Neuromuscular Polytrauma Pain is Resolved by Macrophage COX-2 Nanoimmunomodulation

Ibdanelo Cortez
The University of Texas MD Anderson Cancer Center

Caitlyn M. Gaffney
The University of Texas MD Anderson Cancer Center

Riddhi Vichare
Duquesne University

Caitlin V. Crelli
Duquesne University

Lu Liu
Duquesne University

Eric Lee
The University of Texas MD Anderson Cancer Center

Jules Edralin
The University of Texas MD Anderson Cancer Center

James M. Nichols
The University of Texas MD Anderson Cancer Center

Hoang Vu Pham
The University of Texas MD Anderson Cancer Center

Syed Mehdi
The University of Texas MD Anderson Cancer Center

Jelena M. Janjic
Duquesne University

Andrew J. Shepherd (ajshepherd@mdanderson.org)
The University of Texas MD Anderson Cancer Center

Research Article

Keywords: nerve injury, muscle contusion, polytrauma, macrophage, celecoxib, nanoemulsion, COX-2

Posted Date: January 17th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3860844/v1
Abstract

Soft tissue injuries often involve muscle and peripheral nerves and are qualitatively distinct from single-tissue injuries. Prior research suggests that damaged innervation compromises wound healing. To test this in a traumatic injury context, we developed a novel mouse model of nerve and lower limb polytrauma, which features greater pain hypersensitivity and more sustained macrophage infiltration than either injury in isolation. We also show that macrophages are crucial mediators of pain hypersensitivity in this model by delivering macrophage-targeted nanoemulsions laden with the cyclooxygenase-2 (COX-2) inhibitor celecoxib. This treatment was more effective in males than females, and more effective when delivered 3 days post-injury than 7 days post-injury. The COX-2 inhibiting nanoemulsion drove widespread anti-inflammatory changes in cytokine expression in polytrauma-affected peripheral nerves. Our data shed new light on the modulation of inflammation by injured nerve input and demonstrate macrophage-targeted nanoimmunomodulation can produce rapid and sustained pain relief following complex injuries.

Introduction

Deficient tissue healing following traumatic injury is linked to chronic pain [1]. Although soft tissue repair following injury is predominantly macrophage-driven, a failure of macrophages to transition from a pro-inflammatory to anti-inflammatory phenotype has been implicated in non-resolving inflammation and sustained pain [2–6]. Skeletal muscle repair after contusion requires a series of highly coordinated events that are modulated by macrophages. Activated by damaged myofibers, intramuscular macrophages are responsible for removing dead cells immediately following injury and initiating muscle regeneration by signaling to satellite cells, fibroblasts, and other immune cells [7–10]. Additionally, crosstalk with the peripheral nervous system orchestrates immune responses to injury, and in particular macrophages. This relationship has been observed in the skin [11–13] and the peripheral nervous system [14–17].

We recently showed that lower limb muscle contusion is associated sustained pain hypersensitivity, but only relatively transient macrophage infiltration of muscle and overlying skin/fascia. Instead, we observed sustained macrophage infiltration of the ipsilateral sciatic nerve which was closely associated with the sustained pain hypersensitivity observed [18]. This suggested that in soft tissue injuries, concomitant macrophage infiltration of said nerve may be an important driver of sustained pain. Prior studies suggest that disruption of somatosensory input to tissue impairs innate immune-dependent healing in different chronic pain models, thereby sustaining pain hypersensitivity [13].

Since traumatic injury often involves both soft tissue injury and damage to the somatosensory nervous system, we hypothesized that polytrauma to the lower limb and its associated nerve input would produce inflammation and pain hypersensitivity that would be distinct from either injury in isolation [19–21]. To test this hypothesis, we developed a model in which a mild nerve constriction (single-ligature chronic constriction injury; CCI) was paired with a mild lower limb contusion. Sciatic nerve constriction is an established model for neuropathic pain that is improved with anti-inflammatory drugs [22–24]. The single-ligature variation induces relatively mild mechanical hypersensitivity compared to the more
standard four ligatures [25]. Because the polytrauma model shows extensive macrophage accumulation at both sites of injury, we also investigated whether they could be targeted for macrophage-specific nanoimmunomodulation [26] and resultant pain relief. In previous work, we showed that macrophage-specific nanoimmunomodulation markedly reduces mechanical hypersensitivity in rodent nerve injury pain models by reducing both macrophage infiltration and release of pro-inflammatory mediators at the injury site [27, 28]. Non-steroidal anti-inflammatory drug (NSAID)-loaded nanoemulsions attenuated neuropathic pain in a CCI rat model [27, 28] and inflammatory pain in a CFA mouse model [29]. Nevertheless, the contribution of macrophages to muscle injury and polytrauma was not investigated.

We have reported in earlier studies that nanoemulsion-based nanotherapeutics, formulated as colloidal dispersions of oil in buffered aqueous media, can incorporate both lipophilic fluorescent dyes (which facilitate macrophage tracking by near infrared fluorescence (NIRF) imaging in vivo and ex vivo [27–30]) as well as drugs [27–29]. Currently, NSAIDs such as cyclooxygenase-2 (COX-2) inhibitors are commonly used to treat musculoskeletal injuries to reduce both inflammation and pain. However, current clinical practice applies NSAIDs systemically where they substantially lack in both cellular and molecular specificity. We showed that the COX-2 inhibitor celecoxib can be packaged into a nanotherapeutic formulation which can be used to dampen inflammation and pain by specifically reducing prostaglandin synthesis in infiltrating macrophages [27, 28, 30, 31]. The selectivity of the nanoemulsion enables retention of anti-inflammatory and analgesic efficacy [27–29, 32] at markedly lower doses compared to systemic administration of the drug, reducing the potential for cardiovascular events and gastrointestinal bleeding, which are concerns with conventional celecoxib use [33].

Currently there are no studies that describe the inflammatory response and pain hypersensitivity for neuromuscular polytrauma injuries in rodents. Here, we present a novel polytrauma model in mice that accounts for both muscular and neuronal injury. We characterize pain-related behaviors in this model using automated gait analysis, mechanical hypersensitivity measurements, and evaluations of grip strength while tracking macrophages that drive inflammation using NIRF imaging. To demonstrate the direct involvement of COX-2 in macrophages in the pathophysiology of pain in this model, we used COX-2 inhibitor-loaded nanoemulsions to selectively inhibit prostaglandin production from macrophages that infiltrate the sites of injury. Our data shed new light on the interactions between the somatosensory nervous system and immune system in tissue injury, revealing a crucial role for macrophages and their pro-inflammatory activity in polytrauma-driven pain.

Methods

Mice

All experiments and procedures involving the use of mice were approved by MD Anderson Cancer Center Animal Care and Use Committee (Houston, TX, USA) in accordance with the National Research Council Guide for the Care and Use of Laboratory Animals. Both males and female C57BL/6J (catalog #000664) and C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J (Macrophage Fas-Induced
Apoptosis/’MaFIA’ catalog #005070) were obtained at 8 weeks from Jackson Laboratories. A total of 8 mice per group were used for von Frey and Catwalk gait analyses. In a separate cohort, 5 mice per group were used to measure grip strength and observe NIRF-NE for IVIS experiments. A total of 5 mice per timepoint for each group were used for all immunofluorescence studies. In celecoxib-nanoemulsion studies, mice were used as follows: 6 animals per sex and treatment were used to test a single treatment at 7 days post injury. In a separate experiment, a small group of 5 males per group were used to test a single treatment at 3 days post injury. Lastly, 5 mice per sex and treatment were used to test multiple CXB-NE treatments at 1 and 3 days post injury. IVIS images were taken of the same group of animals in the multiple treatment studies i.e. (N = 5 mice/sex/treatment). Mice were randomly assigned to experimental groups with an even split between males and females. Mice were maintained at the Research Animal Support Facility of MD Anderson Cancer Center (Veterinary Medicine and Surgery Department) in a 12 h light-dark cycle, with access to food and water ad libitum.

Muscle contusion, CCI and polytrauma model

To deliver a reproducible muscle injury to mice, a Neuropactor™ traumatic brain injury instrument (Neuroscience Tools, O’Fallon, MO) was attached to a Kopf model 940 stereotaxic frame. This approach, similar to that described by Dobek and colleagues [34], was recently described [18]. The severity of injury was adjusted by moving the electromagnetic piston head downwards onto the left hindlimb by a distance of 1 or 3 mm. All settings on the Neuropactor were kept constant: 5 m/sec velocity, with the two impacts spaced 3 mm apart overlying the gastrocnemius muscle, with 30 seconds dwell time for each impact. Animals were returned to their home cage for recovery, monitored after injury and checked daily for any complications. Mice in polytrauma and CCI groups also underwent surgery to produce constriction injury of the sciatic nerve. These mice were anesthetized and the left hind leg prepared as previously discussed. Mice in polytrauma studies first underwent muscle contusion which was immediately followed by CCI surgery. To produce CCI nerve injury, a 10 mm incision was made in the skin overlying the left biceps femoris. The biceps femoris was carefully separated to expose the sciatic nerve beneath. The sciatic nerve was lifted away from surrounding muscles using sterile plastic pipette tips (200 µl) and a single 7−0 chromic gut suture (Ethicon 1745G) was loosely tied around all three branches of the sciatic nerve, proximal to the trifurcation of the nerve. A single nylon suture was used to close the overlying muscle and wound clips were applied to seal skin incision. Mice in sham surgery groups underwent incision and nerve exposure without suture application. Animals were returned to their home cage for recovery, monitored after injury and checked daily for any complications. No mice experienced adverse events as a result of the polytrauma injuries, and no mice were excluded from the study.

Von Frey test of mechanical hypersensitivity

The von Frey test was carried out during the light cycle, between 08:00 and 10:00 h. Mice were tested in the same room as which they were housed. Mice were placed in single-occupancy plexiglass boxes, set on a wire mesh platform. Von Frey filaments of increasing strength (0.04−2 g) were presented to each hind paw, starting with the 0.6 g filament. Filaments were presented to the plantar surface of each hind paw and then presented with a stronger or weaker filament according to the up-down method [35]. 50%
paw withdrawal threshold (PWT) values were calculated for each hindpaw. Measurements were performed before injury and 3, 7, 10, 14, 21, 28, 35, 42, 49- and 56-days post-injury.

Digital Gait Analysis

Analysis of gait patterns was performed using the Catwalk® XT 10.5 system (Noldus Information Technology, Leesburg VA) as previously described [36]. Gait was measured before injury and then 3, 7, 10, 14, 21, 28 and 35-days post-injury. All habituation and testing was performed in the light cycle between 12:00 and 16:00 h. Four compliant runs were captured per mouse (run duration between 0.5 and 5 s, maximum variation in run speed < 60%). Detailed descriptions for the gait indices extracted are described elsewhere [18, 36] and in **Additional File 1**.

Macrophage tracking by NIRF imaging

To track macrophage accumulation non-invasively, mice received 0.2 mL of NIRF labeled DF-NE via tail vein injection 24 hours prior to injury. Mice were imaged 3, 14 and 28 days post-injury. NIRF images were captured using the IVIS Lumina system (Caliper Life Sciences; Waltham, MA) using the auto exposure setting (≤ 40 sec.). Fluorescence from the DiR component of the emulsion was detected with a 745 nm (bandpass: 20 nm) excitation and 800 nm (bandpass: 35 nm) emission filter. After obtaining images from each mouse, regions of interest were drawn around each hindlimb and the Average Radiant Efficiency ([p/s/cm²/sr] / [µW/cm²]) was obtained for each. To account for minor animal-to-animal variability in fluorescence, values are expressed as the ratio of radiant efficiency in the ipsilateral versus contralateral hindlimb.

Tissue collection and sectioning

Mice were euthanized using CO₂ and perfused with 10 mL of cold 0.1 M PBS followed by 10 mL of cold 4% PFA (Thermo Scientific; Waltham, MA). Sciatic nerves were collected by cutting distally at the knee and proximally to the spinal cord. Gastrocnemius muscle and overlying skin/fascia, sciatic nerves and dorsal root ganglia were post-fixed overnight at 4°C in 4% PFA. Tissues were then transferred to 30% sucrose for two days at 4°C, and subsequently embedded in Tissue-Tek® OCT compound (Sakura; Torrance, CA) for cryosectioning. Transverse sections of gastrocnemius muscle and DRG were sectioned at 30 and 20 µm, respectively and longitudinal sections of sciatic nerve were sectioned at 30 µm using a Leica CM3050S cryostat and collected onto Superfrost Plus slides (Fisher Scientific; Pittsburgh, PA). The sections were allowed to adhere to the slides at room temperature (RT) for approximately 10 minutes prior to storage at -20°C, since prolonged exposure to RT adversely affected NIRF-NE fluorescence intensity.

Immunofluorescence

Slides containing sections underwent immunohistochemistry as described previously [18, 30, 37]. Briefly, a hydrophobic barrier was drawn on each slide using an ImmEdge™ Pen (Vector Laboratories; Burlingame, CA). After washing in 0.1 M PBS, blocking buffer (10% goat serum (Sigma), 2% bovine serum albumin (Fisher Scientific), 2% DMSO (Sigma), 1 mg/ml digitonin (Millipore; Burlington, MA) in 0.1 M
PBS) was added for one hour at RT. Blocking buffer was replaced with primary antibodies diluted in blocking solution: rabbit anti-PGP9.5 (1:250; Abcam; Cat. No. ab108986 (EPR4118), and rat anti-CD68 (1:250; Bio-Rad; Cat. No. NC9471873 (FA-11) were added to the slides in blocking solution. Primary antibodies were incubated overnight at 4°C in a humidified slide staining chamber. The next day the slides were rinsed in 0.1 M PBS, and goat anti-rabbit Alexa Fluor 647 (1:500; Invitrogen; Carlsbad, CA), goat anti-rat Alexa Fluor 488 (1:500; Invitrogen), and DAPI (500 ng/ml; Sigma) were added to each slide in 0.1 M PBS and incubated for 3 hours at RT. Slides were washed in 0.1 M PBS, and 10% neutral buffered formalin (Thermo Scientific; Waltham, MA) was added to the sides for 10 minutes to help maintain Dil signal within NIRF-NE. The sections were washed once more in 0.1 M PBS, and mounted with Prolong Gold Mounting Medium (Cell Signaling Technology, Danvers, MA).

AP20187 treatment of MaFIA mice

To induce macrophage depletion, MaFIA mice were treated with 3 consecutive daily injections of AP20187 (2mg/kg, i.p.) or vehicle (PBS, 10% v/v PEG-400, 1.7% v/v Tween-80). This treatment is sufficient to temporarily deplete macrophage density in skin and sciatic nerve by ≥ 85% [16, 38–40].

Celecoxib-loaded nanoemulsion (CXB-NE) formulation

Nanoemulsions were manufactured following previously reported report[41]. Briefly, the M110S microfluidizer (Microfluidics Corporation, Westwood, MA) chamber was iced prior to manufacturing. CXB (50 mg) was dissolved in Miglyol 812 N and co-solubilizers transcutol and DMSO (1:1) by continuously stirring overnight. On the next day, NIRF dyes were incorporated in pre-dissolved mix (for CXB-NE). The final concentration of the micelle solution in PBS was 5% w/v, where 4.15% w/v was P105 and 0.85% w/v was P123. The pre-emulsion was then poured into the M110S inlet reservoir. The pre-emulsion was processed for 30 pulses (6 passes) at an inlet air pressure of ~80 psi and an operating liquid pressure ~17,500 psi before the final product was released from the outshoot.

Fluorescence microscopy in macrophages in culture

RAW 264.7 cells were seeded at 20,000 cells per well in 0.75 mL of cell culture media on an 8-well chamber slide system Lab-TekII. After 24 h of incubation at 37°C and 5% CO₂, the cells were treated with 20 µL/mL dose of NE for 24 h. The treatments were removed, and the chamber slides were washed with warm 1× PBS and fixed with 4% paraformaldehyde at ambient temperature for at least 20 min and washed with 0.5 mL 1× PBS twice. After removing chamber wall, 2–3 drops of mounting media with DAPI were applied. Slides were analyzed on Keyence Microscope under 700 nm and 800 nm channels.

Flow cytometry

RAW 264.7 macrophages were plated in 12-well plates (0.2 million cells per well). After 24 h, macrophages were treated with NEs (20 µL/mL) for 3 h. Cells were washed with 1XPBS, trypsinize, and fixed at room temperature with 2% PFA in DPBS for 20 min. All experiments were performed in triplicate, and samples were analyzed using Attune Nxt (Thermofisher Scientific) recording 50,000 events. The nanoemulsion was detected in the RL3 (DiR, 748 nm/780 nm) channel.
Celecoxib-loaded nanoemulsion (CXB-NE) injection and imaging

0.2 mL of CXB-NE was injected into polytrauma mice i.v., either 7 days post-injury, 3 days post-injury, or 24 h and 3 days post-injury (i.e. two doses). CXB-NE injection in uninjured mice and DF-NE injection in injured mice served as negative controls. NIRF images were captured using the IVIS Lumina system as described previously [18, 30].

Confocal microscopy and image quantification

Tile scans of tissue sections were obtained using a 20x objective (Numerical aperture: 0.75) on a Nikon A1R confocal microscope (Nikon Instruments Inc., Melville, NY), and image analysis was performed using Nikon NIS-Elements Advanced Research (Nikon Instruments Inc.). Images are a projection of 4–5 focal planes in a 20–30 µm z-stack at 5 µm increments. Sections from at least 3 mice/experimental group were imaged. 3–4 different sections were imaged from the same mouse. NIRF-NE / CD68 quantification was determined by drawing regions of interest around the relevant tissues and setting an intensity threshold for positive staining that was applied consistently across all images, as described previously [30, 42].

Cytokine array analysis

Sciatic nerves were isolated 24 hours after dosing with DF-NE or CXB-NE, and 48 hours after injury. Tissues were homogenized in RIPA buffer containing 1% Triton X-100 and Halt Protease Inhibitor Cocktail (Thermo Fisher). Lysates were then incubated with Mouse Cytokine XL Proteome Profile arrays (Biotechnne) according to the manufacturer’s instructions and as described previously [30, 42]. Chemiluminescent signal was detected using an Amersham ImageQuant 800 blot scanner and ImageQuant TL toolbox v8.2.0 software (GE Healthcare Bio-Sciences). The mean chemiluminescent intensity for each factor was used to calculate the fold-change in abundance due to injury for each factor. Polytrauma sciatic nerves were compared against contralateral in DF-NE controls. Polytrauma sciatic was compared against contralateral nerve in CXB-NE-injected mice. Those factors with differential expression in the ipsilateral DF-NE nerve (± ≥ 2-fold) were selected for comparison.

Statistical analysis

All behavioral and histological data are represented as mean ± standard error (SEM), and all analyses were performed using GraphPad Prism 9. All data sets were normally distributed as determined by D'Agostino & Pearson or Shapiro-Wilk tests. Differences between groups were analyzed by either two-tailed unpaired t-tests, one- or two-way repeated measures analysis of variance (ANOVA) or a mixed-effects model with Šidák's multiple comparisons test, as described in the legends of each figure. p < 0.05 was considered statistically significant.

Results
Nerve injury increases mechanical hypersensitivity when paired with lower limb contusion

To determine the effect of nerve injury on muscle contusion pain, we first employed a ‘low-severity CCI,’ in which the sciatic nerve was constricted using a single, absorbable 7 – 0 Vicryl suture (Fig. 1A). CCI alone produces gradual-onset hypersensitivity in von Frey testing in the ipsilateral hindpaw, peaking at 10 days post-injury and resolving by 35 days post-injury, without any effect in the contralateral hindpaw (Fig. 1B-C). The reversal of hypersensitivity at 35 days post-injury is consistent with the time reported for this suture to lose the majority of its tensile strength [43].

To generate the polytrauma injury, we paired this version of CCI with our previously-demonstrated lower limb contusion model [18]. Contusion severity was adjusted by controlling the vertical displacement of the impact piston. We generated two polytrauma groups: 1 mm contusion plus CCI (‘1 mm polytrauma’) and 3 mm contusion plus CCI (‘3 mm polytrauma’) and compared against matched ‘contusion-only’ groups (which underwent sciatic nerve exposure but not constriction; Fig. 1D, G). A significant interaction ((F 40, 397) = 5.29; p < 0.0001) between injury and time was observed among polytrauma groups and their respective contusion-only groups. Overall, polytrauma was associated with increased mechanical hypersensitivity compared to contusion-only and naïve control groups, though the only significant differences between injuries were on days 10–21 between 1 mm contusion-only and 1 mm polytrauma, and on day 3 and 42 between 3 mm contusion-only and 3 mm polytrauma (Fig. 1E, H). Furthermore, 1 mm polytrauma and 3 mm polytrauma exhibited hypersensitivity up to 35- and 49-days post injury, respectively. Injuries did not produce any mechanical hypersensitivity in the contralateral hindpaws at any timepoint tested (Fig. 1F, I).

Transient gait disturbances following CCI and polytrauma

Catwalk analysis was used to detect static and dynamic gait disturbances due to CCI alone (Additional Fig. 1). In contrast to the von Frey results (Fig. 1B-C), CCI-related gait changes remained modest or tracked closely with sham surgery controls. The most pronounced changes in CCI-affected hindlimbs were a tendency to increased swing time (Additional Fig. 1B), decreased intermediate toe spread (Additional Fig. 1C) and increased body speed variation [(% Body speed / average speed)] (Additional Fig. 1D), with a spike in contralateral hindlimb single stance time 7 days post-injury (Additional Fig. 1K). No significant differences were observed in stand time, stand index, print area, swing speed, stride length, step cycle time, body speed, average speed, dual stance time, regularity index or sciatic static index [44] compared to sham controls (Additional Fig. 1A, E, F, G-J, L-O).

We previously showed minor changes to gait and footfall parameters in muscle contusion alone, with the most severe 5 mm contusion producing transient changes in stand and speed parameters [18]. Here, we show that 1 mm polytrauma (Fig. 2A-F) and 3 mm polytrauma (Fig. 2G-L) also exhibit gait changes that are largely minor compared to control groups. Similar patterns in paw print analyses were observed in both polytrauma models. The most pronounced difference was an attenuated increase in print area in
1mm polytrauma mice versus naïve controls (Fig. 2C) and 3 mm polytrauma mice versus controls (Fig. 2I). Body speed variability showed a tendency to increase around 10 days post 1 mm polytrauma (Fig. 2D) and a strong, consistent tendency towards increased speed variation in 3 mm polytrauma (Fig. 2J). This occurred despite only minor changes in body speed (Fig. 2E, K). Additional gait metrics for polytrauma groups are shown in Additional Fig. 2. This lack of numerous significant gait changes contrasts with more overt nerve injury models, such as spared nerve injury (SNI). Consistent with prior reports [36], we confirmed that robust, statistically significant changes in gait patterns were detectable in mice 14 days after SNI (Additional Fig. 3), reaffirming that the degree of nerve injury surgery can substantially influence the extent of gait changes.

NIRF imaging of macrophage infiltration following nerve and muscle contusion

The role of macrophages in polytrauma was first examined by non-invasive imaging of their accumulation at the site of nerve and muscle contusion in the polytrauma model. As we have shown previously, macrophage infiltration can be imaged using nanoemulsions that carry two fluorescent dyes, a red fluorescent (DiI) and NIRF dye (DiR), enabling non-invasive, longitudinal tracking of macrophage accumulation by increased fluorescence at sites of injury [30]. In the polytrauma model, the NIRF signal was increased in all ipsilateral hindlimbs at 3 days post-injury (Fig. 3A), when compared to contralateral hindlimbs used as an internal control. No significant differences were observed between sham surgery and CCI groups (Fig. 3B), but a persistent elevation in NIRF signal was detected in 1 mm contusion + CCI animals versus contusion alone, which was statistically significant at 28 days post-injury (Fig. 3C).

Polytrauma-induced macrophage accumulation

Increased macrophage infiltration in peripheral nerves has been observed in CCI models previously by NIRF imaging and it was shown that macrophages drive CCI-associated neuropathy [45]. In this study, a mild CCI produced sustained macrophage accumulation in ipsilateral sciatic nerves (Additional Fig. 4A), peaking at 14 days post-injury compared to sham controls (Additional Fig. 4B, C). Consistent with previous studies, the single, loose ligature elevated macrophage density in sciatic nerve concomitantly with pain hypersensitivity. Since NIRF imaging showed more sustained macrophage accumulation in polytrauma mice at late stages, we next wanted to determine in which tissues macrophage accumulation differed between 1 mm contusion and 1 mm polytrauma. Prior studies have shown that acute contusions to lower limb muscles induce robust inflammatory responses during normal muscle healing and that nerve injury can delay healing [7, 13, 34]. Significant macrophage infiltration was observed in 1 mm polytrauma dermis at 3 days post-injury (Fig. 4A-B and Additional Fig. 5). This polytrauma-related increase persisted in the underlying biceps femoris muscle until day 14 (Fig. 4C-D and Additional Fig. 6). Although the trend toward an acute increase was directionally similar in the gastrocnemius muscle, polytrauma macrophage density was not significantly greater in this muscle group (Fig. 4E-F and Additional Fig. 7).
Persistent macrophage accumulation in polytrauma sciatic nerve is required to maintain pain

In mice subjected to CCI alone, sciatic nerve macrophage density peaks concomitantly with pain hypersensitivity at 14d post-injury (Additional Fig. 4). We also recently reported a modest but persistent increase in sciatic nerve macrophage density following muscle contusion alone [18]. Now combining these injuries in our polytrauma model, we observed more sustained macrophage infiltration of the sciatic nerve (Fig. 5A-B), indicating nerve injury and muscle contusion interact to prolong macrophage presence in injured sciatic nerve. Macrophage density was significantly greater in mice that underwent 1 mm polytrauma versus 1 mm contusion alone. In order to test the necessity of macrophage accumulation for the pain hypersensitivity associated with polytrauma, we used a chemogenetic ablation approach in macrophage Fas-induced apoptosis (MaFIA) mice [16, 38], to induce peripheral macrophage apoptosis. MaFIA mice develop polytrauma-associated pain hypersensitivity to the same extent as wild-type mice at 3- and 7 days post-injury (Fig. 5C). Following chemogenetic ablation on days 7–9 post-injury, pain hypersensitivity is normalized and is significantly less sensitive than vehicle-treated controls until 21d post-injury, after which time vehicle-treated mice begin to recover as usual. Contralateral hindlimbs were unaffected by macrophage ablation (Fig. 5D), and the effect was similar between males and females (Additional Fig. 8).

COX-2 inhibitor loaded NIRF labeled nanoemulsions for macrophage modulation

In order to test whether macrophages at the sites of nerve injury and muscle contusion play a direct role in muscle and nerve inflammation, we and others have used macrophage-targeted approaches to modify macrophage activity and assess the effect on pain sensitivity [27–31]. Persistent macrophage activation results in overexpression of COX-2, which is a rate-limiting enzyme for prostaglandin E2 (PGE2) synthesis. For this study, we loaded the COX-2 inhibitor celecoxib into a nanoemulsion (CXB-NE) to suppress macrophage-driven PGE2 synthesis and proinflammatory mediator release. Our previously reported CXB-NE [41], composed of perfluorocarbon, hydrocarbon, and surfactants with low droplet size (~ 130nm, Fig. 6A), was re-formulated for this study. The drug-free nanoemulsion (DF-NE) control, of the same composition without the presence of drug, is used as a negative control and a macrophage-specific imaging agent. Both nanoemulsions allow for tracking macrophages in vivo and ex vivo as they contain two dyes: Dil, in support of fluorescence microscopy in isolated tissues, and DiR, for live NIRF imaging. Figure 6 summarizes the in vitro characterization of CXB-NE and DF-NE used in this study. Both the NEs were taken up by macrophages within 3 hours of exposure as determined by flow cytometry (Fig. 6B). Macrophage uptake was also demonstrated qualitatively by fluorescent microscopy (Fig. 6C). CXB-NE treatment also inhibited PGE2 release from activated macrophages in vitro [41] and in vivo [27, 28], and was also able to suppress the release of proinflammatory cytokines TNF-α and IL-6 from activated
macrophages in vitro [41]. Therefore, we chose CXB-NE to modulate macrophages in the polytrauma model in this study.

Macrophage-specific COX-2 inhibition prevents sustained pain following polytrauma

An association between the prolonged presence of inflammatory macrophages and sustained pain hypersensitivity has been demonstrated in several prior preclinical studies [28, 32, 46, 47]. To test whether modifying macrophage activity could influence polytrauma pain behavior, we used CXB-NE to shut down COX-2 driven prostaglandin production specifically in injury-infiltrating macrophages (Fig. 7A, B). We administered CXB-NE to treatment groups, and DF-NE to controls in mice subjected to 1 mm polytrauma 7 days post-injury (Fig. 7C). Uninjured male controls that received CXB-NE show stable von Frey sensitivity and, as expected, 1 mm polytrauma males injected with DF-NE 7 days post-injury showed unaltered progression of pain hypersensitivity, comparable to that seen in un-injected mice (Fig. 7D). Injured males that received CXB-NE, showed a progressive normalization of sensitivity which reached significance from 14–35 days post-injury (Fig. 7D). However, female mice that received CXB-NE 7 days post-injury did not show any significant reduction in hypersensitivity (Fig. 7E). Contralateral hindpaw thresholds for all groups in both sexes were unaffected by DF-NE or CXB-NE (Additional Fig. 9A).

Figure 7. CXB-NE reduces hypersensitivity when delivered 7 days post-injury in male mice. (A) Illustration depicting timeline of injury, behavioral testing and delivery of DF-NE or CXB-NE (0.2 mL, i.v.) 7 days post-injury. (B) Naïve control males treated with CXB-NE show stable von Frey withdrawal thresholds. Three- and 7-days post-injury, 1 mm polytrauma groups show reduced thresholds. After testing von Frey on day 7 post-injury, groups received either i.v. DF-NE or CXB-NE. Mice treated with CXB-NE showed a gradual yet persistent recovery of sensitivity, becoming significantly reversed compared to DF-NE controls from 14 to 35 days post-injury. (C) In contrast, an identical experiment in females did not show reversal of hypersensitivity with CXB-NE. */** p = < 0.05/0.01 ‘1mm polytrauma + DF-NE’ versus ‘1mm polytrauma + CXB-NE.’ Two-way, repeat measures ANOVA, Šídák’s multiple comparisons test.

We next determined if dosing more acutely post-injury affected the anti-hyperalgesic efficacy of CXB-NE (Fig. 8A). When male mice received CXB-NE at 3 days post-injury, more pronounced and statistically significant anti-hyperalgesia was observed versus DF-NE controls (Fig. 8B). Interestingly, delivering two doses of CXB-NE at 24 and 72h post-injury also significantly reversed hypersensitivity in male mice (Fig. 8C), though it did not out-perform a single dose of CXB-NE at 3d alone. No significant changes were seen in von Frey thresholds in the contralateral hindpaws of these mice (Additional Fig. 9B-C). Despite significant pain relief in these mice, it was not associated with a significant improvement in grip strength (Additional File 1 and Additional Fig. 10). Similar to female mice dosed at 7 days post-injury, female mice that received CXB-NE at 24 and 72 h showed only a slight, non-significant tendency toward reduced hypersensitivity (Fig. 8D), indicating that the more limited efficacy of CXB-NE in female mice is similar across intervention time points.
Previous studies using NIRF imaging also showed CXB-NE and DF-NE accumulated at sites of inflammation [28, 30, 32, 46]. In this study, both nanoemulsions are labeled with the same fluorescent dyes (DiI and DiR) at the same concentration, which facilitated further NIRF imaging and tissue analyses. Using the groups of male and female polytrauma mice that were dosed at 24h and 72h after injury, we carried out NIRF imaging at 2, 4, 7- and 10 days post-injury. Male mice treated with CXB-NE showed a significant reduction in macrophage density 24 hours after initial injection versus DF-NE controls. NIRF imaging on days 4, 7 and 10 showed a persistent trend toward a reduced NIRF ratio in CXB-NE-injected males versus their DF-NE-injected counterparts (Fig. 8E-F). However, CXB-NE was not associated with reduced NIRF signal versus DF-NE controls in females (Fig. 8G-H).

CXB-NE reduces inflammatory mediator output in the acute post-injury window

We reasoned that acute pain relief induced by CXB-NE may be induced by a reduction in macrophage COX-2 activity, reducing production of pro-nociceptive inflammatory mediators. Using male mice, we analyzed the cytokine content of ipsilateral and contralateral polytrauma sciatic nerves 24 h after treatment with DF-NE or CXB-NE, and 48 h after injury. Of the 111 factors screened, 60 showed a 2-fold or greater upregulation and 7 showed a 2-fold or greater downregulation in DF-NE ipsilateral versus contralateral nerves and were selected for further analysis (Fig. 9A-B). Of the 60 factors upregulated in injured nerves from DF-NE mice, 50 showed reduced expression in CXB-NE-injected mice. Among these reduced factors were pro-inflammatory proteases and adhesion molecules, such as MMP-9, CD54 and CD62P [48] and reduced monocyte chemoattractants, such as CCL2 and EGF [49]. CXB-NE also reduced expression of factors associated with M1-like macrophage polarization, such as Lipocalin-2 and CCL12 [50, 51] and reduced expression of factors that inhibit M2 polarization, such as pentraxin-3 [52]. The factors that were reduced in DF-NE-treated mice were not substantially different from CXB-NE-treated levels (Fig. 9C). Collectively, this indicates that pain relief following CXB-NE injection is associated with broad-spectrum anti-inflammatory activity in macrophages within the sciatic nerve.

Discussion

The primary goals of this study were to use our recently-developed lower limb contusion model to determine the impact of nerve damage and neuroinflammation on healing from complex polytrauma injuries, an approach that is intended to more closely reflect the nature of traumatic injuries that often develop into chronic pain [53]. We previously showed that lower-limb impacts of sub-maximal intensity showed persistent accumulation of macrophages in the ipsilateral sciatic nerve [18]. Macrophages are crucial drivers of pain and are also valuable for bringing about its resolution [16, 40, 54]. Macrophage infiltration of nerves and sensory ganglia is typically a feature of neuropathic pain states. Such infiltration is known to drive pathophysiological changes to nerve function [14, 15]. Indeed, prior studies have demonstrated that compromised innervation (whether by targeted ablation or disease) can delay wound healing [12, 13]. The purpose of this study was therefore two-fold: to determine the extent to which
introducing nerve injury would augment pain and compromise healing due to muscle contusion and establish if macrophage nanoimmunomodulation (CXB-NE) could accelerate recovery by modifying the inflammatory output in the injured nerve.

Others have shown previously that chronic constriction injury causes ectopic discharge and co-existence of degenerating and spared axons in the target tissues. It is thought that inflammation initiated by injured fibers causes hypersensitivity in the remaining uninjured fibers, triggering spontaneous activity and pain behaviors [55]. We found that adding a mild version of CCI to lower limb contusion extended the duration of hypersensitivity in the von Frey assay. Interestingly, peak hypersensitivity in the von Frey assay was somewhat greater in controls that received nerve constriction alone versus constriction/contusion ‘polytrauma’. While it is possible that injury of lower limb muscles reduces the ability of the hind paw to reflexively withdraw from stimulation, this seems unlikely given the lack of overt disturbances to gait in these mice. Alternatively, generating two anatomically-distinct sites of injury may be an example of ‘pain inhibiting pain,’ also known as conditioned pain modulation [56]. This is a phenomenon driven by engagement of descending inhibitory controls at the level of the spinal cord [57]. Coupled with the impaired resolution of inflammation due to sensory nerve damage, this inhibitory control may explain the distinct behavioral responses observed in polytrauma mice.

Consistent with our prior data in muscle contusion alone [18], we did not detect widespread, sustained changes to gait metrics, apart from an attenuation of the increase in print area and a trend toward increased body speed variability with the more severe 3mm contusion. The change in uninjured mouse gait patterns over time is likely due to conditioning to repeat testing in the assay, others have reported similar findings [58]. This lack of overt disruption of gait following injury contrasts with models of deafferentation, such as SNI, where we detect widespread gait deficits [36]. Rodent models with a crushed sciatic nerve injury exhibit dysfunctions in paw placement metrics such as contact intensity and print area with changes to gait parameters such as swing duration and stance [59]. In a similar model to the one used in this study, mechanical pain from chronic constriction of the sciatic nerve correlated with paw print intensity and gait metrics like swing and stance duration [60], though it is important to note that the CCI we employed in this study used a single suture and therefore introduces a less severe injury. Importantly, prior studies suggest that the major gait deficits detected in SNI mice are not reversible with analgesics [36] – perhaps suggesting that in this model pain-related changes are either too minimal or variable to detect reliably.

As we previously reported in muscle contusion alone, we see an acute increase in macrophage density in contused tissues within 3 days of injury that diminishes rapidly. However, concomitant nerve constriction prolonged this elevated macrophage density in the dermis, lower leg muscles and sciatic nerve [61]. There is a requirement for the ongoing presence of macrophages in maintaining pain hypersensitivity, since inducible ablation of macrophages brought about sustained recovery from pain [16, 47]. Previous work has shown that ablation of macrophages can reverse pain hypersensitivity, though this was done in SNI mice, wherein tactile and cold hypersensitivity returned once macrophages re-populated the site of injury.
Further work is needed to determine the ways in which nerve-resident macrophages differ pre- and post-ablation, both phenotypically and functionally.

Because inducing macrophage apoptosis 7–9 days post-injury attenuated pain hypersensitivity, we next wanted to establish if modifying macrophage function with the COX-2 inhibitor celecoxib would also be effective. Nanoemulsions loaded with celecoxib showed a modest effect when delivered 7 days post-injury, but only in male mice. Intervening earlier had a more significant effect, suggesting that inhibiting COX-2 in macrophages is more effective in the acute phase post-injury (within 72h). Assuming modifying macrophage activity has downstream effects on axonal excitability, this acute window of opportunity would be consistent with timing of nerve blocks being effective. Nerve blocks are typically most effective within the first 3–5 days following injury, with their effectiveness diminishing as neuropathic pain becomes more established (i.e. 10 days post-injury and beyond) [62].

Prior studies have shown in more severe CCI injury that CXB-NE can relieve pain hypersensitivity. As reported here, a single dose of CXB-NE, delivering a dose of celecoxib orders of magnitude lower than a conventional systemic dose was able to relieve pain. However, in prior reports this pain relief was transient (3–5 days of pain relief) and hypersensitivity eventually returned to the injured hindlimb [27, 63]. Since those studies used the more severe CCI model, this may suggest that durable reversal or transient relief could be determined by the severity of injury. Perhaps more severe injuries eventually exhaust CXB-NE-suppressed macrophages and would require repeat CXB-NE dosing. Further work is required to understand the mechanisms underlying these differences.

The striking sex differences in the efficacy of CXB-NE add to the body of evidence that chronic pain tends to be more macrophage-dependent in males than in females [64]. These data are broadly consistent with prior reports of CXB-NE efficacy in more conventional CCI [31]. The observation that macrophage ablation attenuates hypersensitivity in both sexes is consistent with our prior data in the spared nerve injury model [16]. Taken in concert with the CXB-NE data, this may suggest a sex difference in macrophage dependence on COX-2 activity, rather than macrophages being entirely dispensable for polytrauma pain in females per se. The inability of CXB-NE to reduce macrophage NIRF signal in females would also be consistent with macrophage accumulation in females being less dependent on processes driven by COX-2 metabolites, such as PGE$_2$. Within 24 hours of dosing polytrauma males with CXB-NE, we see suppression of inflammatory cytokines, many of which have a known role in driving pro-inflammatory or inhibiting anti-inflammatory macrophage polarization. The acute differences in expression of these cytokines suggest a model in which the anti-inflammatory activity of CXB-NE precedes and/or initiates a net anti-inflammatory shift in macrophage polarization to promote lasting healing.

Conclusions

Our neuromuscular polytrauma model is distinct from neuronal injury or soft tissue contusion alone, both in terms of pain-related behaviors and innate inflammation. The augmented macrophage infiltration in
polytrauma is required for maintenance of pain hypersensitivity. Crucially, attenuation of this pain by delivery of macrophage-targeted inhibition of COX-2 was more effective in male mice than female mice.

Abbreviations

ANOVA Analysis of variance
BL Baseline
\(cm^2\) Centimeter squared
CCI Chronic constriction injury
CFA Complete Freund’s adjuvant
COX-2 Cyclooxygenase-2
CXB-NE Celecoxib nanoemulsion
DAPI 4′,6-diamidino-2-phenylindole
DF-NE drug-free nanoemulsion
DiI 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate
DiR 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotritylcyanine iodide
DMSO Dimethyl sulfoxide
DRG Dorsal root ganglion/ganglia
EGF Epidermal growth factor
g Grams
IVIS In vivo Imaging System
\(\mu W\) Microwatt
MaFIA Macrophage Fas-induced apoptosis
MMP-9 Matrix metalloprotease-9
NE Nanoemulsion
nm nanometer
NIRF Near-infrared fluorescence
NSAID Non-steroidal anti-inflammatory drug
p Photons
PBS Phosphate-buffered saline
PFA Paraformaldehyde
PGE\(_2\) Prostaglandin E2
PWT Paw withdrawal threshold
RT Room temperature
SNI Spared nerve injury

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and material: All datasets generated as part of the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: This work was funded a Department of Defense CRMRP Award W81XWH-21-1-0197 (to AJS and JMJ). The small animal imaging facilities used in this study are a core MD Anderson research resource supported by the NIH/NCI under award number P30CA016672.

Authors' contributions: Conceptualization: AJS, JMJ. Methodology: CMG, IC, CVC, LL. Investigation: LL, EL, JE, JMN, HVP, SM. Writing - Original Draft: IC, CMG, CVC. Writing - Review & Editing: RV, AJS, JMJ. Supervision: AJS, JMJ. Funding acquisition: AJS, JMJ. All authors read and approved the final manuscript.

Acknowledgements: We wish to thank Kiersten Maldonado and Angela M. Casaril for technical assistance.

References

Figures
Figure 1

Mild sciatic nerve constriction and neuromuscular polytrauma model. (A) Illustration of mild chronic constriction injury (CCI), delivered by placing a single absorbable ligature around the sciatic nerve. (B) CCI causes significant von Frey hypersensitivity from 7-28 days post-injury, before largely reversing from 35 days onwards. (C) Hindpaws contralateral to CCI surgery show no significant changes in sensitivity across time. Group ‘n’ reported in parentheses in legend; n=3 males, 5 females per group. Mean ± SEM,
p=<0.05, 0.01, 0.001 ‘Sham Ipsi’ versus ‘CCI Ipsi’ at respective timepoints, two-way repeated measures ANOVA, Šídák's multiple comparisons test. (D) Illustration of mild CCI paired with 1 mm lower limb contusion (‘1 mm polytrauma’). (E) Uninjured control mice show stable von Frey sensitivity. ‘1 mm contusion’ results in significant hypersensitivity versus control mice up to 35 days post-injury (mice in this group also received sham CCI surgery to control for skin and muscle incision). Pairing 1 mm contusion with mild CCI (‘1 mm contusion + CCI’) resulted in significantly greater hypersensitivity at 10, 14 and 21 days post-injury. (F) Hindpaws contralateral to contusion/CCI show no significant changes in sensitivity across time. (G) Illustration of mild CCI paired with 3 mm lower limb contusion (‘3 mm polytrauma’). (H) Uninjured control mice (reproduced from panel E) show stable von Frey sensitivity. ‘3 mm contusion’ results in significant hypersensitivity versus control mice up to 49 days post-injury (mice in this group also received sham CCI surgery to control for skin and muscle incision). Pairing 3 mm contusion with mild CCI (‘3 mm contusion + CCI’) resulted in significantly greater hypersensitivity at 3 and 42 days post-injury. (I) Hindpaws contralateral to contusion/CCI show no significant changes in sensitivity across time. Group ‘n’ reported in parentheses in legends; n=5 males, 3 females (per contusion ± CCI group); n=8 males, 5 females (naïve control group). * p=<0.05 ‘contusion’ versus ‘contusion + CCI.’ Mean ± SEM, */**/*** p=<0.05, 0.01, 0.001, 0.0001 versus ‘control’ at respective timepoints, two-way repeated measures ANOVA, Šídák's multiple comparisons test.
Figure 2

No overt changes in hindpaw placement following polytrauma. All control, contusion and contusion + CCI values ipsilateral to injury are depicted as percent of baseline (BL) readings. (A-F): 1 mm contusion and polytrauma. (G-L): 3 mm contusion and polytrauma. (A, G) Stand time. (B, H) Swing time. (C, I) Print area. (D, J) Body speed variability. (E, K) Body speed. (F, L) Sciatic static index. Group ‘n’ reported in parentheses in legends; n=5 males, 3 females (per contusion ± CCI group); n=8 males, 5 females (naïve
control group). Additional gait metrics are described in Additional File 1 and depicted in Additional Figure 2.

Figure 3

NIRF imaging of macrophage-targeted nanoemulsions detects acute macrophage accumulation following polytrauma. (A) 24h prior to injury of the left hindlimb, mice received DF-NE to track
macrophage accumulation non-invasively. Representative NIRF images of mice 3 days (left column), 14 days (center column) and 28 days (right column) post-injury. Top row: Sham surgery. Second row: CCI only. Third row: 1 mm contusion only. Bottom row: 1 mm polytrauma. (B,C) Quantification of hindlimb NIRF signal across time for each injury group. Values are expressed as the ratio of ipsilateral : contralateral fluorescence. N= 3 males, 2 females per group. Mean ± SEM, *=p<0.05 versus ‘1 mm contusion.’ Two-way repeat measures ANOVA, Šidák’s multiple comparisons test.
Figure 4

Acutely increased macrophage density in dermis and lower limb muscles of polytrauma mice. Skin samples collected from the site of lower limb contusion were fixed and processed for immunostaining. (A) Pan-macrophage marker CD68 (green) shows widespread colocalization with Dil fluorescence (red), indicative of DF-NE uptake (dual labeled with Dil and DiR). DAPI: blue. Top row represents 1 mm contusion skin 3d post-injury, bottom row represents 1 mm polytrauma 3d post-injury. Scale bar: 0.2 mm. (B) Quantification of skin CD68 density shows a significant increase in ipsilateral skin subjected to 1 mm polytrauma versus contusion alone at 3d post-injury. (C) Biceps femoris muscle samples show sparse staining in 1 mm contusion only (top row). DAPI: blue. Bottom row shows greater density of CD68 fluorescence and Dil signal in 1 mm polytrauma group at the same time point. Scale bar: 0.1 mm. (D) Quantification of CD68 density shows a significant increase in ipsilateral biceps femoris subjected to 1 mm polytrauma versus contusion alone at 3d and 14d post-injury. (E) Gastrocnemius muscle samples show sparse staining in 1 mm contusion only (top row). DAPI: blue. Bottom row shows a modest increase in CD68 fluorescence and Dil signal in 1 mm polytrauma group at the same time point. Scale bar: 0.1 mm. (F) Quantification of CD68 density shows a statistically non-significant but strong tendency toward an increase in ipsilateral gastrocnemius subjected to 1 mm polytrauma versus contusion alone at 3d and 14d post-injury. * = p <0.05 1 mm contusion versus 1 mm polytrauma, two-way ANOVA, Šídák's multiple comparisons test (Representative images for 3, 14 and 28d post-injury are shown in Additional Figures 5, 6 and 7).
Figure 5

Sustained accumulation of macrophages in sciatic nerves of mice subjected to polytrauma. Sciatic nerves collected from the lower limb contusion were fixed and processed for immunostaining 28 days post-injury. (A) Pan-macrophage marker CD68 (green) and Dil fluorescence (red) show sparse staining in 1 mm contusion only (top row). DAPI: blue. Bottom row shows a modest increase in CD68 fluorescence and Dil signal in 1 mm polytrauma group at the same time point. Scale bar: 0.1 mm. (B) Quantification of...
CD68 density shows a statistically non-significant but strong tendency toward an increase in ipsilateral gastrocnemius subjected to 1 mm polytrauma versus contusion alone at 3d and 14d post-injury. * = p < 0.05 1mm contusion versus 1 mm polytrauma, two-way ANOVA, Šídák's multiple comparisons test. (C) MaFIA mice subjected to 1 mm polytrauma behave similar to wild-type C57BL/6 mice in the acute stages post-injury. AP20187 treatment (3 days, 2 mg/kg, i.p., red boxes) durably reversed pain hypersensitivity in these mice without affecting contralateral hindpaw sensitivity (D). **/*** = p < 0.01, 0.001, 1mm polytrauma + vehicle versus 1 mm polytrauma + AP20187, two-way ANOVA, Šídák's multiple comparisons test.
Figure 6

Characterization of CXB-NE and DF-NE.
(A) Overlay of average size distribution by intensity between CXB-NE and DF-NE with pictorial representation of CXB-NE droplet.
(B) Macrophage uptake of CXB-NE and DF-NE quantified by flow cytometry. R1: DiR+ macrophages. The data is shown as the mean ± SD (n = 3/group), and 50,000 cells were counted.
(C) Fluorescence images of RAW 264.7 macrophages after 24 h labeling with CXB-NE and DF-NE.
Figure 7

CXB-NE reduces hypersensitivity when delivered 7 days post-injury in male mice. (A) Illustration depicting timeline of injury, behavioral testing and delivery of DF-NE or CXB-NE (0.2 mL, i.v.) 7 days post-injury. (B) Naïve control males treated with CXB-NE show stable von Frey withdrawal thresholds. Three- and 7-days post-injury, 1 mm polytrauma groups show reduced thresholds. After testing von Frey on day 7 post-injury, groups received either i.v. DF-NE or CXB-NE. Mice treated with CXB-NE showed a gradual yet persistent
recovery of sensitivity, becoming significantly reversed compared to DF-NE controls from 14 to 35 days post-injury. (C) In contrast, an identical experiment in females did not show reversal of hypersensitivity with CXB-NE. */** p=<0.05/0.01 ‘1mm polytrauma + DF-NE’ versus ‘1mm polytrauma + CXB-NE.’ Two-way, repeat measures ANOVA, Šidák's multiple comparisons test.

Figure 8
CXB-NE reduces hypersensitivity and NIRF signal in the acute post-injury window in male mice. (A) Illustration depicting timeline of injury, behavioral testing and delivery of DF-NE or CXB-NE (0.2 mL, i.v.) in two treatment paradigms, either 3 days post-injury or 1 day and 3 days post-injury. (B) Naïve control males treated with CXB-NE show stable von Frey withdrawal thresholds. Post-injury, 1 mm polytrauma groups show the expected hypersensitivity. After testing von Frey on day 3 post-injury, groups received either i.v. DF-NE or CXB-NE. Mice treated with CXB-NE showed a significant and sustained attenuation of sensitivity, becoming significantly reversed compared to DF-NE controls at 4 and 5 days post-injury and from 10-42 days post-injury. (C) Male mice were subjected to polytrauma injury and treated with DF-NE or CXB-NE 24h and 72h after injury. This additional dosing did not further improve the CXB-NE-mediated attenuation of hypersensitivity. (D) In contrast, an identical experiment in females did not show statistically significant reversal of hypersensitivity with CXB-NE. (E) Representative images of male mice 2 days post-injury and 24h post-dosing with DF-NE or CXB-NE (0.2 mL, i.v.). (F) Quantification of ipsilateral to contralateral NIRF ratio shows a significant increase versus control at all time points. 2 days post-injury, polytrauma mice that received CXB-NE show significantly less NIRF signal than their DF-NE-injected counterparts, a trend that persists at days 4, 7 and 10 post-injury. These effects of CXB-NE were not observed in female mice (G, H). */**/*** $p<0.05/0.01/0.001$ ‘1 mm polytrauma + DF-NE’ versus ‘1 mm polytrauma + CXB-NE.’ Two-way, repeat measures ANOVA, Šídák’s multiple comparisons test.
CXB-NE reduces sciatic nerve inflammation in the acute post-injury window. (A) Two days post-polytrauma, and 24h after dosing with DF-NE or CXB-NE in male mice, (0.2 mL, i.v.), sciatic nerves were homogenized and probed semi-quantitatively for cytokine/chemokine content. Detected factors with ≥2-fold expression in ipsilateral versus contralateral nerves from DF-NE mice are shown in descending order of mean ipsi : contra ratio. Corresponding ipsi : contra ratios from CXB-NE-treated samples are plotted.
alongside. Of the 67 total differentially-expressed factors in ipsilateral DF-NE sciatic nerve, 50 showed reduced expression in CXB-NE treated mice. (B) differential expression between DF-NE and CXB-NE treatment where CXB-NE treatment was associated with a higher ratio than in DF-NE. Ten of the 67 factors detected met these criteria. (C) factors that showed a substantial decrease in ipsilateral expression following DF-NE treatment (mean ratio ≤ 0.5). Of the 67 differentially expressed factors in DF-NE sciatic nerves, 7 factors met this criterion and show similar or greater expression in tissues from CXB-NE-treated mice.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AdditionalFile1.docx
- AdditionalFigure1.pdf
- AdditionalFigure2.pdf
- AdditionalFigure3.pdf
- AdditionalFigure4.pdf
- AdditionalFigure5.pdf
- AdditionalFigure6.pdf
- AdditionalFigure7.pdf
- AdditionalFigure8.pdf
- AdditionalFigure9.pdf
- AdditionalFigure10.pdf