N

10

11

12

Fast renormalizing the structures and dynamics of ultra-large systems via random
renormalization group (supplementary material)

Yang Tian[f] Yizhou Xuff] and Pei Sunf]

This is the supplementary material of the paper entitled as “Fast renormalizing the structures
and dynamics of ultra-large systems via random renormalization group”. In Sec. [} we introduce the
code implementation of the RRG program and present instances of its usage. In Sec. [[I] we present
the code for analyzing macroscopic observables and scaling behaviours. In Sec. [[II} we validate
the ability of the RRG to classify different random network models according to scale-invariance
property.

I. CODE IMPLEMENTATION OF THE RRG

The RRG is programed in Python, whose open-source code can be seen in https://github.com/Asuka-Research-
Group/Random-renormalization-group and used for research. The RRG depends on several external libraries listed
below. Users should prepare these libraries before using the RRG.

A. Environment preparation

Dependency libraries used for the RRG:
import networkx as nx

import faiss

import time

import scipy as spy

from datasketch import MinHash

import copy

Dependency libraries used for the scaling analysis:
from scipy.optimize import curve_fit

import statsmodels.api as sm

from scipy.stats import ks_2samp

Among these libraries, some users who prefer to use CPU for computation may meet difficulties in installing faiss
via pip. This is a common problem faced by the faiss environment. The following conda-based command may help
resolve the problem in most cases

conda install -c conda-forge faiss

B. Main function and usage of the RRG framework

In application, we have a system, X, to process. We denote X_Initial as X in the program. For structure renor-
malization, we need to ensure that X_Initial is a graph object in the networkx library. For dynamics renormalization,
X_Initial is expected as an array in the numpy, where each row corresponds to the dynamics of one unit.

To run the RRG for T iterations, we let Iteration_Num be T. Meanwhile, we set TargetDim as h to make each

hashed binary vector Zi(l) have a dimension of h. To chose the signed random hyperplane projection [I], the signed
random Fourier feature [2, 3], or the signed Cauchy projection [4], we need to set Method Type as Linear_Kernel,
Gaussian_Kernel, or Cauchy_Kernel, respectively. Finally, the inform the program about the data type, we set
Data_Type as Structure or Dynamics to start structure or dynamics renormalization.

* Correspondence should be addressed to Yizhou Xu and Pei Sun.

T tyanyang04@gmail.com & tiany20@mails.tsinghua.edu.cn; Department of Psychology & Tsinghua Laboratory of Brain and Intelligence,
Tsinghua University, Beijing, 100084, China.

1 lxuyz23@mails.tsinghua.edu.cn; Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China.

§ |peisun@tsinghua.edu.cn; Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing,
100084, China.

mailto:tyanyang04@gmail.com & tiany20@mails.tsinghua.edu.cn
mailto:xuyz23@mails.tsinghua.edu.cn
mailto:peisun@tsinghua.edu.cn

1

def Renormalization_Flow(X_Initial,Iteration_Num, TargetDim,Method_Type ,Data_Type):
RG_Flow=[]
RG_Flow.append(X_Initial)
Corase_ID_list=[]
for Iter in range(Iteration_Num):
StartT=time.time ()
X_Current=RG_Flow[Iter]
if Data_Type=="Dynamics":
X_New, Corase_ID=Renormalization_Function(X_Current, TargetDim,Iter,Method_Type)
elif Data_Type=="Structure":
X_New, Corase_ID=Network_Renormalization_Function(X_Current, TargetDim,Iter ,Method_Type)
if nx.number_of_edges (X_New)==0:
break
RG_Flow.append (X_New)
Corase_ID_list.append(Corase_ID)
EndT=time.time ()
print ([’The’, Iter+1, ’time of renormalization costs-’, EndT-StartT])
Tracked_ID_list=Tracking_System(Corase_ID_list)
return RG_Flow,Tracked_ID_list

The main function of the RRG generates two outputs after computation. The first one is RG_Flow, the list of
system X on different scales. For instance, the first element of RG_Flow is X = X the second one is X(?, and so
on. The number of elements in RG_Flow is determined by both Iteration Num and system properties (i.e., the RRG
stops iteration when there remain only one unit). The data types of all elements of RG_Flow keep the same as X.

The second output of the main function is Tracked_ID_list, which is used to indicate the indexes of the initial units
aggregated into each macro-unit after every iteration of the RRG. Below, we present a simple instance where system
X contains only six units

Tracked_ID_list [0]=[[0,1],[2],[3,5],[4]]
Tracked_ID_list[1]=[[0,1,2],[3,5],[4]]
Tracked_ID_1list[2]=[[0,1,2,4],[3,5]]

Before renormalization, each macro-unit only contains itself, which is represented by a list [[0],[1],[2],[3],[4],[5]] (note
that this trivial list is not included in Tracked _ID_list for convenience). This list contains six lists as its elements, where
the i-th element contains the indexes of initial units aggregated into the i-th macro-unit. As shown in the instance
above, the first element of Tracked_ID list is [[0,1],[2],[3,5],[4]], which means that there remain four macro-units after
the first time of renormalization. The first macro-unit is formed by two initial units whose indexes are 0 and 1. The
second element of Tracked ID list is [[0,1,2],[3,5],[4]], suggesting that there are three macro-units after two times of
renormalization. The first macro-units contains three initial units whose indexes are 0, 1, and 2. Other elements of
Tracked _ID_list can be understood in a similar way.
To run the RRG, one can consider the following instances:

Structure renormalization
X_Initial=nx.random_tree (10000) # Generate a random tree with 10000 units

RG_Flow,Tracked_ID_list=Renormalization_Flow(X_Initial ,100,50,"Linear_Kernel","Structure") # Run a
RRG for 100 iterations, where the dimension of hased binary vectors is 50

RG_Flow,Tracked_ID_list=Renormalization_Flow(X_Initial 50,10, "Gaussian_Kernel","Structure") # Run a
RRG for 50 iterations, where the dimension of hased binary vectors is 10

RG_Flow,Tracked_ID_list=Renormalization_Flow(X_Initial ,200,100,"Cauchy_Kernel","Structure") # Run a
RRG for 200 iterations, where the dimension of hased binary vectors is 100

Dynamics renormalization
X_Initial = np.random.randn (10000, 50000) # Generate a system with 10000 units, where each unit
exhibits random dynamics for 50000 time steps

RG_Flow ,Tracked_ID_list=Renormalization_Flow(X_Initial,100,50,"Linear_Kernel","Dynamics") # Run a
RRG for 100 iterations, where the dimension of hased binary vectors is 50

RG_Flow,Tracked_ID_list=Renormalization_Flow(X_Initial ,50,10,"Gaussian_Kernel","Dynamics") # Run a
RRG for 50 iterations, where the dimension of hased binary vectors is 10

RG_Flow,Tracked_ID_list=Renormalization_Flow(X_Initial ,200,100,"Cauchy_Kernel","Dynamics") # Run a
RRG for 200 iterations, where the dimension of hased binary vectors is 100

C. Full code implementation

For convenience, we attach the full code implementation below. One can also see https://github.com/Asuka-
Research-Group/Random-renormalization-group for the official release of our framework, where we provide instances
in the Jupyter notebook.

1 def Random_Fourier_Feature_Hashing(X,TargetDim):

39
10
11

12

N = np.size(X,0)

d = np.size(X,1)

W = np.random.normal (loc=0, scale=1, size=(d, TargetDim))
b = np.random.uniform(0, 2*np.pi, size=TargetDim)

B = np.repeat(b[:, np.newaxis], N, axis=1).T
Z = 1/2% (1+ np.sign(np.cos(X @ W + B)))
Z = np.uint8(Z)
r

def Random_Cauchy_Feature_Hashing(X,TargetDim):
N np.size(X,0)
d = np.size(X,1)
W = spy.stats.cauchy.rvs(loc=0, scale=1, size=(d, TargetDim))
b = np.random.uniform(0, 2*np.pi, size=TargetDim)
B = np.repeat(b[:, np.newaxis], N, axis=1).T
Z = 1/2% (1+ np.sign(np.cos(X @ W + B)))
Z = np.uint8(Z)
return Z
def Random_Hyperplane_Hashing (X, TargetDim):
2 d = np.size(X,1)
W = np.random.normal (loc=0, scale=1, size=(d, TargetDim))
Z = 1/2%x (1+ np.sign(X @ W))
5 Z = np.uint8(Z)
return Z
def Random_Min_Hashing (X, TargetDim):
Z=np.zeros ((len(X),TargetDim))
for ID1 in range(len(X)):
Hashing_Code=MinHash (num_perm=TargetDim)
2 Hashing_Code.update_batch (X[ID1])
Z[ID1,:]=Hashing_Code.hashvalues
return Z
def Neighbor_Generator (X,UnitNum):
Y=[]
for Unit in range (UnitNum):
Neighbors = [Unit] + list(X.neighbors(Unit))
Y.append (np.array (Neighbors))
return Y
def Normalization_Function(X_Current ,Method_Type):
if Method_Type=="Linear_Kernel':
Normalized_X=X_Current -np.mean(X_Current ,axis=1).reshape(np.size(X_Current ,0) ,1)
elif Method_Type=="Gaussian_Kernel":
Normalized_X=X_Current -np.mean(X_Current ,axis=1).reshape(np.size(X_Current ,0) ,1)
Std=np.std(Normalized_X ,axis=1) .reshape(np.size(Normalized_X,0) ,1)
Normalized_X=np.divide (Normalized_X ,Std,out=Normalized_X,6where=Std!=0)
elif Method_Type=="Cauchy_Kernel":
Normalized_X=X_Current -np.min(X_Current ,axis=1) .reshape(np.size(X_Current,0) ,1)
SumV=np.sum(Normalized_X,axis=1) .reshape(np.size(Normalized_X,0) ,1)
Normalized_X=np.divide(Normalized_X,SumV,out=Normalized_X,where=SumV!=O)
return Normalized_X
7 def Binary_Hashing_Index(Z):

if np.size(Z,0) <=50000:
Dim=8*np.size(Z,1)
Index = faiss.IndexBinaryFlat (Dim)
Index.nprobe = 2

elif (np.size(Z,0) >50000)&(np.size(Z,0) <=500000) :
Dim=8%np.size(Z,1)
Index = faiss.IndexBinaryHash(Dim,Dim)

def

def

def

def

Index.nprobe = 2
elif np.size(Z,0) >500000:
Dim=8*np.size(Z,1)
Index = faiss.IndexBinaryHash(Dim,int (np.max ([np.min ([np
Index.nprobe = 2
return Index

KNN_with_Hashing_Index(Z):
StartT=time.time ()
Index=Binary_Hashing_Index(Z)
Index.add (Z)

Num_neighbors=2

D, I = Index.search(Z, Num_neighbors)
EndT=time. time ()

print ([’KNN search costs-’, EndT-StartT])
return D,I

Hashing_Function(Normalized_X ,6 TargetDim,Method_Type):

if Method_Type=="Linear_Kernel':
Z=Random_Hyperplane_Hashing(Normalized_X,6 TargetDim)

elif Method_Type=="Gaussian_Kernel":
Z=Random_Fourier_Feature_Hashing(Normalized_X, TargetDim)

elif Method_Type=="Cauchy_Kernel":
Z=Random_Cauchy_Feature_Hashing(Normalized_X,6 TargetDim)

return Z

.ceil(Dim/100) ,32]) ,16]1)))

Renormalization_Function(X_Current,TargetDim,Iter,Method_Type):

Normalized_X=Normalization_Function(X_Current ,Method_Type)
Z=Hashing_Function(Normalized_X ,6 TargetDim,Method_Type)
_,I=KNN_with_Hashing_Index(Z)
G = nx.empty_graph(np.size(I,0))
Edge = np.vstack((np.arange(0, np.size(I, 0)), I[:,11)).T
G.add_edges_from(Edge)
Clusters=[list(c) for c in list(nx.connected_components(G))]
ClusterNum=nx.number_connected_components (G)
print ([’There are’, ClusterNum, ’macro-units after’, Iter+1l,
X_New=np.zeros ((ClusterNum, np.size(X_Current,1)))
Corase_ID = []
for ID1 in range(ClusterNum):
X_New[ID1,:]=np.sum(X_Current [Clusters[ID1],:],axis=0)
Corase_ID.append(Clusters[ID1])
return X_New, Corase_ID

’times of renormalization’])

Network_Renormalization_Function(X_Current ,TargetDim,Iter ,Method_Type):

UnitNum=nx.number_of_nodes (X_Current)
Y=Neighbor_Generator (X_Current ,UnitNum)
Z=Random_Min_Hashing(Y,TargetDim)
Z=Hashing_Function(Z,TargetDim,Method_Type)
_,I=KNN_with_Hashing_Index (Z)

G = nx.empty_graph(np.size(I,0))

Edge = np.vstack((np.arange(0, np.size(I, 0)), I[:,1]1)).T

G.add_edges_from(Edge)

Potential_Clusters=[1list(c) for c¢ in list(nx.connected_components(G))]

Potential_ClusterNum=nx.number_connected_components (G)
Edge_To_Remove=[]
for ID1 in range(Potential_ClusterNum):
Unit_list=Potential_Clusters[ID1]
if len(Unit_list)>1:
H = nx.induced_subgraph(X_Current ,Unit_list)
Potential_H = nx.induced_subgraph(G,Unit_list)

Wrong_Edge=1list (set(list(Potential _H.edges))-set(list(H.edges)))

Edge_To_Remove.extend (Wrong_Edge)

for Wrong_Edge in Edge_To_Remove:
G.remove_edge (x*Wrong_Edge)

Clusters=[list(c) for c in list(nx.connected_components(G))]
ClusterNum=nx.number_connected_components (G)

136
137
138
139
140

141

186

187

189
190
191
192
193
194
195
196
197
198

199

def

def

print ([’There are’, ClusterNum, ’macro-units after’, Iter+l, ’times of renormalization’])

X_New=copy.deepcopy (X_Current)
Pre_Corase_ID = []
Mappings={}
for ID1 in range(ClusterNum):
Unit_list=Clusters[ID1]
Pre_Corase_ID.append (Unit_list)
Unit0 = Unit_list [0]
Mappings [Unit0]=1ID1
for Unit in Unit_list[1:]:
if X_New.has_node(Unit):
Neighbors = list(X_New.neighbors(Unit))
New_edges = [(Unit0, Nei) for Nei in Neighbors if UnitO!=Neil
X_New.add_edges_from(New_edges)
X_New.remove_node (Unit)
Corase_ID = []
Unit_Mappings={}
for ID_1,ID_2 in enumerate (X_New.nodes()):
Unit_Mappings [ID_2]=ID_1
Corase_ID.append(Pre_Corase_ID[Mappings[ID_2]11])
X_New = nx.relabel_nodes(X_New, Unit_Mappings)

return X_New, Corase_ID

Tracking_System(Corase_ID_list):
Tracked_ID_list = []
for IterID in range(len(Corase_ID_list)):
if IterID==0:
Tracked_ID_list.append(Corase_ID_list [0])
else:
Tracked_ID = []
if len(Corase_ID_list[IterID])>0:
for CoarseID in range(len(Corase_ID_list[IterID])):
UnitsToTrack=Corase_ID_list[IterID][CoarselID]
Searched_ID=[]
for IDSearch in range(len(UnitsToTrack)):
Search_ID=1
while len(Tracked_ID_list[IterID-Search_ID])==0:
Search_ID=Search_ID+1
Searched_ID=Searched_ID+Tracked_ID_list[IterID-Search_ID][UnitsToTrackl([
IDSearchl]]
Tracked_ID.append(Searched_ID)
Tracked_ID_list.append(Tracked_ID)
return Tracked_ID_list

Renormalization_Flow(X_Initial,Iteration_Num,b TargetDim,Method_Type,Data_Type):
RG_Flow=[]
RG_Flow.append (X_Initial)
Corase_ID_list=[]
for Iter in range(Iteration_Num):
StartT=time.time ()
X_Current=RG_Flow[Iter]
if Data_Type=="Dynamics":
X_New, Corase_ID=Renormalization_Function(X_Current,TargetDim,Iter,Method_Type)
elif Data_Type=="Structure':

X_New, Corase_ID=Network_Renormalization_Function(X_Current, TargetDim,Iter,Method_Type)

if nx.number_of_edges (X_New)==0:
break

RG_Flow.append (X_New)

Corase_ID_list.append(Corase_ID)

EndT=time.time ()

print ([’The’, Iter+1, ’time of renormalization costs-’, EndT-StartT])
Tracked_ID_list=Tracking_System(Corase_ID_list)
return RG_Flow,Tracked_ID_list

w N

N

w W

16

1

w N

II. CODE IMPLEMENTATION OF MACROSCOPIC OBSERVABLES AND SCALING ANALYSIS

After obtaining a renormalization flow, we can analyze macroscopic observables and scaling behaviours. Below, we
elaborate the code implementation of these analyses.

A. Structure renormalization

For structure renormalization, we can run the following function to derive the mean Kolmogorov—Smirnov static
5}]
Mean_K_S_Static=KS_Analysis (RG_Flow)

The output Mean K_S_Static is a scalar that reports the mean Kolmogorov—Smirnov static. The full code of this
function is present below

def KS_Analysis (RG_Flow):
K_S_Static=np.zeros(len(RG_Flow))
Degrees_0=[Node[1] for Node in list(nx.degree(RG_Flow[0]))]
for InterID in range(len(RG_Flow)):
Degrees=[Node [1] for Node in list(nx.degree(RG_Flow[InterID]))]
KstestResult=ks_2samp (Degrees, Degrees_0, alternative=’two-sided’,method=’exact’)
K_S_Static[InterID]=KstestResult [0]*(KstestResult[1]<0.01)

Mean_K_S_Static=np.mean(K_S_Static)
return Mean_K_S_Static

where the Degrees generated from each element of RG_Flow can be further used to derive the degree distribution
after frequency counting (e.g., using the histogram function of the numpy).

B. Dynamics renormalization

For dynamics renormalization, we can use the following function to derive the normalized dynamics

Cut_0ff_Ratio=0.1
Normalized_activity=Normalized_Dynamics (RG_Flow,Tracked_ID_list,Cut_0ff_Ratio)

where Cut_Off_Ratio denotes the fraction of eigenvalues to keep. The output Normalized_activity is a list of arrays,

where each element is the normalized dynamics of the system on a certain scale. The probability distribution of

normalized dynamics can be derived using frequency counting (e.g., using the histogram function of the numpy).
The full code implementation of the above function is

def Normalized_Dynamics (RG_Flow,Tracked_ID_list ,Cut_Off_Ratio):

ClusterNum=np.array([len(Tracked_ID_list[ID1]) for ID1 in range(l,len(Tracked_ID_list))])
Max_Range=np.max (np.where (ClusterNum>1) [0]) +1
for IterID in range (Max_Range):

X_Current=RG_Flow[IterID]

N=np.size (X_Current ,0)

Covariance = np.cov(X_Current)

Evals, U = np.linalg.eig(Covariance)

Idx = Evals.argsort() [::-1]

EigenValues = Evals[Idx]

EigenVectors = U[:,Idx]

k=int (np.round (N*Cut_0ff_Ratio))

P=EigenVectors[:,:k] @ EigenVectors[:,:k].T

phi=P@(X_Current -np.mean (X_Current ,axis=1,keepdims=True))

Normalized_activity=phi/np.std(phi,axis=1,keepdims=True)
return Normalized_activity

Moreover, we can carry out scaling analyses using the following commands

MeanClusterSize , MeanVar, Coeff, Alpha, R2, MSE, Esti_Alpha_Scaling = Alpha_Scaling(RG_Flow,
Tracked_ID_list)

MeanClusterSize, FreeEV, Coeff, Beta, R2, MSE, Esti_Beta_Scaling = Beta_Scaling(RG_Flow,
Tracked_ID_list)

Average_Rank_K, Average_Evals, Coeff, Mu, R2, MSE, Esti_Mu_Scaling = Mu_Scaling(RG_Flow,
Tracked_ID_list)

ScaledT, MeanACFs, MeanClusterSize, Tau, Coeff, Theta, R2, MSE, Esti_Theta_Scaling = Theta_Scaling(
RG_Flow,Tracked_ID_list)

Among the outputs of Alpha_Scaling function, MeanClusterSize stands for the sequences of (K®) and Mean-
Var stands for the sequences of Var ((K (l)>). Coeff and Alpha denote the coefficient and exponent « of the fitted

model, whose fitting accuracy can be reflected by R2 and MSE. The estimated trend of Var ((K (l)>) is contained by
Esti_Alpha_Scaling.

In the outputs of Beta_Scaling function, FreeEV denotes the sequence of F ((K (l)>). Beta is the exponent (3 of the
estimated model. Esti_Beta_Scaling is the estimated sequence of F ((K (l)>) by the model.

The outputs of Mu_Scaling function include Average Rank K, the sequence of /(K®), and Average_Evals, the
sequence of A.. Meanwhile, it contains Mu, the exponent mu of the fitted model, and Esti_Mu_Scaling, the predicted
trend of A,.

The Theta_Scaling function first generate ScaledT and MeanACFs, the sequences of re-scaled time and mean auto-
correlation functions that can be used to visualize the universal collapse. Then, its output contains MeanClusterSize
and Tau, the sequences of (K (l)> and 7, that can be used to fit dynamic scaling. Theta and Esti_Theta_Scaling denote
the fitted exponent 6 and its corresponding model.

The full code implementation of the above functions are shown below
Analysis

def Linear_func(x, a, b):
return bx*x+a

def Power_func(x, a):
return a*x

def RSquareFun(X,y,popt):
if len(popt)==2:
pre_y = Linear_func (X, popt[0], popt[1])
elif len(popt)==1:
pre_y = Power_func (X, popt[0])

mean = np.mean(y)

ss_tot = np.sum((y - mean) ** 2)

ss_res = np.sum((y - pre_y) *x 2)
r_squared = 1 - (ss_res / ss_tot)

mse = np.sum((y - pre_y) ** 2)/ len(y)
return r_squared, mse

def Alpha_Scaling(RG_Flow,Tracked_ID_list):
MeanVar=np.zeros (len(RG_Flow))
for Iter in range(len(RG_Flow)):
X=RG_Flow[Iter]
MeanVar [Iter]=np.mean(np.var(X,axis=1))

MeanClusterSize=np.ones (len(RG_Flow))

for Iter in range(len(Tracked_ID_list)):
ClusterSize=[len(IDC) for IDC in Tracked_ID_list[Iter]]
MeanClusterSize[Iter+1]l=np.mean(ClusterSize)

popt, _ = curve_fit(Linear_func, np.log(MeanClusterSize), np.log(MeanVar))
Coeff = popt [0]

Alpha = popt[1]

R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(MeanVar), popt)
Esti_Alpha_Scaling=np.exp(Coeff)*np.power (MeanClusterSize ,Alpha)

return MeanClusterSize, MeanVar, Coeff, Alpha, R2, MSE, Esti_Alpha_Scaling

def Beta_Scaling(RG_Flow,Tracked_ID_list):
FreeEV=np.zeros(len(RG_Flow))
for Iter in range(len(RG_Flow)):
X=RG_Flow[Iter]

P_SilenceV=np.zeros(np.size(X,0))
for ID1 in range(np.size(X,0)):
P_SilenceV[ID1] = 1-np.count_nonzero(X[ID1,:]) / np.size(X,1)

def

def

P_Silence=np.mean(P_SilenceV)
FreeEV[Iter]=-1*np.log(P_Silence)

MeanClusterSize=np.ones (len(RG_Flow))

for Iter in range(len(Tracked_ID_list)):
ClusterSize=[1len(IDC) for IDC in Tracked_ID_list[Iter]]
MeanClusterSize[Iter+1]=np.mean(ClusterSize)

Needed=np.where(np.isinf (FreeEV)==0) [0]
FreeEV=FreeEV [Needed]
MeanClusterSize=MeanClusterSize [Needed]

popt, = curve_fit(Linear_func, np.log(MeanClusterSize), np.log(FreeEV))
Coeff = popt [0]

Beta = popt[1]

R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(FreeEV), popt)
Esti_Beta_Scaling=np.exp(Coeff)*np.power (MeanClusterSize ,Beta)

return MeanClusterSize, FreeEV, Coeff, Beta, R2, MSE, Esti_Beta_Scaling

Mu_Scaling (RG_Flow,Tracked_ID_list):
Initial_X = RG_Flowl[O]
Average_Rank_K=[]

Average_Evals=[]

ClusterNum=np.array ([len(Tracked_ID_list[ID1]) for ID1 in range(l,len(Tracked_ID_list))])
Max_Range=np.max (np.where (ClusterNum>1) [0]) +2
for ID1 in range(1,Max_Range):
x=[]
y=1[1
for ID2 in range(len(Tracked_ID_list[ID1])):
WithinCluster= Tracked_ID_list[ID1][ID2]
X_WC = Initial_X[WithinCluster,:]
X_WC=X_WC-np.mean(X_WC,axis=1).reshape(np.size(X_WC,0) ,1)
Cov=np.cov(X_WC)
Evals, _ = np.linalg.eig(Cov)
Evals = np.sort(np.real(Evals))
Evals = Evals[::-1]

Rank = np.cumsum(np.ones(len(Evals)))
Rank_K=Rank/len(WithinCluster)

Needed_Loc=np.where (Evals>0) [0]
Rank_K=Rank_K[Needed_Loc]
Evals=Evals [Needed_Loc]
x.extend (Rank_K[:])

y.extend (Evals [:])

_, bins = np.histogram(x)

Meanx=np.zeros (len(bins) -1)

Meany=np.zeros (len(bins) -1)

for ID3 in range(len(bins)-1):
Neededx=np.where ((x>=bins [ID3]) &(x<=bins [ID3+1])) [0]
Meanx [ID3]=np.mean(np.array(x) [Neededx])
Meany [ID3]=np.mean(np.array(y) [Neededx])

Average_Rank_K.extend (Meanx)

Average_Evals.extend (Meany)

popt, _ = curve_fit(Linear_func, np.log(Average_Rank_K), np.log(Average_Evals))
Coeff = popt [0]
Mu = -1% popt[1]

R2, MSE= RSquareFun(np.log(Average_Rank_K), np.log(Average_Evals), popt)
Esti_Mu_Scaling=np.exp(Coeff)*np.power (Average_Rank_K,-1*% Mu)
return Average_Rank_K, Average_Evals, Coeff, Mu, R2, MSE, Esti_Mu_Scaling

Theta_Scaling (RG_Flow,Tracked_ID_list):
Tau=np.zeros (len(RG_Flow))

ScaledT=[]

MeanACFs=[]

for Iter in range(len(RG_Flow)):

X=RG_Flow[Iter]
SumAC = np.sum(X, axis=1)

ACFMatrix = np.zeros_like (X)
for ID1 in range(np.size(X,0)):
ACFMatrix[ID1,:] = sm.tsa.acf(X[ID1,:], nlags=np.size(X,1))
ACFMatrix = ACFMatrix [np.where (SumAC>0) [0],:]
MeanACF = np.mean (ACFMatrix, axis=0)
T = np.cumsum(np.ones(np.size(X,1)))-1

Needed_ACF=np.where (MeanACF >0) [0]
MeanACF=MeanACF [Needed_ACF]
T=T[Needed_ACF]

Cut_0ff=int (np.max([np.ceil (0.01*1en(T)) ,1001))
popt, _ = curve_fit(Power_func, T[:Cut_0ff], np.log(MeanACF[:Cut_0ff]))
Tau[Iter] = -1/popt[0]

ScaledT.append (T/Taul[Iter])
MeanACFs . append (MeanACF)

MeanClusterSize=np.ones (len(RG_Flow))

for Iter in range(len(Tracked_ID_list)):
ClusterSize=[1len(IDC) for IDC in Tracked_ID_list[Iter]]
MeanClusterSize [Iter+1]=np.mean(ClusterSize)

popt, = curve_fit(Linear_func, np.log(MeanClusterSize), np.log(Tau))
Coeff = popt [0]

Theta = popt [1]

R2, MSE= RSquareFun(np.log(MeanClusterSize), np.log(Tau), popt)
Esti_Theta_Scaling=np.exp(Coeff)*np.power (MeanClusterSize, Theta)

return ScaledT, MeanACFs, MeanClusterSize, Tau, Coeff, Theta, R2, MSE, Esti_Theta_Scaling

def KS_Analysis (RG_Flow):
K_S_Static=np.zeros(len(RG_Flow))
Degrees_0=[Node[1] for Node in list(nx.degree(RG_Flow[0]))]
for InterID in range(len(RG_Flow)):
Degrees=[Node [1] for Node in list(nx.degree(RG_Flow[InterID]))]
KstestResult=ks_2samp (Degrees, Degrees_0, alternative=’two-sided’,method=’exact’)
K_S_Static[InterID]=KstestResult [0]*(KstestResult[1]<0.01)
Mean_K_S_Static=np.mean(K_S_Static)
return Mean_K_S_Static
def Normalized_Dynamics (RG_Flow,Tracked_ID_list,Cut_Off_Ratio):

ClusterNum=np.array([len(Tracked_ID_1list[ID1]) for ID1 in range(l,len(Tracked_ID_list))I])
Max_Range=np.max (np.where (ClusterNum>1) [0]) +1
for IterID in range(Max_Range):

X_Current=RG_Flow[IterID]

N=np.size (X_Current ,0)

Covariance = np.cov(X_Current)

Evals, U = np.linalg.eig(Covariance)

Idx = Evals.argsort() [::-1]

EigenValues = Evals[Idx]

EigenVectors = U[:,Idx]

k=int (np.round (N*Cut_0ff_Ratio))

P=EigenVectors[:,:k] @ EigenVectors[:,:k].T

phi=P@(X_Current -np.mean (X_Current ,axis=1,keepdims=True))

Normalized_activity=phi/np.std(phi,axis=1,keepdims=True)
return Normalized_activity

III. STRUCTURE RENORMALIZATION EXPERIMENT ON RANDOM NETWORK MODELS

To verify the validity of our proposed structure renormalization and macroscopic observable in evaluating scale-
invariance, we apply the RRG on the random tree (RT), the Barabdsi-Albert network [7], the Watts—Strogatz network
[8], and the Erdds-Rényi network [9]. Among these random network models, the random tree is scale-invariant while

10

a b .
10
RT
107
1074
107
Ks=0
10"
BA
1073
107
-3
> 107
= K$=0.00068
3 10
° WS
a
1074
1074
10
ks2d13848
1074
1074
10
K$=0.22629
10’ 10°
Degree

FIG. 1. Structure renormalization of random network models. a, Examples of the renormalization flows of the random tree
(RT), the Barabdsi-Albert network (BA, the number of edges to attach from a new node to existing nodes is set as 1) [7], the
Watts—Strogatz network (WS, each unit initially has 5 neighbors and edges are rewired according to a probability of 0.005)
[8], and the Erdés-Rényi network (ER, the probability for two units to be connected is 0.01) [9]. b, The degree distributions
of different random network models under the RRG transformation and their associated Kolmogorov—Smirnov statics |5}, [6]
(averaged across 10 configurations).

the Barabdsi-Albert network is weakly scale-invariant (i.e., invariant on a part of scales) [10]. The Watts—Strogatz
network and the Erdés-Rényi network are not scale-invariant.

We generate 10 configurations for each random network model. Then, we implement a RRG with the signed Cauchy
projection [4] and a binary hashing dimension of 50, on these configurations. Fig. presents instances of the derived
renormalization flows. As shown in Fig. [Ip, the degree distributions averaged across configurations can be used to
distinguish among scale-invariant, weakly scale-invariant, and scale-dependent random networks.

Note that the Kolmogorov—Smirnov statics [0l [6] in Fig. can approach to zero because of configuration averaging.
In real systems where configuration averaging is unavailable (e.g., there is only one system configuration), the finite
size effects on degree distributions are still non-negligible.

[1] S. S. Vempala, The random projection method, Vol. 65 (American Mathematical Soc., 2005).

[2] X. Li and P. Li, Signrff: Sign random fourier features, Advances in Neural Information Processing Systems 35, 17802
(2022).

[3] A. Rahimi and B. Recht, Random features for large-scale kernel machines, Advances in neural information processing
systems 20 (2007).

[4] P. Li, G. Samorodnitsk, and J. Hopcroft, Sign cauchy projections and chi-square kernel, Advances in Neural Information
Processing Systems 26 (2013).

11

. Simard and P. L’Ecuyer, Computing the two-sided kolmogorov-smirnov distribution, Journal of Statistical Software 39,
(2011).

W. Berger and Y. Zhou, Kolmogorov—smirnov test: Overview, Wiley statsref: Statistics reference online (2014).
Albert and A.-L. Barabdsi, Statistical mechanics of complex networks, Reviews of modern physics 74, 47 (2002).

. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’networks, nature 393, 440 (1998).

P. Erdds, A. Rényi, et al., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci 5, 17 (1960).

[10] P. Villegas, T. Gili, G. Caldarelli, and A. Gabrielli, Laplacian renormalization group for heterogeneous networks, Nature
Physics 19, 445 (2023).

[5]

R
1

v
R
D

ACKNOWLEDGEMENTS

This project is supported by the Artificial and General Intelligence Research Program of Guo Qiang Research
Institute at Tsinghua University (2020GQG1017) as well as the Tsinghua University Initiative Scientific Research
Program. Authors appreciate Hedong Hou at the Institut de Mathématiques d’Orsay and Aohua Cheng at Tsinghua
University for their inspiring discussions.

	Fast renormalizing the structures and dynamics of ultra-large systems via random renormalization group (supplementary material)
	Abstract
	Code implementation of the RRG
	Environment preparation
	Main function and usage of the RRG framework
	Full code implementation

	Code implementation of macroscopic observables and scaling analysis
	Structure renormalization
	Dynamics renormalization

	Structure renormalization experiment on random network models
	References
	Acknowledgements

