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Abstract. Intrusions in computer networks have increased significantly in recent times and network 

security mechanisms are not being developed at the same pace at which intrusion attacks are evolving. 

Therefore, a need has arisen to improve intrusion detection systems (IDS) to make network secure. 

This research focuses on anomaly-based IDS for security assaults. In this research, deep learning 

techniques such as Bi-directional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural 

Networks (CNN) are implemented and subsequently used to design a novel BiLSTM-CNN hybrid 

IDS for the Internet of Things (IoT). The hybrid intrusion detection system model is created by 

utilizing the advantages of both the BiLSTM and the CNN's ability to extract temporal and spatial 

features respectively. The research uses the UNSW-NB 15 dataset for proposed deep learning IDS for 

IoT networks. The dataset has been split into training and testing data for classifying traffic into 

normal or attack classes.  The models are run on GPU and CPU to illustrate their efficacy and match 

real-world IoT network communication behavior. The BiLSTM, CNN, and hybrid BiLSTM-CNN 

models are assessed on various aspects like Precision, Sensitivity, F1-Score, Miscalculation Rate, 

False Positive Rate, False Negative Rate, and Matthews Correlation Coefficient to evaluate the 

model’s robustness. The findings revealed that the hybrid model surpassed the BiLSTM and CNN 

models in all aspects. Additionally, the proposed model is compared with the cutting-edge existing 

approaches in terms of different performance metrics and proved to be better than state-of-the-art 

models.  

 

Keywords: Internet of Things, Intrusion Detection System, Deep Learning, CNN, BiLSTM 

1. Introduction 

The Internet of Things (IoT) offers a new application that facilitates smart technology communication 

within the current networks. Nowadays, everything is being more and more linked to the Internet, and 

new devices are being developed much more quickly. Because these networked smart things can 

communicate with one another in unprotected environments, security solutions at different levels are 

required for the entire communication ecology. IoT technology offers unique features, such as 

different resource constraints and different network protocol requirements, in contrast to the existing 
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networks. The attacker uses several IoT system security flaws to perform various attacks. Given the 

rise in cyberattacks, it is critical to address the implications of the Internet of Things. [6] 

 

1.1 Intrusion Detection System 

The term Network security refers to protecting the data, systems, information, and networks from a 

wide variety of malicious attacks and threats that are luring on the internet. The attacks are aimed at 

accessing and even destroying information that is important to the organization. An enormous amount 

of confidential information is inevitably being exchanged over the untrustworthy internet, resulting in 

major security concerns [39, 26]. 

The detection of breaches in an IoT network is frequently done using IDS, including internal and 

external intrusions, as well as anomalies that could signal potential intrusions [21]. An IDS can be a 

hardware or software application that analyzes and monitors the flow of network traffic or data 

between users for suspicious activity over a network to prevent intrusion or any network attack. They 

analyze IoT network traffic or packets in real-time [17]. The underlying principles behind the IDS are 

2 basic approaches to analyzing network traffic flow and detecting any intrusion- Anomaly-based IDS 

and Signature-based IDS. 

The Signature-based IDS works much like an antivirus. It has the data of previously known threat 

patterns, and it detects threats or any intrusion by looking for a particular pattern and then compares it 

with the data that the IDS already has [12]. This model has a low rate of false alarms and a high 

detection rate. Attackers are creating new, unidentified attacks as networks and services grow, leaving 

the model vulnerable to these attacks. An intrusion detection system needs to be smart and efficient in 

identifying and stopping known and new assaults, including anomaly detection, to secure these 

network activities [5]. Attacks both known and new can be detected by Anomaly-based IDS, despite a 

high false alarm rate. This is also effective in detecting zero-day threats. 

Monitoring and detection of any kind of IoT network threats are performed by the IDS at both the 

network and host level. There are 2 types of IDS: 

Network Intrusion Detection System (NIDS) provides security to the whole network and all the 

devices that are connected to the network. It detects any type of malicious activities and IoT threats by 

scanning the network traffic that is gathered by different networking components like the switch, 

routers, and much more sophisticated systems like security information and event management 

(SIEM) [1]. They examine both normal and malicious traffic. 

Host-based Intrusion Detection System (HIDS) is installed on the end user's computer to protect them 

and detect any kind of intrusion. It examines the end user device like the logs file to prevent and detect 

any malicious activity [20]. 

Computers and other devices can now learn from a dataset with little assistance from humans thanks 

to artificial intelligence (AI); IDS have benefited from this ability. AI encompasses machine learning 

(ML) and deep learning (DL), both of which were applied in the design and development of a 

successful intrusion detection system. Using manually collected attributes, a machine learning system 

classifies and detects network traffic. In contrast to machine learning, deep learning can increase and 

improve the model's detection accuracy. This is because, using its neural network, the deep learning 

system can extract features from the dataset and then perform classification and detection.  [7] 

 

1.2 Learning Techniques for IDS 

Numerous machine-learning approaches have been proposed for detecting anomalies in IDS. 

Technological advancements and the expansion of the internet led to enormous amounts of data being 
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generated, data volumes are soaring, and information is becoming more complex, resulting in 

increasingly sophisticated attacks. Thereby making approaches that rely on machine learning not 

being able to cope with addressing growing security concerns and tackling security threats. Therefore, 

refrain from relying on the machine learning model to address these major security concerns. Several 

studies have demonstrated the effectiveness of deep learning techniques at reducing dimensionality 

and tackling classification problems. In the case of a DL-based IDS, data from previous network 

traffic records containing both malicious and normal traffic patterns is utilized to train a DL-based 

IDS [38]. 

The network traffic complexity can be reduced automatically by DL to discover correlations of data 

without human intervention. In addition to this, DL-based IDS is considerably more effective in 

detecting any kind of sophisticated attack pattern or even zero-day exploit, since it uses a large amount 

of data for training to create an effective detection model [13]. The intrusion detection domain has 

recently seen a surge in ground-breaking DL techniques. 

 

1.3 Motivation 

The intentional construction of the Deep Learning-based IDS makes it ideal for categorization and 

prediction. IoT networks will see encouraging outcomes from DL. The IoT systems generate a huge 

amount of data that may be used by learning techniques to make better and more informed decisions. 

The security system might be strengthened by incorporating intelligence using approaches based on 

learning. The development of an IDS employing DL techniques for detecting IoT attacks is the main 

goal of the research because the use of various DL models is becoming increasingly popular. The 

major goal is to create a deep learning-based IDS for IoT networks that can recognize insider server 

attacks. The UNSW-NB15 dataset with chosen features has been utilized to train the IDS model for 

this purpose. Figure 1, illustrates the design of the proposed research. 

 
Figure 1. Broad design of the proposed research work 

 

As seen in the figure above, it is equally conceivable that heterogeneous data being transported to a 

network from many smart applications, like smart airports, smart healthcare, smart energy, smart 

traffic management, etc., will be compromised by potential security threats. All application data 

should be protected because they are valuable. The key problem while handling massive sensor data in 

IoT-based smart applications is to identify any security breach or danger on data being sent to a cloud 

server using an IDS. 
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With the inspiration from everything discussed above, this study suggests a novel Bidirectional 

Long Short-Term Memory (BiLSTM)- convolutional neural network (CNN) hybrid IDS to foresee 

attacks. The suggested method has a high degree of precision and can reliably identify attacks. A 

recent, widely used, and well-known UNSW-NB 15 dataset is considered for the research to develop 

IDS for IoT networks. The model was trained over 175,341 records (training set) and tested over 

82,332 records (testing set). 

 

1.4 Contribution 

The prime contributions of this research work are as follows: 

• The study offers a thorough understanding of the recent work currently being done, concentrat-

ing especially on DL methods that have utilized the IoT datasets for IDS creation. 

• The research describes the feature selection approach, data normalization, data cleaning, feature 

scaling, and feature encoding as a part of the pre-processing of data after performing extensive 

data analysis. 

• Performance analysis with binary classification using IoT security datasets, which is, UNSW-

NB15. The parameters used to analyze the performance of the proposed model are Precision, 

Sensitivity, F1-Score, Miscalculation rate, False Positive Rate, False Negative Rate, and Mat-

thews Correlation Coefficient. 

• With a great precision of 99.265%, the proposed intelligent BiLTSM-CNN IDS successfully 

detects attacks for IoT network datasets. 

• A few recent state-of-the-art techniques are used to compare the performance of the proposed 

BiLTSM-CNN IDS over the UNSW-NB 15 dataset such as: 3-layered 1D CNN IDS model [8], 

2-layered BiLSTM IDS model [42], MSCNN-LSTM [43], 1D CNN – Multi BiLSTM [32], 

Deep CNN-WDLSTM [11] and RNN-LSTM [9], RNN-LSTM [4] and CNN-LSTM [10] over 

precision, accuracy and F1 score and results shows that the hybrid model outperformed all. 

• Deep learning-based hybrid BiLSTM- CNN IDS model for detecting attacks on IoT networks is 

run on CPU and GPU and proved to be a better solution for IoT for being robust and resilient, 

accurate, precise, lightweight, and efficient in terms of computation time. 

 

The research paper is organized as follows. Section 2 gives the details of the literature survey and 

states the research gap. The specifics of the UNSW-NB15 dataset are described in Section 3. The 

proposed BiLSTM- CNN IDS architecture and algorithm, and asymptotic time complexity analysis 

are presented in Section 4. Additionally, this section also describes the pre-processing of the UNSW-

NB15 dataset. Experimental setup, performance measures, and performance outcomes are presented in 

Section 5 along with a discussion. Also, the proposed intelligent BiLSTM-CNN hybrid model is 

compared with a few related IDS based on Deep Learning approaches for IoT networks. Lastly, 

Section 6 provides the conclusions and limitations with suggested future work. 

2 Related Works 

This section of the manuscript examines prior research that employed various approaches to develop 

IDS. 

For network intrusion detection, a more effective convolutional neural network model has been 

created by authors [16] where the authors have proposed a 1D-CNN over the KDD’99 dataset. 2 



5 

layers of 1-D CNN with max-pooling layers are used to classify the normal and attack categories with 

the help of softmax classification method. The reported accuracy of the model was 99.83% and was 

compared consequently with SVM and DBN classifiers, outperforming them both. 

Authors [8] proposed a deep-learning method for creating effective and adaptable IDS using 1D-

CNN. The UNSW-NB15 dataset is deployed for training and testing the models where the dataset has 

been configured with training and testing records of 175341 and 82332 respectively. For dealing with 

the imbalanced dataset, a random oversampling technique has been used to have an equilibrium 

between the number of normal and attack records. The dataset is used on 1-layered, 2-layered, and 3-

layered 1D-CNN models and a 1D-CNN + LSTM model. Subsequently, the 3-layered 1-D CNN along 

with 2 max pool layers attained the highest accuracy score of 91.17%, a precision score of 87.53%, a 

recall score of 96.17%, and an f1-score of 91.59%. 

By benchmarking simple RNN, GRU, and LSTM models on the KDD'99 Dataset for multi-class 

classification, evaluated recurrent neural networks and their modifications for intrusion detection. On 

various combinations of LSTM layers and GRU layers, authors found that these models' accuracy 

ranged from 94.2% to 96.98% and 94.3% to 95.37%, respectively. The authors [37] reported 64.8% 

accuracy from a GRU network and 67.5% accuracy from an LSTM network on the multicategory 

UNSW-NB15 dataset. 

Bi-LSTMs and an Attention layer are combined in the model, known as BAT [33], to filter away 

features that have little bearing on the model's outcome. The model has a BiLSTM, Attention, and a 

Fully Connected Dense Layer, among other convolutional layers. The NSL-KDD dataset, with its five 

classes- a normal category and four different sorts of attacks-has been used to test the model. On the 

multicategory analysis, the accuracy ranged from 82.97% to 84.24%. 

Authors [34] worked on the implementation of the Hybrid CNN-LSTM model. They used the 

CICIDS 2017 dataset to analyze performance using parameters such as recall, accuracy, F-score, and 

sensitivity. They obtained an overall accuracy of 98.67% and compared their results to other Machine 

Learning models such as Random Forest and Logistic Regression, but the hybrid CNN-LSTM model 

outperformed them all. 

The research has been done based on Bi-directional LSTM on the network behavior anomaly, 

where the author proposed a 2-layered Bi-LSTM model using a sigmoid activation function [42]. 

Binary cross entropy has been used as the loss function with a learning rate of 0.01, batch size of 10, 

and 10500 epochs. Adam’s optimizer has been utilized for the optimization of the model. 

Subsequently, an analysis is performed on the UNSW-NB15 dataset resulting in an average precision, 

recall, and f1-score of 93%, 89%, and 91% respectively. 

A Hybrid Convolutional Recurrent Neural Network has been proposed where authors [15] 

implemented a Deep Learning Hybrid Model by merging a Convolutional Neural Network with a 

Recurrent Neural Network (HCRNN) for IDS. The CSE-CIC IDS2018 dataset is used, and the 

performance indicators are Precision, Recall, Accuracy, and F-1 score. When compared against other 

Machine Learning (ML) models, such as XGBoost (XGB), Logistic Regression (LR), and Decision 

Tree (DT), their Hybrid HCRNN model outperformed them all, attaining an accuracy of 97.75%. 

To include the learning of temporal and spatial features of the data, research [32] suggested an IDS 

model based on deep learning techniques that combines the distinctive advantage of a Bi-directional 

LSTM and a Convolutional Neural Network. The model is trained and tested using the UNSW-NB15 

and NSL-KDD datasets. The suggested model had a 1-D CNN layer, several Bi-LSTM layers, and 

layers for batch normalization and reshaping in between. The proposed model's binary classification 

results for the UNSW-NB15 dataset showed average detection rates, accuracy, and false positive rates 
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of 94.704%, 93.084%, and 7.70%, respectively, across various Stratified K-Fold Cross Validation 

ranging from k values between 2 and 10. Subsequently, the model has also been tested for 

multiclassification of the records, and it achieved the average detection rate, accuracy, and false 

positive rate for the UNSW-NB15 dataset as 92.506%, 82.084%, and 6.092% respectively. 

Authors [43] have used the UNSW-NB15 dataset to develop a hybrid deep learning model 

comprised of a Long Short-Term Memory (LSTM) and Multiscale Convolutional Network. The 

model's performance metrics are False Negative Rate (FNR), Accuracy, and False Alarm Rate (FAR). 

They also evaluated the accuracy of other models such as Lenet-5, Multiscale CNN, and Hast to the 

hybrid model. With the Adam optimizer and ReLU activation function, the research attains 95.6% 

accuracy, 1.6% FNR, and 9.8% FAR. The hybrid model outperformed the other four models, which 

had an accuracy of 63.9% for Lenet-5, 91.4% for MSCNN, and 85.7% for Hast. 

The authors developed a hybrid OCNN-HMLSTM based on deep learning [14] that combines an 

optimized Convolutional Neural Network with Hierarchical Multiscale LSTM. They worked on three 

separate datasets, UNSW-NB15, NSL-KDD, and ISCX-IDS, and achieved an accuracy of 96.34%, 

90.67%, and 95.33%, respectively. 

The research proposed by authors [4] is based on deep learning models like ANN, DNN, and RNN 

for intrusion detection systems for IoT networks. The UNSW-NB15 dataset is created using several 

distinct files, and binary classification is used to label the data. Instead of testing models individually 

for each file, the authors of this research have attempted to combine the entire dataset into a single 

file. After that, the dataset's attack families were employed as a new label to create a multi-

classification labeled dataset. The pre-processed UNSW-NB15 dataset is improved for use in this 

study so that deep-learning models can handle it and find anomalous patterns. 

Another research [28] demonstrated а unique deep learning approach, using a Bi-directional Long 

Short-Term Memory (BiLSTM) Recurrent Neural Network (RNN), for detecting attacks within the 

IoT network. Using UNSW-NB15, a multi-layer Deep Learning Neural Network is trained. The 

categorization of normal and attack behaviors on the IoT network into two categories is the main 

emphasis of this paper. Their proposed BiLSTM model has an attack detection accuracy of over 95%. 

Authors proposed a deep learning-based Hybrid CNN-WDLSTM that combines a Convolutional 

Neural Network with a Weighted-drop LSTM [11]. They trained the model using the UNSW-NB15 

dataset and obtained an accuracy of 97.1% for binary classification. 

An intrusion detection approach based on Kullback Gaussian deep belief network (KG-DBN) has 

been introduced to lower the high false positive rates [39]. To make the pre-processing of the data 

simpler, the dataset is treated using probabilistic mass function (PMF) encoding and the Min-Max 

normalization approach. The UNSW-NB15 and NSL-KDD open datasets are used in the simulation 

studies. The accuracy of the suggested approach is 96.17% and 86.49%, for the UNSW-NB15 and 

NSL-KDD datasets respectively. 

Layers of CNN and LSTM are stacked and a CNN-LSTM hybrid model is proposed by researchers 

[10].  The UNSW-NB15, CIC-IDS2017, and WSN-DS datasets (all of which included benign and 

attack records) are used to assess the model. While the detection rate and FAR results are positive, the 

model is not able to give a high detection rate for some types of threats, such as web attacks in CIC-

IDS2017 and worms, backdoors, and analysis in UNSW-NB15. 
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Table 1. Summary of existing Intrusion Detection System using Deep Learning techniques 

 

Research 

Work 

Proposed Methods Dataset Performance Metrics 

[16] CNN model KDD99 Accuracy (99.83%) 

[42]  2 layered BiLSTM UNSW-NB15 Precision (93%), recall (89%), and 

f1-score (91%) 

[8] 1D CNN 3 layers UNSW-NB15 Accuracy (91.17%), Precision 

(87.53%), Recall (96.17%), F1 

score (91.59%) 

[33] BAT NSL-KDD Accuracy (84.24%) 

[34] DL-IDS CICIDS2017 Accuracy (98.67%), F1 score 

(93.32%) 

[32] 1D CNN and multi-

ple layers of BiLTSM 

UNSW-NB15 Average detection rate (94.704%), 

Accuracy (93.084%), and False 

positive rate (7.70%) 

 

[43] MSCNN-LSTM UNSW-NB15 Accuracy (89.8%), False Alarm 

rate (47.4%), False Negative Rate 

(8.6%) 

[11] Deep CNN-

WDLSTM 

UNSW-NB15 Precision (97%), Recall (97%), F1-

score (97%) Accuracy (97.17%) 

[35]  IDS based on im-

proved DBN 

NSL-KDD and 

UNSW-NB15 

96.17% and 86.49% accuracy for 

NSL-KDD and UNSW-NB15 re-

spectively 

[19] Multi CNN Fusion NSL-KDD Accuracy (86.95%) 

[9] RNN-LSTM UNSW-NB15 Accuracy (87%) 

[4] RNN-LSTM UNSW-NB15 Accuracy (85.42%) 

[10] CNN-LSTM UNSW-NB15 Precision (94.69%), F1 Score 

(94.77%), Accuracy (93.95%) 

 

For Internet of Things-based applications, such as healthcare, machine learning, and metaheuristic 

algorithms based on a hybrid intelligent intrusion detection system (HIIDS) over the NSL-KDD 

dataset is presented [29]. To reduce computation costs, also to attain precise classification of the 

normal and attack classes based on chosen features, supervised learning techniques like Decision Tree 

(DT) and Known Nearest Neighbor (KNN) are used. The optimum feature selection is done using 

metaheuristic algorithms like Particle Swarm Optimization (PSO), Differential Evaluation (DE), and 

Genetic Algorithm (GA). Additionally, a hybrid approach to feature selection and classification has 

been provided.. 
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It can be seen in Table 1 that several works have been done on Intrusion detection in IoT networks 

over the past few years. Most current work emphasizes binary classification over different data sets 

with good results. However, the recent state-of-the-art work fails to achieve higher precision while 

maintaining a high accuracy and F1 score. Hence, the research focuses on binary classification using 

basic Deep learning models like CNN and BiLSTM and eventually designing a hybrid BiLSTM-CNN 

model to detect an attack over the UNSW-NB15 dataset with remarkable precision while giving the 

best accuracy and F1 score. 

3     Dataset 

For this study, the UNSW-NB15 data set is used because it only contains the two classes "attack" and 

"normal," which cover current attack patterns, and contain current normal traffic patterns. The initial 

network packet for the UNSW-NB15 dataset has been created by the network-wide laboratory of the 

Australian Centre for Cyber Security (ACCS) using the IXIA PerfectStorm tool [22]. This technology 

is mostly used to produce current synthetic attack actions as well as genuine, everyday modern 

behavior. 100GB of unprocessed traffic is captured using the tcpdump utility. This dataset [23] has 

nine different types of attacks. Table 2 displays the record distribution for both the training set and the 

test set. 

Table 2. Traffic Distribution of UNSW-NB15 dataset. 

Traffic No of records in Training set No of records in Testing set 

Normal 56,000 37,000 

Generic 40,000 18,871 

Exploits 33,393 11,132 

Fuzzers 18,184 6,062 

Dos 12,264 4,089 

Reconnaissance 10,491 3,496 

Analysis 2,000 677 

Backdoor 1,746 583 

Shellcode 1,133 378 

Worms 130 44 

Total 175,341 82,332 

 

 

 

The training set file (UNSW-NB15 training-set.csv) has a total of 175,341 records, whereas the testing 

set file (UNSW-NB15 testing-set.csv) has a total of 82,332 records. The training set's distribution of 

normal and attack records is shown in Figure 2, and the distribution of attacks in the training set is 

shown in Figure 3. 
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Figure 2. The training set's distribution of normal and attack records 

 

 
Figure 3. Distribution of nine types of attacks in the training set 

4     Proposed Methodology 

To improve the optimal results for the classification of the attacks, the usage of multiple DL models 

has been facilitated in this study. The DL models are described in more detail in the part that follows. 

It also shows how the BiLSTM-CNN architecture helped attain the best results. 

 

4.1 Proposed DL Models 

The study in the field of deep learning multi-layered hierarchical networks concentrated on deep 

networks with classification training. Depending on how architecture and technologies are 

implemented, the network's deep IDS can be classified. Initially, the BiLSTM model is used, which is 

followed by the CNN model and ultimately resulted in the development of a hybrid BiLSTM-CNN 

model architecture. 

 

4.2 BiLSTM Model 

The Long Short-Term Memory (LSTM) model describes how information spreads throughout LSTM 

cells. To store information in each cell, incoming data is passed through several gates that remove 

unnecessary information before being retrieved and added to the cell state [24]. An LSTM 
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modification known as the Bidirectional LSTM (BiLSTM) employs a duplicate LSTM that receives 

an input that is a reversed copy of the original input. In some situations, the BiLSTM can yield a 

noticeable performance improvement, but at the expense of twice the necessary trainable parameters 

for every given hidden dimension size [27]. To produce an output, the Bidirectional Recurrent Neural 

Network (BRNN) combines two hidden layers of the recurrent architecture in the opposite direction. 

[30]. The versatility of the recurrent architecture's input data is increased by its bidirectional 

characteristic. Additionally, the recurrent bidirectional network does not need the input data to be 

fixed before training and increases the reachability of future state inputs to the current state. [28]. 

Figure 4 illustrates the BiLSTM model's architecture employed in this study. It consists of two 

BiLSTM layers, with a max pooling layer following the first layer and a global max pooling layer 

following the second. The vector is flattened as a result of this layer's output, which is then sent to a 

fully connected layer and finally to an output layer. 

 

 
 

Figure 4. The architecture of the BiLSTM Model 

 

The BiLSTM model's first LSTM layer, which uses 32 hidden nodes, is followed by a layer with a 1-

dimensional maximum pooling. The prior layer’s (max pool layer) output is used as an input in the 

following layer of BiLSTM. To the global max pooling layer the output of the BiLSTM layer is then 

passed to flatten the vector size before being passed to a fully connected layer with a sigmoid as an 

activation function to determine the input class required to start an action to suppress the network 

traffic flow attack, whether it be a regular network flow or an anomaly. 

 

4.3 CNN Model 

Convolutional layers are used in CNN, a deep learning architecture, to map the features of the input 

data. By using various filter sizes, the layers are organized into various feature mappings. Based on 

the feature mapping results, CNN can learn more about the input data [2]. The convolutional layer is 

typically followed by a pooling layer to provide accurate output dimensions even with various filters. 

By lowering the output dimensions while keeping the crucial information, the pooling layer can 

minimize the computational strain [40]. 

Figure 5 illustrates the CNN model's architecture employed in this study. It comprises two 

convolutional layers, the first of which is followed by a max pooling layer and the second by a global 

max pooling layer. This layer's output flattens the tensor and is then supplied to a fully connected 

layer, which is followed by an output layer. Both convolutional layers' filters are of size 7. 
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Figure 5. The architecture of the CNN Model 

 

The CNN model's initial convolutional layer has 32 convolution filters and is put through batch 

normalization, max pooling layer, and three as stride value. To minimize the amount of training 

epochs, the batch normalization layer is seen to be a crucial component of CNN. As a result, the 

CNN's learning process becomes stable [3]. At this point, the output is 11 x 32 in size. The output of 

the preceding max pool layer is fed into the subsequent convolution layer. The tensor size produced in 

this convolutional layer is 5 x 32. The output is thereafter passed to a layer that is fully connected with 

the sigmoid activation function to find out which input class is necessary to start an operation that 

suppresses network traffic, whether it be a typical network flow or an anomaly. The output is 

thereafter passed to a global max pooling layer that flattens the tensor size to 32. 

 

4.4 Proposed Hybrid BiLSTM-CNN Model 

As seen in Figure 6, a hybrid deep neural network model is created by combining homogenous 

neural networks. By altering the initialization of the network's weights and the input characteristics, an 

ensemble of different classifiers is created. 

This study developed a hybrid deep learning model for effective network intrusion detection. CNN 

plays a significant role in the IDS by extracting pertinent features from large amounts of data while 

the BiLSTM preserves the long-term relationships among the obtained features to prevent overfitting 

on recurrent connections [32]. The implemented CNN and BiLSTM architectures explained and 

demonstrated above are consequently compared with the proposed hybrid model, confirming its 

satisfactory performance. 
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Figure 6. The architecture of the hybrid BiLSTM-CNN Model 

 

The proposed model has multiple BiLSTM and CNN layers. The input is first reshaped in this 

architecture before being supplied to the BiLSTM layer. This layer then generates the output and feeds 

it as input to a 1-dimensional convolutional layer. This convolutional layer outputs a tensor which is 

followed by a dropout layer and then batch normalization and then after and max pooling layer. The 

dropout parameter in the proposed model is set to 0.1. 

The output tensor of the preceding max pool layer is then input to the second BiLSTM layer. 

Similar to how the convolutional layer output is delivered, the output of this BiLSTM layer is then 

passed to a global max pooling layer, which flattens the vector size. When a network traffic flow 

intrusion occurs, whether it be a regular network flow or an anomaly, the output of it is then supplied 

to a layer that is fully connected with sigmoid as the activation function to identify the input class 

required to start an action to suppress it. 

Due to the BiLSTM recurrent bidirectional architecture, the BiLSTM and CNN layers in this 

architecture are accountable for learning the temporal and spatial relationship respectively between the 

network flow and adjusting the temporal and spatial dynamics [18]. These layers also provide the 

framework for network flow feature extraction. 

 

4.5 Algorithm and Time Complexity of the BiLSTM-CNN Model 
 
Algorithm:  Binary classification Pseudocode for IDS  

 
Require: Epoch = 30, Batch size=1024, Input shape(I0,d) = (39,1) 

Ensure: Precision, Sensitivity, F1 score, Accuracy, Miscalculation rate, False Negative Rate, 

False positive Rate, Matthew’s Correlation Coefficient (for 2 class) 

1.  Sequential model definition 

2. for Epochs =  1 to 30 do 

3. Evaluate BiLSTM (BiLSTM1) operations with 32 hidden nodes using the following equations 

a. Forget gate 
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                            (1) 

b. Input gate 

                                                (2) 

                                    (3)                                           

 
c. output gate 

 

 
4. Taking filters f and kernel size k compute 1-D Convolution (CL1) operation using below equation  

                         (7) 

Where (i,j) are indices of output, (p,q) indices of fth  filters, and weight Wand bias B 

5. Set the drop out value to 0.1 to enable the model to learn more useful characteristics also avoiding 

overfitting problem 

6. Perform batch normalization to prevent and regulate overfitting, making the model much for 

efficient. 

7. With pool size =3, Use below equation to extract the most activated features with 1-D maxpooling 

(MPL1). 

                                                          (8) 

8. Compute BiLSTM (BiLSTM2) operation as step 3. 

9. Compute 1-D Convolution (CL2) as step 4 

10. Perform Global Max Pooling 

11. Use fully connected dense layer with one neuron and sigmoid activation function to detect and 

categorize attacks. 

12. Using Adam optimizer and binary cross-entropy as loss function, compile the model  

13. Fit the model on training set (175341 records), where validation set is 0.2 

14. Replicate steps 3 to 14 for each Epochs (1 to 30) 

15. end for 

16. For testing set evaluate and predict the model  

17. Generate the confusion matrix and classification result 

18. Plot graphs for training and validation accuracy and loss on CPU and GPU over 30 epochs 

19. Print performance matrix 

 

 

The proposed BilSTM-CNN model IDS's asymptotic time complexity is examined in this section. 

The time complexity of LSTM model is O(4Ih+ 4h2+ 3h + hk), where I is the number of inputs, h is 

the node count in the hidden layer and k is the number of outputs. For LSTM model time complexity 

is 2 * O(4Ih+ 4h2+ 3h + hk). Therefore, the time complexity of two BiLSTM layers is 4 * O(4Ih+ 

4h2+ 3h + hk). 

The addition of row-wise dot product of two matrices, one of which is the kernel with size k and the 

other which is the input with size Ic, results in the 1D convolution. Since d is the number of channels, 

for a single convolution layer the computational complexity is O(Ickd) [36]. The complexity of 
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convolution is O(Ickdf) with f being the number of filters. Therefore, 2*O(Ickdf) is the temporal 

complexity when using two 1D-convolution layers. 

There are no trainable parameters in the max-pooling layer. Therefore, it will facilitate a decrease in 

computational overhead. With the help of the kernel size, k, from the input data given, Im the 

maximum weight is selected. It is fundamentally an unsorted, one-dimensional array. The temporal 

complexity is therefore 2*O(Im) with two 1D-max-pooling layers. 

The data from the max-pooling layer is flattened before being input into the output layer which is a 

fully connected dense layer, where it is processed to detect various attacks. Each neuron, Ifc, is 

connected to the Sigmoid activation neuron, Is, by this layer. Therefore, the temporal complexity of 

one dense layer that is fully connected is O(IfcIs). 

The proposed BiLSTM-CNN IDS's asymptotic time complexity is: 

{4 * O(4Ih+ 4h2+ 3h + hk) + 2 ∗ O(Ickdf) + 2 ∗ O(Im) + O(IfcIs)}                    (9) 

 

4.6  Proposed Model Flowchart with Step-by-Step Phases 

The five stages of the proposed model's flow are as follows: data preprocessing and feature extraction; 

normalization; splitting the dataset into training and validation sets; building DL models; testing them 

on the UNSW-NB15 testing set and subsequently evaluating the IDS based on the accuracy and 

various performance metrics. Figure 7 illustrates the flow of the proposed model. 

Data Pre-processing and Feature Extraction. There were some unnecessary and redundant values 

in the dataset that needed to be deleted. As a result, 4 attributes—id, proto, service, and state—are 

removed from the dataset. There are a total 41 columns in the improved dataset. The dataset contains 

values of the object datatype (labeled data), which are not directly usable in the raw format. The data 

is subsequently labelled using Label Encoding, a successful method for transforming labels into a 

numeric form that can be ingested into deep learning models [31]. The dataset is likewise verified for 

any pre-existing null values; as none were present, the attributes are normalized. 

Normalization. The famous min-max normalization technique is deployed in order to build consistent 

neural networks. This kind of normalization helps to lessen any bias brought on by the preference of 

some dominant qualities in the dataset over others and is a reliable and robust strategy for keeping all 

data linkages [25]. 

Dataset Splitting. The dataset, as discussed above was split by the author of the data into training-set 

and testing-set. The training-set had 175,341 values, while the testing-set contained 82,332 values. 

However, to avoid the model’s overfitting, the training-set is further separated into training and 

validation sets with an 80:20 ratio. The model's performance could be assessed on the fresh data due 

to the validation set that is provided with the initial test against unexplored data. Additionally, 

insightful information from the validation is helpful when optimizing the hyperparameters. [41] 

Deep-Intrusion Detection System. The proposed IDS for IoT network is based on DL techniques 

with 3 types of DL models that are: CNN, BiLSTM and hybrid BiLSTM-CNN. 
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Testing the Model and Comparing Results. The models are subsequently tested using the 175,341 

testing-set data, after which they are compared on the basis of precision, accuracy, sensitivity, F1-

Score, Miscalculation Rate, False Positive Rate, False Negative Rate, and Matthew’s Correlation 
Coefficient. 
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Figure 7. Flowchart of the proposed model 

5 Experimental Results 

The Jupyter Notebook environment and Python 3.10.9 are used to create the DL models. The 

proposed BiLSTM-CNN model is trained using Adam's propagation as an optimizer and binary cross 

entropy as the empirical loss function for 30 epochs with a batch size of 1024. After 30 epochs, it has 

been found that the validation loss grew, which decreased the validation accuracy. The epochs are 

fixed to 30 as a result to avoid the model from overfitting. RMSprop and Adam's propagation, two 

distinct optimizers, were used to evaluate the model. For optimization Adam's propagation is 

employed for the proposed model since it generated better outcomes than RMSprop in terms of loss 

and accuracy. 

The CNN, BiLSTM, and the hybrid BiLSTM-CNN models are run on two different processors: 

GPU and CPU. The model is trained and tested using an NVIDIA Quadro P1000 GPU running on 

CUDA version 11.3 and CUDNN version 8.2, and the CPU used is an Intel(R) Core (TM) i7-1065G7 

CPU running at 1.30GHz. 

For the proposed BiLSTM- CNN model, the training and validation accuracy and loss values are 

noted. The accuracy and loss values for the 1, 5, 10, 15, 25, and 30 epochs on the GPU and CPU, 

respectively, are shown in Tables 3 and 4. 

Table 3. Accuracy and loss attained by the BiLSTM-CNN Model at various epochs run on the GPU 

No of Epochs Training Accuracy Training Loss Validation Accuracy Validation Loss 

1 0.8266 0.3590 0.3194 0.8080 

5 0.9423 0.1414 0.3436 2.2380 

10 0.9507 0.1200 0.8814 0.3013 

15 0.9541 0.1106 0.8954 0.2620 

20 0.9568 0.1047 0.8935 0.1090 

25 0.9601 0.0009 0.8954 0.1071 

30 0.9751 0.0955 0.9134 0.1054 

 

After 30 epochs of training on the GPU, as mentioned in the Table 3, the model achieved accuracy of 

97.51% and 91.04% on the training and validation sets, respectively. The loss produced after 30 

epochs when the proposed model is run of GPU on the training and validation sets, are 0.0955 and 

0.1054, respectively. 

Table 4. Accuracy and loss attained by the BiLSTM-CNN Model at various epochs run on the CPU 

No of Epochs Training Accuracy Training Loss Validation Accuracy Validation Loss 

1 0.8330 0.3487 0.5364 0.6709 

5 0.9425 0.1408 0.9056 0.2365 

10 0.9504 0.1210 0.8874 0.2916 

15 0.9547 0.1105 0.8655 0.3505 
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20 0.9573 0.1024 0.8913 0.2146 

25 0.9589 0.0994 0.8890 0.2011 

30 0.9738 0.0948 0.9089 0.1544 

 

Similarly, after 30 epochs of training on the CPU, the model achieves an accuracy of 97.38% and 

90.89% on the training and validation sets, respectively, as shown in Table 4. The loss produced after 

30 epochs when the proposed model is run on the CPU on the training and validation sets are 0.0948 

and 0.1544, respectively. 

The graphs shown in Figure 8 and Figure 10 depict the training and validation accuracy, respective-

ly, while the graphs shown in Figure 9 and Figure 11 depict the training and validation loss for 30 

epochs. The graphs shown in Figures 8 and 9 depict the proposed model running on the GPU, while 

the graphs shown in Figures 10 and 11 predict it running on the CPU. Figures 8 and 10 illustrate the 

correlation between epochs and accuracy, while Figures 9 and 11 illustrate the correlation between 

epochs and loss for the proposed work over 30 epochs for the training and validation datasets. 

 

 
Figure 8. Train and validation accuracy of BiLSTM-CNN model run on GPU 
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Figure 9. Train and validation loss of BiLSTM-CNN model run on GPU 

 

 
Figure 10. Train and validation accuracy of BiLSTM-CNN model run on CPU 
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Figure 11. Train and validation loss of BiLSTM-CNN model run on CPU 

 

The accuracy and loss convergence of the models on training set, validation set, and testing set are 

recorded on the GPU and CPU, as seen in Table 5 and 6, respectively. When the models are run on 

GPU, the BiLSTM model on the training, validation, and testing set attains the accuracy of 92.51%, 

88.16%, and 87.15% respectively, while keeping a loss convergence of 0.1795, 0.2527, and 0.057. 

Similarly, the CNN model attains 95.82%, 89.12%, and 88.22% respectively, keeping a loss 

convergence of 0.1040, 0.2869, and 0.057. The hybrid BiLSTM-CNN model obtains the highest 

accuracy on all the datasets, with 97.51% accuracy and 0.0948 loss convergence on training set, 

90.89% of accuracy and 0.1054 loss convergence on the validation set, and 91.14% accuracy and 

0.296 loss convergence on the testing set. 

Table 5. Accuracy and loss convergence of models on datasets run on the GPU 

Model Accuracy 

(Training Set) 

± 0.015% 

Loss  

Convergence 

(Training Set) 

 

Accuracy  

(Validation Set) 

± 0.015% 

Loss  

Convergence  

(Validation 

Set) 

 

Accuracy  

(Testing Set) 

± 0.015% 

Loss  

Convergence 

(Testing Set) 

BiLSTM 0.9251 0.1795 0.8816 0.2527 87.15 0.057 

CNN 0.9582 0.1040 0.8912 0.2869 88.22 0.112 

Proposed 

BiLSTM

-CNN 

0.9751 0.0948 0.9089 0.1054 91.14 0.296 

Table 6. Accuracy and loss convergence of models on datasets run on the CPU 

Model Accuracy Loss  Accuracy  Loss  Accuracy  Loss  
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(Training Set) 

± 0.015% 

Convergence 

(Training Set) 

 

(Validation Set) 

± 0.015% 

Convergence  

(Validation 

Set) 

(Testing Set) 

± 0.015% 

Convergence 

(Testing Set) 

BiLSTM 0.9279 0.1731 0.8711 0.2705 86.88 0.104 

CNN 0.9584 0.1033 0.8847 0.3191 87.46 0.260 

Proposed 

BiLSTM

-CNN 

0.9738 0.0955 0.9089 0.1544 90.63 0.208 

 

Figures 12 and 13 show the graphical representations of the accuracies reached by the three models on 

training, validation, and testing datasets performed on the GPU and CPU, respectively. 

 
Figure 12. Accuracies of the models on datasets run on the GPU 

 

 
Figure 13. Accuracies of the models on datasets run on the CPU 

 

The BiLSTM model on the training, validation, and testing set achieves an accuracy of 92.79%, 

87.11%, and 86.88% correspondingly when the models are run on a CPU, while maintaining a loss 
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convergence of 0.1731, 0.2705, and 0.104. Similarly, the CNN model attains 95.84%, 88.47%, and 

87.46% respectively, keeping a loss convergence of 0.1033, 0.3191, and 0.260. With 97.38% accuracy 

and 0.0955 loss convergence on the training set, 90.89% accuracy and 0.1554 loss convergence on the 

validation set, and 90.63% accuracy and 0.208 loss convergence on the testing set, the hybrid 

BiLSTM-CNN model demonstrates its great performance and resilience. 

Now for computing and comparing the results obtained from the confusion matrices, 7 criteria are 

used as shown in Table 7. These are Precision, Sensitivity, F1-Score, Miscalculation rate, False 

Positive Rate, False Negative Rate, and Matthews Correlation Coefficient.  

Table 7. Metrics for evaluating the performance of the models 

Measure Derivations 

Precision (PPV) TP / (TP + FP) 

Sensitivity (TPR) TP / (TP + FN) 

F1-Score (F1) 2TP / (2TP + FP + FN) 

Miscalculation Rate (MR) (FP + FN) / (TP + TN + FP + FN) 

False Positive Rate (FPR) FP / (FP + TN) 

False Negative Rate (FNR) FN / (FN + TP) 

Matthews Correlation Coefficient (MCC) TP*TN – FP*FN / sqrt ((TP + FP) *(TP + FN) 

*(TN++ FP)*(TN + FN)) 

Where,  

TP = True Positive,  

FP = False Positive 

TN= True Negative 

FN= False Negative 

 

Table 8 represents the comparison for the binary classification on the testing-set with regards to the 

three DL classification models based on the discoursed performance metrics. 

Table 8. Performance Matrix 

Model PPV (%) TPR (%) F1 (%) MR (%) FPR (%) FNR (%) MCC (%) 

BiLSTM 98.123 82.294 89.514 13.124 3.356 17.707 74.358 

CNN 98.167 83.697 90.356 12.161 3.333 16.304 75.923 

Proposed 

BiLSTM-

CNN 

99.265 87.641 93.091 8.857 1.384 12.360 82.120 

 

The proposed intelligent hybrid BiLSTM-CNN model outperforms the other deep learning BiLSTM 

and CNN model for IDS in all aspects, as seen in Table 8. Since the BiLSTM model predicts more 

false positives, its PPV and FPR suffer. Furthermore, because it predicts large false negative values, 

the achieved TPR is poor but FNR is substantially greater. As a result of the large number of false 

positives and false negatives, the F1 and MCC are both low, while the MR is much higher. The CNN 

model performs slightly better than the preceding BiLSTM model as it predicts a fewer number of 
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false positive and false negatives, due to which it achieved a higher PPV, TPR, F1, and MCC of 

98.167%, 83.697%, 90.956% respectively, while maintain a low FPR, FNR and MR of 3.333%, 

16.304%, and 12.161% respectively. Consequently, when the hybrid BiLSTM-CNN model is tested, 

the proposed model performs significantly better than the previous two models, as it predicts a high 

number of true positive and true negatives, while keeping the false positive and negatives substantially 

low. Therefore, the proposed hybrid model achieves the best results obtaining a PPV, TPR, F1, MR, 

FPR, FNR, and MCC of 99.625%, 87.641%, 93.091%, 8.857%, 1.384%, 12.360%, and 82.120% 

respectively. 

As exhibited in Table 9, the proposed model's precision, F1 score and accuracy on the UNSW-

NB15 dataset is also compared to earlier research based on deep learning IDS. Due to the proposed 

model's substantial performance in keeping false positives significantly low while identifying a high 

number of true positives, the set of precision, accuracy and F1 score are the greatest when compared 

to previous research works. 

Table 9. Comparison of the Proposed Model with Previous Work 

6 Conclusion and Future Work 

This study presents deep learning models based on BiLSTM, CNN, and their fusion to construct a 

hybrid BiLSTM-CNN architecture, a new collaborative IDS for detecting intrusive behaviors in IoT 

network. A hybrid intrusion detection system model is developed in the study by utilizing the 

advantages of both the Bi-LSTM and CNN ability to extract temporal and spatial features, 

respectively. To improve the model's performance, dropout layers, batch normalization and 

standardization are also implemented. This study involves pre-processing and normalizing UNSW-

NB15 so that it could be used with deep learning models to identify anomalous patterns. Initially, the 

behavior of the CNN, BiLSTM, and BiLSTM-CNN models are evaluated based on several 

performance metrics. The BiLSTM-CNN hybrid model offers the highest detection rate and accuracy, 

according to the results. Hence, the proposed hybrid model is assessed further. The precision, F1 score 

and accuracy are used to evaluate the proposed model's robustness. The findings reveal that the 

proposed hybrid model surpasses the existing hybrid DL models in all aspects. It attains a PPV, TPR, 

F1, MR, FPR, FNR, and MCC of 99.625%, 87.641%, 93.091%, 8.857%, 1.384%, 12.360%, and 

82.120% respectively. The proposed hybrid model not just has a high detection rate but also a low rate 

Research Model PPV (%) F1 

Score 

Accuracy % 

 

[8] 3-layered 1D CNN 80.33 88.46 85.86 

[42] 2-layered BiLSTM 93.00 91.00 - 

[43] MSCNN-LSTM - - 89.8 

[32] 1D CNN – Multi BiLSTM - - 93.084 

[11] Deep CNN-WDLSTM 97.00 97 97.17 

[9] RNN-LSTM - - 87.00 

[4] RNN-LSTM - - 85.42  

[10] CNN-LSTM 94.69 94.77 93.95 

Proposed Research Proposed BiLSTM-CNN  99.265 93.091 97.51 
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of false alarms. Further, the models are run on GPU and CPU to demonstrate their effectiveness and to 

compare real-world IoT network communication behavior. Consequently, the efficiency of the 

proposed technique is validated.  

In the future, this research can be extended by deploying the framework in a real-world setting and 

providing further findings and explanations. Future work will refine the suggested method even 

further so that it can be applied to additional publicly available intrusion detection datasets and 

achieve higher accuracy and can perform multiclass classification of attacks. The model presented 

here can be employed in applications that speed up the study and development of system architectures. 

It can reduce the time required to validate new types of DL models and IDSs. Other deep learning 

networks and their hybrids can be investigated in future studies to improve attack detection 

performance and be deployed in real Internet of Things networks. 

The positive results of this work will be leveraged and improved upon by data scientists and 

researchers in order to spur the advancement of highly accurate yet practical DL solutions for 

detecting malicious attacks from reliable and resilient system designs and to formulate immense 

innovations in the domain of IoT network security. 
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