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Extended Data Figure 1. E. coli Zorya type I protects against phage invasion but not
bacterial conjugation or plasmid transformation.

a, The impact of EcZorl on the uptake of plasmid DNA via conjugation from an E. coli donor
strain, measured as the transconjugant frequency (number of transconjugants/total recipients).
Four plasmids with different origins of replication (OriV) were tested (ColE1, RSF1010,
pBBRI1 and RK?2), at the indicated donor to recipient cell ratios (D:R) for the matings. Data
represent the mean of three replicates. b, The impact of EcZorl on the uptake of plasmid DNA
via transformation. Chemically competent E. coli without (control; empty vector) or with
EcZorl were transformed with plasmids possessing either ColE1 or pBBRI1 origins of
replication. Data represent the mean of three replicates, with each replicate being a different
batch of competent cells. ¢, Infection time courses for liquid cultures of E. coli, with and
without EcZorl, infected at different multiplicities of infection (MOI) of phage Bas02 and
Bas08. d, Phage titers at the end timepoint for each sample from the infection time courses (c),
measured as EOP on indicator lawns of E. coli either without (control) or with EcZorl. LOD:
Limit of detection.
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Extended Data Figure 2. Cryo-EM dataset processing results and resolution of EcZorAB.
a, A representative SDS gel of the purified EcZorAB complex. b, An EM image of the
EcZorAB sample under the cryogenic conditions. ¢, Cryo-EM density map of EcZorAB
colored by local resolution (in A) estimated in cryoSPARC with gold standard (0.143) Fourier
Shell Correlation (GSFSC) curves. d, Cryo-EM map of EcZorAB. e-g, Representative model
segments of ZorA and non-residual molecules fitted into EM density, focusing on one of ZorA
subunit’s TM1, and lipids found in the TMD of ZorA. h-i, Strategy of the local refinement of
the ZorB PGBDs with a soft mask. j, A representative of a model segment of the ZorB PGBDs
fitted into EM density map, focusing on the PGBD dimerized interface. k, Volcano plot
analysis, visualizing ratio and significance of change between all proteins quantified by mass
spectrometry in E. coli total lysates either transformed with pEcZorI plasmids or not (Extended
Data Table 2). Significance was tested via two-tailed two-sample Student’s t-testing with
permutation-based FDR control, ensuring a corrected p-value of < 0.01. n=4 technical
replicates derived from n=3 culture replicates. 1, Absolute copy-number analysis of Zorya
proteins expressed in E. coli. Determined via comparison of molecular weight-adjusted label-
free quantified protein abundance values from this study, to known copy-numbers reported by
Schmidt et al.*%, and establishing a “proteomic ruler” for conversion of measured abundance
values to approximate copy-numbers (Extended Data Table 2). n=4 technical replicates
derived from n=3 culture replicates.




71

Conf

Conf

Conf
Cart

Pred
AA

CCCHHHHHHHHHCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
MSWLNSILVTLTSVEPYKVPVTVI VTVTFAFVCFI FFYLLRSIRI I YGLK
10 20 30 40

a
3

@
3
~
S
@
3
©
S
=]
5}

i
i

10 120 130 140 150

HHH HCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
LMI GLNHFDPSTPEQVSSSVNNLLRDVLYAFLGSAFAI FASI LVTWLEKL
160 170 190 2

S
3

180
ZorA tail

HHHHHHHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHHHHHHHHHHHHH
SI AKSYKYLEKFTAALDSLYDSGVGEEYLASLVKSSNESATQARHLKESL
210 220 230

. 240 250
Density absent from cryo-EM map

30

N
5l

N
o

HHPred Query Hit (Probabilty > 95%)
> o

o

h

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCH
VTDLRDMLLHLAESQKI ENERLANTLSATYRESGSQFADQVSGAI ENSLK
260 270 280 290 3

S
3

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
SPLDKI AGAVQTASGDQSGMVQNMLQNVLTAFMAKLDTTFGQQFTNLNEM
310 320 330 340 3!

&
3

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
MGQTVGAI QTMQTGFSALLQDMRQVSDDSRQGSAQLI EQLLSEMKSGQQA
360 370 380 390 4

=]
3

LTI T I T T I TP T I T T I I IT I IITITI I TITTITITITITITITITIIT]

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
LQAGMNDMLTSLQVSVAKI GAEGEGAGERI ARQLEKMFADSEAREKAQAE
410 420 430 440

IS
a
3

Predicted model

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
HMAAFVEAI QNSVQQGQSATMEKMAASVGALGEQLGSLFGQlI bKGcQQQl s
460 470 480 490 5

=}
3

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
ATQQANQQSLHEQTQRVMSEVDDQlI KQLVETVASQHQGTTETLRLLAEQT
510 520 530 540 5

a
3

CTTT T T I I IT]

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
NRQlI QDMQAGADKMRLAAERFEHAGERVSEANHLTADVLNKAQSAGSSLS
560 570 580 590 6

=1
3

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
LATSELTSVVADYRNNREAVSKSI AMLELLAANTQSEQTTRNQFI ADLKQ
610 620 630 640 6!

@
3

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
HGERLQSYNREAQVFMENVSDVLGKGFEDFSEGVSRSLDKTLGKLDVEMA

660 670 680 690 700
R
Strand
I B ——
HHHHHHHHHHHHHHHHHHHHHHHHHHHCC Helix  m
KASNLLAGSVEQLGESVSELDDVLSRVRT Coil -
710 720 730
Conf: - __onsll + Confidence of prediction
3-state assignment cartoon
Pred:  3-state prediction
Target Sequence Peptides found by MS s

300 400 500
HHPred Query H

600
it Position

Hydrophobicity

-1.14

1.81

Helical pitch
328 A

|

4

Polarity
0

52

-log(E-value)



72
73
74
75
76
77
78
79
80

Extended Data Figure 3. EcZorA tail secondary structural prediction and a complete
composite model of EcZorAB complex.

a, Amino acids and secondary structural predictions (Psipred) of the EcZorA. The peptides
found by mass spectrometry that covered ZorA protein are indicated as green lines about the
amino acids.

b, Top hits from an HHpred sequence homology search of the ZorA tail are shown. ¢, A
composite model of EcZorAB with the ZorA tail folding into a pentameric super coiled-coil,
with the helical pitch of the tail a-helix shown. d, Hydrophobicity and polarity of the inner
surface of the ZorA tai calculated by MOLEonline.
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Extended Data Figure 4. EcZorAB is a peptidoglycan binding rotary motor.

a, Cartoon representation of the EcZorAB complex in an inactive state, with the ZorB
dimerized interfaced highlighted. b, Topology diagrams of ZorB and isolated crystal structures
of the flagellar stator unit MotB and PomB PGBDs, indicating a conserved folding architecture.
c-d, The two disulfate bonds identified from ZorB PGBDs, with the EM map overlapped. e,
Pull-down assay of the isolated EcZorAB complex with the purified peptidoglycan. f, Cartoon
representation of the cryo-EM structure of the proton-driven flagellar stator unit MotAB from
Campylobacter jejuni (CjMotAB) in its inactive state, with the MotB plug motif highlighted.
g, Cartoon representation of the cryo-EM structure of the sodium-driven flagellar stator unit
PomAB from Vibrio alginolyticus (VaPomAB) in its inactive state. h, Cross-section view of
the EcZorAB TMD, showing the surrounding residues of the two Asp26 from ZorB. i, Cross-
section view of the CjMotAB TMD, showing the surrounding residues of the two Asp22 from
MotB. j, Cross-section view of VaPomAB TMD, showing the surrounding residues of the two
Asp24 from PomB. The absence of the strictly conserved threonine residue on ZorA TM3
required for sodium ion binding, indicates that EcZorAB is a proton-driven stator unit. m, A
representative of an SDS gel of the purified EcZorAB linker mutant complex (with ZorB
residues 46-52 replaced by a GGGSGGS linker: EcZorAB linker mutant). n, An EM image of
EcZorAB linker mutant sample under the cryogenic conditions. 0, Representatives of the 2D
classes of the EcZorAB linker mutant in comparison with that of the EcZorAB wild type,
highlighting the flexibility of the ZorB PGBDs of the EcZorAB linker mutant. p, Low pass
filter of the Cryo-EM density map of the EcZorAB linker mutant after nonuniform refinement.
q, Transmembrane helix density of the EcZorAB linker mutant and that in the wild type
EcZorAB.
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Extended Data Figure 5. Cryo-EM dataset processing and structures of the EcZorAB tail
and Ca?* binding site mutations.

A, Mutations of the ZorA tail truncations indicated in the composite model of EcZorAB
complex. B, Interaction between the beginning of the ZorA tail and the B-hairpin motif. C,
Extra density found inside the tail from cryo-EM map, which was modeled as palmitic acid,
with the amino acids involved in the interactions indicated. d, Structural comparison of the
ZorA wild type (cyan) and ZorA Ca?" binding site mutation (ZorAFAE8%A oray) the arrows
highlight the changes from wild type to the mutant. e, Representative of the 2D classes of the
EcZorAB ZorA tail complete deletion. f, Negative staining images of the EcZorAB wild type,
ZorA tail middle deletion (ZorA*3°-52), ZorA tail tip deletion (ZorAA*>7%%). g, The tail lengths
of the EcZorAB wild type, ZorA tail middle deletion (ZorA*%°-32), ZorA tail tip deletion
(ZorA*339-592) as measured in (f). h-j, Cryo-EM maps and resolutions of ZorA mutants with
gold standard (0.143) Fourier Shell Correlation (GSFSC) curves.
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Extended Data Figure 6. The effects of EcZorya mutations on EcZorl-mediated anti-
phage defense and long ZorA tails are conserved amongst Zorya system types in diverse
species.

a, The effects of ZorA, ZorB, ZorC and ZorD mutations on EcZorl-mediated anti-phage
defense, as measured using EOP assays with phages Bas02, Bas19 and Bas25. Data represent
the mean of at least 3 replicates and are normalized to the control samples lacking EcZorl. b,
The ZorA tail lengths found in different Zorya system types. Motor and tail lengths were
determined by inspecting the predicted structures of several representative ZorA sequences,
then inferring these lengths for the rest of the ZorA sequences through sequence alignment
(methods). The reduce sequencing bias, unique Zorya systems encoded in RefSeq (v209)
bacteria and archaea genomes were selected based on their distinct genomic context (methods).
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Extended Data Figure 7. Cryo-EM dataset processing results and functional investigation
of EcZorC.

a, Representative of the SDS gel of the purified ZorC wild type, ZorCE4004  ZorCH443A,
ZorCA€TP (deletion residues 487-560). b, Representatives of the 2D classes of the EcZorC. c,
Unsharpened Cryo-EM map of EcZorC with gold standard (0.143) Fourier Shell Correlation
(GSFSC) curves shown below. d, Local refinement of the EcZorC core domain with a soft
mask, with the local resolution (in A) estimated in cryoSPARC. e, Representative of a model
and segments of the ZorC fitted into EM density map. f, Final model of EcZorC built from
cryo-EM map. g, AlphaFold2-predicted ZorC model. h, Electrostatic distribution of EcZorC
calculated from AlphaFold2-predicted model.
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Extended Data Figure 8. Cryo-EM dataset processing results and resolutions of EcZorD
and EcZorD in complex with ATP-y-S.

a, Representative of the SDS gel of the purified ZorD wild type, ZorDcrp (residues 503-1080),
ZorDnto (residues 1-502), ZorDcerpP3VE731A and ZorDerpFe*'A. Gel is representative of at
least 3 replicates. b, Unsharpened cryo-EM map of the EcZorD apo from with gold standard
(0.143) Fourier Shell Correlation (GSFSC) curves shown below. ¢, Local refinement of the
EcZorD apo form with a soft mask. d, Cryo-EM map of EcZorD in complex with ATP-y-S. e,
Structural model of the EcZorD in complex with ATP-y-S. f, Structural comparison of the
EcZorD apo from (gray) and EcZorD in complex with ATP-y-S (light purple); the arrows
highlight the changes from apo form to the ligand-bound form. g, Zoomed-in view of the ATP-
v-S binding site, with the cryo-EM map overlayed on the ATP-y-S.
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Extended Data Figure 9. Complementation experiment between E. coli and P. aeruginosa
Zoryal.

a, Schematic representation of EcZorl, PaZorl and the constructs for PaZorCD or PaZorD
complementation of EcZorl gene deletions. b, Anti-phage defense provided by the constructs
in (a), as measured using EOP assays for phages Bas49, Bas52 and Bas57. Data represent the
mean of at least 3 replicates and are normalized to the control samples lacking Zorya.
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Extended Data Figure 10. ZorD recruitment during phage invasion at increasing MOIs
and mNeongreen localization upon phage exposure.

a, The effects of the mNeongreen (mNG) fusions to EcZorl components on anti-phage defense,
as measured using EOP assays for phages Bas02, Bas08, Bas19, Bas24, Bas25 and Bas58. Data
represent the mean of at least 3 replicates and are normalized to the control samples lacking
EcZorl. The boxed constructs (ZorB C-terminal mNG fusion: ZorB-mNG; ZorC N-terminal
mNG fusion: mNG-ZorB; ZorD C-terminal mNG fusion: ZorD-mNG) were used for
subsequent microscopy experiments. b, Exemplary denoised TIRF and brightfield microscopy
pictures of mNeongreen expression driven by the EcZorl native promoter (p-mNG) either
untreated, exposed to T4 or Bas24 at an MOI of 5 for 30 min. Scale bar 2 pm. ¢, e, Exemplary
denoised TIRF microscopy pictures of ZorD-mNG either untreated or exposed to increasing
Bas24 or T4 MOIs of 1, 5, or 50 for 30 min. d, f, Statistical comparison of ZorD-mNG maxima
between untreated and conditions stated in ¢, e. Means derive from at least three independent
biological replicates. Scale bar 2 um. Our data in e and f showed phage T4 infection did not
result in a dose-dependent ZorD-mNG response.
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Extended Data Figure 11. Structural prediction of the representative ZorAB complexes
form different Zorya system types. a, The predicted dimerized ZorB PGBDs. b, The
predicted ZorAB transmembrane motor complex. One ZorA subunit is highlighted.
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Extended Data Fig. 12. Proposed ZorA tail untwisting and phage DNA ‘reeling in’
mechanism in the activated Zorya defense system.

a, An inactive ZorAB embedded in the inner membrane. b, Phage invasion triggers ZorAB
activation. The rotation of ZorA and its long intracellular tail around ZorB causes untwisting
of the ZorA tail, which would recruit ZorC and ZorD. ¢, Reeling in of phage DNA around the
long ZorA tail in the activated Zorya defense system. Legend Discussion: The ‘reeling in’
mechanism would greatly enhance phage genome localization and sequester it from
interactions required for host infection. A typical double-stranded DNA phage genome is 10s
of um long, and would form a random coil with a radius of gyration similar to the size of the
entire cell in the absence of constraints — thus negating any advantage of a localized nuclease
defense response at the site of entry. Binding to multiple Zor complexes, perhaps via ZorC
and/or D might contribute to localizing phage DNA to the entry site. Unless and until tail
rotation is resisted, an almost inevitable consequence of tail rotation combined with DNA
binding is that the DNA will wind around the tail like wire on a reel. If ‘reeling in’ of the phage
DNA were an essential feature of the Zorya defense mechanism, this would explain the need
for both rotation and a long ZorA tail. The length of the ZorA tail is very similar to that of a
typical phage capsid into which an entire phage genome can (only just) be tightly packed,
indicating that a single Zor complex may be sufficient to capture an entire genome. Rough
calculations indicate that 100s of turns would be required to wind a 60 kb Bas24 genome onto
a 70 nm tail, allowing the rotary ZorAB motor cumulatively to supply the necessary energy to
wind and compact the phage DNA. Reeling would also tighten any loops that might form




210 | between DNA sites bound to different ZorA tails, removing any freedom for further ZorA
211 | rotation - as required by the model of activation via untwisting of the ZorA tail.




