Air pollution weakens global spring greening
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Materials and Methods
1. Multi-source PM2.5 data
1.1 Site monitoring of PM2.5 data
Daily PM2.5 concentrations measurements from 2000 to 2020 were collected at 3552 ground-based monitoring sites around the world (Supplementary Fig.1 and Table.1). Sources of data include Open AQ, the China National Environmental Monitoring Centre, the US Environmental Protection Agency, the European Air Quality e-Reporting, the Canadian National Air Pollution Surveillance Program, and other national networks (e.g., South Africa, New Zealand, and Brazil). Quality control procedures were applied to the raw PM2.5 data by eliminating anomalies, which include values that are negative or excessively high (surpassing the 99.9th percentile). The distribution of vegetation types in the areas where ground-level PM2.5 monitoring sites are located, as well as the site-year distribution of measurement data provided by various regions/agencies, are illustrated in Supplementary Fig. 1.

1.2 Satellite-based PM2.5 data and evaluation
The generation of satellite-based PM2.5 data involves integrating satellite-derived aerosol optical depth (AOD) products with ground-based air quality measurements and meteorological data. Based on our recent studies on satellite-based PM2.5 simulation36,37, we used machine learning models, particularly ensemble tree-based methods such as Random Forest and Gradient Boosting Machines, for effective data integration and handling the spatio-temporal variability. The validation of these models is achieved through sample-based cross-validation methods, including ten-fold cross-validation, ensuring accurate and reliable predictions of PM2.5 concentrations across different locations and times. This methodology offers a comprehensive approach to monitor and assess air quality on a global scale. The details of satellite-based PM2.5 data production can be seen in ref.36 and ref.37. It should be noted that seasonal data conditions of satellite-observed AOD could bring large uncertainty of PM2.5 simulation. We found frequent missing of satellite-observed AOD in spring over the northern permafrost regions. The lack of ground monitoring of PM2.5 pollution in permafrost regions could further harm the reliability of simulated PM2.5. To exclude these factors, here we removed all permafrost regions in our data production to ensure the quality of satellite-based PM2.5 data. We evaluated the satellite-based spring PM2.5 concentrations using all collected site monitoring data, with a high Pearson correlation coefficient (R) of 0.95 and a low root mean square error (RMSE) of 5.39 μg m-³ (Supplementary Fig. 13). High accuracy of satellite-based PM2.5 data allows us to examine the response of spring greening to PM2.5 pollution at the global scale.

2. Indicators of spring greening
2.1. Satellite-based vegetation indices
To quantify spring vegetation greenness, we used three independent satellite-observed vegetation indices (VIs) from 2000 to 2020 in spring, i.e., March to May for the northern hemisphere and September to November for the southern hemisphere. The VIs include the normalized difference vegetation index (NDVI), leaf area index (LAI), and solar-induced chlorophyll fluorescence (SIF), which are widely used as the proxies of vegetation greenness1,2,14. Here we used the spring average VIs to represent observational spring vegetation greenness. The daily NDVI data and 8-day composite LAI data with a resolution of 500m×500m were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) products version 6.1 (NDVI: MOD13C2, LAI: MOD15A2H). The 4-day composite SIF data at 0.05° resolution (nearly 5km×5km) were obtained from a global spatially contiguous SIF (CSIF) product using neutral networks38 (Supplementary Table 1). The CSIF product provides well-validated clear sky estimations of SIF. For NDVI and LAI, we removed abnormal values that possibly affected by observational conditions and cloud screening.

To check whether PM2.5 pollution influence the observational signals, we examined the contaminating impacts of PM2.5 pollution on satellite-observed vegetation greenness (Supplementary Figs. 2 and 3). We assumed that 1) vegetation greenness in spring showed overall increasing trends and 2) a sudden increase in PM2.5 concentrations could contaminate satellite observations with a sudden decrease in greenness. To test this assumption, we used site-monitored PM2.5 data, derived from the China PM2.5 Monitoring Network that initiated since 2013 when China was facing the most severe PM2.5 pollution, and satellite-observed greenness for each site. We first calculated the changes in vegetation greenness with a short-term (i.e., 4-day) temporal gap. During this temporal gap, VIs could be relatively stable with minor increases and sudden decreases in VIs could be attributed to PM2.5 pollution-induced signal attenuation. We found that the LAI and SIF overall showed consistent increases within the temporal gap, i.e., the differences in LAI and SIF for same site after and before the temporal gap were overall positive, under all scenarios of PM2.5 shift (Supplementary Fig. 2A and C). We then calculated the monthly changes in LAI and SIF considering the magnitude of PM2.5 shift. We also observed overall consistent increases in LAI and SIF, suggesting that changes in PM2.5 concentration rarely affect the natural variations of LAI and SIF (Supplementary Fig. 2B and D). However, the sudden increases in PM2.5, especially when the PM2.5 increase is higher than 30 μg m−3, could obviously reduce the NDVI signal with a lower NDVI value (Supplementary Fig. 3A). Here we applied the Savitzky-Golay (SG) filter with different window sizes to remove abnormal NDVI data and reconstructed the time series of NDVI in spring (Supplementary Fig. 3C-H)39. We found that SG-filtered NDVI can well exhibit the natural increases in vegetation greenness with a window size of 7 days. We then applied the 7-day SG filter to minimize the influence of PM2.5 pollution-caused contamination of NDVI signal.

We used other two satellite-based VIs to examine the PM2.5-greening relationship, strengthening the main conclusion of our study. First, we used another LAI product from the Global Land Surface Satellite (GLASS) Product suite that was developed using the bidirectional long short-term memory (Bi-LSTM) model (Supplementary Table 1)40. We found that the sensitivities of climatic factors and PM2.5 pollution were similar between MODIS LAI and GLASS LAI, with a spatial consistency of PM2.5 effect (i.e., consistently positive or negative) for 66.8% of studied areas (Supplementary Fig. 14). Second, we calculated relative SIF that refers to SIF normalized by the continuum-level NIR-reflected radiance to check the response of SIF to PM2.5 pollution. We found similar climatic and PM2.5 sensitivities of SIF and that of relative SIF, with a spatial consistency of PM2.5 effect for 87.1% of studied areas (Supplementary Fig. 15). These results indicated that the widespread decreases in spring LAI and SIF under PM2.5 pollution are primarily attributed to the biogeochemical and biogeophysical effects of PM2.5 pollution, rather than being influenced by the contamination and attenuation of observational signal41.

2.2. Process-based model projections
We also used model-simulated gross primary productivity (GPP) as the proxy of vegetation greenness. We investigated the impacts of PM2.5 pollution on model-simulated GPP in spring using 16 terrestrial biosphere models outputs from the TRENDY project (Supplementary Table 3)42,43. TRENDY is an ensemble of models that estimates ecosystem carbon dynamics from initial forcing. We used outputs from simulation scenario S3, which allows for changes in land use, climate, and CO2 concentration through time. Selecting this scenario allows us to comprehend the interconnected effects of human activities and climate change on the greening of land surfaces. Model-simulated GPPs are produced at monthly time steps with different spatial resolutions. We calculated spring accumulated GPP from each model and re-gridded them to 0.5°×0.5° prior to analysis.

3. Climatic and ancillary data
We obtained monthly meteorological data with a 1/24° (nearly 4km×4km) spatial resolution for the period of 2000-2020 from the TerraClimate44, including monthly mean temperature and VPD, and total precipitation. Global averaged marine surface CO2 was obtained from the Global Monitoring Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA). Details of data can be seen in Supplementary Table 1. 

To eliminate the influence of land cover change, our study only focused on sites or pixels where the land use type remains constant during 2000 to 2020 identified by the MODIS land cover product (MCD12C1 v6.1). Additionally, we removed areas featuring sparse vegetation by excluding pixels with mean spring NDVI lower than 0.1, reducing the noises from non-vegetation areas. We also excluded the permafrost region with limited site monitoring of PM2.5 and low-quality satellite-observed AOD. To identify the permafrost region, we utilized the Circum-Arctic Map of Permafrost and Ground-Ice Conditions from the National Snow and Ice Data Centre45.

4. Analyses
4.1 Site- and grid-scale analyses
We used site monitoring of PM2.5 data and satellite-based gridded PM2.5 data with site- and grid-scale variables to perform independent analyses. For grid-scale analyses, we resampled climatic factors and satellite-based PM2.5 data to match the resolution of VIs. For the site-scale analyses, we first extracted VIs and climatic factors from gridded files for each site and calculated the spring mean (i.e., VIs, CO2, temperature, and VPD) and sum (i.e., precipitation). Since the site-level PM2.5 were limited in the time series except for USA (Supplementary Fig. 1B), we then merged site variables into city level based on the PM2.5 site information. We calculated the site-based anomalies of all variables by subtracting the multi-year mean of variables from the all-year variable values. We then merged all anomalies from the same city to create city-based and site-scale datasets. We removed all cities with fewer than 15 site-year records from the analyses. This approach allowed us to eliminate the effects of spatial variations in the background PM2.5 and climate, while preserving the effects of their interannual variations on greenness shift. 

4.2 Spatial and temporal patterns of PM2.5 and greening indicators
We determined the spatial pattern of PM2.5 pollution and vegetation greenness (i.e., NDVI, LAI, and SIF) in spring by calculating multi-year mean of corresponding variables (Extended data Fig. 1D and Supplementary Fig. 16). We classified PM2.5 pollution into four levels based on the Air Quality Index (AQI), i.e., AQI level 1: 0-12 μg m−3; AQI level 2: 12-35.4 μg m−3; AQI level 3: 35.4-55.4 μg m−3; and AQI level 4: 55.4-150.4 μg m−3. For temporal trend analysis, we applied the Theil–Sen slope estimator, a non-parametric and median-based slope estimator, to analyse the temporal trends of vegetation greenness (Supplementary Fig. 16) and PM2.5 concentration (Extended data Fig. 1E and F). The trends were evaluated using the Mann–Kendall trend test at a significance level of 0.1.

4.3 Impacts of PM2.5 pollution and climate change on spring greening
We used multiple statistical methods to rigorously examine the impacts of PM2.5 pollution and climate change on spring greening at site and global scales. First, we applied linear regression to determine the sensitivity of vegetation greenness (i.e., NDVI, LAI, and SIF) to driving factors, including climatic factors (i.e., CO2, temperature, precipitation, and VPD)1-2 and PM2.5 pollution (Eq. 1) (Fig. 1). Then we determined the standard sensitivity by incorporating the standard deviation of dependent variable and independent variable for each driving factor (Eq. 2). By doing so, the sensitivity of each driving factor can be comparable with each other.
                (1)
                                                                   (2)
where VI indicates the value of VIs (i.e., NDVI, LAI, and SIF). The subscript ‘anl’ represents the anomaly for corresponding variable. TMN, PPT, and VPD represents spring mean temperature, total precipitation, and mean vapor pressure deficit, respectively. β1-5 represent regression coefficients of each driving factor. res is the residual. βiSTD represents the standard sensitivity of variable i. SD here represents the function of calculating the standard deviation of corresponding variable.

Second, we utilized stepwise regression to quantify the effects of driving factors (i.e., CO2, temperature, precipitation, VPD, and PM2.5) on spring greenness (i.e., NDVI, LAI, and SIF) at site and global scales (Extended data Figs. 2 and 3). Stepwise regression refers to the gradual, iterative development of a regression model in relation to the response variable, taking into account all possible explanatory variables. During this process, variables are either incorporated or excluded from the group of explanatory variables based on the results of statistical hypothesis tests. The standardized coefficients of the explanatory variables were used to quantify the effects of individual factors.

Third, to avoid potential multicollinearity between climatic factors and PM2.5 concentration, we used ridge regression that adds a penalty parameter to reduce the variance of the regression coefficient to determine the sensitivities of PM2.5 pollution and climatic factors (Extended data Fig. 4). Spring vegetation greenness (i.e., NDVI, LAI, and SIF) were used as response variables. Driving factors (i.e., CO2, temperature, precipitation, VPD, and PM2.5) were used as the predictors. We used the normalized anomalies of driving factors and spring greenness as regression inputs, and regression coefficients were determined the sensitivities. 

Last, we used partial correlation analysis to investigate the impact of PM2.5 pollution on spring greening at site and global scales. We excluded the impacts of climate change when we conducted the partial correlation analysis for PM2.5 pollution-greening relationships (Supplementary Fig. 4). Overall, linear regression-, stepwise regression-, ridge regression-, and partial correlation-based analyses generated similar results that PM2.5 pollution could undermine spring greening from site to global scales.


5. Mechanism of PM2.5 effects on spring greening
5.1 PM2.5 exposure experiments
We conducted an PM2.5 exposure experiment in 2014 to investigate the effects of PM2.5 pollution on leaf characteristics in 15 common tree species (Supplementary Table 2) in Beijing (39.54°N, 116.23°E) and Chongqing (29.59°N, 106.54°E), China, where PM2.5 pollution was frequently happened in spring (highest daily PM2.5 record of Beijing and Chongqing in 2014 was 486.3 and 274.2 μg m−3, respectively). For each species, we collected samples of first-year twigs from four trees. Samples were collected from four directions at three different heights (low, middle, and high canopy layers), with a total of 12 twigs collected from each tree, weighting between 300 and 500 grams. The twigs were then washed with deionized water in the laboratory and dried in an incubator at 60 °C for 30 minutes.

Leaf observations were carried out in leaf chambers with a controlled temperature of 27 °C and a CO2 concentration of 750 μmol mol−1. Submicron (diameter < 1 μm) and ultrafine (< 0.1 μm) particles were generated using a sodium chloride (NaCl) solution (0.1 mol L−1)46 in air mixing chambers to simulate the natural condition of the PM2.5 pollutions (Supplementary Fig. 17). In real-world scenarios, the composition of PM2.5 particles is indeed complex. However, the primary focus of this experiment is on the physical impact of PM2.5 on the blockage of leaf stomata. Therefore, NaCl was chosen as a representative particulate component for this study. The PM2.5 concentration downstream of the vacuum pump was measured every 5 minutes using a DustMate instrument (Turnkey Instruments, UK). The tests lasted approximately 30 minutes, during which time the PM2.5 concentrations remained stable, with an average concentration of 550 μg m−3. In laboratory environments, it is common for aerosol generators to produce concentrations ranging from tens to thousands of micrograms per cubic meter (μg m−3). For our experiment, we selected a higher concentration within this feasible range to precisely control the experimental conditions and to ensure the observability of the PM2.5 effects on plant physiology. This controlled, heightened concentration allows for a more detailed examination of the physiological responses to PM2.5, which might be less discernible at lower concentrations. The use of such concentrations, while higher than typical ambient levels, is in line with the technical capabilities and common practices in controlled experimental studies47. This approach aids in establishing a clear understanding of the potential impacts under varied environmental conditions and serves as a foundation for further research that could explore a broader range of concentrations, including those more reflective of typical ambient levels.

5.2 Meta-analysis on gas exchange and photosynthesis
We aimed to examine the physical and physiological response of plants to PM2.5 pollution by collecting data from both controlled experiments and ambient samples48,49. We searched for relevant peer-reviewed publications using Google Scholar (https://scholar.google.com), Web of Science (https://www.webofscience.com/) and China National Knowledge Infrastructure Databases (https://www.cnki.net), using the combinations of keywords related to PM2.5 (‘PM2.5’ and ‘particulate matter’) and plant physiology (‘leaf physiology’, ‘stomatal conductance’, and ‘photosynthetic traits’). Articles were included in this study if the following criteria were met: 1) For experimental studies, we ensured that PM experiments were carried out on both control and treatment groups with the same temporal and spatial scales. Furthermore, leaf samples from both control and treatment groups were taken at the same time, and the physiological indices of the sample leaves were measured. 2) For observational studies, leaf samples were simultaneously collected from undisturbed sites with similar ecological conditions and contrasting air quality (e.g., leaf samples from trees next to highly polluted motorways versus clean city parks). The studies reported the concentrations of particulate matter and leaf physiological indicators at both the polluted and unpolluted sites. We considered the stations with higher air pollution levels as the treatment group. 3) For both experimental and observational studies, the names of plant species and the number of leaf replicates were recorded.

We extracted the original data from the figures and tables in the publications and constructed a database consisting of 233 entries, each containing data source, study type (experiment or observation), type of particulate matter (all PM or only PM2.5), species, PM concentrations (both control and treatment groups), exposure time, number of samples (or replications), and eight variables related to gas exchange and photosynthesis (Supplementary Table 3). For each of the 8 variables, the means and standard errors of the control and treatment groups were directly calculated or extracted from the original publications. The means in the treatment () and control group () were used to compute a response ratio by:
                                                       (3)
We used the natural logarithm for the purpose of statistical testing. Most meta-analyses give more weight to effect sizes when estimates have higher precision (lower variance)50. However, only ~75% of the studies reported the variance estimate (s.e.m., s.d. or 95% CI), and the variance-based weighting function can potentially assign extreme weights to individual studies, so that the final effect size might primarily be driven by a few studies51. As an alternative to variance-based testing, we used replication in the weighting function52,53 to calculate the weight associated with each response ratio.
                                                                        (4)
                                                                       (5)
where and  are the number of replications for control and treatment, respectively. We performed three meta-analyses to assess the robustness of our results: 1) a weighted meta-analysis for the experimental studies that only included PM2.5 treatment (109 data points), 2) a weighted meta-analysis for the observational studies (120 data points) and 3) a weighted meta-analysis for all collected data records (233 data points).

We applied meta-analytic mixed-effects models to evaluate the effects of particulate matter on the response ratios of 8 variables. Data points from the same study were given a common study ID. For the full models on all collected data (both experimental and observational), we used a three-level model with study type as the first grouping variable and study ID as the second grouping variable. We assumed that these grouping variables were nested and that these nested effects acted as random intercept effects, allowing us to account for the non-independence of individual effect sizes calculated from the same study and the same study type. For the experimental-only or observational-only model, only study ID was included as random effect. We obtained the confidence intervals for the effect size of each of the eight variables. If the bias-corrected 95% CI value of the effect size does not overlap with zero, the response of the corresponding variable to PM treatment is statistically significant. The models were constructed using the “metafor” package in R54.


5.3 PM2.5 effects on canopy stomatal conductance
To assess the impact of PM2.5 pollution on canopy-level stomatal conductance (GS) through meta-analysis, we used EC-based flux data from FLUXNET2015 dataset (Supplementary Table 4). These were chosen for their detailed variables essential for calculating GS, ensuring reliability and accuracy. The site-specific measurements from these datasets also offer consistent and comparable insights into stomatal responses under diverse environmental and geographical conditions. We collected half-hourly observed meteorological data and water fluxes as input for GS calculations. To minimize uncertainty, we excluded days with rainfall in the current day and previous two days as well as days without measured data around noon55. Flux tower-based GS was derived from observed evapotranspiration (ET) using the Penman-Monteith equation56,57. We aggregated the half-hour meteorological and flux data during daylight hours to daily values. Daylight hours were determined using incoming shortwave radiation (> 5 W m-2)58. Daily GS can be calculated as follows:
                                                        (6)
                                                                  (7)
where ET represents the transpiration of the canopy (when ET is assumed to be small, it can be estimated as  times the latent heat flux),  is the humidity constant (0.066 kPa °C-1)，  is the amount of energy required to evaporate one kilogram of water (2454000 J Kg-1),  (kPa °C-1) is the slope of the saturated water vapor pressure as temperature changes;  (W m-2) is the net radiation, G (W m-2) is the soil heat flux; D (hPa) is the vapor pressure deficit;  (kg m-3) is the air density, and C is the specific heat capacity of air at 1000 J °C-1Kg-1. Ga is the aerodynamic conductance (m s-1), k is the von Karman constant (0.41); U (m s-1) is the wind speed; Z (m) is the wind measurement height, H (m) is the canopy height; d (0.667H, m) is the zero-plane displacement, Zo (0.123H, m) is the aerodynamic roughness of the wind speed profile, and Zoh (0.0123H, m) is the temperature curve. As Z and H were unknown for most of sites, we established different scenarios (Supplementary Table 6) for different vegetation types. We calculated monthly average GS and removed all sites with less than two continuous year observations (24-month records). Finally, we collected 9844 site-month GS globally at 166 sites. To examine the effect of PM2.5 variations on GS changes, we then calculated the anomalies of monthly PM2.5 and GS for each site, removing the effect of site-specific background environmental and climatic conditions. We further linked GS with GPP using similar correlation analysis. 
We also derived gridded GS for global scale analysis. The gridded GS was roughly calculated based on the assumption of identical leaf and atmosphere temperatures, disregarding aerodynamic resistance within the boundary layer, and substituting plant transpiration with ET. The gridded GS was expressed as:
                                                                 (8)
where Pa is the atmospheric pressure (kPa); VPD (kPa) is the atmospheric vapor pressure deficit; factor 1.6 represents the greater diffusion rate of H2O molecules relative to CO2.
We determined the relationships between satellite-based PM2.5 concentration and gridded GS using simple and partial correlations. To link the relationship between PM2.5 and SIF, we further calculated the correlation coefficients for GS and SIF. When we conducted partial correlation analyses, the effects of CO2, temperature, precipitation, and VPD were removed (Supplementary Fig. 9).

5.4 Potential biogeophysical and biogeochemical PM2.5 effects
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]We considered multiple potential processes underlying PM2.5 effects on spring greening. We first determined the areas with positive and negative PM2.5 effects based on the sign of SIF-based sensitivities of PM2.5 (Fig. 1D). Then we collected gridded variables including VCmax59, LAI, PAR, PARdiff60, and Ndeposition61 (Supplementary Table 1) to determine the effects of PM2.5 on photosynthetic activities and environmental conditions using the simple correlation analyses (Fig. 3A, B). To explain PM2.5-greenning relationship, we also explored the PM2.5-driven changes in near-surface ozone (O3), PAR, PARdiff, and air temperature using site monitoring and EC-based flux measurements. We collected all monitoring sites with records of PM2.5 and O3, which were mainly distributed in the USA and Europe, and extracted the SIF data from satellite observations for each site. We determined the PM2.5-O3 and O3-SIF relationships using the site-based anomaly for each variable (Extended data Fig. 5). We collected all available sites with records of PAR and PARdiff from the FLUXNET and extracted PM2.5 concentrations from satellite-based gridded data for each site. We determined the correlations between PAR and PM2.5 using both simple correlation and partial correlation analysis (excluding the effect of incoming shortwave radiation) (Supplementary Fig. 10A). Similarly, we examined the effects of PM2.5 on PARdiff and removed the impact of PAR when conducted partial correlation analysis (Supplementary Fig. 10B). Lastly, we used flux measurement of air temperature and extracted PM2.5 to explore the PM2.5-driven regulation of temperature (Supplementary Fig. 11). We calculated the overall correlation coefficient using the site-merged anomaly of PM2.5 and temperature, and site-based correlation coefficients. 

We applied Structural Equation Models (SEM) to investigate the biogeophysical and biogeochemical effects of PM2.5 pollution on spring greening (Fig. 3C-H). The SEM allows us to quantify both direct and indirect causal relationships among multiple driving factors. Utilizing multiple gridded variables, our SEM aims to elucidate the mechanisms of distinct positive and negative influences of PM2.5 pollution on spring greening. We also employed standard sensitivity of SIF to PM2.5 pollution to differentiate the regions where vegetation greenness was positively and negatively affected by PM2.5 pollution (Fig. 1D). Subsequently, we explored the links between PM2.5 pollution and SIF mediated by factors including VCmax, PAR, PARdiff/PAR, Ndeposition and LAI under different AQI-based levels of PM2.5 pollution. All variables were standardized before analyses and maximum-likelihood estimation was used to calculate the path coefficients. We used the standard criteria to assess the validity of our SEM, including the χ2 test (P > 0.05), the comparative fit index (CFI > 0.9), the Standardized Root Mean Square Residual (SRMR < 0.08), the goodness of fit index (GFI > 0.95), and the Root Mean Square Error of Approximation (RMSEA < 0.08). The SEM was considered valid if at least three out of five criteria were met62. Structural equation models were constructed using the “lavaan” package in R63.


Supplementary Figures
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Fig. 1 | Distribution of global PM2.5 monitoring sites. The map shows the location and land cover type of PM2.5 sites (A). The bars represent the number of PM2.5 sites classified by land cover type and temporal variations of regional site-year records (B).
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Fig. 2 | Contaminating effects of PM2.5 on satellite-observed LAI and SIF signal. A, C, The distribution of changes in LAI (A) and SIF (C) (after minus before) along with changes in PM2.5 during the temporal gap (Supplementary Materials and Methods). B, D, Monthly patterns of relative changes in LAI (B) and SIF (D) along with changes in PM2.5 during the temporal gap.
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Fig. 3 | Contaminating effect of PM2.5 on satellite-observed NDVI signal. A, C, E, G, The distribution of changes in NDVI (after minus before) along with changes in PM2.5 during the temporal gap (Supplementary Materials and Methods) for original NDVI (A) and Savitzky-Golay filtered NDVI with window sizes of 5 (C), 7 (E), and 9 (G) days. B, D, F, H, Monthly patterns of relative changes in NDVI along with changes in PM2.5 during the temporal gap for original NDVI (B), and Savitzky-Golay filtered NDVI with window sizes of 5 (D), 7 (F), and 9 (H) days.
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Fig. 4 | The distribution of partial correlation coefficients between PM2.5 pollution and spring greenness at global (A, C, E) and site (B, D, F) scales. The greenness was represented by satellite-observed NDVI (A, B), LAI (C, D), and SIF (E, F). The bars in the corner show the distribution of partial correlation coefficients. P and N indicates the positive and negative correlations, respectively. The values in the columns represent the frequency of pixels or sites with significant correlations (P < 0.1). 

[image: ]
Fig. 5 | Leaf PM2.5 absorption under the PM2.5 treatment for seven species (Supplementary Table 2). The leaf PM2.5 absorption was measured when PM2.5 concentrations remained stable with an average concentration of 550 μg m−3 (Supplementary Materials and Methods).
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Fig. 6 | Effects of particulate matter on plant physiological indicators derived from experimental and observational datasets. “Exp” and “Obs” represent model results derived from experimental studies and observational studies respectively. Amax is the maximum rate of carbon assimilation. Fv/Fm is the maximum quantum efficiency of Photosystem. Values in brackets represent the mean effect size (left) and number of species (right) in each estimate. P-values are shown when the effect size of a variable was significant (P < 0.05). The dashed vertical lines indicate the effect size at zero.
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Fig. 7 | Relationship between PM2.5 pollution and canopy stomatal conductance for different vegetation types. R represents the correlation coefficient between monthly anomaly of PM2.5 and canopy stomatal conductance. The symbol * and *** indicates P < 0.01 and P < 0.001, respectively.
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Fig. 8 | Effect of PM2.5 pollution on canopy stomatal conductance for forests based on different scenarios of canopy height (H, m) and wind measurement height (Z, m) (Supplementary Table 6). (A-C) indicate the relationship between the monthly anomaly of PM2.5 and stomatal conductance derived from global flux measurements (density plot) for forests under three scenarios, The subplot shows the relationship between anomalies of stomatal conductance and GPP (A) H=10, Z=15; (B) H=15, Z= 20; (C) H=20, Z=30 (Supplementary Table 6).
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[bookmark: _Hlk155455692]Fig. 9 | Effects of PM2.5 pollution on canopy stomatal conductance and SIF in spring. A, C, The relationship between PM2.5 concentration and canopy stomatal conductance (A, simple correlation, C, partial correlation). B, D, The relationship between canopy stomatal conductance and SIF (B, simple correlation, D, partial correlation). For partial correlation analyses, the effects of CO2, temperature, precipitation, and VPD were removed.
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Fig. 10 | Effects of PM2.5 pollution on PAR and PARdiff in spring using flux measurements. A, The relationship between PM2.5 concentration and PAR. For partial correlation analysis, the effect of incoming shortwave radiation was excluded. B, The relationship between PM2.5 concentration and PARdiff. For partial correlation analysis, the effect of PAR was excluded.
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Fig. 11 | Effect of PM2.5 pollution on air temperature (Ta) using flux measurements. A, The relationship between the anomaly of PM2.5 concentration and the anomaly of Ta. B, The distribution of PM2.5-Ta relationship. P and N indicates positive and negative correlation, respectively. The values in the columns or the red bars indicate the number of sites of significant correlations (P < 0.1). 
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Fig. 12 | Standard sensitivities of simulated GPP from 16 process-based models to PM2.5 pollution. The figure shows the spatial pattern of standard sensitivity of PM2.5 for each model.
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Fig. 13 | Evaluation of satellite-based PM2.5 data using site monitoring of PM2.5 concentrations. The density scatter plot shows the relationship between site- and satellite-based PM2.5.
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Fig. 14 | Impact of spring PM2.5 pollution on LAI derived from the GLASS product suite. A, The spatial pattern of standard sensitivity of GLASS LAI to PM2.5 pollution. B, The pattern of standard sensitivities of climatic factors (i.e., CO2, temperature, precipitation, and VPD) and PM2.5 pollution. C, The comparison of PM2.5 effects for MODIS LAI and GLASS LAI. Consistent and inconsistent indicates the same and contrasting direction of PM2.5 effect on MODIS LAI and GLASS LAI, respectively.
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Fig. 15 | Impact of spring PM2.5 pollution on relative SIF. A, The spatial pattern of standard sensitivity of relative SIF to PM2.5 concentration. B, The pattern of standard sensitivities of climatic factors (i.e., CO2, temperature, precipitation, and VPD) and PM2.5 pollution. C, The comparison of PM2.5 effects for SIF and relative SIF. Consistent and inconsistent indicates the same and contrasting direction of PM2.5 effect on SIF and relative SIF, respectively.

[bookmark: _GoBack][image: ]
Fig. 16 | Spatial and temporal patterns of spring vegetation greenness from 2000 to 2020. A, C, E, The spatial patterns of multi-year averaged spring greenness (A: NDVI, C: LAI, and E: SIF). B, D, F, The spatial patterns of temporal trends of spring greenness (B: NDVI, D: LAI, and F: SIF). P and N above the bars indicates the positive and negative trend, respectively. The values in the columns represent the percentage of areas with significant temporal trends (P < 0.1).

[image: ]
Fig. 17 | Diagram of PM2.5 exposure experiment. Details of experiment can be seen in the Supplementary Materials and Methods.
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Supplementary Tables
Table 1 Summary of data used in this study.
	Data
	Indicator
	Spatial resolution
	Temporal resolution
	Time duration
	Source

	Site monitoring of air pollution data
	PM2.5
	-
	daily
	2000-2020
	Ref1-5

	
	O3
	
	
	
	

	Satellite-based PM2.5 pollution
	PM2.5
	0.01°
	daily
	2000-2020
	Ref6

	Satellite-based vegetation indices
	NDVI
	500m
	daily
	2000-2020
	MOD13C27

	
	LAI
	500m
	8-day
	2000-2020
	MOD15A2H7

	
	SIF
	0.05°
	4-day
	2000-2020
	CSIF8

	TerraClimate
	Temperature
	1/24°
	monthly
	2000-2020
	Climatology Lab9

	
	Precipitation
	
	
	
	

	
	VPD
Vapor pressure
	
	
	
	

	Global monthly mean CO2
	CO2
	-
	monthly
	2000-2020
	NOAA10

	Land cover
	IGBP
	0.05°
	yearly
	2000-2020
	MCD12C17

	
	Permafrost type
	-
	-
	-
	NSIDC11

	BESS_Rad
	PAR
	5km
	4-day
	2000-2020
	BESS12

	
	diffuse PAR
	
	
	
	

	Biogeochemical variables
	VCmax
	500m
	8-day
	2000-2019
	NESDC13

	
	N deposition
ET
	0.072727°
0.25°
	yearly
monthly
	2000-2019
2000-2020
	Ref14
GLEAM15



1Open AQ (https://openaq.org/)
2The China National Environmental Monitoring Centre (http://www.cnemc.cn/)
3The US Environmental Protection Agency (https://www.epa.gov/)
4The European Air Quality e-Reporting (https://www.eea.europa.eu/data-and-maps/data/external/air-quality-e-reporting-aq)
5The Canadian National Air Pollution Surveillance Program (https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html)
610.1038/s41467-023-43862-3
7https://lpdaac.usgs.gov/
8https://figshare.com/articles/dataset/CSIF/6387494
9https://www.climatologylab.org/terraclimate.html
10https://gml.noaa.gov/ccgg/trends/global.html
11https://nsidc.org/data/ggd318/versions/2
12https://www.environment.snu.ac.kr/bess-rad
13http://www.nesdc.org.cn/sdo/detail?id=612f42ee7e28172cbed3d80f1410.1038/s41467-019-12257-8
14https://doi.org/10.1038/s41467-019-12257-8
15https://www.gleam.eu/


Table 2. Description of Scan Electron Microscopy observations in Fig. 2.
	ID
	Species name
	Scan area
	Leaf Status
	PM2.5 absorption measurement

	A1
	Gordonia acuminata
	Leaf stomata
	Stomata closed; massive particulates accumulate.
	No

	A2
	Lindera kwangtungensis
	Leaf stomata
	50% of stomata closed; massive particulates accumulate.
	No

	A3
	Rhamnus esquirolii
	Leaf stomata
	Stomata open, massive particulates accumulate.
	No

	A4
	Euonymus japonicus Thunb
	Leaf stomata
	Stomata open, adherent particulates block stomata.
	No

	A5
	Buxus sinica var. parvifolia
	Leaf stomata
	Stomata damaged; adherent particulates blocked stomata.
	No

	A6
	Lagerstroemia indica
	Leaf stomata
	90% of stomata closed; particulates adhere to leaf surface.
	No

	A7
	Prunus triloba
	Leaf surface
	Particulates adhere to leaf surface.
	No

	A8
	Parthenocissus quinquefolia
	Leaf (back) surface
	Massive particulates adhere to leaf surface.
	No

	A9
	Broussonetia papyrifera
	Leaf trichomes
	Particulates adhere to leaf hair. 
	Yes

	A10
	Cinnamomum japonicum
	Leaf surface
	Leaf surface damaged, massive particulates accumulated.
	Yes

	A11
	Platanus orientalis
	Leaf stomata
	Stomata closed; particulates adhere to leaf surface.
	Yes

	A12
	Cinnamomum camphora
	Leaf (back) surface
	Particulates adhere to leaf surface.
	Yes

	A13
	Ginkgo biloba
	Leaf surface
	Massive particulates accumulated.
	Yes

	A14
	Pinus massoniana
	Leaf surface
	Particulates adhere to leaf surface.
	Yes

	A15
	Erythrina variegata
	Leaf vein
	Particulates adhere to leaf vein.
	Yes





Table 3. Description of meta-analysis materials.
	Study ID
	Author
	Year
	Study type
	Species
	DOI

	1
	Borka et al.
	1980
	Experimental
	Helianthus annuus
	10.1016/0143-1471(80)90084-7

	2
	Thompson et al.
	1984
	Experimental
	Viburnum tinus
	10.1016/0143-1471(84)90056-4

	3
	Hirano et al.
	1995
	Experimental
	Cucumis sativusL
	10.1016/0269-7491(94)00075-O

	4
	Lu et al.
	1999
	Observational
	Osmanthus fragrans Lour., Rhododendron x pulchrum, Photinia x fraseri Dress
	10.1016/j.gecco.2019.e00783

	5
	Prusty et al.
	2005
	Observational
	Pongamia pinnata, Tabernaemontana divaricata, Ipomoea carnea, Ficus religiosa, Ficus benghalensis, Quisqualis indica
	10.1016/j.ecoenv.2003.12.013

	6
	Nanos et al.
	2007
	Experimental
	Olea europaea
	10.1065/espr2006.08.327

	7
	Morina et al,
	2013
	Observational
	Phyllostachys bissetii
	10.3390/atmos10040224

	8
	González et al.
	2014
	Experimental
	Tabebuia chrysotricha, Fragaria chiloensis, Ricinus communis, Rapanea laetevirens, Saccharum officinarum, Hibiscus rosa-sinensis, Alocasia macrorrhiza, Rosa rubiginosa, Mespilus germanica, Bauhinia candicans, Psychotria carthagenensis, Coccoloba cordata, Justicia oranensis, Eugenia uniflora, Lonchocarpus lilloi, Myrcianthes pseudomato
	10.2134/jeq2013.08.0308

	9
	Przybysz et al.
	2014
	Observational
	Acer platanoides L., Acer pseudoplatanus L., Parthenocissus tricuspidata (S. Et Z.) Planch., Parthenocissus quinquefolia L., Sorbaria sorbifolia L.
	doi:10.1080/01448765.2013.849208

	10
	Yamaguchi et al.
	2014
	Experimental
	Fagus crenata, Castanopsis sieboldii, Cryptomeria japonica, Larix kaempferi
	10.1016/j.atmosenv.2014.01.023

	11
	Yu et al.
	2015
	Experimental
	Neolitsea aurata, Polyspora speciosa, Lindera kwangtungensis, Rhamnus esquirolii, Cunninghamia lanceolata, Pinus massoniana, Phyllostachys edulis, Symplocos setchuensis Brand, Castanopsis sclerophylla
	10.1007/s11356-018-2128-6

	12
	Chen et al.
	2015
	Observational
	Koelreuteria bipinnata, Elaeocarpus sylvestris (Lour.) Poir., Platanus acerifolia Willd., Magnolia grandiflora, Ligustrum lucidum, Prunus cerasifera Ehrh. cv. Atropurpurea, Morus alba L., Osmanthus fragrans Lour., Parthenocissus tricuspidata (S. Et Z.) Planch., Viburnum odoratissinum, Pyracantha fortuneana (Maxim.) Li, Mahonia fortune (Lindl.) Fedde, Loropetalum chinense (R. Br.) Oliver var. rubrum Yieh, Trachycarpus fortunei (Hook.) H. Wendl., Pittosporum tobira (Thunb.) Ait., Reineckia carnea (Andr.) Kunth, Ginkgo biloba L., Eriobotrya japonica (Thunb.) Lindl., Jasminum mesnyi Hance, Rhododendron simsii Planch., Nerium indicum Mill., Photinia serrulata Lindl., Sophora japonica Linn. var. pendula Loud., Iris tectorum
	10.2298/ABS150325102C

	13
	Shi et al.
	2015
	Observational
	Populus tomentosa
	10.5846/stxb201403190487

	14
	Zhang et al.
	2017
	Experimental
	Populus deltoides × P. nigra
	10.13332/j.1000-1522.20160376

	15
	Yang et al.
	2018
	Experimental
	Populus × euramericana
	10.1016/j.envexpbot.2018.06.009

	16
	Yang et al.
	2018
	Observational
	Buxus megistophylla H. Lév., Agave sisalana Perr. ex Engelm., Ligustrum lucidum, Buxus sinica var. parvifolia M. Cheng
	10.19640/j.cnki.jtau.2018.01.007

	17
	Popek et al.
	2018
	Observational
	Physocarpus opulifolius, Sorbaria sorbifolia
	10.15244/pjoes/78626

	18
	Qiu et al.
	2018
	Observational
	Magnolia grandiflora, Cinnamomum camphora, Viburnum odoratissinum, Castanopsis sclerophylla, Schima superba, Koelreuteria bipinnata
	10.11833/j.issn.2095-0756.2018.01.011

	19
	Xu et al.
	2018
	Experimental
	Microcystis aeruginosa
	10.1007/s11356-017-0955-5

	20
	Li et al.
	2019
	Experimental
	Neolitsea aurata, Gordonia acuminata, Lindera kwangtungensis, Rhamnus esquirolii
	10.1007/s12374-018-0254-9

	21
	Kiyomizu et al.
	2019
	Observational
	Rhododendron × pulchrum, Ginkgo biloba L.
	10.1007/s00468-018-1759-z

	22
	Haynes et al.
	2019
	Observational
	Pittosporum undulatum Vent., hepaticae
	10.3390/atmos10040224

	23
	Sadia et al.
	2019
	Observational
	Polyalthia longifolia, Swietenia mahagoni, Artocarpus heterophyllus
	10.1007/s42452-019-1421-4

	24
	Yang et al.
	2019
	Experimental
	Chlorella vulgaris
	10.1016/j.envpol.2019.04.017

	25
	Wang et al.
	2020
	Observational
	Populus × canadensis Moench
	10.1111/1365-2745.13633

	26
	Ma et al.
	2020
	Experimental
	Populus tomentosa
	10.11707/j.1001-7488.20200820

	27
	Li et al.
	2021
	Experimental
	Nerium oleander L.
	10.1016/j.chemosphere.2021.130682

	28
	Zhu et al,
	2021
	Observational
	Euonymus japonicus
	10.1186/s12870-021-03207-y

	29
	Kong et al.
	2021
	Experimental
	Brassica campestris L.
	10.32604/phyton.2021.014190

	30
	Treesubsuntorn et al.
	2021
	Experimental
	Wrightia religiosa
	10.1016/j.scitotenv.2021.148779

	31
	Sharma et al.
	2021
	Experimental
	Triticum aestivum L.
	10.5572/ajae.2020.080

	32
	Kwon et al.
	2021
	Experimental
	Iris sanguinea, Pteris multifida, Vitis coigenetiae, Viburnum odoratissinum
	10.11628/ksppe.2021.24.5.461

	33
	Gao et al.
	2022
	Experimental
	Brassica rapa spp. Pekinensis
	10.1016/j.envpol.2021.118585

	34
	Matsumoto et al.
	2022
	Observational
	Rhododendron × pulchrum, Rhaphiolepis indica (L.), Prunus × yedoensis (Matsum.), Ginkgo biloba L.
	10.1007/s11252-022-01212-z

	35
	Goswami et al.
	2022
	Observational
	Azadirachta indica, Toona ciliate, Callistemon citrinus, Psidium guajava
	10.1007/s10661-022-10384-2

	36
	Huang et al.
	2023
	Experimental
	Euonymus Japonicus var.aurea-marginatus
	10.1016/j.envpol.2022.120593




Table 4. Description of the 187 sites of EC-based flux measurement used in this study.
	NO.
	Site
	Lat
	Lon
	IGBP
	Year
	NO.
	Site
	Lat
	Lon
	IGBP
	Year

	1
	AR-Slu
	−33.5
	−66.5
	MF
	2009-2011
	95
	IT-BCi
	40.50
	15.00
	CRO
	2004-2014

	2
	AT-Neu
	47.10
	11.30
	GRA
	2002-2012
	96
	IT-CA1
	42.40
	12.00
	DBF
	2011-2014

	3
	AU-Ade
	−13.1
	131.10
	WSA
	2007-2009
	97
	IT-CA2
	42.40
	12.00
	CRO
	2011-2014

	4
	AU-ASM
	−22.3
	133.20
	ENF
	2010-2014
	98
	IT-CA3
	42.30
	12.00
	DBF
	2011-2014

	5
	AU-Cpr
	−34
	140.60
	SAV
	2010-2014
	99
	IT-Col
	41.80
	13.60
	DBF
	1996-2014

	6
	AU-Cum
	−33.6
	150.70
	EBF
	2012-2014
	100
	IT-Cp2
	41.70
	12.40
	EBF
	2012-2014

	7
	AU-DaP
	−14.1
	131.30
	GRA
	2007-2013
	101
	IT-Cpz
	41.70
	12.40
	EBF
	1997-2009

	8
	AU-DaS
	−14.2
	131.40
	SAV
	2008-2014
	102
	IT-Isp
	45.80
	8.60
	DBF
	2013-2014

	9
	AU-Dry
	−15.3
	132.40
	SAV
	2008-2014
	103
	IT-Lav
	46.00
	11.30
	ENF
	2003-2014

	10
	AU-Emr
	−23.9
	148.50
	GRA
	2011-2013
	104
	IT-MBo
	46.00
	11.00
	GRA
	2003-2013

	11
	AU-Fog
	−12.5
	131.30
	WET
	2006-2008
	105
	IT-Noe
	40.60
	8.20
	CSH
	2004-2014

	12
	AU-Gin
	−31.4
	115.70
	WSA
	2011-2014
	106
	IT-PT1
	45.20
	9.10
	DBF
	2002-2004

	13
	AU-GWW
	−30.2
	120.70
	SAV
	2013-2014
	107
	IT-Ren
	46.60
	11.40
	ENF
	1998-2013

	14
	AU-How
	−12.5
	131.20
	WSA
	2001-2014
	108
	IT-Ro2
	42.40
	11.90
	DBF
	2002-2012

	15
	AU-Lox
	−34.5
	140.70
	DBF
	2008-2009
	109
	IT-SR2
	43.70
	10.30
	ENF
	2013-2014

	16
	AU-RDF
	−14.6
	132.50
	WSA
	2011-2013
	110
	IT-SRo
	43.70
	10.30
	ENF
	1999-2012

	17
	AU-Rig
	−36.6
	145.60
	GRA
	2011-2014
	111
	IT-Tor
	45.80
	7.60
	GRA
	2008-2014

	18
	AU-Rob
	−17.1
	145.60
	EBF
	2014-2014
	112
	MY-PSO
	3.00
	102.30
	EBF
	2003-2009

	19
	AU-Stp
	−17.2
	133.40
	GRA
	2008-2014
	113
	NL-Hor
	52.20
	5.10
	GRA
	2004-2011

	20
	AU-TTE
	−22.3
	133.60
	OSH
	2012-2014
	114
	NL-Loo
	52.20
	5.70
	ENF
	1996-2014

	21
	AU-Tum
	−35.7
	148.20
	EBF
	2001-2014
	115
	RU-Che
	68.60
	161.30
	WET
	2002-2005

	22
	AU-Wac
	−37.4
	145.20
	EBF
	2005-2008
	116
	RU-Cok
	70.80
	147.50
	OSH
	2003-2014

	23
	AU-Whr
	−36.7
	145.00
	EBF
	2011-2014
	117
	RU-Fyo
	56.50
	32.90
	ENF
	1998-2014

	24
	AU-Wom
	−37.4
	144.10
	EBF
	2010-2014
	118
	RU-Ha1
	54.70
	90.00
	GRA
	2002-2004

	25
	AU-Ync
	−35
	146.30
	GRA
	2012-2014
	119
	RU-SkP
	62.30
	129.20
	DNF
	2012-2014

	26
	BE-Bra
	51.30
	4.50
	MF
	1996-2014
	120
	RU-Tks
	71.60
	128.90
	GRA
	2010-2014

	27
	BE-Lon
	50.60
	4.70
	CRO
	2004-2014
	121
	RU-Vrk
	67.10
	62.90
	CSH
	2008-2008

	28
	BE-Vie
	50.30
	6.00
	MF
	1996-2014
	122
	SD-Dem
	13.30
	30.50
	SAV
	2005-2009

	29
	BR-Sa3
	−3
	−55
	EBF
	2000-2004
	123
	SN-Dhr
	15.40
	−15.4
	SAV
	2010-2013

	30
	CA-Cbo
	44.32
	-79.93
	DBF
	1994-2020
	124
	US-AR1
	36.40
	−99.4
	GRA
	2009-2012

	31
	CA-Gro
	48.20
	−82.2
	MF
	2003-2014
	125
	US-AR2
	36.60
	−99.6
	GRA
	2009-2012

	32
	CA-Oas
	53.63
	-106.2
	DBF
	1996-2010
	126
	US-ARc
	35.50
	−98
	GRA
	2005-2006

	33
	CA-Obs
	54.00
	−105.1
	ENF
	1997-2010
	127
	US-ARM
	36.60
	−97.5
	CRO
	2003-2012

	34
	CA-Qfo
	49.70
	−74.3
	ENF
	2003-2010
	128
	US-Atq
	70.50
	−157.4
	WET
	2003-2008

	35
	CA-SF1
	54.50
	−105.8
	ENF
	2003-2006
	129
	US-Bi2
	38.1091
	-121.535
	CRO
	2017-2021

	36
	CA-SF2
	54.30
	−105.9
	ENF
	2001-2005
	130
	US-Blo
	38.90
	−120.6
	ENF
	1997-2007

	37
	CA-SF3
	54.10
	−106
	OSH
	2001-2006
	131
	US-Cop
	38.10
	−109.4
	GRA
	2001-2007

	38
	CA-TP1
	42.70
	−80.6
	ENF
	2002-2014
	132
	US-CRT
	41.60
	−83.3
	CRO
	2011-2013

	39
	CA-TP2
	42.80
	−80.5
	ENF
	2002-2007
	133
	US-GBT
	41.40
	−106.2
	ENF
	1999-2006

	40
	CA-TP3
	42.70
	−80.3
	ENF
	2002-2014
	134
	US-GLE
	41.40
	−106.2
	ENF
	2004-2014

	41
	CA-TP4
	42.70
	−80.4
	ENF
	2002-2014
	135
	US-Goo
	34.30
	−89.9
	GRA
	2002-2006

	42
	CA-TPD
	42.60
	−80.6
	DBF
	2012-2014
	136
	US-Ha1
	42.5378
	-72.1715
	DBF
	1991-2020

	43
	CG-Tch
	-4.29
	11.656
	SAV
	2006-2009
	137
	US-Ho2
	45.2091
	-68.747
	ENF
	1999-2020

	44
	CH-Cha
	47.20
	8.40
	GRA
	2005-2014
	138
	US-IB2
	41.80
	−88.2
	GRA
	2004-2011

	45
	CH-Dav
	46.80
	9.90
	ENF
	1997-2014
	139
	US-Ivo
	68.50
	−155.8
	WET
	2004-2007

	46
	CH-Fru
	47.10
	8.50
	GRA
	2005-2014
	140
	US-KS1
	28.50
	−80.7
	ENF
	2002-2002

	47
	CH-Lae
	47.48
	8.3644
	MF
	2004-2014
	141
	US-KS2
	28.60
	−80.7
	CSH
	2003-2006

	48
	CH-Oe2
	47.29
	7.7337
	CRO
	2004-2014
	142
	US-Lin
	36.40
	−119.8
	CRO
	2009-2010

	49
	CH-Oe2
	47.29
	7.7337
	CRO
	2004-2014
	143
	US-Los
	46.10
	−90
	WET
	2000-2014

	50
	CN-CBS
	42.40
	128.10
	MF
	2003-2010
	144
	US-LWW
	35.00
	−98
	GRA
	1997-1998

	51
	CN-Cng
	44.60
	123.50
	GRA
	2007-2010
	145
	US-Me1
	44.60
	−121.5
	ENF
	2004-2005

	52
	CN-DHS
	23.20
	112.50
	EBF
	2003-2010
	146
	US-Me2
	44.50
	−121.6
	ENF
	2002-2014

	53
	CN-Du2
	42.00
	116.30
	GRA
	2006-2008
	147
	US-Me4
	44.50
	−121.6
	ENF
	1996-2000

	54
	CN-Du3
	42.10
	116.30
	GRA
	2009-2010
	148
	US-Me5
	44.40
	−121.6
	ENF
	2000-2002

	55
	CN-HaM
	37.40
	101.20
	GRA
	2002-2004
	149
	US-Me6
	44.30
	−121.6
	ENF
	2010-2014

	56
	CN-HBGC
	37.70
	101.30
	GRA
	2004-2010
	150
	US-MMS
	39.30
	−86.4
	DBF
	1999-2014

	57
	CN-LBJ
	29.00
	107.20
	EBF
	2020-2021
	151
	US-MOz
	38.7441
	-92.2
	DBF
	2004-2019

	58
	CN-LSDX
	30.40
	91.10
	GRA
	2004-2010
	152
	US-Mpj
	34.4385
	-106.238
	WSA
	2008-2020

	59
	CN-QYZ
	26.70
	115.10
	ENF
	2003-2010
	153
	US-Myb
	38.0499
	-121.765
	WET
	2010-2021

	60
	CN-XLGL
	44.10
	116.30
	GRA
	2003-2010
	154
	US-Ne1
	41.20
	−96.5
	CRO
	2001-2013

	61
	CN-XSBN
	22.00
	101.20
	EBF
	2003-2010
	155
	US-Ne2
	41.20
	−96.5
	CRO
	2001-2013

	62
	CN-YC
	36.80
	116.60
	CRO
	2003-2010
	156
	US-Ne3
	41.20
	−96.4
	CRO
	2001-2013

	63
	CZ-wet
	49.00
	14.80
	WET
	2006-2014
	157
	US-NR1
	40.00
	−105.5
	ENF
	1998-2014

	64
	DE-Geb
	51.10
	10.90
	CRO
	2001-2014
	158
	US-Oho
	41.60
	−83.8
	DBF
	2004-2013

	65
	DE-Gri
	51.00
	13.50
	GRA
	2004-2014
	159
	US-PFa
	45.9459
	-90.2723
	MF
	1995-2014

	66
	DE-Hai
	51.10
	10.50
	DBF
	2000-2012
	160
	US-Prr
	65.10
	−147.5
	ENF
	2010-2014

	67
	DE-Kli
	50.90
	13.50
	CRO
	2004-2014
	161
	US-Seg
	34.3623
	-106.702
	GRA
	2007-2021

	68
	DE-Lkb
	49.10
	13.30
	ENF
	2009-2013
	162
	US-Ses
	34.3349
	-106.744
	OSH
	2007-2021

	69
	DE-Lnf
	51.30
	10.40
	DBF
	2002-2012
	163
	US-SRC
	31.90
	−110.8
	OSH
	2008-2014

	70
	DE-Obe
	50.80
	13.70
	ENF
	2008-2014
	164
	US-SRG
	31.80
	−110.8
	GRA
	2008-2014

	71
	DE-RuR
	50.60
	6.30
	GRA
	2011-2014
	165
	US-SRM
	31.80
	−110.9
	WSA
	2004-2014

	72
	DE-RuS
	50.90
	6.40
	CRO
	2011-2014
	166
	US-Syv
	46.20
	−89.3
	MF
	2001-2014

	73
	DE-Seh
	50.90
	6.40
	CRO
	2007-2010
	167
	US-Ton
	38.40
	−121
	WSA
	2001-2014

	74
	DE-SfN
	47.80
	11.30
	WET
	2012-2014
	168
	US-Tw2
	38.10
	−121.6
	CRO
	2012-2013

	75
	DE-Tha
	51.00
	13.60
	ENF
	1996-2014
	169
	US-Tw3
	38.10
	−121.6
	CRO
	2013-2014

	76
	DE-Zrk
	53.90
	12.90
	WET
	2013-2014
	170
	US-Tw4
	38.10
	−121.6
	WET
	2013-2014

	77
	DK-Eng
	55.70
	12.20
	GRA
	2005-2008
	171
	US-Twt
	38.10
	−121.7
	CRO
	2009-2014

	78
	DK-Fou
	56.50
	9.60
	CRO
	2005-2005
	172
	US-UMB
	45.5598
	-84.7138
	DBF
	2000-2014

	79
	DK-Sor
	55.50
	11.60
	DBF
	1996-2014
	173
	US-UMd
	45.5625
	-84.6975
	DBF
	2007-2021

	80
	ES-Amo
	36.80
	−2.3
	OSH
	2007-2012
	174
	US-Var
	38.40
	−121
	GRA
	2000-2014

	81
	ES-LgS
	37.10
	−3
	OSH
	2007-2009
	175
	US-WCr
	45.80
	−90.1
	DBF
	1999-2014

	82
	ES-LJu
	36.90
	−2.8
	OSH
	2004-2013
	176
	US-Whs
	31.70
	−110.1
	OSH
	2007-2014

	83
	FI-Hyy
	61.80
	24.30
	ENF
	1996-2014
	177
	US-Wi0
	46.60
	−91.1
	ENF
	2002-2002

	84
	FI-Jok
	60.90
	23.50
	CRO
	2000-2003
	178
	US-Wi1
	46.70
	−91.2
	DBF
	2003-2003

	85
	FI-Let
	60.60
	24.00
	ENF
	2009-2012
	179
	US-Wi2
	46.70
	−91.2
	ENF
	2003-2003

	86
	FI-Lom
	68.00
	24.20
	WET
	2007-2009
	180
	US-Wi3
	46.60
	−91.1
	DBF
	2002-2004

	87
	FI-Sod
	67.40
	26.60
	ENF
	2001-2014
	181
	US-Wi4
	46.70
	−91.2
	ENF
	2002-2005

	88
	FR-Fon
	48.48
	2.7801
	DBF
	2005-2014
	182
	US-Wi6
	46.60
	−91.3
	OSH
	2002-2003

	89
	FR-Gri
	48.80
	2.00
	CRO
	2004-2014
	183
	US-Wi8
	46.70
	−91.3
	DBF
	2002-2002

	90
	FR-LBr
	44.70
	−0.8
	ENF
	1996-2008
	184
	US-Wjs
	34.4255
	-105.862
	SAV
	2007-2021

	91
	FR-Pue
	43.70
	3.60
	EBF
	2000-2014
	185
	US-Wkg
	31.70
	−109.9
	GRA
	2004-2014

	92
	GF-Guy
	5.279
	-52.92
	EBF
	2004-2014
	186
	ZA-Kru
	−25
	31.50
	SAV
	2000-2013

	93
	GH-Ank
	5.30
	−2.7
	EBF
	2011-2014
	187
	ZM-Mon
	−15.4
	23.30
	DBF
	2000-2009

	94
	GL-ZaH
	74.47
	-20.55
	GRA
	2000-2014
	
	
	
	
	
	




Table 5. Description of TRENDY model output used in this study.
	TBM
	Spatial resolution
	Year Sequence
	Reference
	DOI

	CABLE-POP
	1°x1°
	1700-2021
	Haverd et al., 2018
	10.5194/gmd-11-2995-2018

	CLASSIC
	1°x1°
	1701-2021
	Asaadi et al., 2018
	10.5194/bg-15-6885-2018

	CLM5.0
	1.25°x0.9375°
	1701-2021
	Lawrence et al., 2019
	10.1029/2018MS001583

	DLEM
	0.5°x0.5°
	1700-2021
	Tian et al., 2011, 2015
	10.1029/2010JG001393

	IBIS
	1°x1°
	1700-2021
	Yuan et al., 2014
	10.1002/2014JG002608

	ISAM
	0.5°x0.5°
	1700-2021
	Jain et al., 2013
	10.1111/gcb.12207

	JSBACH
	1.875°x1.864°
	1701-2021
	Mauritsen et al., 2019
	10.1029/2018MS001400

	JULES
	1.875°x1.25°
	1700-2021
	Burton et al., 2019
	10.5194/gmd-12-179-2019

	LPJ-GUESS
	0.5°x0.5°
	1700-2021
	Smith et al., 2014
	10.5194/bg-11-2027-2014

	LPX-Bern
	0.5°x0.5°
	1700-2021
	Lienert & Joos, 2018
	10.5194/bg-15-2909-2018

	OCN
	1°x1°
	1700-2021
	Zaehle et al., 2011
	10.1038/ngeo1207

	ORCHIDEE
	0.5°x0.5°
	1700-2021
	Krinner et al., 2005
	10.1029/2003GB002199

	SDGVM
	1°x1°
	1900-2021
	Walker et al., 2017
	10.1111/nph.14623

	VISIT
	0.5°x0.5°
	1860-2021
	Ito & Inatomi, 2012
	10.5194/bg-9-759-2012

	VISIT-NIES
	0.5°x0.5°
	1700-2021
	Ito & Inatomi, 2012
	10.5194/bg-9-759-2012

	YIBs
	1°x1°
	1700-2021
	Yue & Unger, 2015
	10.5194/gmd-8-2399-2015




Table 6. The scenarios of wind measurement height and canopy height for canopy stomatal conductance estimation.
	IGBP
	Scenarios
	Canopy height (H, m)
	Wind measurement height (Z, m)

	Forests
(ENF, EBF, DNF, DBF, MF)
	S-F1
	10
	15

	
	S-F2
	15
	20

	
	S-F3
S-F4
	20
20
	25
30

	Shrublands
(CRO, OSH, SHB, CSH)
	S-S1
	1
	2

	Others
(GRA, SAV, WET, WSA)
	S-O1
	0.5
	2
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