A Predator-Prey model with Prey Refuse: under a stochastic and deterministic environment

Anal Chatterjee
Barrackpore Rastraguru Surendranath College

Muhammad Aqib Abbasi
Quaid-i-Azam University Islamabad: Quaid-i-Azam University

E. Venturino
U of T: University of Toronto

Jin Zhen
Shanxi University

Mainul Haque
mainul.haque@nottingham.edu.cn
UNNC: University of Nottingham Ningbo China
https://orcid.org/0000-0003-1836-8076

Research Article

Keywords: Fear, Refuge, Bifurcation, Global sensitivity analysis, Stochastic

Posted Date: January 16th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3769632/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
A Predator-Prey model with Prey Refuse: under a stochastic and deterministic environment

Anal Chatterjee∗, Muhammad Aqib Abbasi‡, E. Venturino†, Jin Zhena, Mainul Haqueb

∗Department of Mathematics
Barrackpore Rastraguru Surendranath College,
Barrackpore, Kolkata-700120, India
chatterjeeana172@gmail.com

‡ Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan
aqib_abbasi346@yahoo.com

†Dipartimento di Matematica “Giuseppe Peano”, Università di Torino,
via Carlo Alberto 10, 10123 Torino, Italia
member of the INdAM research group GNCS
ezio.venturino@unito.it

aDepartment of Applied Mathematics, Shanxi University, P.R.
jinzhn@263.net

bDepartment of Mathematical Sciences,
University of Nottingham Ningbo China, P.R.China.
Mainul.Haque@nottingham.edu.cn

Abstract
This study aims to thoroughly investigate the dynamics of a predator-prey model with a Beddington-De Angelis functional response. We assume that the prey refuge is proportional to both species. We establish the standard properties of boundedness, permanence, and local stability. We show that under certain parameter conditions, transcritical bifurcation and Hopf bifurcation occur. To understand the nature of the limit cycle, we determine the direction of the Hopf bifurcation. We focus on the significant ranges of the predators’ Prey capturing rate and examine how the level of prey fear and the predator’s mutual interference affect the system’s stability. Through numerical analysis, we study the behavior of the Lyapunov exponent and observe multiple self-repeating shrimp-shaped patterns that indicate periodic attractors in discrete-time predator-prey system. These structures appear across a broad region associated with chaotic dynamics. Additionally, if the intensity of white noise is kept below a specific threshold, the deterministic control approach is equally effective in environmental fluctuation. Numerical simulations support these findings.

Keywords: Fear; Refuge; Bifurcation; Global sensitivity analysis, Stochastic.

AMS Subject classification: 92D40; 92D25.

∗Corresponding author: b Email: Mainul.Haque@nottingham.edu.cn
1 Introduction

One main objective of ecology is understanding the dynamic relationship between predator and prey. There are two methods for capturing the impact of the predator on the prey in a predator-prey system. Predators use their initial approach path to hunt and eat their prey, as observed in nature [1]. According to [2], in the second strategy, the presence of a predator may drastically change the behaviour of the prey because of their fear of predation. A relatively novel perspective states that indirect impact can similarly affect a predator-prey system’s dynamics [3, 4, 5]. When predation is a concern, prey populations may change their grazing zones to a safer area, renouncing their areas of highest intake; they can increase their alertness, change their reproductive strategies, and so on. This type of survival tactic results in a decrease in the reproductive capacity of the prey subject to predator pressure [6, 7, 8].

Although the fear effect has been investigated for a long time, in [9] it is reported that in 2016, prey populations’ birth rates have decreased by fear of predators. While the level of fear has no effect on the dynamical behaviour, expressed by the Holling I functional response, it can instead stabilise the entire system by preventing periodic solutions when the Holling II response function is adopted in the model formulation. Following this discovery, many predator-prey models incorporating the “level of fear” term in the growth function of the prey have been investigated. In [10] a predator-prey model is proposed and the impact of level of fear is examined to show how it stabilises the dynamics at high predator density. Two alternative “level of fear” terms in the growth function of prey and middle predator in a three species food chain are presented in [8]. Their findings suggest that fear can stabilise a chaotic system.

In addition to the level of fear, dynamic system behavior is significantly influenced by several other crucial factors, including prey refuge [11], Allee effect [12, 13], harvesting [14] and the availability of additional food [15, 16].

The study of a prey-predator system with prey refuge has been a hot topic in biomathematics, numerous achievements and essential advancements are being attained in this field [17, 18, 19]. In their analyses, the majority of authors see, for instance [20, 21, 22], assumed that the prey refuge is either constant or related to the prey volume.

Our starting point here is much different. Indeed, we assume that the prey refuge size is directly proportional to both prey and predator densities [23, 24, 25]. This scheme is more adherent to reality than previous refuge schemes. According to [17], in a food chain model, the prey refuge threshold can impact all species’ chances for long-term survival. The findings of the predator-prey model incorporating a prey refuge and additional food for the predator explored in [26] indicate that somewhat higher prey refuge values allow sustained species coexistence. However, the predator becomes extinct when the prey refuge attains a significant level.

The primary factor in the prey-predator relationship is the predator’s rate of prey consumption, sometimes referred to as the predator’s functional response [27]. The dynamics of interacting populations in ecology contain various response functions. The Beddington-De Angelis response function, a variation of the Holling type II functional response [28], was proposed in [29, 30, 31, 32] to describe interference among predators in the prey hunting process.

In biology, however, the deterministic approach has some drawbacks. It is
hard to precisely foresee the system’s future. In comparison to its deterministic counterpart, a stochastic model reflects a natural system more accurately. In some studies [33, 34], Gaussian white noise is included in a model of environmental fluctuations to assess the impact of noise on dynamical systems. To our knowledge, no one has explored such a model using Gaussian white noises, and color noise which have been shown to be particularly beneficial in modelling fast fluctuating phenomena in the presence of refuge, fear factor and mutual predator interference in system. In this paper, following Wiener and Ornstein-Uhlenbeck processes, these fluctuations are expressed as white and colored noises [31, 35]. A study of the model system’s mean square stability in the presence of both white and color noises was also conducted, revealing that color noise had a stabilising impact when compared to white noise.

This study examines the combined effects of hunting, fear effect, and predator interference. To our knowledge, no previous research incorporates the joint impact of the three above factors. The salient features of the model are as follows. Fear of predator hunting is here assumed to decrease the prey birth rate. Prey refuge and predator interference are incorporated into the proposed model.

Specifically, the goal of this work is to investigate the following biological question: What impact does the prey capture rate have on the dynamics of the prey-predator system?

The paper is organized as follows. The construction of a mathematical model based on the above set of assumptions is performed in Section 2. The main analytical findings and mathematical details are summarized in the next section. In Section 4, existence of stochastic stability and some properties are explained in presence of white noise. Sections 5 and 6 contain the numerical simulations and briefly summarize discussions.

2 Basic assumptions and model formulation

We develop a predator-prey model with the following characteristics:

1. The response function of Beddington–De Angelis [36].
2. The prey grows logistically.
3. The prey refuge is a function of both prey and predator population sizes.
4. The prey exhibits fear, according to the anti-predator behavior.

The intrinsic growth rate and the intra-species competition rate of prey are denoted by r and r_1, respectively. When a predator is present, the prey's intrinsic growth rate depends on the density of the predator, $F(y; K)$.

Based on ecological grounds the assumptions for $F(y; K)$ are

1. $F(y; 0) = r$: the prey reproduction rate remains unchanged without the fear effect.
2. $F(0; K) = r$: the prey reproductive rate remains unchanged without predators.
3. \(\lim_{K \to \infty} F(y; K) = 0 \): fearful prey under strong fear pressure cannot reproduce.

4. \(\lim_{y \to \infty} F(y; K) = 0 \): prey cannot reproduce when predator density is exceedingly high.

5. with a high level of fear, the prey reproduction rate decreases:
 \[\frac{\partial F(y; K)}{\partial K} < 0. \]

6. with a high predator density, the prey reproduction rate decreases.
 \[\frac{\partial F(y; K)}{\partial y} < 0. \]

Denoting by \(K \) the level of prey fear due to anti-predator reaction; we can explicitly write
 \[F(y; K) = r + Ky. \]

In what follows, let \(\delta_1 \) be the refuge coefficient. Then \(\delta_1 xy \) represents the amount of prey that finds refuge. We only consider values of \(\delta_1 \) that satisfy the inequality \(1 - \delta_1 y \geq 0 \). Realistic ecosystem allowable ranges of refuge are \(0 \leq \delta_1 \leq 1 \) and \(0 \leq 1 - \delta_1 y \leq 1 \), [24, 37]. Thus there is an upper bound for which this amount should be sufficiently small, i.e., \(\delta_1 \leq \frac{1}{y} \). In view of (3) below, the inequality that \(\delta_1 \) must ultimately satisfy is
 \[\delta_1 < \frac{\zeta}{1 + \zeta}. \] (1)

Therefore, the remaining \(x - \delta_1 xy \) prey species are exposed to predation by predators.

Here, \(m_1, a_1, b_1, c_1 \) respectively represent the rates of prey capture by the predator, the half-saturation constant for prey, the handling time on the feeding rate effort, the mutual interference among the predators, while \(e_1 \) is the conversion coefficients for turning prey into new predators, and \(d_1 \) is the predator’s natural mortality. Nonnegative initial conditions are naturally assumed.

The model reads as:
\[
\begin{align*}
\frac{dx}{dt} &= \frac{rx}{1 + Ky} - r_1 x^2 - \frac{m_1(x - \delta_1 xy)y}{a_1 + b_1(x - \delta_1 xy) + c_1 y} \equiv G_1(x, y) \\
\frac{dy}{dt} &= \frac{c_1 m_1(x - \delta_1 xy)y}{a_1 + b_1(x - \delta_1 xy) + c_1 y} - d_1 y \equiv G_2(x, y).
\end{align*}
\]
(2)

In the next section, we summarize the mathematical findings.

The results that we outline below are preliminary in that they assess properties that are needed from the biological viewpoint.
3 System analysis and preliminary results

3.1 Boundedness

Proposition 3.1 All non-negative solutions \((x(t), y(t))\) of the system (2) initiating in \(\mathbb{R}^2_+ - \{0,0\}\) are uniformly bounded.

Proof 3.1 Let us choose the total system population \(\Theta = x + y\). Therefore,
\[
\frac{d\Theta}{dt} = \frac{dx}{dt} + \frac{dy}{dt} = \frac{rx}{1 + Ky} - \frac{r_1 x^2}{a_1 + b_1 (x - \delta_1 xy)} + \frac{m_1 (x - \delta_1 xy) y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y}
+ \frac{e_1 m_1 (x - \delta_1 xy) y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - d_1 y.
\]

Let us consider a positive constant \(\zeta\) such that \(\zeta \leq d_1\). It follows
\[
\frac{d\Theta}{dt} + \zeta \Theta \leq \frac{rx - \frac{r_1 x^2}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - m_1 (1 - e_1) (x - \delta_1 xy) y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - d_1 y - \zeta.
\]

By choosing \(\Gamma = \frac{(r + \zeta)^2}{4r_1}\), we obtain
\[
0 \leq \Theta(x(t), y(t)) \leq \frac{\Gamma}{\zeta} (1 - e^{-\zeta t}) + \Theta(x(0), y(0))e^{-\zeta t},
\]
which indicates that \(0 \leq \Theta(x(t), y(t)) \leq \frac{\Gamma}{\zeta}\) as \(t \to \infty\). Therefore, all nonnegative solutions of the system (2) originating in \(\mathbb{R}^2_+ - \{0,0\}\) will be restricted to lie in the region \(\nabla = \{(x, y) \in \mathbb{R}^2_+: x(t) + y(t) \leq \frac{\Gamma}{\zeta} + \varepsilon\}\).

Boundedness is crucial because it indicates that the ecological system has reasonable behaviour. Indeed boundedness of the system implies that none of the two interacting species undergoes an unexpected or long-term exponential growth, which, given limited resources, would not be ecologically sustainable. In particular, using the boundedness result shown above, namely
\[
g(t) \leq \frac{\Gamma}{\zeta} + \varepsilon, \quad \varepsilon < 1,
\]
we have immediately
\[
\frac{1}{y} > \frac{\zeta}{\Gamma + \zeta}.
\]

3.2 Persistence of the system (2)

It is necessary to demonstrate the positivity of the system (2) since it suggests that the population will thrive in the long run. The system is said to be persistent if a compact set \(D_1 \subset \Psi_1 = \{(x, y) : x > 0, y > 0\}\) exists in which the solutions of the system (2) ultimately enter and remain in the region.

Proposition 3.2 The system (2) is persistent if the following conditions hold
\[
r > d_1, \quad (4)
\]
\[
m_1 > \frac{1}{e_1} \left(\frac{a_1 d_1 r_1}{r} + b_1 d_1 \right), \quad (5)
\]
Proof 3.2 We follow the approach of [38] to demonstrate persistence. Take a Lyapunov function candidate \(V(x, y) = x^{c_1}y^{c_2} \) where \(c_1 \) and \(c_2 \) are real constants. As a result, the average Lyapunov function looks as follows:

\[
\Gamma(x, y) = \frac{V_1}{V_1} = \zeta_1 \frac{\dot{x}}{x} + \zeta_2 \frac{\dot{y}}{y} \]

\[
= \zeta_1 \left(\frac{r}{1 + K y} - r_1 x - \frac{m_1 (1 - \delta_1 y)y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} \right)
+ \zeta_2 \left(\frac{e_1 m_1 (x - \delta_1 xy)}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - d_1 \right).
\]

Now, we have to show that the function is positive at each boundary equilibrium.

At \(E_0 \), the trivial equilibrium, we find the value \(\Gamma(0,0) = \zeta r - \zeta_2 d_1 \). Let \(\zeta_1 = \zeta_2 = \zeta \), then \(\Gamma(0,0) = \zeta (r - d_1) > 0 \) if the condition (??) holds.

Similarly, at the predator-free equilibrium \(E_1 \), we have

\[
\Gamma \left(\frac{r}{r_1}, 0 \right) = \zeta \left(\frac{e_1 m_1 r}{a_1 r_1 + b_1 r - d_1} \right) > 0
\]

if the condition (5) is satisfied. These findings show that \(\Gamma(x, y) \) is positive at each boundary equilibrium. Thus the system (2) is persistent. As the system is uniformly persistent there exist \(\rho_1 > 0 \) and \(t > t_1 \) such that \(x(t) > \rho_1 \) and \(y(t) > \rho_1 \) \(\forall t > t_1 \).

3.3 Nonexistence of periodic solution

Let us write the system (2) as \(\dot{X} = G(X) \), where \(X = (x, y) \) and \(G = (G_1, G_2) \). Here, \(G_1, G_2 \in C^\infty(\mathbb{R}^2_+) \), where \(G_1 = \frac{rx}{1 + Ky} - r_1 x^2 - \frac{m_1 (x - \delta_1 xy) y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} \) and \(G_2 = \frac{e_1 m_1 (x - \delta_1 xy)}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - d_1 y \). Let us explore a continuously differentiable function, denoted as \(\tilde{H}(x, y) = \frac{1}{xy} \), defined over the domain \((x, y) \in \Omega \). Here,

\[
\nabla.(\tilde{H} G) = \frac{\partial}{\partial x} \left(\frac{r}{1 + K y} - r_1 x \right) - \frac{m_1 (1 - \delta_1 y)y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} + \frac{\partial}{\partial y} \left(\frac{e_1 m_1 (x - \delta_1 xy)y}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} - d_1 y \right)
= - \left(\frac{r_1}{y} + \frac{m_1 [c_1 (1 + a_1 \delta_1) - b_1 (1 - \delta_1 y)^2]}{a_1 + b_1 (x - \delta_1 xy) + c_1 y} \right) < 0, \forall y \in \left(\frac{1}{\delta_1} (1 - \sqrt{\frac{e_1 (c_1 + a_1 \delta_1)}{b_1}}) \right) \frac{1}{\delta_1} \right)
\]

where \(e_1 (c_1 + a_1 \delta_1) > b_1 \). Hence, we can deduce that \(\nabla.(\tilde{H} G) < 0 \) within the subdomain \(\tilde{D} \) of \(\Omega \), defined by \(\tilde{D} = \left\{ (x, y) \in \Omega : \frac{1}{\delta_1} (1 - \sqrt{\frac{r_1 (c_1 + a_1 \delta_1)}{b_1}}) < y < \frac{1}{\delta_1} \right\} \).

Applying Bendixson–Dulac’s criterion, as outlined in [39], we can infer that no periodic orbits exist in the specified subdomain \(\tilde{D} \) for the present system.

3.4 Equilibria: feasibility and stability

Here, all possible equilibria have been determined. The system (2) allows only three possible equilibrium states. The system disappearance is expressed by the
point $E_0 = (0, 0)$. Then we find the predator-free equilibrium $E_1 = (rr^{-1}, 0)$ and finally the coexistence equilibrium $E^* = (x^*, y^*)$. In it, we have

$$y^* = \frac{(e_1m_1 - b_1d_1)x^* - a_1d_1}{\delta_1(e_1m_1 - b_1d_1) + c_1d_1}$$

The value of x^* is obtained by solving the quartic algebraic equation

$$\sum_{n=0}^{4} B_n X^n = 0 \tag{7}$$

whose coefficients are:

$$
\begin{align*}
B_4 &= r_1e_1\delta_1(e_1m_1 - b_1d_1)^2(\delta_1 + K), \\
B_3 &= d_1(e_1m_1 - b_1d_1)\{\delta_1(c_1\delta_1 - Ka_1) + c_1(\delta_1 + K)\}r_1e_1 - e_1r_1^2(e_1m_1 - b_1d_1)^2, \\
B_2 &= (e_1m_1 - b_1d_1)^2(\delta_1 + K)d_1 + r_1e_1c_1d_1^2(c_1\delta_1 - Ka_1) - 2\delta_1(e_1m_1 - b_1d_1)c_1d_1e_1r, \\
B_1 &= (e_1m_1 - b_1d_1)[c_1\delta_1 - 2Ka_1 - a_1\delta_1]d_1^2 - c_1^2d_1^2e_1r, \\
B_0 &= -a_1d_1^2(c_1\delta_1 - Ka_1).
\end{align*}
$$

Now, this algebraic equation is investigated, and the conditions for the roots being positive are assessed under some parameter restrictions. Fig. 1 shows that the coexistence equilibrium can indeed be achieved.

To assess the coexistence equilibrium, we must find at least one positive root of the equation (7). In general, the equation (7) has at most four complex roots. Let us assume that one pair of complex roots exists, namely $\tilde{\alpha}$ and its conjugate $\tilde{\alpha}^*$. The following quadratic equation

$$X^2 + \tilde{\theta}_1X + \tilde{\theta}_2 = (X - \tilde{\alpha})(X - \tilde{\alpha}^*) = X^2 - 2\text{Re}(\tilde{\alpha})X + |\tilde{\alpha}|^2$$

Figure 1: Mutual position of prey-nullclines (green) and predator-nullclines (red) of the system for the reference parameter values given in (33).
is formed by a conjugate pair in which \(\hat{\theta}_1 = -2Re(\hat{\alpha}), \hat{\theta}_2 = |\hat{\alpha}|^2 \). Assuming that there are two real roots \(x_1^* \) and \(x_2^* \) of the equation (7) such that \((x_1^* + x_2^*) = -\hat{p}_r \), and \(x_1^* x_2^* = \hat{q}_s \). Consequently, the factorization of equation (7) becomes:

\[
\sum_{n=0}^4 B_n X^n = B_4(X^2 + \hat{\theta}_1 X + \hat{\theta}_2)(X^2 + \hat{p}_r X + \hat{q}_s)
\]

\[
= B_4 \left[X^4 + (\hat{p}_r + \hat{\theta}_1)X^3 + (\hat{\theta}_2 + \hat{q}_s + \hat{\theta}_1 \hat{p}_r)X^2 + (\hat{\theta}_1 \hat{q}_s + \hat{\theta}_2 \hat{p}_r)X + \hat{\theta}_2 \hat{q}_s \right]. \tag{8}
\]

Comparing coefficients on both sides, we discover that

\[
\hat{p}_r = \frac{B_3}{B_4} + 2Re(\hat{\alpha}), \quad \hat{q}_s = \frac{B_0}{B_4|\hat{\alpha}|^2}.
\]

We now discuss the two cases that can arise.

Case 1: If \(\hat{q}_s > 0 \), i.e., if \(c_1 < \frac{B_0}{|\hat{\alpha}|^2} \) then both real roots are positive if satisfy the following conditions \(\hat{p}_r < 0 \) and \(\hat{p}_r^2 - 4\hat{q}_s > 0 \). Therefore, there exist two positive real roots

\[
x_1^* = -\frac{\hat{p}_r + \sqrt{\hat{p}_r^2 - 4\hat{q}_s}}{2}, \quad x_2^* = -\frac{\hat{p}_r - \sqrt{\hat{p}_r^2 - 4\hat{q}_s}}{2},
\]

only if \(\hat{p}_r^2 - 4\hat{q}_s > 0 \) holds since as \(B_3 < 0 \).

Case 2: If \(\hat{q}_s < 0 \), i.e., if \(c_1 > \frac{B_0}{|\hat{\alpha}|^2} \) then one root is obviously positive satisfying the above conditions. Thus the condition for the existence of the coexistence equilibrium point \(E^*(x^*, y^*) \) is given by,

\[
(a) : x^* > \frac{a_1 d_1}{c_1 m_1 - b_1 d_1}, \quad (b) : m_1 > \frac{b_1 d_1}{c_1},
\]

\[
(c) : \hat{p}_r^2 - 4\hat{q}_s > 0, \quad (d) : c_1 > \frac{Ka_1}{\delta_1}.
\]

As for stability, we need the general form of the Jacobian matrix at \(\mathbf{E} = (\bar{x}, \bar{y}) \). It is explicitly defined as

\[
\bar{J} = \begin{bmatrix}
\overline{a}_{11} & \overline{a}_{12} \\
\overline{a}_{21} & \overline{a}_{22}
\end{bmatrix}
\tag{10}
\]

where

\[
\overline{a}_{11} = \frac{r}{(1 + K\bar{y})} - 2r \bar{r} \bar{x} - \frac{m_1(a_1 + c_1 \bar{y})(1 - \delta_1 \bar{y})\bar{y}}{[a_1 + b_1(\bar{x} - \delta_1 \bar{y}) + c_1 \bar{y}]^2},
\]

\[
\overline{a}_{12} = -\frac{r \bar{r} K}{(1 + K\bar{y})^2} m \bar{x}[(a_1 + c_1 \bar{y})(1 - 2\delta_1 \bar{y}) + (1 - \delta_1 \bar{y})(b_1 \bar{x} - b_1 \delta_1 \bar{x} \bar{y} - c_1 \bar{y})]\]

\[
[a_1 + b_1((\bar{x} - \delta_1 \bar{y}) + c_1 \bar{y})]^2,
\]

\[
\overline{a}_{21} = \frac{e_1 m_1(a_1 + c_1 \bar{y})(1 - \delta_1 \bar{y})\bar{y}}{[a_1 + b_1(\bar{x} - \delta_1 \bar{y}) + c_1 \bar{y}]^2},
\]

\[
\overline{a}_{22} = \frac{e_1 m_1 \bar{x}[(a_1 + c_1 \bar{y})(1 - 2\delta_1 \bar{y}) + (1 - \delta_1 \bar{y})(b_1 \bar{x} - b_1 \delta_1 \bar{x} \bar{y} - c_1 \bar{y})]}{[a_1 + b_1(\bar{x} - \delta_1 \bar{y}) + c_1 \bar{y}]^2} - d_1.
\]

The trivial equilibrium \(E_0 \) of the system (2) is always unstable since one eigenvalue of (10) is here \(r > 0 \). The system (2) at \(E_1 \) is unstable if \(R_1 = \frac{e_1 m_1}{\delta_1(a_1 r_1 + b_1 r_1)} > 1 \).
Its eigenvalues, in this case, are obtained as roots of the quadratic $\lambda^2 - \text{tr}(J^*) + \det(J^*) = 0$, with

$$\text{tr}(J^*) = -(\hat{a}_{11} + \hat{a}_{22}), \quad \det(J^*) = \hat{a}_{11}\hat{a}_{22} - \hat{a}_{12}\hat{a}_{21}.$$

Now if $\text{tr}(J^*) < 0$ as well as $\det(J^*) > 0$ then according to the Routh–Hurwitz criterion E^* is locally asymptotically stable. This result depends upon system parameters. Therefore, we investigate the above conditions by numerical simulations.

Thus, the stability of the above equilibrium points is investigated, showing that both E_1 and E^* are conditionally stable. Local bifurcation analysis shows a transcritical bifurcation between these points. Fig. 2(a-b) illustrates our analytical results at $m_1 = m^*_1 C = 0.1529$.

Further, we observe the onset of persistent oscillations. These limit cycles arise in view of a Hopf bifurcation, whose direction is also assessed.

3.5 Hopf-Bifurcation

Proposition 3.3 The necessary and sufficient conditions for Hopf bifurcation of (2) at E^* for $m_1 = m^*_1$ are

$$[\text{tr}(J^*)]_{m_1 = m^*_1} = 0, \quad [\det(J^*)]_{m_1 = m^*_1} > 0, \quad \frac{d}{dm_1}[\text{tr}(J^*)]_{m_1 = m^*_1} \neq 0.$$

Proof 3.3 Annihilating the Jacobian trace gives

$$c_1 m_1 x^*[(a_1 + c_1 y^*)(1 - 2\delta_1 y^*) + (1 - \delta_1 y^*)(b_1 x^* - b_1\delta_1 x^* y^* - c_1 y^*)]\left[\begin{array}{c}a_1 + b_1(x^* - \delta_1 x^* y^*) + c_1 y^*\end{array}\right]^2 + \frac{m_1 b_1 x^* y^*(1 - \delta y^*)^2}{[a_1 + b_1(x^* - \delta_1 x^* y^*) + c_1 y^*]^2} = d_1 + r_1 x^*.$$

Now $[\det(J^*)]_{m_1 = m^*_1} > 0$ is equivalent to the characteristic equation $\lambda^2 + [\det(J^*)]_{m_1 = m^*_1} = 0$ whose roots are purely imaginary. For $m_1 = m^*_1$, the characteristic equation can indeed be written as

$$\chi^2 + \omega = 0, \quad \omega = [\det(J^*)]_{m_1 = m^*_1} > 0. \quad \text{(11)}$$

Therefore, the above equation has two roots, $\chi_1 = +i\sqrt{\omega}$ and $\chi_2 = -i\sqrt{\omega}$. At any neighboring point m_1 of m^*_1, we can express the above roots in general form as $\chi_{1,2} = \lambda_1(m_1) + \pm i\lambda_2(m_1)$, where

$$\lambda_1(m_1) = \frac{\text{tr}(J^*)}{2}, \quad \lambda_2(m_1) = \sqrt{\det(J^*) - \left(\frac{\text{tr}(J^*)}{4}\right)}.$$

Now the transversality condition

$$\frac{d}{dm_1}(\text{Re}(\chi_j(m_1)))_{m_1 = m^*_1} \neq 0, \quad j = 1, 2,$$
The following system is obtained by expanding on Taylor’s series up to 3 terms i.e.

\[2\lambda_1(m_1)\lambda_1'(m_1) - 2\lambda_2(m_1)\lambda_2'(m_1) + \omega' = 0, \]
\[2\lambda_2(m_1)\lambda_1'(m_1) + 2\lambda_1(m_1)\lambda_2'(m_1) = 0. \]
(12)

Solving (12), we get

\[\frac{d}{dm_1}(\text{Re}(\chi_j(m_1)))_{m_1 = m_1^*} = \frac{-2\lambda_1\omega'}{2(\lambda_1^2 + \lambda_2^2)} \neq 0, \]

i.e.

\[\frac{d}{dm_1}(\text{tr}(J^*))_{m_1 = m_1^*} \neq 0, \]

which satisfies the transversality condition. This implies that the system undergoes a Hopf-bifurcation at \(m_1 = m_1^* \). Figs. 11(a-b) show the sign switching of the eigenvalues and the verification of the condition for Hopf bifurcation at \(H^* \) when \(m_1 = m_1^* \).

The bifurcation analysis, in particular, indicates an important finding: When the prey capture rates are high, there is a risk that both species oscillate. However, even with a predator’s high rate of prey capture, there is no chance for oscillations if the fear level is low. A similar situation occurs when the refuge coefficient is high.

3.6 Direction of Hopf Bifurcation

By taking \(m_1 \) as a bifurcation parameter, the previous theorem indicates that the system (2) exhibits a Hopf bifurcation. The direction and stability aspects of bifurcating periodic solutions arising from the coexisting equilibrium point, \(E^* \) via this Hopf bifurcation is now discussed.

We first calculate the Lyapunov coefficient and then apply the theorem stated in [40] to explore the stability and direction of the Hopf bifurcation.

First, we translate the coexistence equilibrium of (2) \(E^*(x^*, y^*) \) into the origin by setting \(\tilde{z}_1 = x - x^*, \tilde{z}_2 = y - y^* \). Then the system (2) becomes

\[
\begin{align*}
\frac{d\tilde{z}_1}{dt} &= \frac{r(\tilde{z}_1 + x^*)}{1 + K(\tilde{z}_2 + y^*)} - r_1(\tilde{z}_1 + x^*^2) - \frac{m_1(\tilde{z}_1 + x^*)(1 - \delta_1(\tilde{z}_2 + y^*))}{a_1 + b_1(\tilde{z}_1 + x^*)(1 - \delta_1(\tilde{z}_2 + y^*) + c_1(\tilde{z}_2 + y^*))}, \\
\frac{d\tilde{z}_2}{dt} &= \frac{e_1 m_1(\tilde{z}_1 + x^*)(1 - \delta_1(\tilde{z}_2 + y^*))c_1(\tilde{z}_2 + y^*)}{a_1 + b_1(\tilde{z}_1 + x^*)(1 - \delta_1(\tilde{z}_2 + y^*) + c_1(\tilde{z}_2 + y^*))} - d_1(\tilde{z}_2 + y^*).
\end{align*}
\]

The following system is obtained by expanding on Taylor’s series up to terms of order 3 at \((\tilde{z}_1, \tilde{z}_2) = (0, 0) \) the above system:

\[
\begin{align*}
\dot{\tilde{z}}_1 &= \tau_{10}\tilde{z}_1 + \tau_{01}\tilde{z}_2 + \tau_{20}\tilde{z}_1^2 + \tau_{11}\tilde{z}_1\tilde{z}_2 + \tau_{02}\tilde{z}_2^2 + \tau_{30}\tilde{z}_1^3 + \tau_{21}\tilde{z}_1\tilde{z}_2^2 + \tau_{12}\tilde{z}_1^2\tilde{z}_2 + \tau_{03}\tilde{z}_2^3 + O(|\tilde{z}|^4), \\
\dot{\tilde{z}}_2 &= \tau_{10}\tilde{z}_1 + \tau_{01}\tilde{z}_2 + \tau_{20}\tilde{z}_1^2 + \tau_{11}\tilde{z}_1\tilde{z}_2 + \tau_{02}\tilde{z}_2^2 + \tau_{30}\tilde{z}_1^3 + \tau_{21}\tilde{z}_1\tilde{z}_2^2 + \tau_{12}\tilde{z}_1^2\tilde{z}_2 + \tau_{03}\tilde{z}_2^3 + O(|\tilde{z}|^4),
\end{align*}
\]
(13)
where
\[
\begin{align*}
\tau_{10} & = \frac{r}{1 + Ky} - 2r_1 x^* - \frac{m_1 c_{11} y^*}{A} + \frac{m_1 c_{11}^2 b_1 x^* y^*}{A^2}, \\
\tau_{01} & = \frac{m_{111} x^* y^*(c_1 - b_1 \delta_1 x^*) - r K x^*}{A^2} - \frac{m_1 (c_{11} x^* - \delta_1 x^* y^*)}{A}, \\
\tau_{20} & = -r_1 + \frac{m_1 c_{11}^2 b_1 y^*}{A^2} - \frac{m_1 A_{111} c_{11} x^* y^*}{A^3}, \\
\tau_{11} & = \frac{m_{111} c_{111} x^*}{A^2} - \frac{r K x^* (1 + Ky)^2}{A} - \frac{m_1 (c_{11} - \delta_1 y^*)}{A} - \frac{m_1 c_{11} A_{112} x^* y^*}{A^3}, \\
\tau_{02} & = -\frac{m_{111} c_{11} y^* A_{11} + m_1 b_1 c_{11}^2 x^* y^*}{A^3}, \\
\tau_{21} & = \frac{m_{111} c_{11} b_1 (c_1 - 2 \delta_1 y^*) + m_{111} p_{23} x^* y^*}{A^2} - \frac{m_1 \sigma_{12}}{A^3}, \\
\tau_{12} & = \frac{r K^2 x^*}{(1 + Ky)^3} + \frac{m_{111} p_{24} x^* y^*}{A^4} + \frac{m \delta_1 x^*}{A^2} + \frac{m_1 \sigma_{13} A_{22}}{A^3} - \frac{m_1 \sigma_{14}}{A^4}, \\
\tau_{03} & = -\frac{r K^2 x^*}{(1 + Ky)^3} + \frac{m_1 \delta_1 x^* (c_1 - b_1 \delta_1 x^*) - m_1 (c_{11} x^* - \delta_1 x^* y^*) A_{22}}{A^3} + \frac{m_{111} p_{22} x^* y^*}{A^4}, \\
\tau_{10} & = \frac{m_{111} c_{111} y^*}{A} \left[- \frac{b_1 c_{11} x^*}{A} \right], \\
\tau_{01} & = \frac{m_{111} c_{111} \left[A_{111} x^* y^* - b_1 c_{111} y^* \right]}{A^3}, \\
\tau_{11} & = \frac{e_1 m_{11} \left[\frac{c_{11} x^* - \delta_1 x^* y^*}{A^2} - \frac{c_{11} x^* y^*(c_1 - b_1 \delta_1 x^*)}{A^3} - \frac{d_1}{e_1 m_{11}} \right]}{A}, \\
\tau_{11} & = \frac{e_1 m_{11} \left[\frac{c_{11} A_{12} x^* y^*}{A^3} - \frac{c_{11} - \delta_1 y^*}{A^2} - \frac{\sigma_{15}}{A^2} \right]}{A}, \\
\tau_{02} & = \frac{e_1 m_{11} \left[\frac{- \delta_1 x^*}{A} - \frac{(c_{11} x^* - \delta_1 x^* y^*)(c_1 - b_1 \delta_1 x^*)}{A^2} + \frac{c_{11} A_{22} x^* y^*}{A^3} \right]}{A^2}, \\
\tau_{03} & = \frac{e_1 m_{11} \left[\frac{c_{11} y^* A_{11}}{A^3} - \frac{b_1 c_{11}^2 x^* y^*}{A^4} \right]}{A^3}, \\
\tau_{10} & = \frac{e_1 m_{11} \left[\frac{c_{11} A_{12} x^* y^*}{A^3} - \frac{c_{11} - \delta_1 y^*}{A^2} - \frac{\sigma_{15}}{A^2} \right]}{A}, \\
\tau_{01} & = \frac{e_1 m_{11} \left[\frac{c_{11} A_{12} x^* y^*}{A^3} - \frac{c_{11} - \delta_1 y^*}{A^2} - \frac{\sigma_{15}}{A^2} \right]}{A}, \\
\sigma_{11} & = \frac{(c_{11} x^* - b_1 x^* y^*) + y^*(c_1 - b_1 \delta_1 x^*) - b_1 \delta_1 x^* y^*}{A^2}, \\
\sigma_{12} & = \frac{(c_{11} x^* - \delta_1 x^* y^*) A_{11} + c_{11} y^* A_{12} - 2b_1^2 \delta_1 c_{11}^2 x^* y^* - c_{11} p_{23} x^* y^*}{A^3}, \\
\sigma_{13} & = \frac{(c_{11} x^* - \delta_1 x^* y^*) (c_1 - b_1 \delta_1 x^*) - 2 c_{11} b_1 \delta_1 x^* + b_1 \delta_1^2 x^* y^*}{A^2}, \\
\sigma_{14} & = \frac{c_{11} A_{22} x^* + A_{32} x^* x^* y^* + (c_{11} x^* - \delta_1 x^* y^*) A_{12}}{A^3}, \\
\sigma_{15} & = \frac{b_1 c_{11} (c_{11} x^* - b_1 x^* y^*) + c_{11} y^* (c_1 - b_1 \delta_1 x^*) - c_{11} b_1 d_1 x^* y^*}{A^2}, \\
\sigma_{16} & = \frac{b_1 c_{11} (c_{11} x^* - \delta_1 y^*) - b_1 \delta_1 c_{11} y^*}{A^2}, \\
\sigma_{17} & = \frac{(1 - 2 \delta_1 y^*)(c_1 - b_1 \delta_1 x^*) - b_1 \delta_1 c_{11} x^* - b_1 \delta_1 (c_{11} x^* - \delta_1 x^* y^*)}{A}, \\
\sigma_{18} & = \frac{a_1 + b_1 x^* - b_1 \delta_1 x^* y^* + y^* A_{11} c_{11} = 1 - \delta_1 y^*, \quad A_{11} = b_1^2 + b_1^2 \delta_1^2 y^* - 2b_1^2 \delta_1 y^*, \quad b_1 c_{11} c_{11} = 2b_1^2 \delta_1^2 x^* - 2b_1 \delta_1 c_{11} x^* + 2b_1 c_{11}, \quad A_{22} = b_1^2 \delta_1^2 x^* + c_1^2 - 2b_1 \delta_1 c_{11} x^*, \quad A_{32} = 2b_1^2 \delta_1^2 x^* - 2b_1 \delta_1 c_{11}, \quad p_{22} = (c_1 - b_1 \delta_1 x^*)^3, \quad p_{23} = b_1^2 \delta_1 c_{11} (c_1 - b_1 \delta_1 x^*), \quad p_{24} = 3b_1 c_{11} (c_1 - b_1 \delta_1 x^*).}{A^2}
If the higher-order terms are ignored, system (13) can be restated in the following form:

\[
\dot{z} = J^p \dot{z} + \hat{H}(\dot{z}), \quad \hat{z} = \left(\begin{array}{c} \hat{z}_1 \\ \hat{z}_2 \end{array} \right),
\]

(14)

where

\[
\hat{H} = \begin{pmatrix} \hat{H}_1 \\ \hat{H}_2 \end{pmatrix} = \begin{pmatrix} \frac{\tau_{20} \hat{z}_1^2 + \tau_{11} \hat{z}_1 \hat{z}_2 + \tau_{02} \hat{z}_2^2 + \tau_{30} \hat{z}_1^2 + \tau_{21} \hat{z}_1 \hat{z}_2 + \tau_{12} \hat{z}_1 \hat{z}_2^2 + \tau_{03} \hat{z}_1^2 + \tau_{02} \hat{z}_2^2}{d_{11} \hat{z}_1^2 + d_{02} \hat{z}_2^2 + d_{30} \hat{z}_1^2 + d_{21} \hat{z}_1 \hat{z}_2 + d_{12} \hat{z}_1 \hat{z}_2^2 + d_{03} \hat{z}_1^2} \end{pmatrix}.
\]

The eigenvector \(\hat{v} \) of the community matrix \(J^p \) corresponding to the eigenvalues \(i\omega_0 \) at \(m_1 = m_1^* \) is \(\hat{v} = (\tau_{01}, i\omega_0 - \tau_{10})^T \). Now, let us define

\[
S = (\text{Re}(\hat{v}), -\text{Im}(\hat{v})) = \begin{pmatrix} \tau_{01} & 0 \\ -\tau_{10} & -\omega_0 \end{pmatrix}.
\]

Let \(\ddot{Z} = SY \) or \(Y = S^{-1} \ddot{Z} \), where \(Y = (y_1, y_2)^T \). As a result of this transformation, the system (14) becomes \(\dot{Y} = (S^{-1} J^p S) Y + S^{-1} \hat{H}(SY) \). This can be written as

\[
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \hat{Q}^1(y_1, y_2; m_1 = m_1^*) \\ \hat{Q}^2(y_1, y_2; m_1 = m_1^*) \end{pmatrix},
\]

where \(\hat{Q}^1 \) and \(\hat{Q}^2 \) are nonlinear functions in \(y_1 \) and \(y_2 \). Explicitly, they are given by

\[
\hat{Q}^1(y_1, y_2; m_1 = m_1^*) = \frac{1}{\omega_0} \hat{H}_1, \quad \hat{Q}^2(y_1, y_2; m_1 = m_1^*) = -\frac{1}{\omega_0} (\tau_{10} \hat{H}_1 + \tau_{01} \hat{H}_2),
\]

with

\[
\hat{H}_1 = (\tau_{20} \tau_{01} - \tau_{11} \tau_{01} \tau_{10} + \tau_{02} \tau_{10}) \hat{y}_1^2 + \omega_0 (2\tau_{02} \tau_{10} - \tau_{11} \tau_{01}) y_1 y_2 + \omega_0^3 \tau_{02} y_2^2 \\
+ (\tau_{12} \tau_{01} \tau_{10} - \tau_{30} \tau_{01} - \tau_{21} \tau_{01}) \tau_{10} y_2^2 + \omega_0 (2\tau_{12} \tau_{10} - \tau_{30} \tau_{10}) y_2^2 + \omega_0 (2\tau_{12} \tau_{10} - \tau_{30} \tau_{10}) y_1 y_2,
\]

and

\[
\hat{H}_2 = (\tau_{20} \tau_{01} - \tau_{11} \tau_{01} \tau_{10} + \tau_{02} \tau_{10}) \hat{y}_1^2 + \omega_0 (2\tau_{02} \tau_{10} - \tau_{11} \tau_{01}) y_1 y_2 + \omega_0^3 \tau_{02} y_2^2 \\
+ (\tau_{12} \tau_{01} \tau_{10} - \tau_{30} \tau_{01} - \tau_{21} \tau_{01}) \tau_{10} y_2^2 + \omega_0 (2\tau_{12} \tau_{10} - \tau_{30} \tau_{10}) y_2^2 + \omega_0 (2\tau_{12} \tau_{10} - \tau_{30} \tau_{10}) y_1 y_2.
\]

To evaluate the stability and direction of a periodic solution, we compute the first Lyapunov coefficient [40]:

\[
l_1 = \frac{1}{16} \left[\hat{Q}^1_{111} + \hat{Q}^1_{122} + \hat{Q}^2_{111} + \hat{Q}^2_{222} \right] \\
+ \frac{1}{16\omega_0} \left[\hat{Q}^1_{12}(\hat{Q}^1_{11} + \hat{Q}^2_{12}) - \hat{Q}^1_{12}(\hat{Q}^1_{11} + \hat{Q}^2_{12}) - \hat{Q}^1_{11} \hat{Q}^2_{12} + \hat{Q}^2_{12} \hat{Q}^2_{22} \right],
\]

where

\[
\hat{Q}^k_{ij} = \frac{\partial^2 \hat{Q}^k}{\partial y_i \partial y_j} \bigg|_{(y_1, y_2; m_1) = (0, 0; m_1^*)}, \quad i, j \in \{1, 2\}.
\]

If \(l_1 < 0 \), the Hopf bifurcation is supercritical; if \(l_1 > 0 \), it is subcritical.
3.6.1 A normal form of the Bogdanov–Takens bifurcation

We consider a planar vector field described as follows:

$$\dot{x} = f(x, \mu), \; x \in \mathbb{R}^2, \; \mu \in \mathbb{R}^2,$$ \hspace{1cm} (15)

where f is a smooth function. Assuming that the origin $x = 0$ in (15) corresponds to an equilibrium with two zero eigenvalues, i.e., $\lambda_{1,2} = 0$ at $\mu = 0$, and the Jacobian $\mathbf{J}_xf(0,0)$ is both nilpotent and different from the null matrix.

We can express equation (15) at $\mu = 0$ as:

$$\dot{x} = \hat{J}_xf(0,0)x + \hat{F}(x),$$ \hspace{1cm} (16)

where the function $\hat{F}(x)$ includes all terms of quadratic and higher order, denoted as $O(||x||^2)$.

The matrix $\hat{J}_xf(0,0)$ has one linearly independent eigenvector, denoted as \hat{v}_1, corresponding to the repeated eigenvalue of 0. Furthermore, it is possible to identify a generalized eigenvector \hat{v}_2 that satisfies the equation $\hat{J}_xf(0,0)\hat{v}_2 = \hat{v}_1$. Let $\hat{V} = [\hat{v}_1, \hat{v}_2]$ denote the matrix with columns \hat{v}_1 and \hat{v}_2, both being linearly independent vectors.

Therefore, by utilizing the change of coordinates defined as:

$$y = \hat{V}^{-1}x$$ \hspace{1cm} (17)

the vector field f undergoes a transformation to a C^∞-conjugated system, defined as

$$g = \hat{V}^{-1}ofo\hat{V}.$$ \hspace{1cm} (18)

In particular, at $\mu = 0$, system (16) undergoes a transformation to the following form, as illustrated:

$$\dot{y} = \hat{J}_yg(0,0)y + (\hat{V}^{-1}ofo\hat{V})(y),$$ \hspace{1cm} (19)

where

$$\hat{J}_yg(0,0) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. $$

Expanding (18) in a Taylor series around $(y_1, y_2) = (0,0)$ with respect to $y = (y_1, y_2)$ yields the following expressions:

$$\begin{align*}
\dot{y}_1 &= y_2 + \hat{a}_{00}(\hat{\mu}) + \hat{a}_{10}(\hat{\mu})y_1 + \hat{a}_{01}(\hat{\mu})y_2 + \frac{1}{2}\hat{a}_{20}(\hat{\mu})y_1^2 + \hat{a}_{11}(\hat{\mu})y_1y_2 + \frac{1}{2}\hat{a}_{02}(\hat{\mu})y_2^2 + O(||y||^3), \\
\dot{y}_2 &= \hat{b}_{00}(\hat{\mu}) + \hat{b}_{10}(\hat{\mu})y_1 + \hat{b}_{01}(\hat{\mu})y_2 + \frac{1}{2}\hat{b}_{20}(\hat{\mu})y_1^2 + \hat{b}_{11}(\hat{\mu})y_1y_2 + \frac{1}{2}\hat{b}_{02}(\hat{\mu})y_2^2 + O(||y||^3),
\end{align*}$$

where the coefficients $\hat{a}_{ij}(\hat{\mu})$ and $\hat{b}_{ij}(\hat{\mu})$ are smooth functions that can be determined using (15), (17), and (18). Specifically, at $\hat{\mu} = 0$, derived from (16) and (19), we obtain $\hat{a}_{00}(0) = \hat{a}_{10}(0) = \hat{a}_{01}(0) = \hat{b}_{00}(0) = \hat{b}_{10}(0) = \hat{b}_{01}(0) = 0$. With this context, we proceed to establish the subsequent outcome regarding the normal form of the Bogdanov–Takens bifurcation.
Proposition 3.4 Consider the planar system (15) and suppose, \(\hat{\mu} = 0 \), let the system have an equilibrium at the origin denoted as \(x = 0 \), with a double zero eigenvalue \(\lambda_{1,2}(0) = 0 \). We further assume the validity of the following genericity conditions:

1. The Jacobian \(J_xf(0,0) \) is not the null matrix;

2. \(\hat{a}_{20}(0) + \hat{b}_{11}(0) \neq 0 \);

3. \(\hat{b}_{20}(0) \neq 0 \);

4. The map \((x, \hat{\mu}) \mapsto (f(x, \hat{\mu}), \text{tr}J_xf(x, \hat{\mu}), \det J_xf(x, \hat{\mu})) \) is regular at \((x, \hat{\mu}) = (0, 0) \in \mathbb{R}^4 \). In this scenario, a smooth and invertible change of parameters can be made such that, within a sufficiently small neighborhood of \((x, \hat{\mu}) = (0, 0) \), the vector field \(f \) is topologically equivalent to one of the prescribed normal forms:

\[
\begin{align*}
\dot{\zeta}_1 &= \zeta_2, \\
\dot{\zeta}_2 &= \alpha_1 + \alpha_2 \zeta_2 + \zeta_2^2 + \hat{s} \zeta_1 \zeta_2,
\end{align*}
\]

(20)

where \(\hat{s} = \hat{b}_{20}(0)(\hat{a}_{20}(0) + \hat{b}_{11}(0)) = \pm 1 \).

The normal form (20) was initially devised by Bogdanov [41], while an equivalent form was concurrently introduced by Takens in [42]. Further details and the proof of this theorem can be found in [43].

Due to space constraints, we omit the detailed calculation for proving the existence of a germ of a Bogdanov–Takens bifurcation in system (2). However, it’s important to note that the specified conditions (1)–(4) guarantee local topological equivalence to the normal form of the Bogdanov–Takens bifurcation. Numerical verification is also conducted to ensure satisfaction of the Bogdanov–Takens bifurcation (cf. Fig. 10(c)).

Therefore, a smooth, invertible coordinate transformation, an orientation-preserving time rescaling, and a reparametrization can be applied. This ensures that within a sufficiently small neighborhood of \((x, y, m_1, d_1) = (0, 0, m_1^*, d_1^*) \), system (2) is topologically equivalent to one of the specified normal forms of a Bogdanov–Takens bifurcation, represented by (21):

\[
\begin{align*}
\dot{\zeta}_1 &= \zeta_2, \\
\dot{\zeta}_2 &= \alpha_1 + \alpha_2 \zeta_2 + \zeta_2^2 \pm \zeta_1 \zeta_2,
\end{align*}
\]

(21)

In (21), the sign of the term \(\zeta_1 \zeta_2 \) is determined by the sign of \(\hat{b}_{20}(0)(\hat{a}_{20}(0) + \hat{b}_{11}(0)) \).

3.7 Transcritical bifurcation

Proposition 3.5 When the system bifurcation parameter \(m_1 \) crosses the critical threshold \(m_1 = m_{1T}^{TC} \), the system (2) undergoes a transcritical bifurcation.
Figure 2: (a-b) The system exhibits transcritical bifurcation at \(m_1 = 0.1529 \).

Proof 3.4 The Jacobian matrix \(J_1 \) of the system (2) at \(E_1 \) has one vanishing eigenvalue for \(m_1 = m_1^{TC} \). Let \(U_1 \) and \(V_1 \), respectively, be the eigenvectors of the matrices \(J_1 \) and \((J_1)^T \) corresponding to zero eigenvalues. As a result, we get

\[
U_1 = \left(-\frac{rK}{r_1} + \frac{a_1}{r_1 + b_1} \right) ^T, \quad V_1 = (0 \ 1)^T.
\]

We have then

\[
F_{m_1} (x, y) = \left(-\frac{(x - \delta_1 xy)y}{a_1 + b_1(x - \delta_1 xy) + c_1 y} \frac{e_1(x - \delta_1 xy)y}{a_1 + b_1(x - \delta_1 xy) + c_1 y} \right) ^T,
\]

\[
F_{m_1} (E_1; m_1 = m_1^{TC}) = (0 \ 0)^T,
\]

and

\[
(V_1)^T F_{k_1} (E_1; m_1 = m_1^{TC}) = 0.
\]

Also,

\[
DF_{m_1} (E_1; m_1 = m_1^{TC}) U_1 = (0 \ -1)^T.
\]

We therefore obtain

\[
(V_1)^T \left[DF_{m_1} (E_1; m_1 = m_1^{TC}) (U_1) \right] = \frac{e_1 r}{a_1 + b_1 r}.
\]

Further,

\[
(V_1)^T D^2 F (E_1; m_1 = m_1^{TC}) (U_1, U_1)
\]

\[
= -\frac{e_1 m_1 r^2}{(a_1 r_1 + b_1 r)^2} \left[\frac{2a_1 rK}{r_1} + \frac{2a_1 m_1}{a_1 r_1 + b_1 r} + \frac{(2\delta_1 a_1 + c_1) r}{r_1} \right] < 0.
\]

By applying Sotomayor’s theorem [44], we may conclude that the system experiences a transcritical bifurcation at \(E_1 \) when \(m_1 \) crosses the threshold \(m_1^{TC} \).

All the numerical findings are summarized in Table 1.
3.8 Global sensitivity analysis

We used global sensitivity analysis (GSA) employing Latin Hypercube Sampling (LHS) with partial rank correlation coefficient (PRCC) sensitivity analysis to examine the sensitivity of each parameter. Each parameter’s sensitivity is represented in a bar graph and assessed regarding bar length. If a parameter’s PRCC value is larger than ±0.3, it is considered sensitive to a variable. The parameters \(r, K, m_1 \) and \(d_1 \) are all found to be sensitive for the system (2), as shown in Fig. 3.

4 The stochastic model with white noise

We analyze our system by studying environmental characteristics and their fluctuations. Throughout time \(t \), we treat all parameters as constants. Specifically, we explore the stochastic stability of the coexistence equilibrium.

There are two approaches to introduce stochasticity into a deterministic system. First, by substituting one of the environmental characteristics with random parameters. Second, by integrating a randomly fluctuating driving force into deterministic equations, while keeping the parameters unchanged [45]. In this present study, we choose the second strategy. Utilizing Gaussian white noise-type stochastic perturbations on state variables around their stable values \(E^* \) proves to be an effective approach for modeling rapid fluctuations. These fluctuations are directly related to the distances between each population’s equilibrium values, \(x^* \) and \(y^* \) [46]. The deterministic system (2) can be expanded to the stochastic model below based on the aforementioned assumption.

\[
\begin{align*}
 dx &= G_1(x, y)dt + \sigma_1(x - x^*)d\xi_1^t, \\
 dy &= G_2(x, y)dt + \sigma_2(y - y^*)d\xi_2^t,
\end{align*}
\]

(22)

where the real constant parameters \(\sigma_1, \sigma_2 \) are the intensities of environmental
fluctuations and $\xi_i^j = \xi_i(t), i = 1, 2$ are the standard Wiener processes that are independent of each other [47].

The stochastic system (22) can be expressed as an Itô stochastic differential system in a compact form

$$dx_t = G(t, x_t)dt + g(t, x_t)\xi_t, \quad x_{t_0} = x_0, \quad (23)$$

The Itô process is the solution of the preceding equation $x_t = (x, y)^T$ for $t > 0$. The drift coefficient, denoted as G, can be described as a slowly varying continuous component. Here, $g = \text{diag} [\sigma_1(x - x^*), \sigma_2(y - y^*)]$ denotes the diffusion coefficient, representing the rapidly fluctuating continuous random component in the diagonal matrix. Here, $\xi_t = (\xi_1^1, \xi_2^2)^T$ is a two-dimensional stochastic process with scalar Wiener process components that have increments $\Delta \xi_i^j = \xi_i(t+\Delta t) - \xi_i(t)$ which are free Gaussian random variables $N(0, \Delta t)$. The system (22) is classified as a multiplicative noise system due to the dependence of the diffusion matrix g on the solution of x_t.

4.1 Stochastic stability of the coexistence equilibrium

The coexistence equilibrium in the stochastic differential system (22) acts as a central point. E^* is derived by introducing the perturbation vector $u(t) = (u_1(t), u_2(t))^T$, where $u_1 = x - x^*$ and $u_2 = y - y^*$.

To establish mean square asymptotic stability using Lyapunov functions in the context of the complete nonlinear equations (22), we can follow the approach outlined in [48]. However, for simplicity, we focus on the stochastic differential equations obtained by linearizing (22) around the coexistence equilibrium E^*. The linearized version of (23) around E^* is given by

$$du_t = F_L(u(t))dt + g(u(t))d\xi_t, \quad (24)$$

where now $g(u(t)) = \text{diag} [\sigma_1 u_1, \sigma_2 u_2]$ and $F_L(u(t)) = \begin{bmatrix} -a_{11} u_1 - a_{12} u_2 \\ a_{21} u_1 - a_{22} u_2 \end{bmatrix} = Mu$, $a_{11} = -\hat{a}_{11} = r_1 x^* - \frac{m_1 b_1 x^* y^*(1 - \delta_1 y^*)^2}{u_1 + b_1 (x^* - \delta_1 x^* y^* + c_1 y^*)}$,

$$a_{12} = -\hat{a}_{12} = \frac{r x^* K}{1 + K y^*} + \frac{m_{12} x^* [(u_1 + c_1 y^*)/(1 - \delta_2 y^*)] + (1 - \delta_1 y^*) (b_1 x^* - b_1 \delta_1 x^* y^* - c_1 y^*)}{a_1 + b_1 (x^* - \delta_1 x^* y^* + c_1 y^*)^2},$$

$$a_{21} = -\hat{a}_{21} = \frac{r x^* K}{1 + K y^*} + \frac{m_{12} x^* [(u_1 + c_1 y^*)/(1 - \delta_2 y^*)] + (1 - \delta_1 y^*) (b_1 x^* - b_1 \delta_1 x^* y^* - c_1 y^*)}{a_1 + b_1 (x^* - \delta_1 x^* y^* + c_1 y^*)^2},$$

$$a_{22} = -\hat{a}_{22} = d_1 - \frac{m_{12} x^* [(u_1 + c_1 y^*)/(1 - \delta_2 y^*)] + (1 - \delta_1 y^*) (b_1 x^* - b_1 \delta_1 x^* y^* - c_1 y^*)}{a_1 + b_1 (x^* - \delta_1 x^* y^* + c_1 y^*)^2},$$

and the coexistence equilibrium corresponds now to the origin $(u_1, u_2) = (0, 0)$. Let $\Omega = [t \geq t_0] \times R^2, t_0 \in R^+$ and let $\Theta(t, X) \in C^{(1,2)}(\Omega)$ be a differentiable function of time t and twice differentiable function of X. Let further

$$L_\Theta(t, u) = \frac{\partial \Theta(t, u(t))}{\partial t} + f^T(u(t)) \frac{\partial \Theta(t, u)}{\partial u} + \frac{1}{2} \text{tr} \left[g^T(u(t)) \frac{\partial^2 \Theta(t, u)}{\partial u^2} g(u(t)) \right], \quad (25)$$

where

$$\frac{\partial \Theta}{\partial u} = \left(\frac{\partial \Theta}{\partial u_1}, \frac{\partial \Theta}{\partial u_2} \right)^T, \quad \frac{\partial^2 \Theta(t, u)}{\partial u^2} \bigg|_{i,j=1,2}.$$
Proposition 4.1 Assume that the functions $\Theta(u, t) \in C_2(\Omega)$ and L_Θ satisfy the inequalities

\[r_1|u|^\beta \leq \Theta(u, t) \leq r_2|u|^\beta, \] (26)

\[L_\Theta(u, t) \leq -r_3|u|^\beta, \quad r_i > 0, \quad i = 1, 2, 3, \quad \beta > 0. \] (27)

Then the trivial solution of (24) is exponentially β-stable for all time $t \geq 0$.

Remark 1 For $\beta = 2$ in (26) and (27), the trivial solution of (24) is exponentially mean square stable; furthermore, the trivial solution of (24) is globally asymptotically stable in probability, [49].

Proposition 4.2 Assume $a_{ij} < 0$, $i, j = 1, 2$, and that for some positive real values of ω_1, the following inequality holds. Then if $\sigma_i^2 < 2a_{11}$, it follows that

\[\sigma_i^2 < \frac{2a_{21}a_{22}}{a_{12}}, \] (28)

where

\[\omega_1 = \frac{a_{12}}{a_{21}}, \quad a_{11} > 0, \quad a_{21}a_{22} > 0. \] (29)

and the zero solution of system (22) is asymptotically mean square stable.

Proof 4.1 We consider the Lyapunov function

\[\Theta(u(t)) = \frac{1}{2} [u_1^2 + \omega_1 u_2^2], \] (30)

where real positive constants ω_1 to be define later. Verifying the validity of inequalities (26) for $\beta = 2$ is a straightforward process. Moreover,

\[L_\Theta(u(t)) = (-a_{11}u_1 - a_{12}u_2)u_1 + (a_{21}u_1 - a_{22}u_2)\omega_1 u_2 + \frac{1}{2} \text{tr} \left[g^T(u(t)) \frac{\partial^2 \Theta}{\partial u^2} g(u(t)) \right]. \] (31)

Now we evaluate that

\[\frac{\partial^2 \Theta}{\partial u^2} = \begin{bmatrix} 1 & 0 \\ 0 & \omega_1 \end{bmatrix} \]

and $g^T(u(t)) \frac{\partial^2 \Theta}{\partial u^2} g(u(t)) = \begin{bmatrix} \sigma_1^2 u_1^2 & 0 \\ 0 & \omega_1 \sigma_2^2 u_2^2 \end{bmatrix}$ so that we can estimate the trace term as

\[\text{tr} \left[g^T(u(t)) \frac{\partial^2 \Theta}{\partial u^2} g(u(t)) \right] = \sigma_1^2 u_1^2 + \omega_1 \sigma_2^2 u_2^2. \]

Hence from (31), we obtain $L_\Theta(u(t)) = -(a_{11} - \frac{\sigma_1^2}{2})u_1^2 - (a_{12} - a_{21} \omega_1)u_1 u_2 - (a_{22} - \frac{\omega_1 \sigma_2^2}{2})u_2^2$. If we choose $\omega_1 = \frac{a_{12}}{a_{21}}$, then we get

\[L_\Theta(u(t)) = -(a_{11} - \frac{\sigma_1^2}{2})u_1^2 - (a_{22} - \frac{a_{12} \sigma_2^2}{2a_{21}})u_2^2 = -u^T Qu, \] (32)

where $Q = \text{diag}[(a_{11} - \frac{\sigma_1^2}{2}), (a_{22} - \frac{a_{12} \sigma_2^2}{2a_{21}})]$ and the diagonal matrix Q will be real symmetric positive definite matrix and hence its eigenvalues λ_1 and λ_2 will be positive real quantities iff the following conditions holds: $\sigma_i^2 < 2a_{11}$ with $a_{11} > 0$ and $\sigma_2^2 < \frac{2a_{21}a_{22}}{a_{12}}$ and $a_{21}a_{22} > 0$. If λ_m stands for the minimum of
Table 1: Natures of equilibrium points.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Eigenvalues</th>
<th>Equilibrium points</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>0.152917</td>
<td>$(-3, 0)$</td>
<td>Branch Point (BP)</td>
</tr>
<tr>
<td></td>
<td>0.946987</td>
<td>$(±0.770711i)$</td>
<td>Hopf (H)</td>
</tr>
<tr>
<td>c_1</td>
<td>0.201944</td>
<td>$(±0.614977i)$</td>
<td>Hopf (H)</td>
</tr>
<tr>
<td>(m_1, d_1)</td>
<td>$(0.7290, 0.0000)$</td>
<td>$(≈ ±0.00)$</td>
<td>Bogdanov-Takens (BT)</td>
</tr>
</tbody>
</table>

Two positive eigenvalues λ_1 and λ_2 for the diagonal matrix. Then the previous inequality for $L_\Theta(u(t))$ we thus get

$$L_\Theta(u(t)) \leq -\lambda_m |u(t)|^2,$$

thus completing the proof.

Remark 2 Proposition 4.2 provides the necessary conditions for the stochastic stability of the coexistence equilibrium E^* in the presence of environmental fluctuations, as discussed in [50]. Consequently, the model’s internal parameters, combined with the intensities of environmental fluctuations, contribute to upholding the stability of the stochastic system.

5 Numerical simulations

Utilizing MATLAB, we run numerical simulations over the parametric value set to visualize the analytical findings, see [25].

$$r = 3, r_1 = 0.07, K = 2, m_1 = 0.49, e_1 = 0.2,$$

$$\delta_1 = 0.05, a_1 = 0.05, b_1 = 0.06, c_1 = 0.26, d_1 = 0.5. \quad (33)$$

In particular, it is found that the system (2) exhibits a stable behaviour around $E^* = (1.98, 0.80)$, see Fig. 4(a).

5.1 Effect of m_1

When the predator’s hunting rate m_1 is high, the dynamical system switches to unstable behavior, specifically for $m_1 = 0.96$. This is illustrated in Fig. 4(b). For the parameter m_1, the behaviour of the coexistence equilibrium is shown in Fig. 5(a-b). The Hopf bifurcation point (H) is found at $m_1 = 0.946987$ with eigenvalue $±0.770711i$ and a branch point (BP) at $m_1 = 0.152917$, with eigenvalue $(0, -3)$.

Fig. 5(c) shows that the system undergoes a supercritical bifurcation after a sequence of stable limit cycles from the Hopf point, the first Lyapunov exponent is $-3.208284e^{-02}$. The results above prove that increasing m_1 can reduce both prey and predator densities and that when $m_1 = 0.946987$, the system (2) switches from being stable to limit cycles.

The symbol (BP) shows a transcritical bifurcation at the branch point.
Figure 4: (a) The plot is generated for the values of the reference parameters given in (33) showing the stability of the coexistence equilibrium. (b) The plot is obtained with \(m_1 = 0.97 \) and the other values of the reference parameters in (33) giving rise to a stable limit cycle.

5.2 Combined effect of \(K \) and \(m_1 \)

As noted above, when \(m_1 = 0.97 \) and \(K = 2 \), the system exhibits a persistent oscillatory behavior around \(E^* \). The system trajectories settle to the coexistence equilibrium \(E^* \) for low values of \(K \), such as \(K = 0.2 \), see Fig. 6(a).

5.3 Combined effect of \(\delta_1 \) and \(m_1 \)

As reported in Fig. 4(b), when \(m_1 = 0.97 \) with \(\delta = 0.05 \), the system attains oscillatory behavior near \(E^* \). Taking the higher value of the prey refuge, \(\delta_1 = 0.5 \), the system trajectories settle to the coexistence equilibrium \(E^* \) once more (cf. Fig. 6(b)).

5.4 Effect of \(c_1 \)

The mutual interference among predators \(c_1 \) is a key factor in switching the prey and predator behaviors, as shown in Fig. 8(a-b). We have a Hopf point at \(c_1 = 0.201944 \) with eigenvalues \(\pm 0.770711i \). The system undergoes a supercritical bifurcation with the first Lyapunov exponent \(-1.442495e^{-02} \) at that point, and each population starts to oscillate persistently. A family of stable limit cycles is thus created from the \(H \) point in the \(c_1 - x - y \) parameter space (cf. Fig. 8(c)).

5.5 Bifurcations

The bifurcation diagrams of Fig. 5(d), Fig. 7(a-b) and Fig. 8(d) fully describe the whole dynamic nature of the system (2) in terms of the parameters \(m_1 \) and \(c_1 \) respectively. To visualise the relationship between the predator capture rate with prey fear level and refuge size separately, we have respectively plotted bifurcation diagrams with \(m_1 \) as the bifurcation parameter for \(K = 2 \) and
Figure 5: (a-b) For m_1, the trajectory illustrates the various dynamical behaviours of prey (left) and predator (right). (c) The trajectory shows a set of stable limit cycles generated from the Hopf (H) point, taking m_1 as the bifurcation parameter. (d) Bifurcation diagram as function of the bifurcation parameter m_1 for the prey (left) and predators (right).
Figure 6: (a) When $m_1 = 0.97$, the figure shows oscillatory behavior around E^* (continuous line) for $K = 2$ and a stable behavior for $K = 0.2$ (bold continuous line). (b) When $m_1 = 0.97$, the picture displays oscillatory behaviour around E^* (continuous line) for $\delta_1 = 0.05$ and a stable behaviour for $\delta_1 = 0.5$ (bold continuous line).

Figure 7: (a) Bifurcation diagram for m_1 when $K = 0.2$. (b) Bifurcation diagram for m_1 when $\delta_1 = 0.5$. In both frames, the prey is on the left, and the predators are on the right.
Figure 8: (a-b) For c_1, the trajectory illustrates the various dynamical behaviours respectively of prey (left) and predators (right). (c) The trajectory depicts a set of stable limit cycles generated from the Hopf (H) point in the $c_1 - x - y$ bifurcation space taking c_1 as bifurcation parameter. (d) Bifurcation diagram in terms of c_1: prey (left), predators (right).
Figure 9: (a-d) Two parameters bifurcation diagram in the $m_1 - K$, $m_1 - d_1$, $m_1 - c_1$, and $m_1 - \delta_1$ parameter spaces, respectively.
Figure 10: Two parameters Bogdanov–Takens bifurcation diagram in the $m_1 - d_1$ parameter space.

$K = 0.2$, Fig. 5(d) and Fig. 7(a) and for $\delta_1 = 0.05$ as well as $\delta_1 = 0.5$, Fig. 5(d) and Fig. 7(b).

Fig. 9(a-d) display the two parameters bifurcation diagram for $m_1 - K$, $m_1 - d_1$, $m_1 - c_1$, and $m_1 - \delta$ respectively. A Bogdanov–Takens bifurcation is shown in the dynamical system (2) arising at the critical values of the bifurcation parameters as $m_1[bt] = 0.729046$ and $d_1[bt] = 0$, at which both eigenvalues vanish (cf. Fig. 10).

5.6 Environmental fluctuations

Following that, we will look at the system’s dynamical behaviour in the presence of environmental perturbations. We employ the Euler Maruyama (EM) method using MATLAB software to numerically simulate the stochastic differential Eq. (22). Using a suitable Lyapunov function (30), we established the condition for asymptotic stability of E^* in mean square sense for the system (22). These conditions are determined by σ_1 and σ_2 and model system parameters. Using, $\sigma_1 = 0.01$ and $\sigma_2 = 0.015$, as the intensities of environmental perturbations with parameters set as apply in deterministic system, each species coexist and stochastically stable ((cf. Fig. 12)(a)). Next, we set the environmental fluctuation values to $\sigma_1 = 0.08$ and $\sigma_2 = 0.08$, coexistence equilibrium becomes unstable ((cf. Fig. 12)(b)).
Figure 11: The figures depict the change of sign of real part (left column) and imaginary part (right column) of λ_1 (top frames) and λ_2 (bottom frames) respectively.
Figure 12: (a) The figures depicts solution of system is stochastically stable for $\sigma_1 = 0.01$ and $\sigma_2 = 0.015$. (b) The figures depicts solution of system is stochastically unstable for $\sigma_1 = 0.08$ and $\sigma_2 = 0.08$.

5.7 Two parameters, Lyapunov exponent and basin of attractions

In this section, the system (2) can be transformed into the following discrete-time system by using Euler’s method

\[
\begin{align*}
x_{n+1} &= x_n + h \left[\frac{r x_n}{1 + K y_n} - r_1 x_n^2 - \frac{m_1 (x_n - \delta_1 x_n y_n) y_n}{a_1 + b_1 (x_n - \delta_1 x_n y_n) + c_1 y_n} \right], \\
y_{n+1} &= y_n + h \left[\frac{e_1 m_1 (x_n - \delta_1 x_n y_n) y_n}{a_1 + b_1 (x_n - \delta_1 x_n y_n) + c_1 y_n} - d_1 y_n \right],
\end{align*}
\]

where \(h \) is the step size. Here, we delve into the numerical exploration of the two-parameter dynamics outlined in model (34), specifically emphasizing stability and chaos. We bypass the analytical examination of local stability, deeming it self-evident. Our primary focus lies on the investigation of stability and chaos in the context of the two-parameter dynamics and the numerical exploration of the basin of attraction. We use Python for this purpose. Since they enable us to examine stable periodic patterns embedded in the chaotic zone, the bi-parameter dynamics are essential to our understanding. By doing this, we can then ascertain the complex transitional patterns underlying their dispersion in the chaotic sea. Moreover, the bi-parameter dynamics can show how multistability has emerged in the system. First, we will discuss the Lyapunov exponent (LE). Recently, many scholars have addressed this type of behavior in different models (see [51], [52], and [53]). We choose the step size \(h = 0.01 \). We chose two parameters for this: the prey reproduction rate \(r \) and the level of fear \(K \). Through constructing the LE between these two parameters, we can dynamically analyze how the fear level affects the reproduction rate of the prey species. In Figure 13, the LE is plotted between these two parameters. The LE can be calculated from the eigenvalues of the Jacobian matrix.

The Jacobian matrix of model (2) has two different eigenvalues. The average of the real part of the eigenvalues determines the LE. For simplicity, we use various Python libraries to calculate the LE numerically. In Figure 13 (a), the multiple values of the LE have been labeled in the color bar, which is represented by different colors in the plot. The white color in the plot represents the non-existence of the solution. The positive values of the LE represent a chaotic regime, the negative values represent stable or stable periodic behavior, and the Lyapunov value equal to zero means the bifurcation in the system (2). For the LE diagrams in Figure 13 (a), we examined model (2) dynamics by adjusting \(K \) and \(r \) while keeping other parameters constant at \(r_1 = 0.01, m_1 = 0.96, \delta_1 = 0.03, a_1 = 0.05, b_1 = 0.07, c_1 = 0.24, e_1 = 0.21, d_1 = 0.54 \). Here, we fixed the initial conditions as \((0.6, 0.8)\). We explored 1000 combinations of \(K \) and \(r \), resulting in a grid of 1000 equispaced points in \([0.01, 4] \times [0.01, 8]\). At each of these 1000 parameter points, we computed the LE and periodicity of the orbit by iterating model (2) for 100 iterations. Since there is no positive value in the plot, the system is not chaotic for this bi-parameter space with other fixed parameter values. The color scheme changing from \(-35\) to \(-5\) represents the combined behavior of stable and stable periodic behavior; whereas the brown color in the plot represents the bifurcation regime in the system (2). From plot 13 (a), we conclude that when the prey produc-
Figure 13: (a) The maximum Lyapunov exponent plot is in the parameter space $K \times r \in [0.01, 4] \times [0.01, 8]$. The other parameter values are: $r_1 = 0.01, m_1 = 0.96, \delta_1 = 0.03, a_1 = 0.05, b_1 = 0.07, c_1 = 0.24, e_1 = 0.21, d_1 = 0.54$.

(b) The logarithmic Lyapunov exponent plot for $r \times K \in [0.01, 10] \times [0.01, 10]$ with $\{r_1 = 0.04, m_1 = 0.99, \delta_1 = 0.05, a_1 = 0.08, b_1 = 0.08, c_1 = 0.28, e_1 = 0.23, d_1 = 0.94\}.$
tion rate is low, the fear effect causes bifurcation in the system. In contrast, the high reproduction rate demands a high level of fear to maintain the stability of the ecosystem. A similar discussion can be had for the LE in plot 13 (b). Plot 13 (b) represents the logarithmic LE with parameter values:

\[\{r_1 = 0.04, m_1 = 0.99, \delta_1 = 0.05, a_1 = 0.08, b_1 = 0.08, c_1 = 0.28, e_1 = 0.23, d_1 = 0.94\} \]

and initial conditions (0.9, 0.9). We choose \(K \times r = [0.01, 10] \times [0.01, 10] \) for plot 13 (b). The basin of attraction of model (2) is examined in a prey-predator model. It speaks of the starting points (sets of population values) from which the system develops to reach a specific stable equilibrium or limit cycle. The period of the system is determined iteratively for a range of initial condition combinations, offering insights into the stability and periodicity of the ecological dynamics. A Figure 14 is used to depict the complex dynamics. The graph illustrates how changes in \(x_0 \) and \(y_0 \) affect the predator-prey model’s periods. To distinguish different periods, a custom colormap is utilized, assigning distinct colors to each period. We fix \(r = 3, r_1 = 0.22, m_1 = 0.97, \delta_1 = 0.01, a_1 = 2.0, b_1 = 0.1, c_1 = 0.02, e_1 = 0.01, d_1 = 0.02, \) and \(K = 0.5 \).
Figure 14: (a) The basin of attraction in the space $[0.5, 9.5] \times [0.5, 9.5]$. The different color boxes in the color bar represent different periods in the chosen space. Plot (b) and (c) are the local amplifications of plot (a).
6 Discussion

This paper incorporates the features of prey refuge and the fear effect in an ecosystem. We study their impact on a predator-prey interaction model.

In this study, we have considered the concepts presented in the earlier paper [5, 24], but with a modification to the functional response form. Instead of using the Holling types II counterparts utilized in their work, we incorporate the Beddington-De Angelis functional response model. Further, we consider fear terms built directly into the growth equations of prey, according to anti-predator behavior.

Prey populations grow logistically but are preyed upon by predators, interfering among them. This phenomenon is modeled via a Beddington-De Angelis response function. The equilibria’ feasibility and stability are assessed after showing the boundedness of the solution trajectories. There are three possible feasible equilibrium points for the system (2), trivial E_0, prey-only E_1 and co-existence E^\ast, of which only the last two are conditionally stable, a transcritical bifurcation relating them.

To address the first question stated in the Introduction, we concentrate on the effects of changing the parameter m_1 expressing the predator’s rate of prey capture. It is crucial to show the onset of the Hopf bifurcation and the stability switching behaviour. The system exhibits oscillatory behaviour when $m_1 > m_{1c} = 0.946987$, but it settles to stable coexistence in the range $0.152917 < m_1 < 0.946987$. When m_1 crosses the value 0.152917, the predator vanish and the coexistence equilibrium E^\ast migrates into the predator-free equilibrium E_1.

Our focus lies on the refuge coefficient, which determines how the changes influence the system dynamics in the refuge function. From a mathematical perspective, our observations revealed that the characteristics of the behavioral policy regarding prey refuge have a stabilizing impact on the dynamics of predator-prey interactions [24]. When the predation process follows the Beddington-De Angelis response function, our observation reveals an opposing relationship between the fear factor and prey capture by the predator, significantly influencing the system’s stability. However, the study above did not address in [5, 36, 24]. The comparison of our results indicates that the distinct assumptions regarding the response functions lead to significantly contrasting behaviors of the system.

The switching phenomenon of both populations has also been observed under the influence of mutual interference coefficient among predators. Similar phenomena have been identified in [36]. A pair of two-parameter bifurcations are shown in two different parameter spaces. Each exhibits different stability characteristics. Based on the findings, we can deduce that the predator’s prey capture rate and the mutual interference coefficient’s influence, as well as fear level and prey refuge should be kept within a certain range to avoid either predator extinction and possible system instability. This in case the predators are considered as a population to be preserved. In case instead they represent a threat for the ecosystem, e.g. as invasive alien species, the mathematical and numerical findings should be reversed in order to ensure their eradication.

By exploring two distinct parameter sets, the study presents numerical results for a dissipative standard map in discrete-time predator-prey system. The introduction of dissipation induces a modification in the phase space structure, leading to the replacement of elliptic fixed points with attracting fixed points. Examining the Lyapunov exponent reveals a highly diverse parameter
space \((K, r)\) containing numerous self-similar shrimp-shaped structures. These structures, corresponding to periodic attractors, emerge within a large region associated with chaotic dynamics.

Furthermore, the model incorporates environmental noise, leading to stochastic asymptotic stability due to its low intensity. High-intensity noise can induce oscillations with significant amplitudes. When meeting defined constraints on random variations in the environment and model parameters, the model achieves stochastic stability.

7 Compliance with Ethical Standards

- Disclosure of potential conflicts of interest
- Research involving Human Participants and/or Animals
- Informed consent

References

Conflict of interest

The authors declare that they have no conflict of interest.

Statements and Declarations

Data availability: No data has been used in our study.