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Supplementary Notes

1 Deterministic forecast metrics comparison

Supplementary Figure 1 presents a comparison of the globally-averaged and
latitude-weighted root mean square error (RMSE) of the ensemble mean
between ECMWEF S28 real-time forecasts and FuXi-S2S forecasts for total pre-
cipitation (TP), 2-meter temperature (T2M), geopotential at 500 hPa (Z500),
and outgoing longwave radiation (OLR). The analysis is derived from the
averaged RMSE computed using testing data from the year 2022. FuXi-S2S
demonstrates superior forecast performance for all four variables across all
forecast lead times compared to ECMWEF S2S; consistently achieving lower
RMSE) values than ECMWF S28S.

Supplementary Figure 3 presents a comparison of latitude-weighted TCC
between FuXi-S2S and ECMWF S28S. It examines TP, T2M, 7500, and OLR
across four geographical regions: in the extra-tropics (90°S - 30°S and 30°N
- 90°N), in the tropics (30°S - 30°N), over land, and over the ocean. Within
the extra-tropical regions, FuXi-S2S consistently exhibits superior performance
compared to ECMWEF S28S for all four variables. In tropical regions, FuXi-S2S
outperforms ECMWEF S2S for TP and OLR, while achieving comparable accu-
racy in T2M and Z500. Over land areas, FuXi-S2S demonstrates consistently
higher TCC values for TP, Z500, and OLR.

2 Extreme Meiyu in 2020

The major rainy season of the East Asian summer monsoon, called Meiyu
in China [1], typically starts in early June and ends in mid-July. This brings
abundant rainfall which accounts for the majority of the annual precipitation
in China, Japan, and South Korea [2, 3]. In the summer of 2020, the Yangtze-
Huaihe River valley (YHRV) experienced an exceptionally intense Meiyu rainy
season characterized by an earlier onset and a delayed retreat. This season
lasted for 62 days, making it one of the longest events since 1961, equalling the
duration of the 2015 event [4]. The accumulated precipitation during the 2020
Meiyu season broke the historical record since 1961 and resulted in the most
severe flooding in the YHRYV in recent decades. By mid-July, the flooding had
led to more than 140 fatalities or missing persons and economic losses of USD
11.75 billion.

Figure 7 presents the comparison of the standardized TP anomaly among
the observations sourced from Global Precipitation Climatology Project
(GPCP), ECMWF 828, and FuXi-S2S, averaged across YHRV bounded by 105
to 125°E in longitude and 25 to 35°N in latitude. The GPCP are temporally
averaged over a two-week period from June 30th to July 13th, 2020, which
corresponds to a low skill and cold-front rainy period as revealed by by Liu
et al. [5]. FuXi-S2S forecasts and ECMWF S28 reforecasts were initialized on
different dates. Notably, the ECMWEF S2S model predicts negative TP anoma-
lies for forecasts initialized on both June 2nd and June 6th. However, while
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the ECMWEF S2S model starts to predict positive TP anomalies from June
9th onwards, the model consistently underestimates rainfall intensity. In con-
trast, the FuXi-S2S model predicts positive anomalies for forecasts initialized
as early as June 2nd, offering a lead time of 4 weeks prior to the occurrence
of the event. Furthermore, the spatial distributions of the standardized TP
anomaly reveals that TP patterns predicted by FuXi-S2S closely aligns with
the observations, which is critical for flood preparedness. In summary, FuXi-
S2S demonstrates superior performance in predicting the intensity of extreme
rainfall events with longer lead time compared to ECMWEF S2S.

3 Comparisons against ECMWF S2S real-time
forecasts

This study also evaluates the performance of FuXi-S2S by analyzing testing
data from 2022 and compare against the 51-member ECMWEF S2S real-time
forecasts from model cycle C47r3. The evaluation included deterministic met-
rics of the ensemble mean, ensemble metrics, and Madden—Julian Oscillation
(MJO) forecasts.

Supplementary Figure 8 presents a comparison of the globally-averaged
and latitude-weighted TCC, RMSE, RPSS, and BSS of the ensemble mean
between the ECMWF S2S real-time forecasts and FuXi-S2S forecasts for TP in
2022. Across all forecast lead times, FuXi-S2S demonstrates superior forecast
performance in all metrics across compared to the ECMWEFE S2S real-time
forecasts.

Supplementary Figure 9 presents the bivariate correlation (COR) skills of
Real-time Multivariate MJO (RMM) index for the ensemble mean of ECMWF
S2S real-time forecasts and FuXi-S2S forecasts, averaged over the testing data
from 2022. When applying a COR threshold of 0.5 to determine skillful MJO
forecast, FuXi-S2S extends the skilful forecast lead time from 30 days to 41
days, surpassing the performance of ECMWEF S28S real-time forecasts.

4 Effectiveness of flow-dependent perturbations

This section discusses the effect of incorporating the flow-dependent perturba-
tions into the model’s hidden features to enhance performance in subseasonal
forecasts. We conducted experiments using FuXi-S2S models which exclusively
employ Perlin noise in the initial conditions or combine Perlin noise in the
initial conditions with fixed perturbations added into the hidden features,
to generate 42-day forecasts. Subsequently we evaluate their performance in
comparison with the original FuXi-S2S model.

Supplementary Figure 10 presents a comparison of the globally-averaged
and latitude-weighted TCC for TP. This analysis encompasses all testing data
from the period spanning from 2017 to 2021. The FuXi-S2S model, which
incorporates flow-dependent perturbations into its hidden features, consis-
tently exhibits considerably improved forecast performance in comparison to
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the FuXi-S2S model that incorporates fixed Gaussian noise into the hidden
features, across all forecast lead times. Furthermore, the introduction of flow-
dependent perturbations has extended the FuXi-S2S model’s skillful MJO
prediction from 22 days to 36 days.

Supplementary Figures
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Supplementary Figure 1: Comparison of the globally-averaged and latitude-
weighted RMSE of the ensemble mean between ECMWEF S2S reforecasts (in
blue) and FuXi-S2S forecasts (in red) for TP, T2M, Z500, and OLR, using
all testing data between 2017 and 2021. It is important to note that TP here
refers to 24-hour accumulated precipitation.
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Supplementary Figure 2: Spatial map of average TCC without latitude
weighting of ECMWF S2S (first column) and FuXi-S2S (second column), and
the differences in TCC between FuXi-S2S and ECMWF S2S (third column)
for TP (first and second rows), T2M (third and fourth rows), Z500 (fifth and
sixth rows), and OLR (seventh and eighth rows) at forecast lead times of weeks
3-4 (first, third, fifth, and seventh rows), weeks 5-6 (second, fourth, sixth, and
eighth rows), using all testing data between 2017 and 2021.
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Supplementary Figure 3: Comparison of the latitude-weighted TCC of the
ensemble mean of ECMWF S28S (in blue) forecasts and FuXi-S2S forecasts (in
red) for TP (first column), T2M (second column), Z500 (third column), and
OLR (fourth column) averaged over extra-tropics (90°S - 30°S and 30°N - 90°N,
first row), tropics (30°S - 30°N, second row), land (third row), and sea (fourth
row), using all testing data between 2017 and 2021
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Supplementary Figure 4: Comparison of the latitude-weighted RPSS of the
ensemble mean of ECMWF S28S (in blue) forecasts and FuXi-S2S forecasts (in
red) for TP (first column), T2M (second column), Z500 (third column), and
OLR (fourth column) averaged over extra-tropics (90°S - 30°S and 30°N - 90°N,
first row), tropics (30°S - 30°N, second row), land (third row), and sea (fourth
row), using all testing data between 2017 and 2021.
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Supplementary Figure 5: Comparison of the latitude-weighted BSS of the
ensemble mean of ECMWF S28S (in blue) forecasts and FuXi-S2S forecasts (in
red) for TP (first column), T2M (second column), Z500 (third column), and
OLR (fourth column) averaged over extra-tropics (90°S - 30°S and 30°N - 90°N,
first row), tropics (30°S - 30°N, second row), land (third row), and sea (fourth
row), using all testing data between 2017 and 2021.
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Supplementary Figure 6: Comparison of the RMM composite phase—space
diagram for the observed MJO derived from the combination of CBO and
ERAS5 reanalysis data (in black) and the ensemble mean of ECMWEF S2S
reforecasts (in blue), and FuXi-S2S forecasts (in red). RMM1 and RMM2 are
the x axis and y axis, respectively. The numbers within each octant (from 1
to 8) are the defined MJO phase, and the words on each side of the diagram
describe the approximate location of MJO associated convection along the
equator. Squares represent forecasts on day 1 and closed circles represent every
5 days from the forecast initialization time (open squares). The panels are for
different initialization date: 27 June 2018, 3 November 2018, 18 April 2019,
and 21 March 2021.
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Supplementary Figure 7: Comparison of the spatially and temporally aver-
aged standardised TP anomaly (a) for the 2 weeks from June 30th to July 13th,
2020 for GPCP observation (in black) and the predictions from ECMWF S2S
reforecasts (in blue) and FuXi-S2S forecasts (in red), with initialization dates:
June 23rd (0623), June 20th (0620), June 16th (0616), June 13th (0613), June
9th (0609), June 6th (0606), and June 2nd (0602). Comparison of the tem-
porally averaged standardised TP anomaly maps (b) for GPCP observation
(first column) and predictions from ECMWF S2S (second column) and FuXi-
S2S (third column), with initialization dates on June 6th (0606, first row), and
June 2nd (0602, second row).
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Supplementary Figure 8: Comparison of the globally-averaged latitude-
weighted TCC (first column), RMSE (second column), RPSS (third column),
and BSS (fourth column) of the ensemble mean between ECMWEF S2S real-
time forecasts (in blue) and FuXi-S2S forecasts (in red) for TP, using testing
data from 2022. It is important to note that TP here refers to 24-hour accu-

mulated precipitation.
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Supplementary Figure 9: Comparison of the globally-averaged latitude-
weighted RMM bivariate COR, (left column) of the ensemble mean of ECMWF
S2S real-time forecasts (in blue) and FuXi-S2S forecasts (in red) using testing
data from 2022, with dashed black lines indicating the prediction skill threshold
of COR=0.5.
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Supplementary Figure 10: Comparison of the FuXi-S2S model (in red) and
FuXi-S2S with fixed Gaussian perturbations (in light red), utilizing all testing
data from 2017 to 2021. The first column is the comparison of the globally-
averaged latitude-weighted TCC. The second column is the comparison of the
globally-averaged latitude-weighted RMM bivariate COR of the FuXi-S2S (in
red) and FuXi-S2S with fixed Gaussian noise (in light red) using testing data
from 2017 to 2021.
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