetDim):

29 Z=np.zeros ((len(X),TargetDim))

30 for ID1 in range(len(X)):

31 Hashing_Code=MinHash(num_perm=TargetDim)

32 Hashing_Code.update_batch(X[ID1])

33 Z[ID1 ,:]= Hashing_Code.hashvalues

34 return Z

35

36 def Neighbor_Generator(X,UnitNum):

37 Y=[]

38 for Unit in range(UnitNum):

39 Neighbors = [Unit] + list(X.neighbors(Unit))

40 Y.append(np.array(Neighbors))

41 return Y

42

43

44 def Normalization_Function(X_Current ,Method_Type):

45 if Method_Type =="Linear_Kernel":

46 Normalized_X=X_Current -np.mean(X_Current ,axis =1).reshape(np.size(X_Current ,0) ,1)

47 elif Method_Type =="Gaussian_Kernel":

48 Normalized_X=X_Current -np.mean(X_Current ,axis =1).reshape(np.size(X_Current ,0) ,1)

49 Std=np.std(Normalized_X ,axis =1).reshape(np.size(Normalized_X ,0) ,1)

50 Normalized_X=np.divide(Normalized_X ,Std ,out=Normalized_X ,where=Std !=0)

51 elif Method_Type =="Cauchy_Kernel":

52 Normalized_X=X_Current -np.min(X_Current ,axis =1).reshape(np.size(X_Current ,0) ,1)

53 SumV=np.sum(Normalized_X ,axis =1).reshape(np.size(Normalized_X ,0) ,1)

54 Normalized_X=np.divide(Normalized_X ,SumV ,out=Normalized_X ,where=SumV !=0)

55 return Normalized_X

56

57 def Binary_Hashing_Index(Z):

58 if np.size(Z,0) <=50000:

59 Dim =8*np.size(Z,1)

60 Index = faiss.IndexBinaryFlat(Dim)

61 Index.nprobe = 2

62 elif (np.size(Z,0) >50000)&(np.size(Z,0) <=500000):

63 Dim =8*np.size(Z,1)

64 Index = faiss.IndexBinaryHash(Dim ,Dim)
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65 Index.nprobe = 2

66 elif np.size(Z,0) >500000:

67 Dim =8*np.size(Z,1)

68 Index = faiss.IndexBinaryHash(Dim ,int(np.max([np.min([np.ceil(Dim /100) ,32]) ,16])))

69 Index.nprobe = 2

70 return Index

71

72

73 def KNN_with_Hashing_Index(Z):

74 StartT=time.time()

75 Index=Binary_Hashing_Index(Z)

76 Index.add(Z)

77 Num_neighbors =2

78 D, I = Index.search(Z, Num_neighbors)

79 EndT=time.time()

80 print([’KNN search costs -’, EndT -StartT ])

81 return D,I

82

83 def Hashing_Function(Normalized_X ,TargetDim ,Method_Type):

84 if Method_Type =="Linear_Kernel":

85 Z=Random_Hyperplane_Hashing(Normalized_X ,TargetDim)

86 elif Method_Type =="Gaussian_Kernel":

87 Z=Random_Fourier_Feature_Hashing(Normalized_X ,TargetDim)

88 elif Method_Type =="Cauchy_Kernel":

89 Z=Random_Cauchy_Feature_Hashing(Normalized_X ,TargetDim)

90 return Z

91

92 def Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type):

93 Normalized_X=Normalization_Function(X_Current ,Method_Type)

94 Z=Hashing_Function(Normalized_X ,TargetDim ,Method_Type)

95 _,I=KNN_with_Hashing_Index(Z)

96 G = nx.empty_graph(np.size(I,0))

97 Edge = np.vstack ((np.arange(0, np.size(I, 0)), I[:,1])).T

98 G.add_edges_from(Edge)

99 Clusters =[list(c) for c in list(nx.connected_components(G))]

100 ClusterNum=nx.number_connected_components(G)

101 print([’There are’, ClusterNum , ’macro -units after’, Iter+1, ’times of renormalization ’])

102 X_New=np.zeros((ClusterNum , np.size(X_Current ,1)))

103 Corase_ID = []

104 for ID1 in range(ClusterNum):

105 X_New[ID1 ,:]=np.sum(X_Current[Clusters[ID1],:],axis =0)

106 Corase_ID.append(Clusters[ID1])

107 return X_New , Corase_ID

108

109 def Network_Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type):

110 UnitNum=nx.number_of_nodes(X_Current)

111 Y=Neighbor_Generator(X_Current ,UnitNum)

112 Z=Random_Min_Hashing(Y,TargetDim)

113 Z=Hashing_Function(Z,TargetDim ,Method_Type)

114 _,I=KNN_with_Hashing_Index(Z)

115 G = nx.empty_graph(np.size(I,0))

116 Edge = np.vstack ((np.arange(0, np.size(I, 0)), I[:,1])).T

117

118 G.add_edges_from(Edge)

119 Potential_Clusters =[list(c) for c in list(nx.connected_components(G))]

120 Potential_ClusterNum=nx.number_connected_components(G)

121 Edge_To_Remove =[]

122 for ID1 in range(Potential_ClusterNum):

123 Unit_list=Potential_Clusters[ID1]

124 if len(Unit_list) >1:

125 H = nx.induced_subgraph(X_Current ,Unit_list)

126 Potential_H = nx.induced_subgraph(G,Unit_list)

127 Wrong_Edge=list(set(list(Potential_H.edges))-set(list(H.edges)))

128 Edge_To_Remove.extend(Wrong_Edge)

129

130 for Wrong_Edge in Edge_To_Remove:

131 G.remove_edge (* Wrong_Edge)

132

133 Clusters =[list(c) for c in list(nx.connected_components(G))]

134 ClusterNum=nx.number_connected_components(G)
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135 print([’There are’, ClusterNum , ’macro -units after’, Iter+1, ’times of renormalization ’])

136

137

138 X_New=copy.deepcopy(X_Current)

139 Pre_Corase_ID = []

140 Mappings ={}

141 for ID1 in range(ClusterNum):

142 Unit_list=Clusters[ID1]

143 Pre_Corase_ID.append(Unit_list)

144 Unit0 = Unit_list [0]

145 Mappings[Unit0]=ID1

146 for Unit in Unit_list [1:]:

147 if X_New.has_node(Unit):

148 Neighbors = list(X_New.neighbors(Unit))

149 New_edges = [(Unit0 , Nei) for Nei in Neighbors if Unit0 !=Nei]

150 X_New.add_edges_from(New_edges)

151 X_New.remove_node(Unit)

152 Corase_ID = []

153 Unit_Mappings ={}

154 for ID_1 ,ID_2 in enumerate(X_New.nodes()):

155 Unit_Mappings[ID_2]=ID_1

156 Corase_ID.append(Pre_Corase_ID[Mappings[ID_2 ]])

157 X_New = nx.relabel_nodes(X_New , Unit_Mappings)

158

159 return X_New , Corase_ID

160

161 def Tracking_System(Corase_ID_list):

162 Tracked_ID_list = []

163 for IterID in range(len(Corase_ID_list)):

164 if IterID ==0:

165 Tracked_ID_list.append(Corase_ID_list [0])

166 else:

167 Tracked_ID = []

168 if len(Corase_ID_list[IterID ]) >0:

169 for CoarseID in range(len(Corase_ID_list[IterID ])):

170 UnitsToTrack=Corase_ID_list[IterID ][ CoarseID]

171 Searched_ID =[]

172 for IDSearch in range(len(UnitsToTrack)):

173 Search_ID =1

174 while len(Tracked_ID_list[IterID -Search_ID ])==0:

175 Search_ID=Search_ID +1

176 Searched_ID=Searched_ID+Tracked_ID_list[IterID -Search_ID ][ UnitsToTrack[

IDSearch ]]

177 Tracked_ID.append(Searched_ID)

178 Tracked_ID_list.append(Tracked_ID)

179 return Tracked_ID_list

180

181 def Renormalization_Flow(X_Initial ,Iteration_Num ,TargetDim ,Method_Type ,Data_Type):

182 RG_Flow =[]

183 RG_Flow.append(X_Initial)

184 Corase_ID_list =[]

185 for Iter in range(Iteration_Num):

186 StartT=time.time()

187 X_Current=RG_Flow[Iter]

188 if Data_Type =="Dynamics":

189 X_New , Corase_ID=Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type)

190 elif Data_Type =="Structure":

191 X_New , Corase_ID=Network_Renormalization_Function(X_Current ,TargetDim ,Iter ,Method_Type)

192 if nx.number_of_edges(X_New)==0:

193 break

194 RG_Flow.append(X_New)

195 Corase_ID_list.append(Corase_ID)

196 EndT=time.time()

197 print([’The’, Iter+1, ’time of renormalization costs -’, EndT -StartT ])

198 Tracked_ID_list=Tracking_System(Corase_ID_list)

199 return RG_Flow ,Tracked_ID_list
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II. CODE IMPLEMENTATION OF MACROSCOPIC OBSERVABLES AND SCALING ANALYSIS

After obtaining a renormalization flow, we can analyze macroscopic observables and scaling behaviours. Below, we
elaborate the code implementation of these analyses.

A. Structure renormalization

For structure renormalization, we can run the following function to derive the mean Kolmogorov–Smirnov static
[5, 6]

1 Mean_K_S_Static=KS_Analysis(RG_Flow)

The output Mean K S Static is a scalar that reports the mean Kolmogorov–Smirnov static. The full code of this
function is present below

1 def KS_Analysis(RG_Flow):

2 K_S_Static=np.zeros(len(RG_Flow))

3 Degrees_O =[Node [1] for Node in list(nx.degree(RG_Flow [0]))]

4 for InterID in range(len(RG_Flow)):

5 Degrees =[Node [1] for Node in list(nx.degree(RG_Flow[InterID ]))]

6 KstestResult=ks_2samp(Degrees , Degrees_O , alternative=’two -sided’,method=’exact’)

7 K_S_Static[InterID ]= KstestResult [0]*( KstestResult [1] <0.01)

8

9 Mean_K_S_Static=np.mean(K_S_Static)

10 return Mean_K_S_Static

where the Degrees generated from each element of RG Flow can be further used to derive the degree distribution
after frequency counting (e.g., using the histogram function of the numpy).

B. Dynamics renormalization

For dynamics renormalization, we can use the following function to derive the normalized dynamics

1 Cut_Off_Ratio =0.1

2 Normalized_activity=Normalized_Dynamics(RG_Flow ,Tracked_ID_list ,Cut_Off_Ratio)

where Cut Off Ratio denotes the fraction of eigenvalues to keep. The output Normalized activity is a list of arrays,
where each element is the normalized dynamics of the system on a certain scale. The probability distribution of
normalized dynamics can be derived using frequency counting (e.g., using the histogram function of the numpy).

The full code implementation of the above function is

1 def Normalized_Dynamics(RG_Flow ,Tracked_ID_list ,Cut_Off_Ratio):

2 ClusterNum=np.array([len(Tracked_ID_list[ID1]) for ID1 in range(1,len(Tracked_ID_list))])

3 Max_Range=np.max(np.where(ClusterNum >1) [0])+1

4 for IterID in range(Max_Range):

5 X_Current=RG_Flow[IterID]

6 N=np.size(X_Current ,0)

7 Covariance = np.cov(X_Current)

8 Evals , U = np.linalg.eig(Covariance)

9 Idx = Evals.argsort ()[:: -1]

10 EigenValues = Evals[Idx]

11 EigenVectors = U[:,Idx]

12 k=int(np.round(N*Cut_Off_Ratio))

13 P=EigenVectors [:,:k] @ EigenVectors [:,:k].T

14 phi=P@(X_Current -np.mean(X_Current ,axis=1,keepdims=True))

15 Normalized_activity=phi/np.std(phi ,axis=1,keepdims=True)

16 return Normalized_activity

Moreover, we can carry out scaling analyses using the following commands

1 MeanClusterSize , MeanVar , Coeff , Alpha , R2 , MSE , Esti_Alpha_Scaling = Alpha_Scaling(RG_Flow ,

Tracked_ID_list)

2

3 MeanClusterSize , FreeEV , Coeff , Beta , R2, MSE , Esti_Beta_Scaling = Beta_Scaling(RG_Flow ,

Tracked_ID_list)

4
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5 Average_Rank_K , Average_Evals , Coeff , Mu , R2 , MSE , Esti_Mu_Scaling = Mu_Scaling(RG_Flow ,

Tracked_ID_list)

6

7 ScaledT , MeanACFs , MeanClusterSize , Tau , Coeff , Theta , R2, MSE , Esti_Theta_Scaling = Theta_Scaling(

RG_Flow ,Tracked_ID_list)

Among the outputs of Alpha Scaling function, MeanClusterSize stands for the sequences of ⟨K(l)⟩ and Mean-
Var stands for the sequences of Var

(
⟨K(l)⟩

)
. Coeff and Alpha denote the coefficient and exponent α of the fitted

model, whose fitting accuracy can be reflected by R2 and MSE. The estimated trend of Var
(
⟨K(l)⟩

)
is contained by

Esti Alpha Scaling.
In the outputs of Beta Scaling function, FreeEV denotes the sequence of F

(
⟨K(l)⟩

)
. Beta is the exponent β of the

estimated model. Esti Beta Scaling is the estimated sequence of F
(
⟨K(l)⟩

)
by the model.

The outputs of Mu Scaling function include Average Rank K, the sequence of r/⟨K(l)⟩, and Average Evals, the
sequence of λr. Meanwhile, it contains Mu, the exponent mu of the fitted model, and Esti Mu Scaling, the predicted
trend of λr.

The Theta Scaling function first generate ScaledT and MeanACFs, the sequences of re-scaled time and mean auto-
correlation functions that can be used to visualize the universal collapse. Then, its output contains MeanClusterSize
and Tau, the sequences of ⟨K(l)⟩ and τc that can be used to fit dynamic scaling. Theta and Esti Theta Scaling denote
the fitted exponent θ and its corresponding model.
The full code implementation of the above functions are shown below

1 ## Analysis

2 def Linear_func(x, a, b):

3 return b*x+a

4

5 def Power_func(x, a):

6 return a*x

7

8

9 def RSquareFun(X,y,popt):

10 if len(popt)==2:

11 pre_y = Linear_func(X, popt[0], popt [1])

12 elif len(popt)==1:

13 pre_y = Power_func(X, popt [0])

14 mean = np.mean(y)

15 ss_tot = np.sum((y - mean) ** 2)

16 ss_res = np.sum((y - pre_y) ** 2)

17 r_squared = 1 - (ss_res / ss_tot)

18

19 mse = np.sum((y - pre_y) ** 2)/ len(y)

20 return r_squared , mse

21

22 def Alpha_Scaling(RG_Flow ,Tracked_ID_list):

23 MeanVar=np.zeros(len(RG_Flow))

24 for Iter in range(len(RG_Flow)):

25 X=RG_Flow[Iter]

26 MeanVar[Iter]=np.mean(np.var(X,axis =1))

27

28 MeanClusterSize=np.ones(len(RG_Flow))

29 for Iter in range(len(Tracked_ID_list)):

30 ClusterSize =[len(IDC) for IDC in Tracked_ID_list[Iter]]

31 MeanClusterSize[Iter +1]=np.mean(ClusterSize)

32

33 popt , _ = curve_fit(Linear_func , np.log(MeanClusterSize), np.log(MeanVar))

34 Coeff = popt [0]

35 Alpha = popt [1]

36 R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(MeanVar), popt)

37 Esti_Alpha_Scaling=np.exp(Coeff)*np.power(MeanClusterSize ,Alpha)

38 return MeanClusterSize , MeanVar , Coeff , Alpha , R2, MSE , Esti_Alpha_Scaling

39

40 def Beta_Scaling(RG_Flow ,Tracked_ID_list):

41 FreeEV=np.zeros(len(RG_Flow))

42 for Iter in range(len(RG_Flow)):

43 X=RG_Flow[Iter]

44

45 P_SilenceV=np.zeros(np.size(X,0))

46 for ID1 in range(np.size(X,0)):

47 P_SilenceV[ID1] = 1-np.count_nonzero(X[ID1 ,:]) / np.size(X,1)
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48 P_Silence=np.mean(P_SilenceV)

49 FreeEV[Iter ]=-1*np.log(P_Silence)

50

51 MeanClusterSize=np.ones(len(RG_Flow))

52 for Iter in range(len(Tracked_ID_list)):

53 ClusterSize =[len(IDC) for IDC in Tracked_ID_list[Iter]]

54 MeanClusterSize[Iter +1]=np.mean(ClusterSize)

55

56 Needed=np.where(np.isinf(FreeEV)==0) [0]

57 FreeEV=FreeEV[Needed]

58 MeanClusterSize=MeanClusterSize[Needed]

59

60 popt , _ = curve_fit(Linear_func , np.log(MeanClusterSize), np.log(FreeEV))

61 Coeff = popt [0]

62 Beta = popt [1]

63 R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(FreeEV), popt)

64 Esti_Beta_Scaling=np.exp(Coeff)*np.power(MeanClusterSize ,Beta)

65 return MeanClusterSize , FreeEV , Coeff , Beta , R2 , MSE , Esti_Beta_Scaling

66

67 def Mu_Scaling(RG_Flow ,Tracked_ID_list):

68 Initial_X = RG_Flow [0]

69 Average_Rank_K =[]

70 Average_Evals =[]

71

72 ClusterNum=np.array([len(Tracked_ID_list[ID1]) for ID1 in range(1,len(Tracked_ID_list))])

73 Max_Range=np.max(np.where(ClusterNum >1) [0])+2

74 for ID1 in range(1,Max_Range):

75 x=[]

76 y=[]

77 for ID2 in range(len(Tracked_ID_list[ID1])):

78 WithinCluster= Tracked_ID_list[ID1][ID2]

79 X_WC = Initial_X[WithinCluster ,:]

80 X_WC=X_WC -np.mean(X_WC ,axis =1).reshape(np.size(X_WC ,0) ,1)

81 Cov=np.cov(X_WC)

82 Evals , _ = np.linalg.eig(Cov)

83 Evals = np.sort(np.real(Evals))

84 Evals = Evals [::-1]

85

86 Rank = np.cumsum(np.ones(len(Evals)))

87 Rank_K=Rank/len(WithinCluster)

88

89 Needed_Loc=np.where(Evals >0)[0]

90 Rank_K=Rank_K[Needed_Loc]

91 Evals=Evals[Needed_Loc]

92 x.extend(Rank_K [:])

93 y.extend(Evals [:])

94

95 _, bins = np.histogram(x)

96 Meanx=np.zeros(len(bins) -1)

97 Meany=np.zeros(len(bins) -1)

98 for ID3 in range(len(bins) -1):

99 Neededx=np.where((x>=bins[ID3])&(x<=bins[ID3 +1]))[0]

100 Meanx[ID3]=np.mean(np.array(x)[Neededx ])

101 Meany[ID3]=np.mean(np.array(y)[Neededx ])

102 Average_Rank_K.extend(Meanx)

103 Average_Evals.extend(Meany)

104

105 popt , _ = curve_fit(Linear_func , np.log(Average_Rank_K), np.log(Average_Evals))

106 Coeff = popt [0]

107 Mu = -1* popt [1]

108 R2, MSE= RSquareFun(np.log(Average_Rank_K), np.log(Average_Evals), popt)

109 Esti_Mu_Scaling=np.exp(Coeff)*np.power(Average_Rank_K ,-1* Mu)

110 return Average_Rank_K , Average_Evals , Coeff , Mu, R2 , MSE , Esti_Mu_Scaling

111

112 def Theta_Scaling(RG_Flow ,Tracked_ID_list):

113 Tau=np.zeros(len(RG_Flow))

114 ScaledT =[]

115 MeanACFs =[]

116

117 for Iter in range(len(RG_Flow)):
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118 X=RG_Flow[Iter]

119 SumAC = np.sum(X, axis =1)

120

121 ACFMatrix = np.zeros_like(X)

122 for ID1 in range(np.size(X,0)):

123 ACFMatrix[ID1 ,:] = sm.tsa.acf(X[ID1 ,:], nlags=np.size(X,1))

124 ACFMatrix = ACFMatrix[np.where(SumAC >0)[0] ,:]

125 MeanACF = np.mean(ACFMatrix , axis =0)

126 T = np.cumsum(np.ones(np.size(X,1)))-1

127

128 Needed_ACF=np.where(MeanACF >0) [0]

129 MeanACF=MeanACF[Needed_ACF]

130 T=T[Needed_ACF]

131

132 Cut_Off=int(np.max([np.ceil (0.01* len(T)) ,100]))

133 popt , _ = curve_fit(Power_func , T[: Cut_Off], np.log(MeanACF [: Cut_Off ]))

134 Tau[Iter] = -1/popt [0]

135

136 ScaledT.append(T/Tau[Iter])

137 MeanACFs.append(MeanACF)

138

139 MeanClusterSize=np.ones(len(RG_Flow))

140 for Iter in range(len(Tracked_ID_list)):

141 ClusterSize =[len(IDC) for IDC in Tracked_ID_list[Iter]]

142 MeanClusterSize[Iter +1]=np.mean(ClusterSize)

143

144 popt , _ = curve_fit(Linear_func , np.log(MeanClusterSize), np.log(Tau))

145 Coeff = popt [0]

146 Theta = popt [1]

147 R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(Tau), popt)

148 Esti_Theta_Scaling=np.exp(Coeff)*np.power(MeanClusterSize ,Theta)

149

150 return ScaledT , MeanACFs , MeanClusterSize , Tau , Coeff , Theta , R2, MSE , Esti_Theta_Scaling

151

152 def KS_Analysis(RG_Flow):

153 K_S_Static=np.zeros(len(RG_Flow))

154 Degrees_O =[Node [1] for Node in list(nx.degree(RG_Flow [0]))]

155 for InterID in range(len(RG_Flow)):

156 Degrees =[Node [1] for Node in list(nx.degree(RG_Flow[InterID ]))]

157 KstestResult=ks_2samp(Degrees , Degrees_O , alternative=’two -sided’,method=’exact’)

158 K_S_Static[InterID ]= KstestResult [0]*( KstestResult [1] <0.01)

159

160 Mean_K_S_Static=np.mean(K_S_Static)

161 return Mean_K_S_Static

162

163 def Normalized_Dynamics(RG_Flow ,Tracked_ID_list ,Cut_Off_Ratio):

164 ClusterNum=np.array([len(Tracked_ID_list[ID1]) for ID1 in range(1,len(Tracked_ID_list))])

165 Max_Range=np.max(np.where(ClusterNum >1) [0])+1

166 for IterID in range(Max_Range):

167 X_Current=RG_Flow[IterID]

168 N=np.size(X_Current ,0)

169 Covariance = np.cov(X_Current)

170 Evals , U = np.linalg.eig(Covariance)

171 Idx = Evals.argsort ()[:: -1]

172 EigenValues = Evals[Idx]

173 EigenVectors = U[:,Idx]

174 k=int(np.round(N*Cut_Off_Ratio))

175 P=EigenVectors [:,:k] @ EigenVectors [:,:k].T

176 phi=P@(X_Current -np.mean(X_Current ,axis=1,keepdims=True))

177 Normalized_activity=phi/np.std(phi ,axis=1,keepdims=True)

178 return Normalized_activity

III. STRUCTURE RENORMALIZATION EXPERIMENT ON RANDOM NETWORK MODELS

To verify the validity of our proposed structure renormalization and macroscopic observable in evaluating scale-
invariance, we apply the RRG on the random tree (RT), the Barabási-Albert network [7], the Watts–Strogatz network
[8], and the Erdős-Rényi network [9]. Among these random network models, the random tree is scale-invariant while
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FIG. 1. Structure renormalization of random network models. a, Examples of the renormalization flows of the random tree
(RT), the Barabási-Albert network (BA, the number of edges to attach from a new node to existing nodes is set as 1) [7], the
Watts–Strogatz network (WS, each unit initially has 5 neighbors and edges are rewired according to a probability of 0.005)
[8], and the Erdős-Rényi network (ER, the probability for two units to be connected is 0.01) [9]. b, The degree distributions
of different random network models under the RRG transformation and their associated Kolmogorov–Smirnov statics [5, 6]
(averaged across 10 configurations).

the Barabási-Albert network is weakly scale-invariant (i.e., invariant on a part of scales) [10]. The Watts–Strogatz
network and the Erdős-Rényi network are not scale-invariant.

We generate 10 configurations for each random network model. Then, we implement a RRG with the signed Cauchy
projection [4] and a binary hashing dimension of 50, on these configurations. Fig. 1a presents instances of the derived
renormalization flows. As shown in Fig. 1b, the degree distributions averaged across configurations can be used to
distinguish among scale-invariant, weakly scale-invariant, and scale-dependent random networks.

Note that the Kolmogorov–Smirnov statics [5, 6] in Fig. 1b can approach to zero because of configuration averaging.
In real systems where configuration averaging is unavailable (e.g., there is only one system configuration), the finite
size effects on degree distributions are still non-negligible.
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