Orally Available Small Molecule Regulates TXNIP Expression and

Glucagon Action for the Treatment of Diabetes

Zhikuan Luo^{1,2,#}, Jun Han^{1,#}, Qiong Tian^{1,2}, Ruijun Jing^{1,2}, Ao Dong³, Lingzhi Li³, Hongbin Jia¹, Tinghong Lv¹, Yunkun Dang³, Fan Lai^{3,*}, Shili Chen^{4,*}, Xusheng Ma^{2,*}, Haixue Zheng^{2,*}, Xiaolei Wang^{1,2,*}

¹State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, P. R. China

²State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

³State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China

⁴Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

⁵Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China.

Email: wangxiaolei@lzu.edu.cn, haixuezheng@163.com, maxushengtt@163.com fanlab2020@163.com, shilichen@shsmu.edu.cn,

Supporting Information Placeholder

Table of Contents

Figure S1 and Table S1·····	S2
Figure S2 to Figure S4·····	S 9
Spectra Data of the Compounds·····	S13
Chemical Synthesis Section	·S21
The HPLC trace for SKL-1201 and SKL-1223·····	S25
The Copy of NMR Data	S26

^{*}These authors contributed equally to this work

^{*}Corresponding authors

Figure S1. Outlook of structural refinement of SKL-1201 to SKL-1223

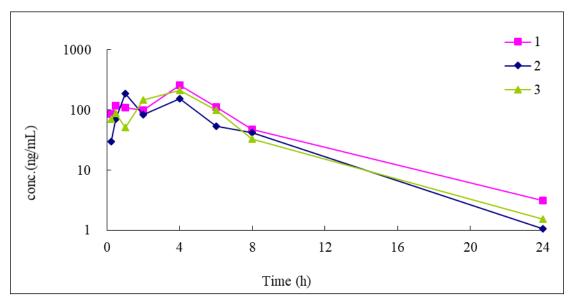
Structure Optimization of SKL-1201

Table S1. Outlook of inhibition activity of TXNIP.

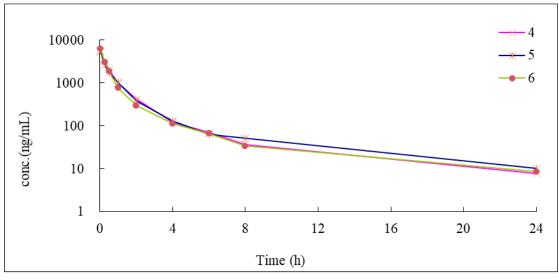
Compounds	Structure	Molecular Weight	Inhibition
SKL-1201	S H O O N	421.47	25μΜ 40%
SKL-1202	S H O N	391.45	25μΜ 10%
SKL-1203	S H O O N O N O N O N O N O N O N O N O N	391.45	25μΜ 10%

SKL-1204		391.45	25μΜ 16%
	H N		
	N O		
	N		
SKL-1205	0-N	409.44	5μM Inactive
	F		
	S N N		
	0		
SKL-1206	0-N	441.51	5μΜ 30%
	N N N N N N N N N N N N N N N N N N N		
SKL-1207	0-N	324.14	25μM Inactive
	N		
	H		
SKL-1208	Q-N	401.42	25μM Inactive
	N		
	N N N N N N N N N N N N N N N N N N N		
	MeO		
SKL-1209	0-N	439.39	25μM Inactive
	N W		
	, in the second		
	F ₃ C 0		
SKL-1210	0-N	419.87	25μM 35%
	H		
	CI		
SKL-1211	0-N	440.28	25μM 24%
	H H		
	CI		

SKL-1212	0-N	434.38	25μΜ 36%
	H O		
	Ö		
	NO ₂		
SKL-1213	0-N	396.41	25μM 40 %
	Ö		
SKL-1214	ĆN	412.40	25M 110/
SKL-1214	0-N	413.48	25μM 11%
SKL-1215	0-N,	421.46	25μM 20%
	H		
	0		
SKL-1216	0-N	375.38	IC ₅₀ 25μM
	= O		
SKL-1217	0-N	371.40	25μΜ 30%
	H		
	H		
CIVI 10:0	Ö		
SKL-1218		400 / 5	
2111 1210	0 N	438.49	25μΜ 15%
1210	O N N	438.49	25μΜ 15%
1210	H	438.49	25μΜ 15%
1210	ZIZ O D ZIZ O O	438.49	25μΜ 15%
SKL-1219	H O N	438.49 335.36	25μM 15% 25μM 70%
	H O O N		
	H O N		
	H O O N		


SKL-1220	O-N N	361.83	25μM 85% 5μM 30%
SKL-1221	O-N N	327.14	25μM 99% 5μM 62 %
SKL-1222	O-N N	341.41	5μM Inactive
SKL-1223	O-N N N	317.35	25μM 99% 5μM 99% 1μM 70% IC ₅₀ 0.4μM
SKL-1224	O-N N	347.37	5μΜ 30%
SKL-1225	O-N N N	331.38	1μΜ 15%
SKL-1226	O-N N Me	331.38	IC ₅₀ 1μM
SKL-1227	O-N N N H	331.33	1μM Inactive

SKL-1228	0-N	351.79	1μΜ	20%
	CI			
SKL-1229	O-N N OCF ₃	401.35	1μΜ	Inactive
SKL-1230	CF ₃	385.35	1μΜ	Inactive
SKL-1231	O-N N H	335.34	1μΜ	84%
SKL-1232	O-N N H	335.34	1μΜ	Inactive
SKL-1233	O-N N H	335.34	1μΜ	Inactive
SKL-1234	O-N N Me	331.38	1μΜ	Inactive
SKL-1235	O-N N Me	331.38	1μΜ	17%


SKL-1236	O-N N Me	331.38	1μΜ 34%
	, N		
SKL-1237	O-N N N	281.32	1μM Inactive
SKL-1238	N H N N N N N N N N N N N N N N N N N N	318.34	1μΜ 78%
SKL-1239	O-N N	318.34	1μΜ 66%
SKL-1240	O-N N	318.34	1μΜ 32%
SKL-1241	O-N N-O	318.34	1μΜ 63%
SKL-1242	O-N N N H	331.38	5 μM 87% 0.5μM 45%
SKL-1243	O-N N H	333.41	25μM 99% 5μM 80% 1μM 35% 0.5μM Inactive
SKL-1244	O-N N	363.44	25μM Inactive 5μM Inactive 1μM Inactive

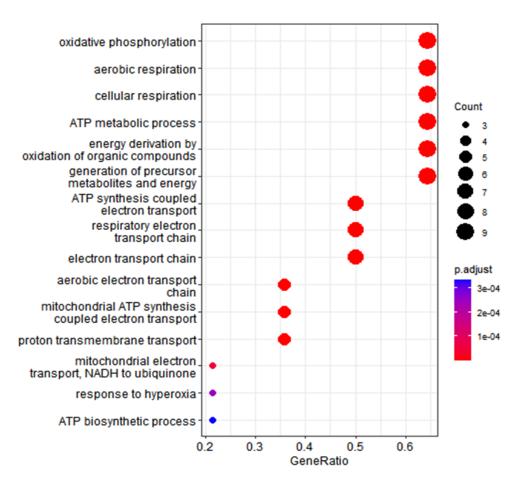
SKL-1245	0-N	334.40	5 μM 86% (cytotoxic) IC ₅₀ 0.5μM
	S H		
SKL-1246	O-N N	357.41	25μM 80% 5μM 35%
SKL-1247	HO N	343.39	5 μM 99% 0.5μM 30%
SKL-1248	O-N N	341.41	5μΜ 10%
SKL-1249	O-N N	345.38	5μΜ 17%
SKL-1250	F N N N	375.40	5μM Inactive
SKL-1251	O-N N N H	405.47	5μM Inactive
SKL-1252	N H N N N N N N N N N N N N N N N N N N	328.38	5μM Inactive
The activity w	as tested via using a dual luciferase assay.		

Figure S2. Pharmacokinetic evaluation of SKL-1223

PO dose of 10 mg/kg in Plasma

i.v. dose of 4 mg/kg in Plasma

Table S2. Pharmacokinetic data of SKL-1223


Indivi	dual and	l Mean Plas	sma Concentra	tion-Time Data o Plasma	of SKL-1223 at	ter an PO Do	ose of 10 mg	rkg⁻¹ in
Dose	Dose	Sampling		Concentration		Mean		
(mg·kg ⁻¹)	route	time		(ng/mL)		(ng/mL)	SD	CV (%)
/	/	(h)	1	2	3	/		
		0.25	84.6	29.7	70.6	61.64	28.5	46.3
		0.50	118.4	70.5	86.7	91.82	24.4	26.5
		1.00	109.3	188.8	50.9	116.32	69.2	59.5
		2.00	98.9	84.4	146.3	109.87	32.4	29.5
10	PO	4.00	257.4	154.5	210.6	207.51	51.5	24.8
		6.00	113.0	54.3	98.7	88.63	30.6	34.5
		8.00	47.0	41.9	32.8	40.60	7.2	17.7
		24.00	3.2	1.1	1.5	1.92	1.1	57.0
		/	/	/	/	/	/	/
PK Para	meters	Unit	1	2	3	Mean	SD	/
\mathbb{R}^2		NA	0.96	1.00	0.95	0.97	0.0	/
$T_{1/2}$	2	h	3.70	3.12	3.21	3.34	0.3	/
Tm	x	h	4.00	1.00	4.00	3.00	1.7	/
Cm	x	ng/mL	257.44	188.76	210.59	218.93	35.1	/
AUC	last	h*ng/mL	1485.09	1105.56	1233.97	1274.87	193.0	/
AUC)-inf	h*ng/mL	1501.89	1110.37	1241.05	1284.44	199.3	/
Vz_F_	obs	mL/kg	35530.57	40492.14	37272.41	37765.04	2517.2	/
Cl_F_	obs	mL/h/kg	6658.26	9006.04	8057.69	7907.33	1181.1	/
MRT	last	h	5.26	4.99	4.88	5.05	0.2	/
/		/	/	/	/	/	/	/
/		/	/	/	/	/	/	/

Individual and Mean Plasma Concentration-Time Data of SKL-1223 after an PO Dose of 10 $\rm mg\cdot kg^{-1}$ in Plasma

Dose	Dose	Sampling		Concentration		Mean		CV (%)
(mg·kg ⁻¹)	route	time		(ng/mL)		(ng/mL)	SD	
/	/	(h)	4	5	6	/		
		0.03	5336.9	5533.3	6141.8	5670.68	419.7	7.4
		0.25	3191.9	2662.0	3048.5	2967.43	274.1	9.2
		0.50	2070.5	1750.3	1843.8	1888.19	164.7	8.7
		1.00	987.2	1024.4	755.9	922.50	145.5	15.8
4.0	IV	2.00	415.3	379.9	291.5	362.24	63.8	17.6
		4.00	121.8	128.7	112.5	120.97	8.2	6.7
		6.00	69.6	64.1	65.8	66.48	2.8	4.3
		8.00	36.8	51.2	33.5	40.50	9.4	23.2
		24.00	7.8	10.1	8.5	8.78	1.2	13.5
PK Para		Unit	4	5	6	Mean	SD	/
R ²	2	NA	0.9324	0.9998	0.8985	0.94	0.1	/
T _{1/}	2	h	6.17	6.78	6.72	6.56	0.3	/
T _{ma}	ax	h	0.033	0.033	0.033	0.03	0.0	/
C_0)	ng/mL	5770.80	6184.64	6832.20	6262.55	535.0	/
AUC	last	h*ng/mL	4423.52	4336.54	4013.81	4257.96	215.9	/
AUC	0-inf	h*ng/mL	4492.67	4435.10	4096.06	4341.27	214.3	/
Vz_o	bs	mL/kg	7923.75	8818.19	9470.80	8737.58	776.7	/
Cl_o	bs	mL/h/kg	890.34	901.90	976.55	922.93	46.8	/
MRT	last	h	1.93	2.27	1.92	2.04	0.2	/
Vss_c	obs	mL/kg	2141.99	2676.43	2501.52	2439.98	272.5	/
/		/	/	/	/	/	/	/

 $Individual\ and\ Mean\ Plasma\ Concentration-Time\ Data\ of\ SKL-1223\ after\ an\ i.v.\ Dose\ of\ 4\ mg\cdot kg^{-1}\ in\ Plasma$

Figure S3. The transcriptome data of SKL-1223 in rat INS-1 cell.

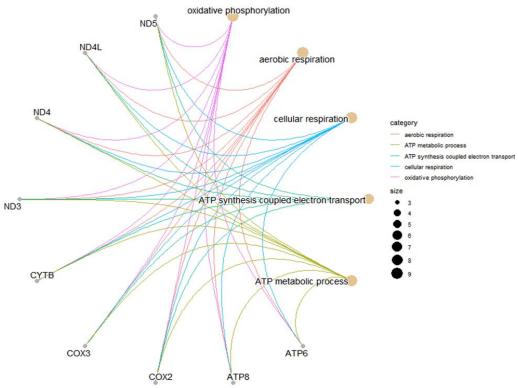



Figure S4. | SKL-1223 suppresses glucagon-induced glucose production in primary hepatocytes.

(a) Glucose release was evaluated in lactate in primary mouse hepatocytes treated with or without SKL-1223 at indicated concentrations. (b) Glucose release was evaluated in the presence of lactate (10 nM) and glucagon (100 nM) in primary mouse hepatocytes treated with or without SKL-1223 at indicated concentrations. (c) Glucose release was evaluated in lactate in TXNIP-/- primary mouse hepatocytes treated with or without SKL-1223 at indicated concentrations. (d) Glucose release was evaluated in the presence of lactate (10 nM) and glucagon (100 nM) in TXNIP-/- primary mouse hepatocytes treated with or without SKL-1223 at indicated concentrations. (e) Glucose release was evaluated in the presence of lactate (10 nM) and glucagon (100 nM) in GcgR-/- primary mouse hepatocytes treated with or without SKL-1223 at indicated concentrations.

(f-g) Quantification of Pck1 and G6pc genes expression using qPCR in GcgR-/- primary mouse hepatocytes in the presence of glucagon treated with SKL-1223. The experiments were independently repeated three times (n = 3), statistics were analyzed using an unpaired Student's t test: *, P < 0.05; ***, P < 0.01; ****, P < 0.001. Data are mean \pm SD.

Table S3. Data analysis of SKL-1201~SKL-1252

Compounds	NMRs	MS spectrum
SKL-1201	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.86 (t, J = 5.6 Hz, 1H), 8.12 (d,	[M+H] 422.2
	J = 8.8 Hz, 2H, 8.01 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 4.4 Hz, 1H),	
	7.20 (d, $J = 8.8$ Hz, 2H), 7.13 (d, $J = 8.7$ Hz, 2H), 6.99 (d, $J = 3.4$	
	Hz, 1H), 6.95 (t, $J = 8.0$ Hz, 1H), 4.69 (s, 2H), 4.52 (d, $J = 5.8$ Hz,	
	2H), 3.84 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 174.9, 167.8, 167.0, 161.7,	
	161.4, 142.0, 129.8, 128.8, 126.6, 125.6, 125.1, 118.6, 116.4, 115.7,	
	114.6, 66.9, 55.4, 37.0.	
SKL-1202	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.86 (t, J = 5.9 Hz, 1H), 8.14 (d,	[M + H] 392.1
	J = 8.9 Hz, 2H, 8.08 (dd, J = 7.5, 2.0 Hz, 2H), 7.64 - 7.56 (m, 3H),	
	7.39 (dd, $J = 5.0$, 1.2 Hz, 1H), 7.21 (d, $J = 8.9$ Hz, 2H), 6.99 (d, J	
	= 2.4 Hz, 1H), 6.95 (dd, J = 5.0, 3.4 Hz, 1H), 4.69 (s, 2H), 4.52 (d,	
	J = 6.0 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 167.0, 161.6,	
	142.1, 131.6, 129.9, 129.3, 127.1, 126.7, 126.3, 125.6, 125.2, 116.3,	
	115.8, 66.9, 37.0.	
SKL-1203	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.89 (t, J = 5.9 Hz, 1H), 8.09	[M + H] 392.1
	(dd, J = 7.5, 1.7 Hz, 2H), 7.79 (d, J = 7.7 Hz, 1H), 7.74 (s, 1H),	
	7.66 - 7.55 (m, 4H), $7.39 - 7.30$ (m, 2H), 6.98 (d, $J = 2.7$ Hz, 1H),	
	6.92 (dd, $J = 5.0$, 3.5 Hz, 1H), 4.69 (s, 2H), 4.53 (d, $J = 6.0$ Hz,	
	2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.3, 167.2, 158.1,	
	142.1, 131.7, 130.9, 129.3, 127.1, 126.6, 126.1, 125.5, 125.0,	
	124.4, 120.8, 119.8, 114.0, 67.0, 36.9.	
SKL-1204	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.78 (t, $J = 6.0$ Hz, 1H), 8.12	[M + H] 392.1
	(dd, J = 8.1, 1.5 Hz, 1H), 8.03 (d, J = 7.0 Hz, 2H), 7.68 (t, J = 7.9)	
	Hz, 1H), $7.64 - 7.52$ (m, 3H), 7.35 (d, $J = 4.7$ Hz, 1H), 7.24 (dd, J	
	= 17.1, 8.2 Hz, 2H), 6.90 (dd, J = 5.0, 3.5 Hz, 1H), 6.85 (d, J = 3.0	
	Hz, 1H), 4.82 (s, 2H), 4.57 (d, $J = 6.1$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 174.2, 167.9, 167.3, 156.1,	
	141.8, 134.9, 131.6, 130.9, 129.3, 127.1, 126.7, 126.3, 125.3,	
	125.1, 121.8, 114.3, 112.4, 67.5, 37.0.	
SKL-1205	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.86 (t, J = 6.0 Hz, 1H), 8.18 –	[M + H] 410.1
	8.08 (m, 4H), 7.43 (t, $J = 8.9$ Hz, 2H), 7.39 (dd, $J = 5.0$, 1.3 Hz,	
	1H), 7.21 (d, $J = 9.0$ Hz, 2H), 6.99 (dd, $J = 3.3$, 1.1 Hz, 1H), 6.95	
	(dd, J = 5.0, 3.4 Hz, 1H), 4.69 (s, 2H), 4.52 (d, J = 6.0 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.3, 167.4, 167.0, 164.0 (d, J	
	= 248.8 Hz), 161.6, 142.0, 129.9, 129.6 (d, J = 9.0 Hz), 126.7,	

	125.6, 125.1, 122.9 (d, <i>J</i> = 3.2 Hz), 116.4 (d, <i>J</i> = 22.2 Hz), 116.2,	
	115.8, 66.9, 37.0.	
SKL-1206	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.91 – 8.80 (m, 2H), 8.31 (dd, J	[M+H] 442.1
SKE 1200	= 7.2, 1.0 Hz, 1H), 8.20 (d, $J = 8.9 Hz, 3H), 8.09 (d, J = 7.7 Hz, 3H)$	[141/11] 1/12.1
	1H), 7.71 (t, 2H), 7.70 – 7.61 (m, 1H), 7.40 (dd, $J = 5.0$, 1.2 Hz,	
	1H), 7.24 (d, J = 8.9 Hz, 2H), 6.99 (d, J = 2.4 Hz, 1H), 6.96 (dd, J	
	= 5.0, 3.5 Hz, 1H), 4.71 (s, 2H), 4.53 (d, J = 6.0 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 174.4, 168.6, 167.0, 161.6,	
	142.1, 133.5, 132.0, 130.0, 129.9, 129.4, 128.9, 127.8, 126.7,	
	126.6, 125.7, 125.6, 125.4, 125.2, 123.2, 116.3, 115.8, 66.9, 37.0.	
SKL-1207	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.19 (s, 1H), 8.16 (d, $J = 8.9$	[M+H] 372.2
	Hz, 2H), 8.08 (dd, $J = 7.5$, 2.0 Hz, 2H), 7.67 – 7.54 (m, 5H), 7.33	[5:5 55] 6 / 2.2
	(t, J = 7.9 Hz, 2H), 7.26 (d, J = 8.9 Hz, 2H), 7.09 (t, J = 7.4 Hz,	
	1H), 4.87 (s, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.3, 168.2, 165.2, 161.8,	
	138.4, 131.6, 130.0, 129.3, 128.8, 127.1, 126.3, 123.8, 119.7, 116.3,	
	115.7, 67.1, 40.2, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9.	
SKL-1208	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.04 (s, 1H), 8.16 (d, J = 8.9	[M + H] 402.1
	Hz, 2H), 8.09 (dd, $J = 7.5$, 2.0 Hz, 2H), $7.65 - 7.55$ (m, 3H), 7.55	
	(d, J = 9.1 Hz, 2H), 7.26 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 9.1 Hz,	
	2H), 4.83 (s, 2H), 3.73 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.1, 165.4, 161.7,	
	155.6, 131.6, 131.4, 129.9, 129.2, 127.1, 126.3, 121.4, 116.3, 115.7,	
	113.9, 67.1, 55.2.	
SKL-1209	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.64 (s, 1H), 8.16 (d, $J = 8.9$	[M + H] 440.2
	Hz, 2H), $8.12 - 8.05$ (m, 2H), 7.87 (d, $J = 8.5$ Hz, 2H), 7.70 (d, $J =$	
	8.6 Hz, 2H), $7.65 - 7.55$ (m, 3H), 7.26 (d, $J = 9.0$ Hz, 2H), 4.93 (s,	
	2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 166.6, 161.7,	
	142.0, 131.6, 130.0, 129.3, 127.1, 126.3, 126.1 (d, $J = 4.0$ Hz),	
	123.7 (d, $J = 32.0$ Hz), 119.6, 116.4, 115.7, 115.5, 67.0.	
SKL-1210	¹ H NMR (400 MHz, d_6 -DMSO) δ 9.68 (s, 1H), 8.18 (d, J = 8.8 Hz,	[M + H] 420.2
	2H), 8.10 (dd, $J = 7.4$, 1.9 Hz, 2H), 7.65 – 7.57 (m, 3H), 7.46 (d, J	
	= 8.5 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.31 - 7.23 (m, 3H), 4.92	
	(s, 2H), 2.21 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 166.2, 161.6,	
	134.6, 134.5, 131.6, 130.0, 129.9, 129.5, 129.2, 127.1, 126.8,	
	126.3, 125.9, 116.4, 115.8, 67.0, 17.5.	
SKL-1211	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.23 (s, 1H), 8.19 (d, $J = 8.7$	[M + H] 441.0
	Hz, 2H), 8.09 (dd, $J = 7.5$, 1.9 Hz, 2H), $7.65 - 7.52$ (m, 5H), 7.38	
	(t, J = 8.1 Hz, 1H), 7.29 (d, J = 8.8 Hz, 2H), 4.94 (s, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 166.4, 161.5,	
	133.9, 132.2, 131.6, 129.9, 129.6, 129.3, 128.6, 127.1, 126.3, 116.5,	
	115.9, 66.7, 40.2, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9.	

CIVI 1616	Transport (400) (17) 1 7) (200) (17) (17) (17) (17)	D. F
SKL-1212	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.49 (s, 1H), 8.92 (dd, J = 6.4,	[M+H] 435.2
	2.6 Hz, 1H), 8.16 (d, <i>J</i> = 8.7 Hz, 2H), 8.13 – 8.04 (m, 3H), 7.60 (d,	
	J = 7.3 Hz, 4H), 7.25 (d, $J = 8.7 Hz$, 2H), 5.03 (s, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.2, 168.1, 167.1, 161.6,	
	156.8 (d, $J = 256.3$ Hz), 143.7, 131.6, 130.0, 129.2, 127.1, 126.7	
	(d, $J = 13.3$ Hz), 126.3, 121.0 (d, $J = 9.5$ Hz), 118.6, 116.8 (d, $J =$	
	22.4 Hz), 116.4, 115.6, 66.7.	
SKL-1213	¹ H NMR (600 MHz, d_6 -DMSO) δ 10.52 (s, 1H), 8.16 (d, $J = 8.9$	[M + H] 397.2
	Hz, 2H), 8.12 (s, 1H), 8.08 (dd, $J = 7.9$, 1.6 Hz, 2H), $7.92 - 7.87$	
	(m, 1H), 7.64 - 7.51 (m, 5H), 7.27 (d, J = 8.9 Hz, 2H), 4.91 (s, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.2, 168.2, 166.7, 161.6,	
	139.1, 131.6, 130.3, 130.0, 129.3, 127.4, 127.1, 126.3, 124.3,	
	122.4, 118.6, 116.4, 115.8, 111.6, 67.0.	
SKL-1214	¹ H NMR (400 MHz, d_6 -DMSO) δ 9.51 (s, 1H), 8.18 (d, J = 8.9 Hz,	[M + H] 414.2
	2H), 8.09 (dd, $J = 7.5$, 2.0 Hz, 2H), $7.67 - 7.55$ (m, 3H), 7.29 (d, J	
	= 8.9 Hz, 2H), 6.88 (s, 2H), 4.88 (s, 2H), 2.22 (s, 3H), 2.09 (s, 6H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 165.9, 161.7,	
	135.7, 135.0, 131.6, 131.6, 129.9, 129.3, 128.3, 127.1, 126.3, 116.3,	
	115.8, 67.0, 20.5, 18.0.	
SKL-1215	¹ H NMR (400 MHz, d ₆ -DMSO) δ 10.40 (s, 1H), 8.33 (s, 1H), 8.18	[M + H] 422.3
	(d, J = 8.8 Hz, 2H), 8.09 (dd, J = 7.4, 1.9 Hz, 2H), 7.90 (d, J = 8.9)	
	Hz, 1H), 7.84 (t, $J = 8.4$ Hz, 2H), 7.67 (dd, $J = 8.8$, 1.9 Hz, 1H),	
	7.66 - 7.53 (m, 3H), 7.48 (t, $J = 7.0$ Hz, 1H), 7.42 (t, $J = 6.9$ Hz,	
	1H), 7.30 (d, <i>J</i> = 8.9 Hz, 2H), 4.95 (s, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 166.2, 161.8,	
	135.9, 133.3, 131.6, 130.0, 129.3, 128.4, 127.5, 127.4, 127.1,	
	126.5, 126.3, 124.8, 120.2, 116.3, 115.9, 115.8, 67.1.	
SKL-1216	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.71 (t, J = 5.7 Hz, 1H), 8.14 (d,	[M+H] 376.2
	J = 8.9 Hz, 2H), $8.08 (dd, J = 7.5, 2.0 Hz, 2H$), $7.66 - 7.55 (m, 4H)$,	
	7.21 (d, $J = 8.9$ Hz, 2H), 6.39 (dd, $J = 3.0$, 1.9 Hz, 1H), 6.25 (d, J	
	= 2.5 Hz, 1H), 4.69 (s, 2H), 4.35 (d, J = 5.8 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.1, 167.0, 161.6,	
	152.0, 142.1, 131.6, 129.9, 129.2, 127.1, 126.3, 116.3, 115.7, 110.5,	
	107.0, 66.9, 35.3.	
SKL-1217	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.76 (t, J = 5.9 Hz, 1H), 8.15 (d,	[M+H] 386.2
	J = 8.8 Hz, 2H, 8.09 (dd, J = 7.4, 1.9 Hz, 2H), 7.64 - 7.57 (m, 3H),	
	7.34 - 7.21 (m, 7H), 4.72 (s, 2H), 4.37 (d, $J = 6.1$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 167.2, 161.6,	
	139.2, 131.6, 129.9, 129.3, 128.3, 127.3, 127.1, 126.8, 126.3, 116.3,	
	115.8, 67.0, 41.9.	
SKL-1218	¹ H NMR (400 MHz, d_6 -DMSO) δ 10.83 (s, 1H), 8.30 (t, $J = 5.8$	[M+H] 439.2
	Hz, 1H), 8.14 (d, $J = 8.6$ Hz, 2H), 8.09 (dd, $J = 8.0$, 4 Hz, 2H), 7.65	•
	-7.52 (m, 4H), 7.34 (d, $J = 8.0$ Hz, 1H), 7.18 (d, $J = 8.8$ Hz, 2H),	
	7.16 (s, 1H), 7.07 (t, $J = 7.4$ Hz, 1H), 6.98 (t, $J = 7.3$ Hz, 1H), 4.63	
	(, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	

	(ATD A 44 (T. COTT ATT) A 20 (T.	
	(s, 2H), 3.44 (q, $J = 6.9$ Hz, 2H), 2.88 (t, $J = 7.2$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.1, 166.9, 161.6,	
	136.2, 131.6, 129.9, 129.2, 127.2, 127.1, 126.3, 122.7, 120.9, 118.2,	
	116.3, 115.7, 111.6, 111.4, 67.0, 25.1.	
SKL-1219	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.24 (d, J = 3.8 Hz, 1H), 8.14 (d,	[M + H] 336.2
	J = 8.9 Hz, 2H, 8.09 (dd, J = 7.5, 2.0 Hz, 2H), 7.64 - 7.57 (m, 3H),	
	7.19 (d, $J = 8.9$ Hz, 2H), 4.59 (s, 2H), 2.70 (tt, $J = 7.8$, 4.0 Hz, 1H),	
	0.68 – 0.61 (m, 2H), 0.52 – 0.44 (m, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.3, 168.2, 168.1, 161.7,	
	131.6, 129.9, 129.3, 127.1, 126.3, 116.2, 115.7, 66.9, 22.2, 5.6.	
SKL-1220	¹ H NMR (600 MHz, CDCl ₃) δ 8.18 – 8.13 (m, 2H), 8.02 (d, J = 8.8	[M+H] 362.2
	Hz, 2H), $7.52 - 7.47$ (m, 3H), 7.34 (d, $J = 8.5$ Hz, 2H), 7.30 (d, $J =$	
	8.5 Hz, 2H), 6.68 (d, $J = 8.8$ Hz, 2H), 4.60 (t, $J = 5.4$ Hz, 1H), 4.41	
	(d, J = 5.6 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.8, 152.5, 138.3,	
	131.4, 131.4, 129.6, 129.2, 129.0, 128.4, 127.0, 126.7, 112.2, 110.0,	
	45.0.	
SKL-1221	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 (dd, J = 6.6, 3.2 Hz, 2H), 8.02	[M+H] 328.2
	(d, J = 8.8 Hz, 2H), 7.55 – 7.45 (m, 3H), 7.43 – 7.28 (m, 5H), 6.71	
	(d, J = 8.8 Hz, 2H), 4.60 (t, J = 5.4 Hz, 1H), 4.43 (d, J = 5.4 Hz, 1H)	
	2H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.2, 168.8, 151.6, 138.3, 131.0,	
	130.2, 129.0, 128.9, 127.8, 127.6 (two carbons), 113.1, 112.5, 77.4,	
	47.8.	
SKL-1222	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 (dd, J = 6.6, 3.2 Hz, 2H), 8.02	[M+H] 342.2
	(d, J = 8.8 Hz, 2H), 7.54 - 7.44 (m, 3H), 7.26 (d, J = 15.0 Hz, 1H),	
	7.21 - 7.09 (m, 3H), 6.71 (d, $J = 8.8$ Hz, 2H), 4.56 (t, $J = 5.3$ Hz,	
	1H), 4.38 (d, $J = 5.5$ Hz, 2H), 2.36 (s, 3H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.3, 168.7, 151.7, 137.5, 135.2,	
	131.0, 130.1, 129.6, 128.9, 127.6 (two carbons), 113.0, 112.5, 77.4,	
	47.6, 21.2.	
SKL-1223	¹ H NMR (600 MHz, d_6 -DMSO) δ 8.06 (dd, $J = 7.8$, 1.7 Hz, 2H),	[M+H] 318.2
	7.89 (d, $J = 8.8$ Hz, 2H), $7.62 - 7.54$ (m, 4H), 7.20 (t, $J = 5.9$ Hz,	
	1H), 6.83 (d, <i>J</i> = 8.9 Hz, 2H), 6.41 (dd, <i>J</i> = 3.1, 1.8 Hz, 1H), 6.36	
	(d, J = 3.1 Hz, 1H), 4.38 (d, J = 5.9 Hz, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 176.0, 167.9, 152.4, 152.2,	
	142.3, 131.4, 129.5, 129.2, 127.0, 126.7, 112.2, 110.5, 110.1, 107.4,	
	39.2.	
SKL-1224	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.99 (d, J = 8.9 Hz, 2H), 7.88 (d,	[M+H] 348.2
	J = 8.8 Hz, 2H, 7.60 (dd, J = 1.7, 0.7 Hz, 1H), 7.20 (t, J = 5.9 Hz,	
	1H), 7.11 (d, $J = 8.9$ Hz, 2H), 6.82 (d, $J = 8.9$ Hz, 2H), 6.41 (dd, J	
	= 3.1, 1.9 Hz, 1H), 6.36 (d, J = 2.9 Hz, 1H), 4.37 (d, J = 5.9 Hz,	
	2H), 3.84 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.6, 167.5, 161.6, 152.4,	

	152.3, 142.3, 129.5, 128.7, 119.0, 114.6, 112.2, 110.5, 110.2, 107.4,	
	55.4, 39.2.	
SKL-1225	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.06 (dd, J = 7.4, 2.2 Hz, 2H),	[M+H] 332.2
SKL-1223	7.89 (d, $J = 8.8$ Hz, 2H), $7.62 - 7.54$ (m, 3H), 7.17 (t, $J = 5.8$ Hz,	[141+11] 332.2
	1H), 6.83 (d, $J = 8.8$ Hz, 2H), 6.22 (d, $J = 2.9$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 1H), 6.00 (d, $J = 3.8$ Hz, 2H), 6.22 (d, $J = 3.8$ Hz, 2H), 6.23 (d, $J = 3.8$ Hz, 2H), 6.23 (d, $J = 3.8$ Hz, 2H), 6.24 (d, $J = 3.8$ Hz, 2H), 6.25 (d, $J = 3.8$ Hz, 2	
	2.8 Hz, 1H), 4.30 (d, <i>J</i> = 5.8 Hz, 2H), 2.23 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.8, 152.4, 150.8,	
	150.3, 131.3, 129.5, 129.2, 127.0, 126.7, 112.1, 110.0, 108.2, 106.4,	
	39.2, 13.3.	
SKL-1226	¹ H NMR (600 MHz, d_6 -DMSO) δ 8.06 (dd, J = 7.5, 1.5 Hz, 2H),	[M+H] 332.2
SKE 1220	7.96 (d, $J = 9.0 \text{ Hz}$, 2H), 7.62 – 7.54 (m, 4H), 7.00 (d, $J = 9.0 \text{ Hz}$,	[141+11] 552.2
	2H), 6.39 (dd, $J = 3.0$, 1.8 Hz, 1H), 6.35 (d, $J = 3.0$ Hz, 1H), 4.67	
	(s, 2H), 3.09 (s, 3H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.8, 167.9, 152.1, 151.2,	
	142.6, 131.3, 129.3, 129.1, 127.0, 126.6, 112.2, 110.3, 110.2, 107.9,	
	47.9, 38.1.	
SKL-1227	¹ H NMR (600 MHz, d_6 -DMSO) δ 10.60 (s, 1H), 8.18 (d, J = 8.8	[M+H] 332.2
	Hz, 2H), 8.09 (dd, $J = 7.8$, 1.7 Hz, 2H), 8.07 (d, $J = 8.8$ Hz, 2H),	[1,1,11] 332.2
	7.99 (dd, $J = 1.6$, 0.7 Hz, 1H), 7.65 – 7.57 (m, 3H), 7.43 (dd, $J =$	
	3.5, 0.8 Hz, 2H 1H), 6.74 (dd, <i>J</i> = 3.5, 1.7 Hz, 1H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.2, 168.2, 156.5, 147.0,	
	146.3, 143.2, 131.6, 129.3, 128.9, 127.1, 126.3, 120.3, 118.1, 115.6,	
	112.4.	
SKL-1228	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.06 (dd, $J = 7.5$, 2.2 Hz, 2H),	[M+H] 352.1
	7.90 (d, $J = 8.9$ Hz, 2H), $7.63 - 7.53$ (m, 3H), 7.24 (br, 1H), 6.84	. ,
	(d, $J = 8.9$ Hz, 2H), 6.48 (d, $J = 3.3$ Hz, 1H), 6.41 (d, $J = 3.3$ Hz,	
	1H), 4.36 (s, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.9, 167.8, 152.4, 152.1,	
	133.7, 131.3, 129.5, 129.1, 127.0, 126.6, 112.2, 110.4, 110.1, 107.4,	
	39.1.	
SKL-1229	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.17 (d, J = 8.8 Hz, 2H), 7.89 (d,	[M+H] 402.2
	J = 8.8 Hz, 2H), 7.60 (dd, $J = 1.9, 0.8 Hz, 1H$), 7.57 (d, $J = 8.0 Hz$,	
	2H), 7.24 (t, $J = 5.9$ Hz, 1H), 6.83 (d, $J = 8.9$ Hz, 2H), 6.41 (dd, J	
	= 3.1, 1.9 Hz, 1H), 6.36 (d, J = 3.3 Hz, 1H), 4.38 (d, J = 5.8 Hz,	
	2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.2, 166.9, 152.5, 152.2,	
	150.3, 142.3, 129.6, 129.2, 125.9, 121.6, 120.0 (d, <i>J</i> = 257.1 Hz),	
	112.2, 110.5, 109.9, 107.4, 39.2.	
SKL-1230	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.25 (d, J = 8.1 Hz, 2H), 7.93 (d,	[M+H] 386.2
	J = 8.3 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.60 (dd, J = 1.7, 0.8 Hz,	
	1H), 7.25 (t, $J = 5.9$ Hz, 1H), 6.83 (d, $J = 8.9$ Hz, 2H), 6.41 (dd, J	
	= 3.1, 1.9 Hz, 1H), 6.36 (d, J = 3.1 Hz, 1H), 4.38 (d, J = 5.8 Hz,	
	2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.4, 166.9, 152.4 (d, J = 39.0	

	Hz), 142.3, 131.2 (d, <i>J</i> = 32.0 Hz), 130.6, 129.6, 127.8, 126.1 (q, <i>J</i>	
	= 3.7 Hz), 125.2, 122.5, 112.2, 110.4, 109.8, 107.4, 39.2.	
SKL-1231	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.08 (td, $J = 7.7$, 1.7 Hz, 1H),	[M+H] 336.2
	7.89 (d, $J = 8.8$ Hz, 2H), 7.69 – 7.62 (m, 1H), 7.60 (dd, $J = 1.8$, 0.8	
	Hz, 1H), $7.49 - 7.38$ (m, 2H), 7.23 (t, $J = 5.9$ Hz, 1H), 6.84 (d, $J =$	
	8.9 Hz, 2H), 6.41 (dd, $J = 3.2$, 1.8 Hz, 1H), 6.36 (dd, 1H), 4.38 (d,	
	J = 5.9 Hz, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.9, 167.8, 152.4, 152.1,	
	133.7, 131.3, 129.5, 129.1, 127.0, 126.5, 112.2, 110.4, 110.1, 107.4,	
	39.1.	
SKL-1232	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.92 – 7.87 (m, 3H), 7.78 (ddd,	[M+H] 336.2
	J = 9.6, 2.5, 1.4 Hz, 1H), 7.67 - 7.61 (m, 1H), 7.60 (dd, J = 1.8, 0.8	
	Hz, 1H), 7.45 (tdd, $J = 8.4$, 2.7, 0.9 Hz, 1H), 7.23 (t, $J = 5.9$ Hz,	
	1H), 6.83 (d, <i>J</i> = 8.9 Hz, 2H), 6.41 (dd, <i>J</i> = 3.2, 1.8 Hz, 1H), 6.36	
	(dd, J = 3.2, 0.7 Hz, 1H), 4.38 (d, J = 5.9 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.2, 167.0 (d, $J = 3.0$ Hz),	
	163.5, 161.1, 152.4 (d, $J = 32.7$ Hz), 142.3, 131.5 (d, $J = 8.4$ Hz),	
	129.6, 128.9 (d, $J = 8.5$ Hz), 123.2 (d, $J = 2.8$ Hz), 118.3 (d, $J =$	
	21.2 Hz), 113.6 (d, <i>J</i> = 23.5 Hz), 112.2, 110.4, 109.9, 107.4, 39.2.	
SKL-1233	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.10 (ddd, J = 8.4, 5.3, 2.5 Hz,	[M+H] 336.2
	2H), 7.89 (d, <i>J</i> = 8.8 Hz, 2H), 7.60 (dd, <i>J</i> = 1.8, 0.8 Hz, 1H), 7.41	
	(t, J = 8.9 Hz, 2H), 7.22 (t, J = 5.9 Hz, 1H), 6.83 (d, J = 8.9 Hz,	
	2H), 6.41 (dd, <i>J</i> = 3.2, 1.8 Hz, 1H), 6.36 (dd, <i>J</i> = 3.2, 0.8 Hz, 1H),	
	4.38 (d, J = 5.9 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.0, 167.0, 165.1, 162.6,	
	152.4, 152.2, 142.3, 129.6, 129.5, 129.5, 123.2 (d, <i>J</i> = 3.2 Hz),	
	116.3 (d, <i>J</i> = 22.1 Hz), 112.2, 110.4, 110.0, 107.4, 39.2.	
SKL-1234	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.94 (d, J = 8.1 Hz, 2H), 7.88 (d,	[M+H] 332.2
	J = 8.8 Hz, 2H, 7.60 (dd, J = 1.8, 0.8 Hz, 1H), 7.38 (d, J = 8.0 Hz,	
	2H), 7.20 (t, $J = 5.9$ Hz, 1H), 6.83 (d, $J = 8.9$ Hz, 2H), 6.41 (dd, J	
	= 3.2, 1.9 Hz, 1H), 6.36 (d, J = 3.2 Hz, 1H), 4.37 (d, J = 5.9 Hz,	
	2H), 2.39 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.8, 167.8, 152.4, 152.2,	
	142.3, 141.2, 129.7, 129.4, 126.9, 123.9, 112.1, 110.4, 110.2, 107.4,	
	39.2, 21.1.	
SKL-1235	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.89 (d, J = 8.9 Hz, 3H), 7.85 (d,	[M+H] 332.2
	J = 7.6 Hz, 1H, 7.60 (dd, J = 1.7, 0.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1Hz)	. ,
	1H), 7.40 (d, $J = 7.7$ Hz, 1H), 7.21 (t, $J = 5.8$ Hz, 1H), 6.83 (d, $J =$	
	8.9 Hz, 2H), 6.41 (dd, <i>J</i> = 3.2, 1.9 Hz, 1H), 6.36 (d, <i>J</i> = 2.7 Hz, 1H),	
	4.38 (d, <i>J</i> = 5.7 Hz, 2H), 2.41 (s, 3H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.9, 167.9, 152.4, 152.3,	
SKL-1236	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.97 (dd, J = 7.6, 1.3 Hz, 1H),	[M+H] 332.2
SVI 1224	142.3, 138.6, 132.0, 129.5, 129.1, 127.4, 126.6, 124.2, 112.2, 110.5, 110.2, 107.4, 39.2, 20.9.	[M±H1 222 2
-ILL 1230	11. 11. (100 mile, 40 mile) 0 1.57 (dd, 5 1.0, 1.3 mil, 111),	[111.11] 552.2

	7.89 (d, $J = 8.9$ Hz, 2H), 7.60 (dd, $J = 1.8$, 0.9 Hz, 1H), 7.46 (td, J	
	= 7.5, 1.4 Hz, 1H), 7.44 - 7.33 (m, 2H), 7.19 (t, J = 5.9 Hz, 1H),	
	6.83 (d, $J = 8.9$ Hz, 2H), 6.41 (dd, $J = 3.2$, 1.8 Hz, 1H), 6.36 (dd, J	
	= 3.2, 0.8 Hz, 1H), 4.38 (d, J = 5.9 Hz, 2H), 2.58 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.4, 169.0, 152.8, 152.7,	
	142.8, 137.9, 131.8, 131.1, 130.2, 129.9, 126.6, 126.5, 112.6, 110.9,	
	110.6, 107.8, 39.6, 22.0.	
SKL-1237	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.74 (d, J = 8.6 Hz, 2H), 7.59 (s,	[M+H] 282.2
	1H), 7.12 (t, $J = 5.7$ Hz, 1H), 6.77 (d, $J = 8.7$ Hz, 2H), 6.39 (t, $J =$	
	2.5 Hz, 1H), 6.34 (d, $J = 2.7$ Hz, 1H), 4.34 (d, $J = 5.8$ Hz, 2H), 2.09	
	(tt, J = 8.4, 4.9 Hz, 1H), 1.10 - 1.01 (m, 2H), 1.00 - 0.87 (m, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.1, 172.0, 152.3, 152.2,	
	142.3, 129.2, 112.1, 110.4, 110.3, 107.3, 39.2, 7.3, 6.5.	
SKL-1238	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.35 (s, 1H), 8.14 – 8.00 (m,	[M + H] 319.2
	3H), 7.89 (d, $J = 8.8$ Hz, 2H), 7.63 – 7.52 (m, 3H), 7.16 (t, $J = 5.8$	
	Hz, 1H), 6.83 (d, $J = 8.9$ Hz, 2H), 4.29 (d, $J = 5.7$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.0, 167.8, 152.5, 152.3,	
	137.4, 136.3, 131.4, 129.5, 129.2, 127.0, 126.7, 112.2, 110.1, 38.2.	
SKL-1239	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.32 (s, 1H), 8.06 (dd, $J = 7.3$,	[M + H] 319.1
	1.9 Hz, 2H), 7.91 (d, $J = 8.7$ Hz, 2H), 7.63 – 7.53 (m, 3H), 7.25 (t,	
	J = 5.9 Hz, 1H, 7.13 (s, 1H), 6.85 (d, J = 8.8 Hz, 2H), 4.48 (d, J = 8.8 Hz, 2H)	
	5.9 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.9, 152.1, 151.8,	
	149.4, 131.4, 129.5, 129.2, 127.0, 126.7, 123.7, 112.2, 110.5, 36.8.	
SKL-1240	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.13 – 8.01 (m, 3H), 7.91 (d, J	[M + H] 319.2
	= 8.8 Hz, 2H), 7.64 - 7.52 (m, 3H), 7.38 (t, J = 6.2 Hz, 1H), 7.18	
	(s, 1H), 6.84 (d, $J = 8.8$ Hz, 2H), 4.55 (d, $J = 6.2$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.9, 161.5, 152.2,	
	140.0, 131.4, 129.5, 129.2, 127.0, 127.0, 126.6, 112.3, 110.7, 39.4.	
SKL-1241	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.51 (s, 1H), 8.06 (dd, 2H), 7.92	[M + H] 319.2
	(d, J = 8.6 Hz, 2H), 7.64 - 7.52 (m, 3H), 7.39 (t, J = 6.0 Hz, 1H),	
	6.84 (d, J = 8.6 Hz, 2H), 6.41 (s, 1H), 4.61 (d, J = 6.0 Hz, 2H).	
	¹³ C NMR (151 MHz, d_6 -DMSO) δ 175.9, 169.5, 167.9, 152.1,	
	150.9, 131.4, 129.6, 129.2, 127.0, 126.6, 112.4, 110.8, 101.8, 38.0.	
SKL-1242	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 (dd, J = 6.7, 3.0 Hz, 2H), 8.06	[M+H] 332.3
	(d, J = 8.7 Hz, 2H), 7.54 - 7.45 (m, 3H), 7.02 (d, J = 1.0 Hz, 1H),	
	6.91 (d, J = 1.1 Hz, 1H), 6.80 (d, J = 8.8 Hz, 2H), 5.12 (s, 1H), 4.41	
	(d, J = 4.6 Hz, 2H), 3.68 (s, 3H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.2, 168.8, 151.2, 144.1, 131.0,	
	130.1, 128.9, 127.6 (two carbons), 127.5, 121.9, 113.5, 112.7, 40.3,	
	32.7.	
SKL-1243	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.06 (dd, $J = 7.4$, 2.2 Hz, 2H),	[M + H] 334.1
	7.89 (d, $J = 8.8$ Hz, 2H), 7.64 – 7.52 (m, 3H), 7.40 (dd, $J = 5.1$, 1.2	
	Hz, 1H), 7.36 (t, $J = 5.7$ Hz, 1H), 7.09 (dd, 1H), 6.99 (dd, $J = 5.0$,	

	3.5 Hz, 1H), 6.82 (d, $J = 8.9$ Hz, 2H), 4.58 (d, $J = 5.9$ Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.8, 152.3, 142.9,	
	131.4, 129.5, 129.2, 127.0, 126.9, 126.7, 125.3, 124.9, 112.3, 110.2,	
	41.2.	
SKL-1244	¹ H NMR (400 MHz, d_6 -DMSO) δ 7.99 (d, J = 8.9 Hz, 2H), 7.87 (d,	[M + H] 364.1
	J = 8.8 Hz, 2H), 7.40 (dd, J = 5.1, 1.2 Hz, 1H), 7.34 (t, J = 5.9 Hz,	
	1H), $7.15 - 7.06$ (m, 3H), 6.99 (dd, $J = 5.0$, 3.5 Hz, 1H), 6.81 (d, J	
	= 8.9 Hz, 2H), 4.58 (d, J = 5.9 Hz, 2H), 3.83 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.6, 167.5, 161.6, 152.2,	
	142.9, 129.5, 128.7, 126.9, 125.3, 124.9, 119.0, 114.6, 112.3, 110.4,	
	55.4, 41.2.	
SKL-1245	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.05 (dd, $J = 7.5$, 2.1 Hz, 2H),	[M+H] 335.2
	7.91 (d, $J = 8.8$ Hz, 2H), 7.77 (d, $J = 3.3$ Hz, 1H), 7.66 – 7.52 (m,	
	5H), 6.82 (d, <i>J</i> = 8.8 Hz, 2H), 4.73 (d, <i>J</i> = 6.2 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 170.6, 167.9, 152.1,	
	142.6, 131.5, 129.7, 129.2, 127.1, 126.6, 120.2, 112.5, 110.9, 44.2.	
SKL-1246	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 (dd, J = 6.6, 3.2 Hz, 2H), 8.01	[M+H] 358.2
	(d, J = 8.8 Hz, 2H), 7.55 - 7.42 (m, 3H), 7.31 - 7.25 (m, 2H), 6.98	. ,
	-6.88 (m, 2H), 6.71 (d, $J = 8.8$ Hz, 2H), 4.69 (t, $J = 5.7$ Hz, 1H),	
	4.42 (d, <i>J</i> = 5.9 Hz, 2H), 3.88 (s, 3H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.3, 168.7, 157.5, 152.0, 131.0,	
	130.1, 129.0, 128.9, 128.8, 127.6, 126.2, 120.8, 112.7, 112.6, 110.6,	
	77.4, 55.5, 43.1.	
SKL-1247	¹ H NMR (400 MHz, d_6 -DMSO) δ 9.34 (s, 1H), 8.05 (dd, $J = 7.4$,	[M+H] 344.2
	2.2 Hz, 2H), 7.86 (d, $J = 8.8$ Hz, 2H), 7.63 – 7.52 (m, 3H), 7.21 (t,	
	J = 5.7 Hz, 1H), 7.17 (d, $J = 8.4 Hz$, 2H), 6.74 (t, $J = 9.0 Hz$, 4H),	
	4.25 (d, J = 5.7 Hz, 2H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 176.0, 167.8, 156.4, 152.8,	
	131.4, 129.5, 129.2, 129.0, 128.6, 127.0, 126.7, 115.2, 112.1, 109.6,	
	45.5.	
SKL-1248	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 (dd, J = 6.7, 3.0 Hz, 2H), 8.04	[M+H] 342.2
	(d, J = 8.8 Hz, 2H), 7.54 - 7.44 (m, 3H), 7.31 (d, J = 7.1 Hz, 1H),	
	7.27 - 7.16 (m, 3H), 6.71 (d, $J = 8.8$ Hz, 2H), 4.38 (s, 3H), 2.39 (s,	
	3H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.3, 168.8, 151.7, 138.7, 138.2,	
	131.0, 130.2, 128.9, 128.5, 128.4, 127.6, 127.6, 124.6, 113.1, 112.5,	
	77.4, 47.8, 21.7.	
SKL-1249	¹ H NMR (400 MHz, CDCl ₃) δ 8.15 (dd, J = 5.4, 2.2 Hz, 2H), 8.02	[M+H] 346.2
	(d, J = 8.8 Hz, 2H), 7.54 - 7.44 (m, 3H), 7.34 (dd, J = 8.6, 5.4 Hz,	
	2H), 7.06 (t, $J = 8.7$ Hz, 2H), 6.70 (d, $J = 8.8$ Hz, 2H), 4.56 (s, 1H),	
	4.40 (d, J = 5.5 Hz, 2H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.2, 168.8, 162.4 (d, J = 245.8	
	Hz), 151.4, 134.0 (d, $J = 3.1$ Hz), 131.0, 130.2, 129.2 (d, $J = 8.1$	
	Hz), 128.9, 127.6 (d, $J = 7.9$ Hz), 115.9 (d, $J = 21.5$ Hz), 113.3,	
L		

	112.6, 77.4, 47.1.	
CIZI 1250		DA - HI 277. 2
SKL-1250	¹ H NMR (400 MHz, CDCl ₃) δ 8.15 (dd, J = 5.2, 2.1 Hz, 2H), 8.01	[M + H] 376.2
	(d, J = 8.8 Hz, 2H), 7.54 - 7.44 (m, 3H), 6.72 - 6.63 (m, 4H), 6.54	
	(dt, J = 10.5, 2.2 Hz, 1H), 4.67 (s, 1H), 4.38 (s, 2H), 3.78 (s, 3H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 175.2, 167.8, 163.1 (d, J = 245.8	
	Hz), 160.4 (d, $J = 11.2$ Hz), 150.4 , 140.7 (d, $J = 9.0$ Hz), 130.0 ,	
	129.2, 127.9, 126.6, 126.5, 112.4, 111.6, 107.9 (d, $J = 2.6$ Hz),	
	105.3 (d, $J = 22.3$ Hz), 99.6 (d, $J = 25.2$ Hz), 54.7, 46.4 (d, $J = 2.2$	
	Hz).	
SKL-1251	¹ H NMR (400 MHz, d_6 -DMSO) δ 8.04 (dd, $J = 7.5$, 2.1 Hz, 2H),	[M+H] 406.2
	7.89 (t, $J = 9.1$ Hz, 4H), 7.62 (d, $J = 8.3$ Hz, 2H), 7.62 – 7.52 (m,	
	3H), 7.46 (t, $J = 6.1$ Hz, 1H), 6.76 (d, $J = 8.8$ Hz, 2H), 4.53 (d, $J =$	
	6.1 Hz, 2H), 3.19 (s, 3H).	
	¹³ C NMR (101 MHz, d_6 -DMSO) δ 175.9, 167.9, 152.4, 145.7,	
	139.5, 131.4, 129.7, 129.2, 127.9, 127.2, 127.0, 126.7, 112.3, 110.3,	
	45.3, 43.6.	
SKL-1252	¹ H NMR (400 MHz, CDCl ₃) δ 8.66 (s, 1H), 8.57 (d, J = 4.3 Hz,	[M + H] 329.2
	1H), 8.15 (dd, <i>J</i> = 5.4, 2.2 Hz, 2H), 8.03 (d, <i>J</i> = 8.8 Hz, 2H), 7.70	
	(dt, J = 8.2, 2.0 Hz, 1H), 7.55 - 7.44 (m, 3H), 7.31 (dd, J = 7.7, 4.8)	
	Hz, 1H), 6.71 (d, $J = 8.8$ Hz, 2H), 4.60 (s, 1H), 4.48 (d, $J = 5.0$ Hz,	
	2H).	
	¹³ C NMR (101 MHz, CDCl ₃) δ 176.1, 168.8, 151.2, 149.3, 149.2,	
	135.2, 133.9, 131.1, 130.2, 128.9, 127.6, 127.5, 123.8, 113.7, 112.7,	
	45.4.	

Chemical synthesis section

General Methods: Unless otherwise stated, all reactions were performed in the appropriate oven-dried glassware. All reagents were obtained commercially as reagent grade and used without further purification. The required starting material and anhydrous solvent were purchased from Energy chemical company. All synthetic transformations were monitored by thin layer chromatography. Column chromatography was performed on silica gel (100 - 200 mesh) that was packed into glass columns. The 1 H and 13 C NMR spectroscopic were recorded in either CDCl₃ or d_6 -DMSO as the solvent at 400 or 600 MHz (for 1 H NMR) and 101 or 151 MHz (for 13 C NMR), respectively. Chemical shifts (δ) are reported in units of ppm relative to the residual protio solvent signal for 1 H NMR (for CHCl₃: δ = 7.26 ppm; for d_6 -DMSO: δ = 2.50 ppm) and solvent signal for 13 C NMR (for CDCl₃: δ = 77.16 ppm; for d_6 -DMSO: δ = 39.52 ppm). The multiplicities of the signals are reported as s (singlet or broad singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublets), q (quartet), t (triplet), td (triplet of doublets), tt (triplet of triplets), tdd (triplet of doublets of doublets), m (multiplet), br (broad). And the coupling constants are provided in (J) Hz. The mass spectral data was obtained by Agilent LC-ESI-MS 1260 Infinity II system.

Synthetic route of SKL-1201 and SKL-1223 Synthesis of int-1:

To a solution of methylparaben (20.0 mmol, 3.043 g) in dry THF the NaH (60%, dispersion in mineral oil, 1.5 equiv, 1.200g) was added slowly at 0 °C. After 30 minutes, the MOMCl (chloromethyl methyl ether, 1.2 equiv, 1.9 mL) was added to the mixture dropwise, then the reaction system was warmed up to room temperature and stirred continuously at this temperature overnight. After the reaction finished, quenched the reaction with saturated NH₄Cl solution, and extracted with EtOAc (5 × 10.0 mL). The combined organic layer was washed with saturated brine solution (2 × 10.0 mL) and dried over anhydrous Na₂SO₄. Next, the crude organic phase was concentrated and purified by flash column chromatography eluting with petroleum ether: EtOAc = 30:1 to give the compound **int-1** (3.775 g, 96 %) as a colorless oil. $R_f = 0.42$ (petroleum ether: EtOAc = 20:1).

Synthesis of int-2:

To a solution of NH₂OH·HCl (2.0 equiv, 1.390 g) in MeOH (20 mL) was added the NaHCO₃ (2.0 equiv, 1.680 g) one portion, then the reaction mixture was stirred at room temperature for 30 minutes. Next, to the mixture was added the anisonitrile (10.00 mmol, 1.331 g), and the resulting mixture was refluxed overnight. After the reflux was completed, the solvent was removed in vacuo to obtain the crude product int-2, which was used in the next step without further purification.

Synthesis of int-3:

To a solution of **int-1** (1.5 equiv, 19.33 mmol, 3.793 g) and **int-2** (12.89 mmol, 2.142 g) in DMSO (32 mL) was added the powder of NaOH (1.5 equiv, 1.184 g) immediately, then the resulting mixture was stirred at room temperature for 6 hours. After the reaction was completed, cold water (100 mL) was added to the resulting reaction mixture, and then the desired product was precipitated. The resulting slurry was filtered under reduced pressure and the filter cake washed with cold water and petroleum ether. Finally, the filter cake was dried under the vacuum condition to give the pure compound **int-3** (3.876 g, 71 %) as a white powder. $R_f = 0.55$ (petroleum ether: EtOAc = 5:1).

Synthesis of int-4:

To a solution of **int-3** (8.24 mmol, 2.573 g) in DCM (30 mL) the TFA (21 mL) was added dropwise at 0 °C. Then the mixture was stirred at room temperature for 6 hours (monitored by thin layer chromatography). After the reaction was completed, to neutralize the reaction system with saturated NaHCO₃ solution. Next, the mixture was poured into the funnel and these two phases were separated. And the water layer was extracted with DCM, the combined organic extract was dried over anhydrous Na₂SO₄, then removed the solvent under reduced pressure. Finally, the white powder was precipitated after to the residue was added cold petroleum ether. The resulting mixture was filtered under reduced pressure and the filter cake was washed with cold water and petroleum ether. The filter cake was dried under the vacuum condition to give the pure product **int-4** (2.157 g, 98 %) as a white powder. $R_f = 0.14$ (petroleum ether: EtOAc = 5:1).

Synthesis of int-5:

$$NH_2$$
 O CI b HN O int-5

To a solution of 2-thiophenemethylamine (20.00 mmol, 2.1 mL) and K_2CO_3 (1.5 equiv, 1.146 g) in dry acetonitrile (35 mL) the chloroacetyl chloride (1.2 equiv, 1.9 mL) was added dropwise at 0 °C. Then the reaction system was warmed up to room temperature and stirred at this temperature overnight. After the reaction was completed, removed the solvent under reduced pressure and then diluted the residue with EtOAc. Next, the mixture was washed with water (2 × 10.0 mL), saturated NaHCO₃ solution (2 × 10.0 mL) and saturated brine (2 × 10.0 mL), the combined water phase was extracted with EtOAc (3 × 10.0 mL), these organic extracts were combined and dried over anhydrous Na₂SO₄. Finally, removed the solvent under reduced pressure, the residue was purified by flash column chromatography eluting with petroleum ether: EtOAc = 2:1 to obtain the compound **int-5** (2.782 g, 74 %) as a white powder. R_f = 0.41 (petroleum ether: EtOAc = 3:1).

Synthesis of SKL1201:

To a solution of **int-5** (0.12 mmol, 32 mg) and K₂CO₃ (1.5 equiv, 25 mg) in dry acetonitrile (0.5 mL), which was stirred beforehand for 10 minutes, the **int-4** (2.5 equiv, 57 mg) was added at room temperature. Then the reaction mixture was refluxed overnight. After the reaction was finished (monitored by thin

layer chromatography), removed the solvent under reduced pressure and diluted the residue with EtOAc. Next, the resulting mixture was washed with water ($2 \times 10.0 \text{ mL}$), saturated NH₄Cl solution ($2 \times 10.0 \text{ mL}$) and saturated brine ($2 \times 10.0 \text{ mL}$), these combined water phases were extracted with EtOAc ($3 \times 10.0 \text{ mL}$). Then the organic extract was combined and dried over anhydrous Na₂SO₄. Finally, removed the solvent under reduced pressure, the white powder was precipitated after to the residue was added cold petroleum ether. The mixture was filtered under reduced pressure and the filter cake was washed with cold water and petroleum ether. The filter cake was dried under the vacuum condition to give the pure product SKL-1201 (33 mg, 63 %) as a white powder. $R_f = 0.31$ (petroleum ether :EtOAc = 2 : 1).

Procedure B: The overall synthesis of compound SKL-1223

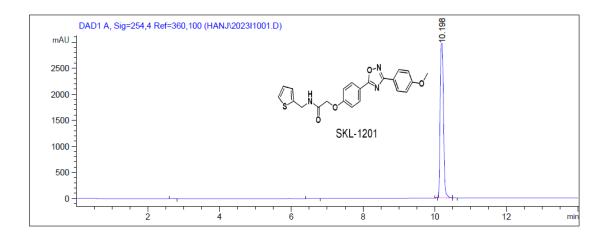
$$H_2N$$
 H_2N
 H_2N

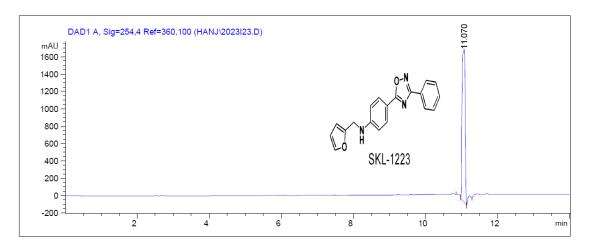
Reagents and Conditions: a) 4-aminobenzoic acid methyl ester (1.0 equiv), int-6 (1.5 equiv), NaOH(s) (powder, 1.5 equiv), DMSO (0.4 M), 60 °C, overnight; b) int-7 (1.0 equiv), Furfural (1.2 equiv), HOAc (4.0 equiv), NaBH(OAc)₃ (2.0 equiv), 1,2-DCE (0.1 M), RT, overnight.

Synthesis of int-6:

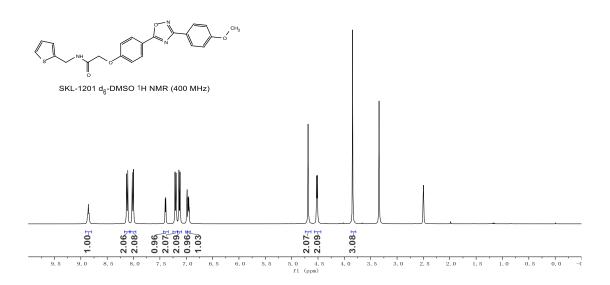
int-6

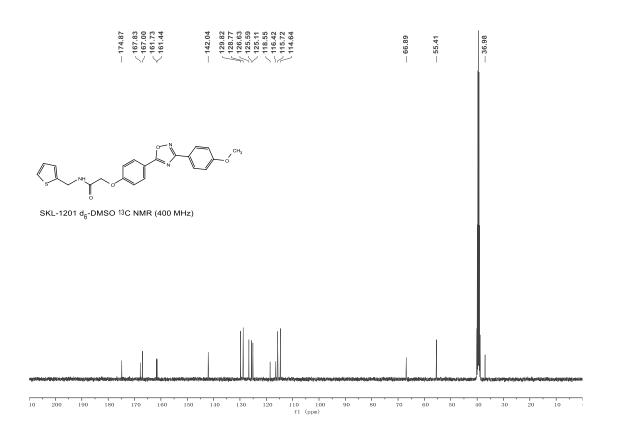
To a solution of NH₂OH·HCl (2.0 equiv, 2.780 g) in MeOH (30 mL) was added the NaHCO₃ (2.2 equiv, 3.530 g) one portion, then the reaction mixture was stirred at room temperature for 30minutes. Next, to the mixture was added the benzonitrile (20.00 mmol, 2.1 mL), and the resulting mixture was refluxed overnight. After the reflux was completed, the solvent was removed in vacuo to obtain the crude product **int-6**, which was used in the next step without further purification.

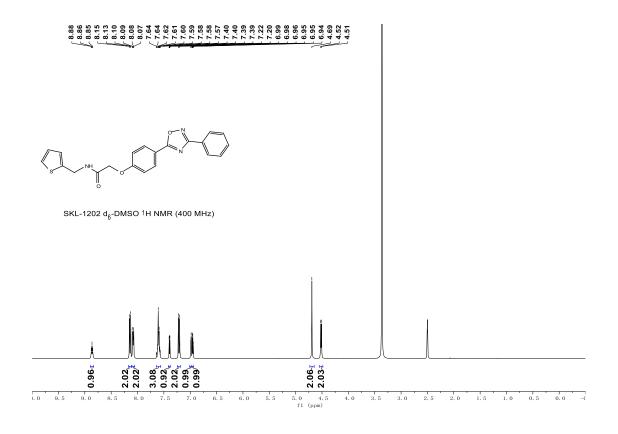

Synthesis of int-7:

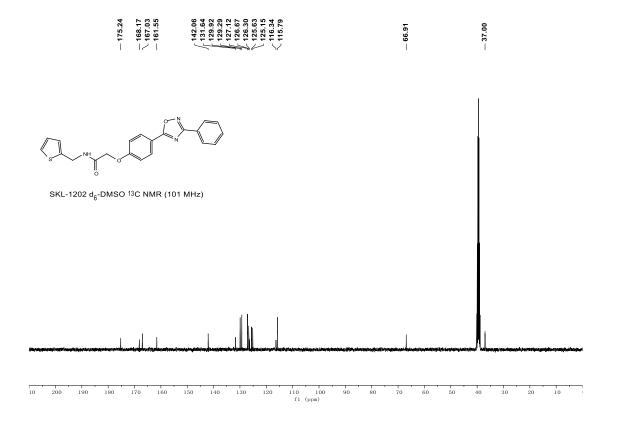

To a solution of 4-aminobenzoic acid methyl ester (19.73 mmol, 2.982 g) and **int-6** (1.5 equiv, 4.028 g) in DMSO (50 mL) was added the powder of NaOH (1.5 equiv, 1.184 g) immediately, then the reaction mixture was stirred at 60 °C overnight. After the reaction was completed, cold water (100 mL) was added to the reaction system, which the system temperature has been cooled to room temperature. Then the desired product was precipitated. The resulting slurry was filtered under the reduced pressure and the filter cake was washed with cold water and petroleum ether. Finally, the filter cake was dried under the vacuum condition to give the pure product **int-7** (3.649 g, 78 %) as a white powder. $R_f = 0.44$ (petroleum

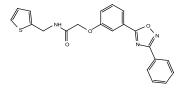
ether: EtOAc = 2:1).

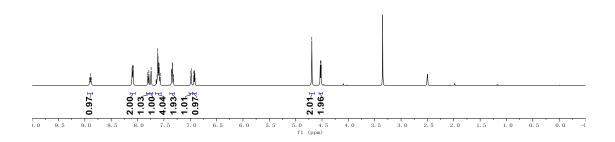

Synthesis of SKL-1223:

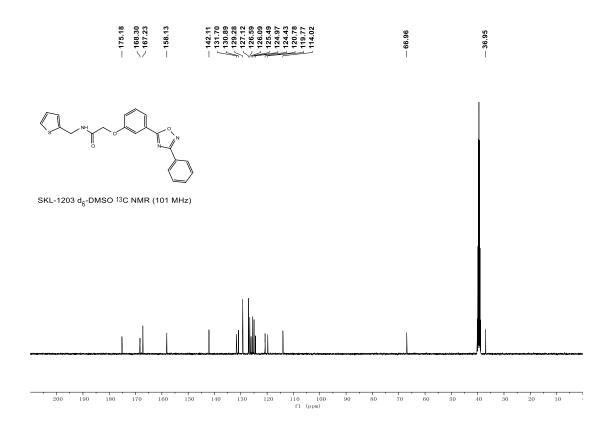

To a solution of int-7 (1.00 mmol, 237 mg) in dry 1,2-dichloroethane (10 mL) was added furfural (1.2 equiv, 99 μ L) and acetic acid (4.0 equiv, 229 μ L) sequentially. Then the resulting mixture was stirred at room temperature for 4 hours. After this procedure finished, NaBH(OAc)₃ (2.0 equiv, 424 mg) was added to the reaction system and then the whole mixture was stirred at room temperature overnight. Next, the reaction system was diluted with DCM, neutralized with saturated NaHCO₃ solution, washed with water (2 × 10.0 mL), saturated NH₄Cl solution (2 × 10.0 mL) and saturated brine (2 × 10.0 mL). The combined aqueous phase was combined and extracted with DCM (3 × 5.0 mL). These organic extracts were combined and dried over anhydrous Na₂SO₄, then filtered and concentrated. The resulting residue was purified by flash column chromatography eluting with petroleum ether: EtOAc = 10: 1 to obtain the compound SKL-1223 (197 mg, 62%) as a pale yellow powder. R_f = 0.17 (petroleum ether: EtOAc = 10: 1).



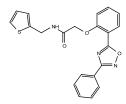


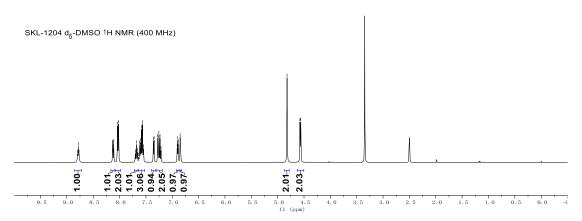


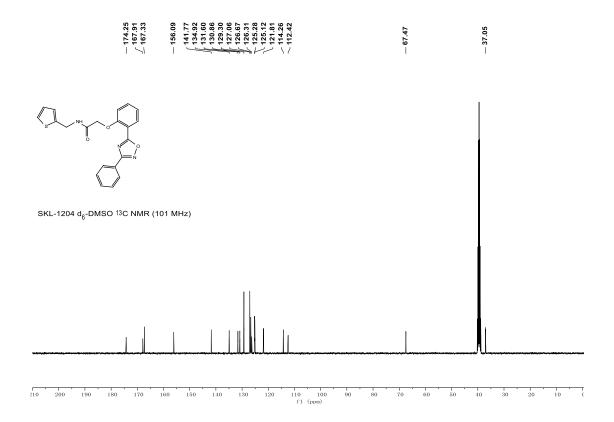


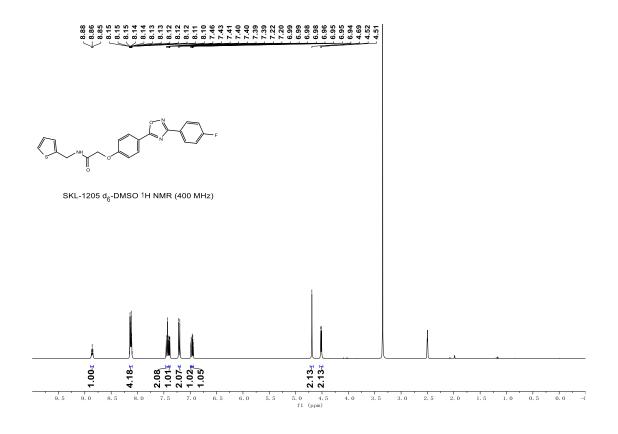


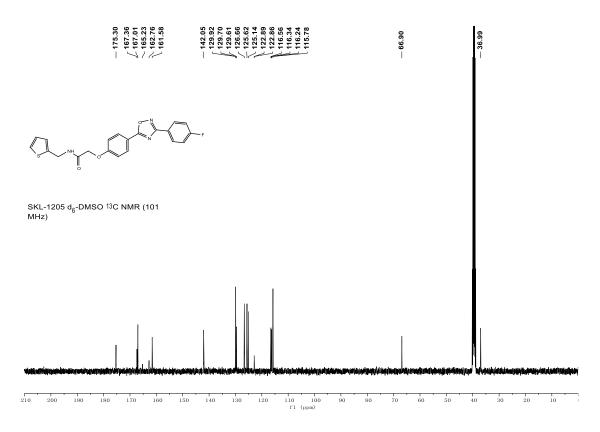
8.89 8.80 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10 7.74 7.74 7.74 7.75

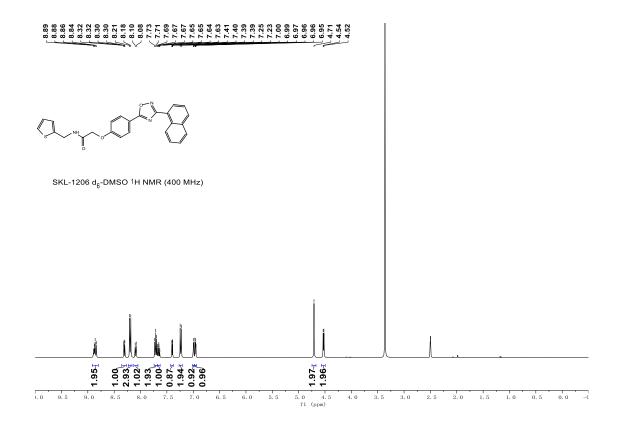


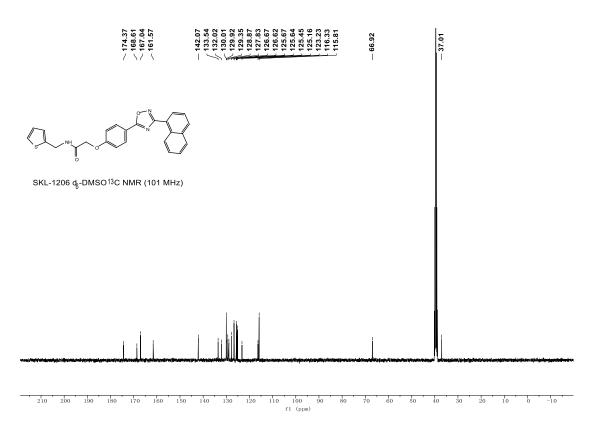

SKL-1203 $\rm d_6$ -DMSO $^1\rm H$ NMR (400 MHz)

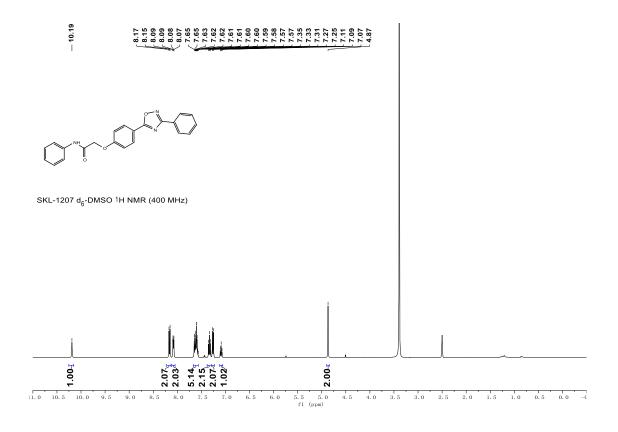


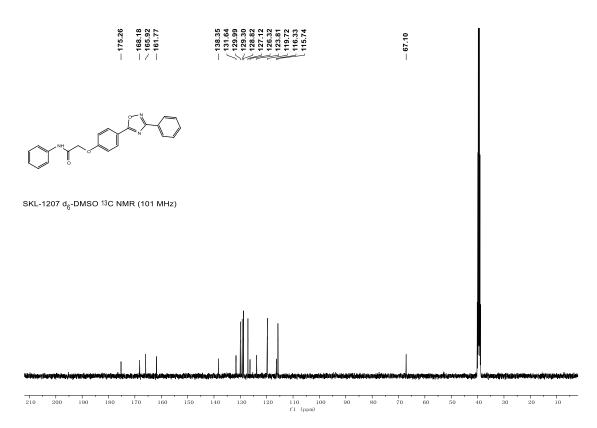


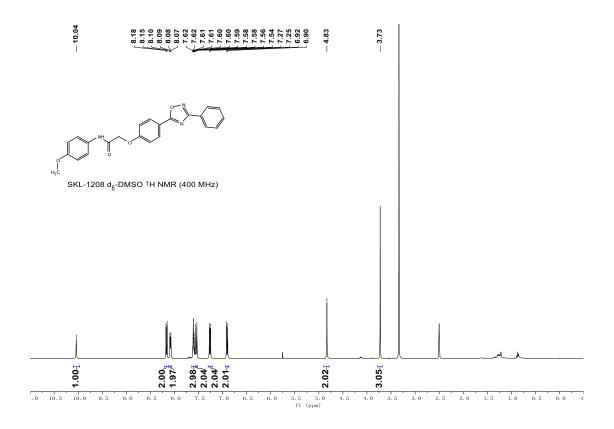

8.8.8 8.1.3 8.1.3 8.1.4 8.1.4 8.1.4 8.1.4 8.1.4 9.

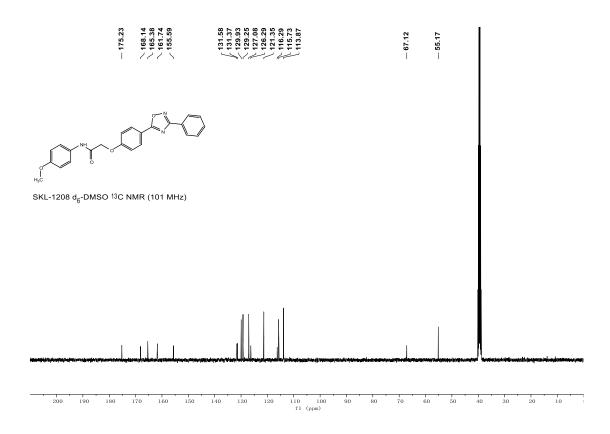


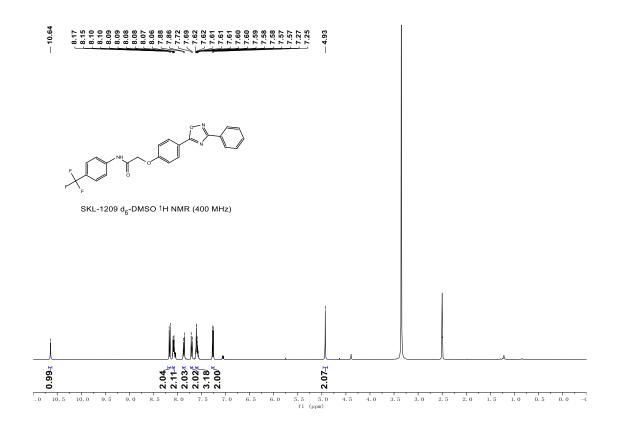


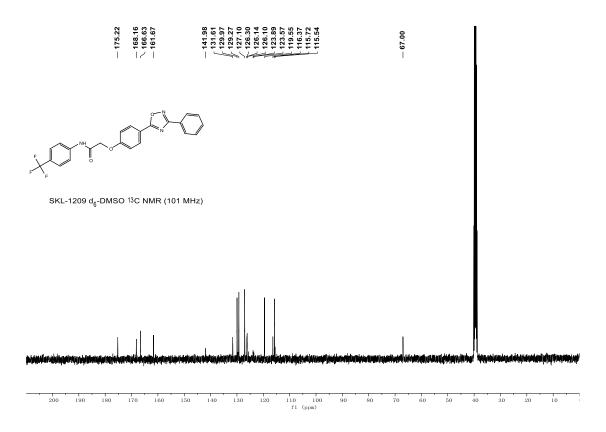


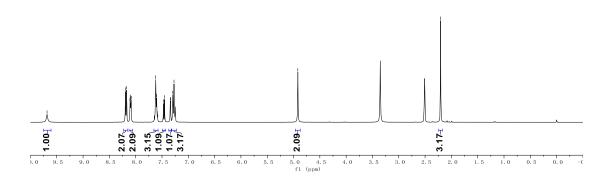


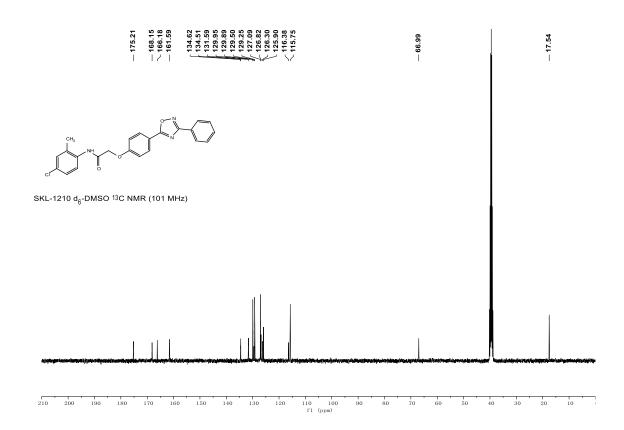


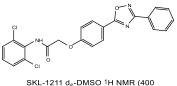


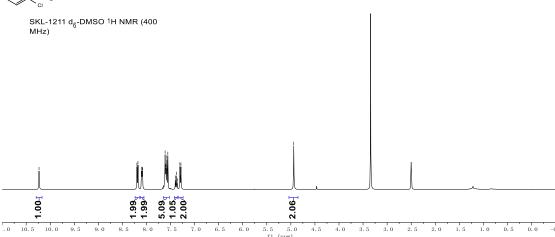


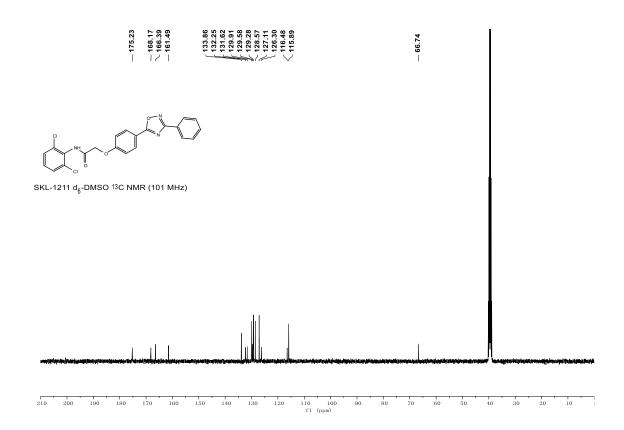


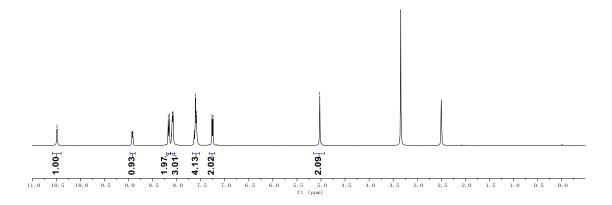


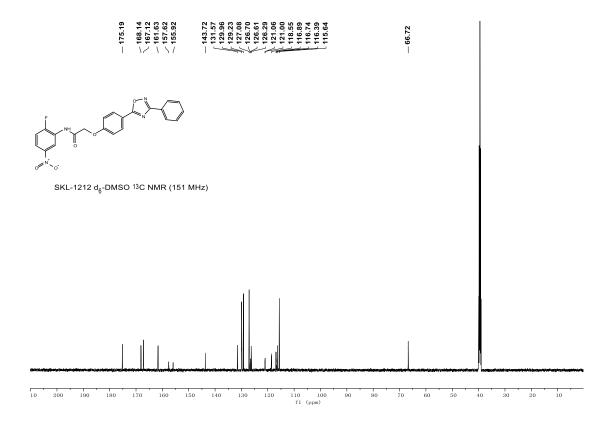


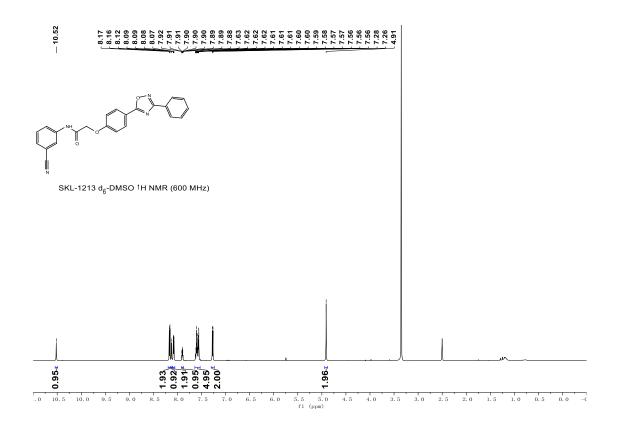


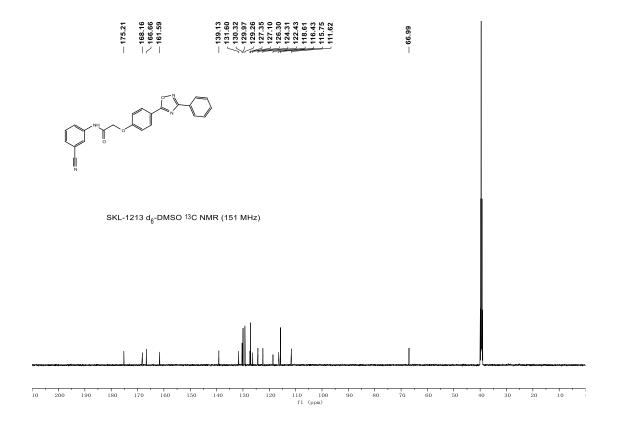

SKL-1210 d₆-DMSO ¹H NMR (400 MHz)



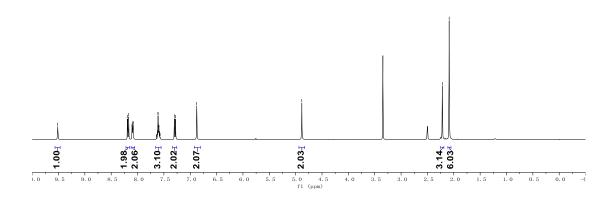


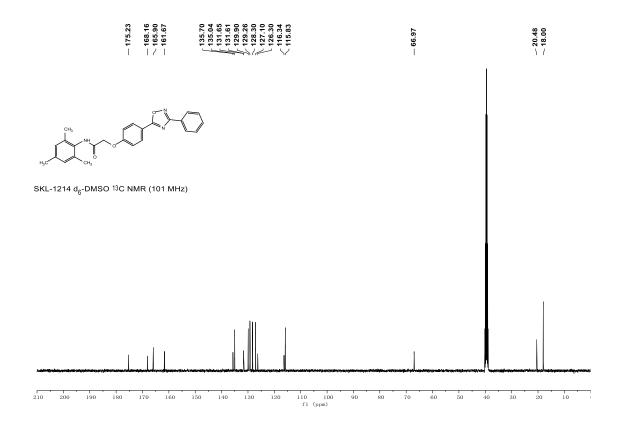


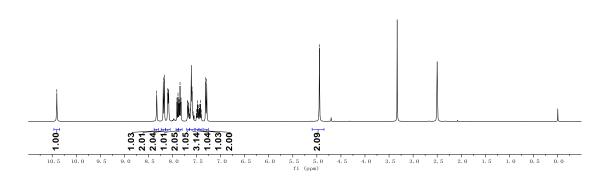


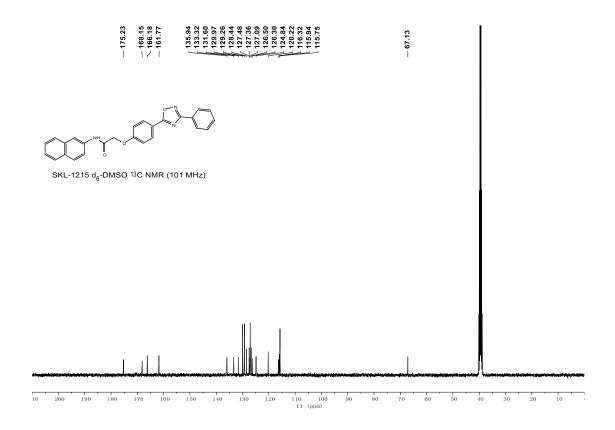


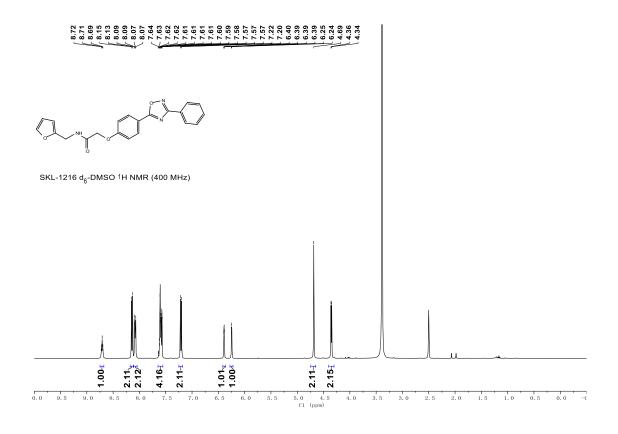
SKL-1212 d_6 -DMSO 1 H NMR (400 MHz)

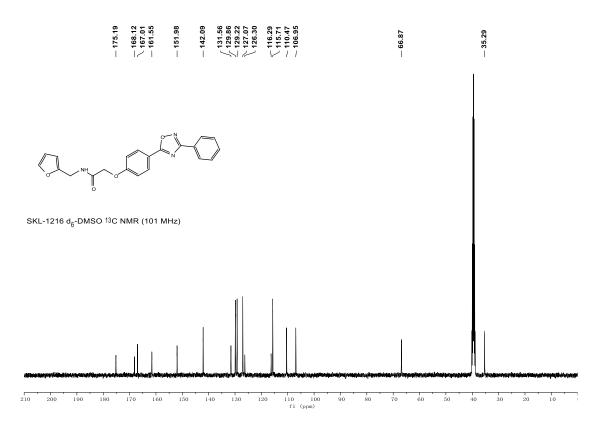


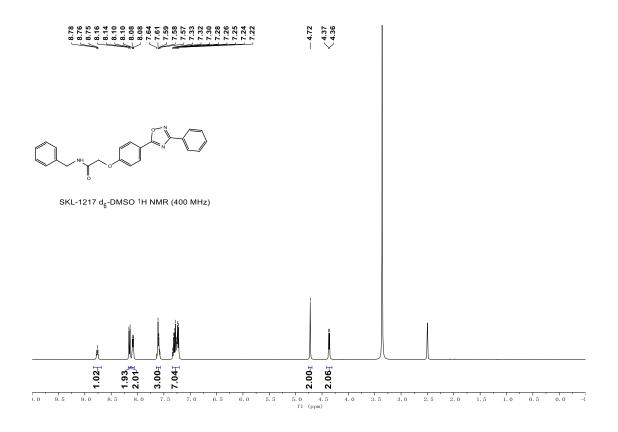


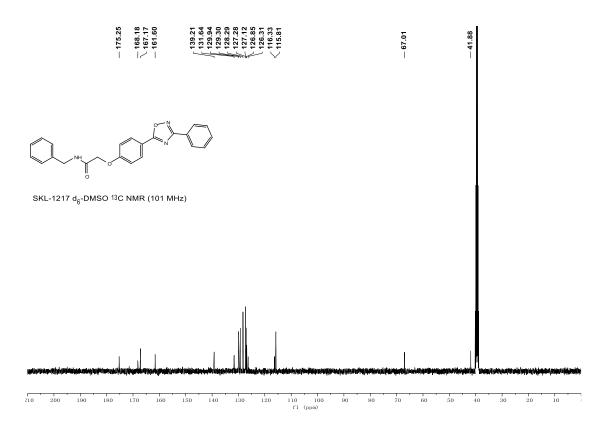


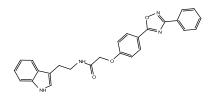

SKL-1214 d_6 -DMSO 1 H NMR (400 MHz)

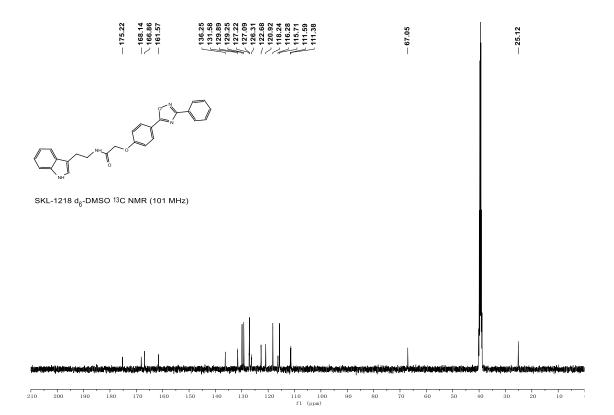


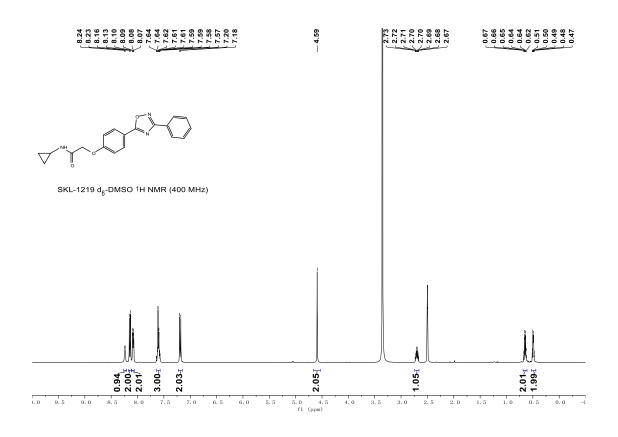


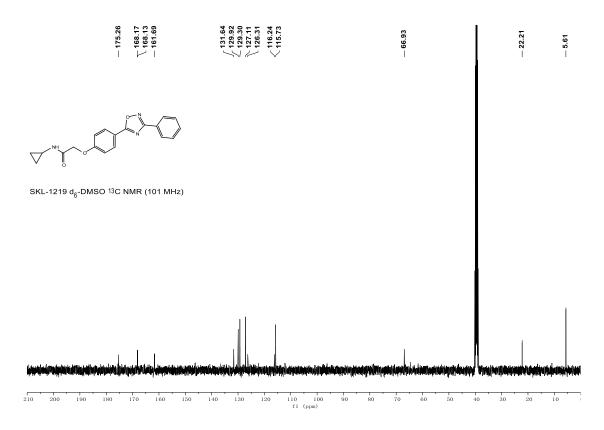

SKL-1215 d_6 -DMSO 1 H NMR (400 MHz)



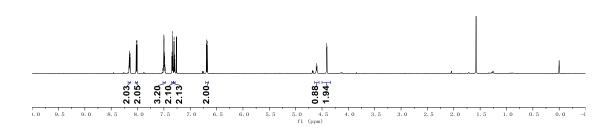


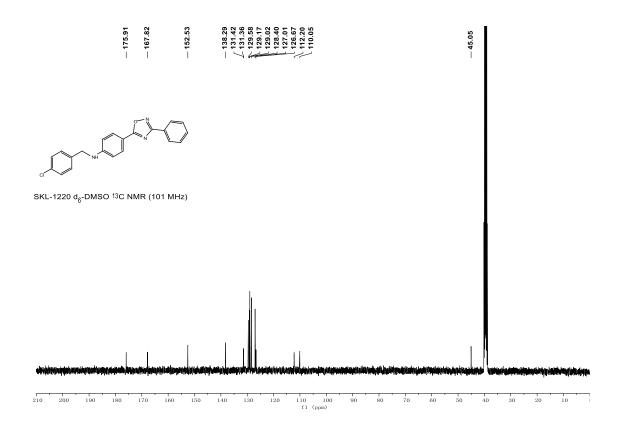


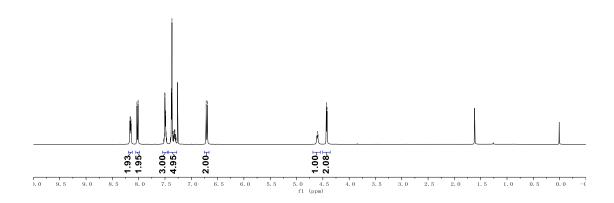


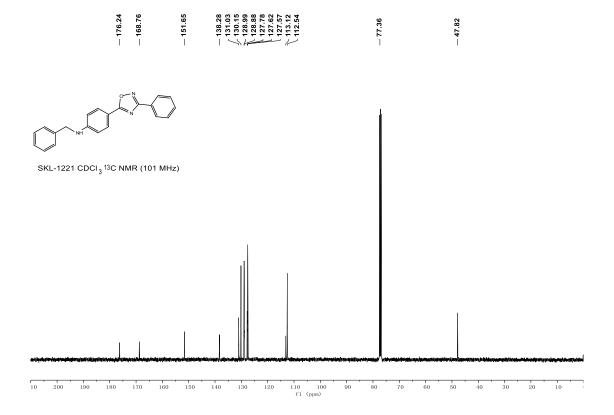

. 10.96_H

SKL-1218 d_g-DMSO 1H NMR (400 MHz)

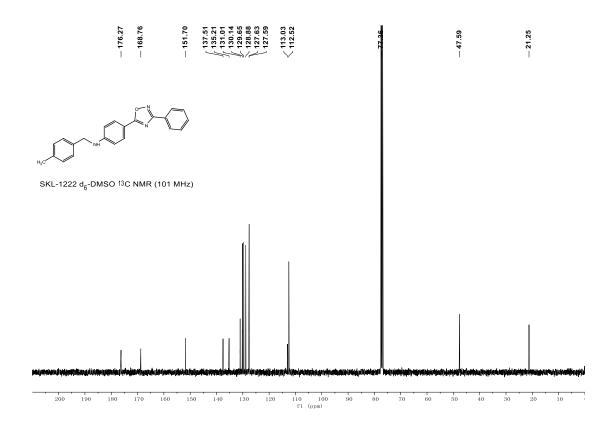

0.5 2.01H

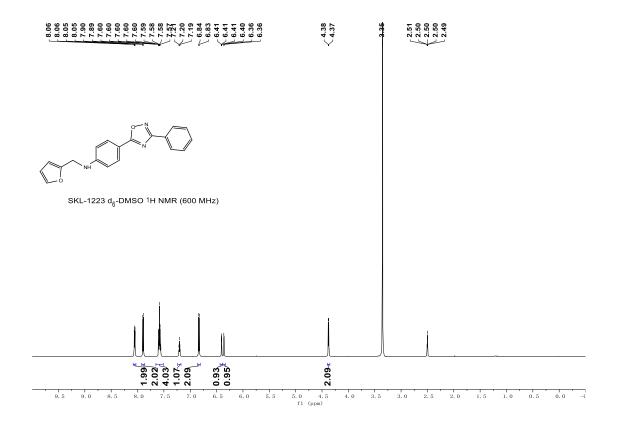


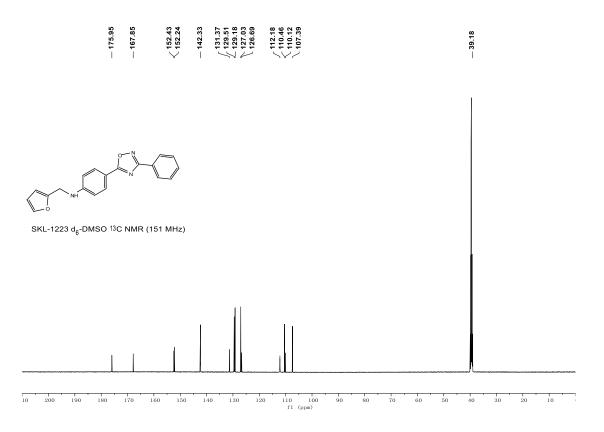


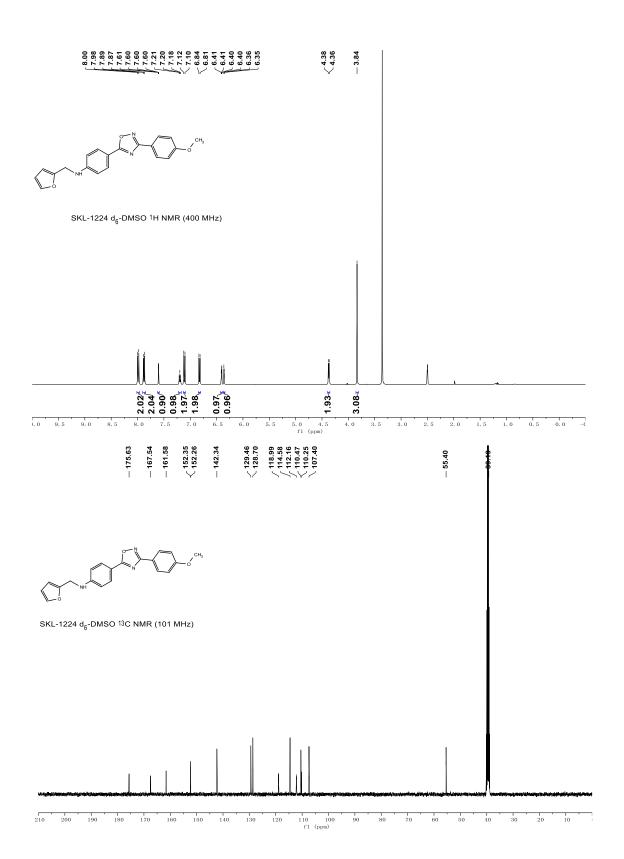

SKL-1220 CDCl $_3$ 1 H NMR (600 MHz)

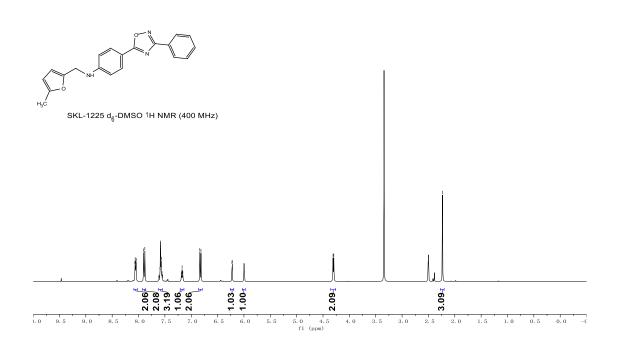


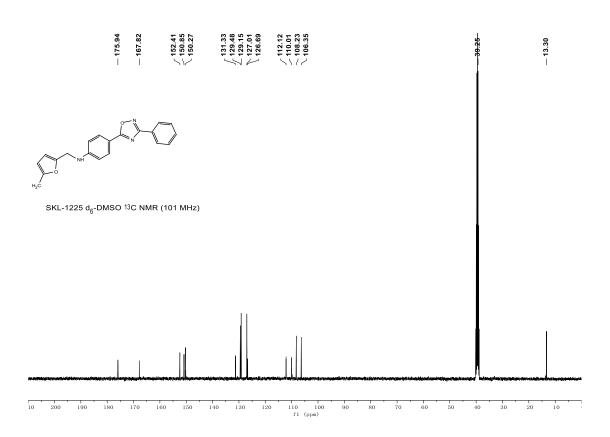

SKL-1221 CDCI $_3$ ¹H NMR (400 MHz)

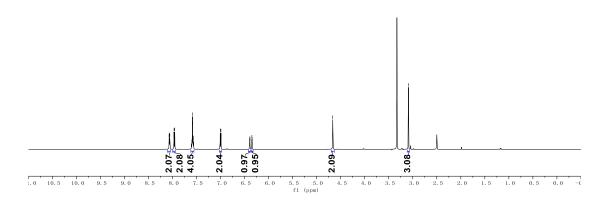


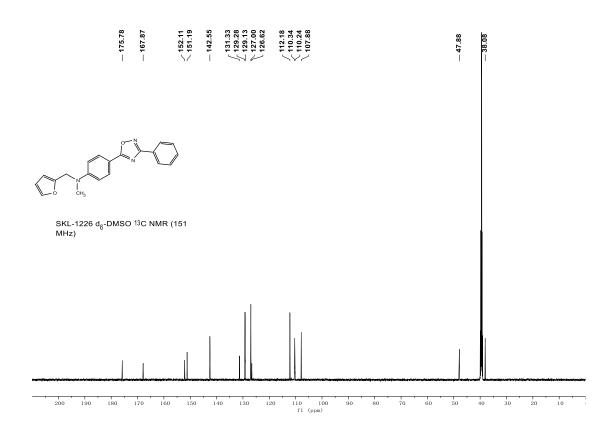


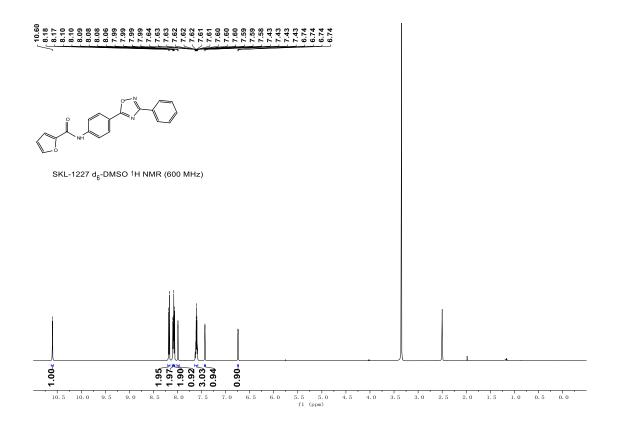

SKL-1222 CDCl $_3$ 1 H NMR (400 MHz)

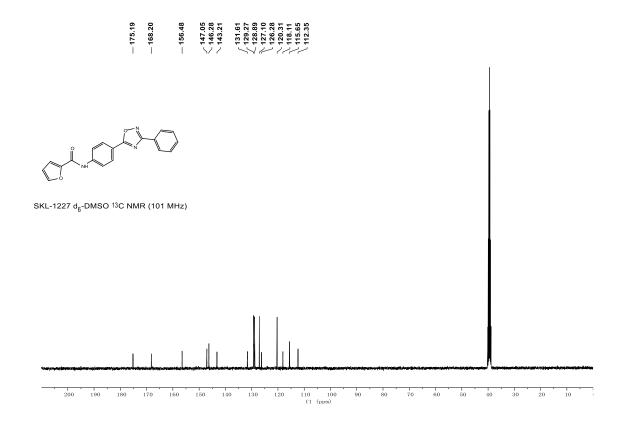


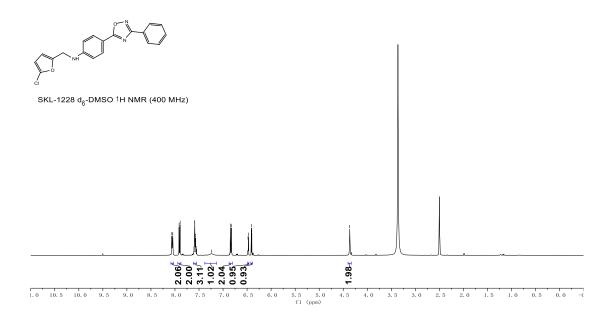


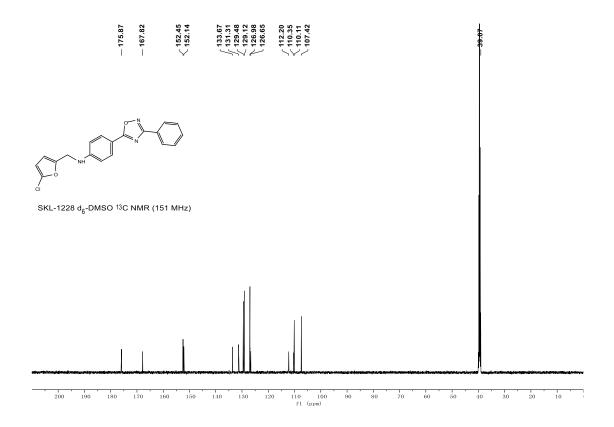


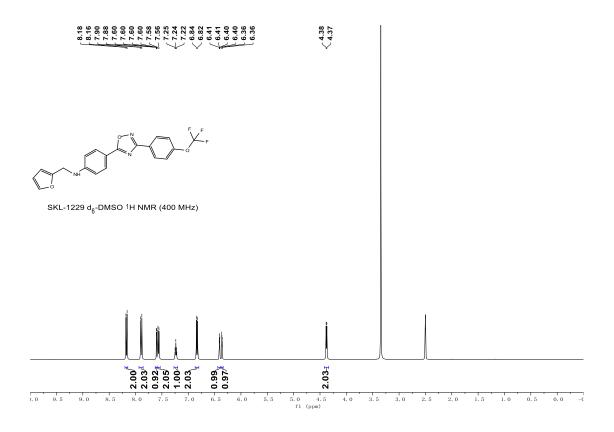


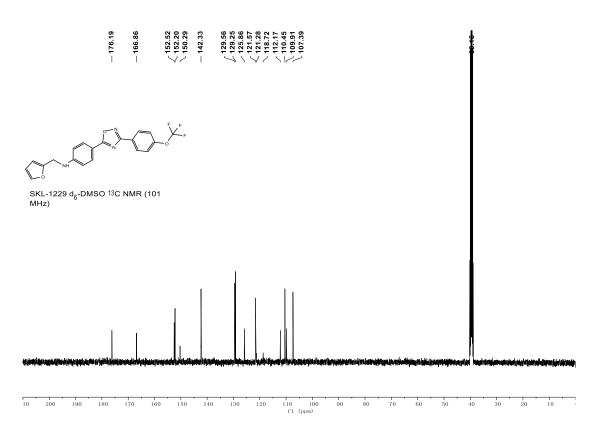


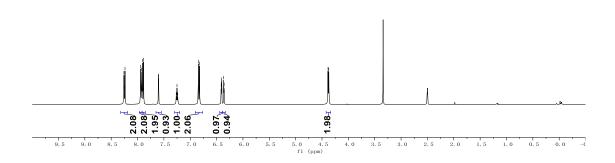

8 007 8 006 8 006 1 0 05 1

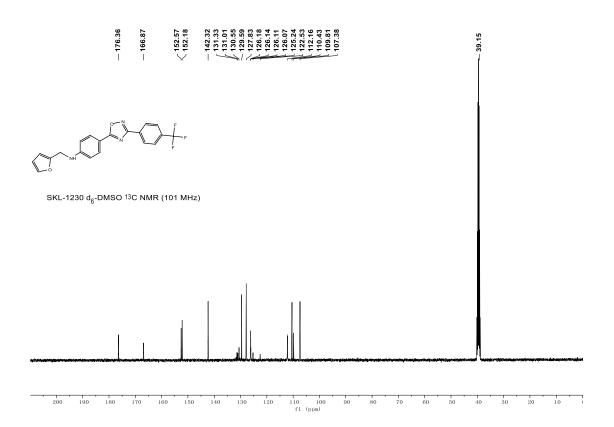

SKL-1226 d_6 -DMSO 1 H NMR (600 MHz)

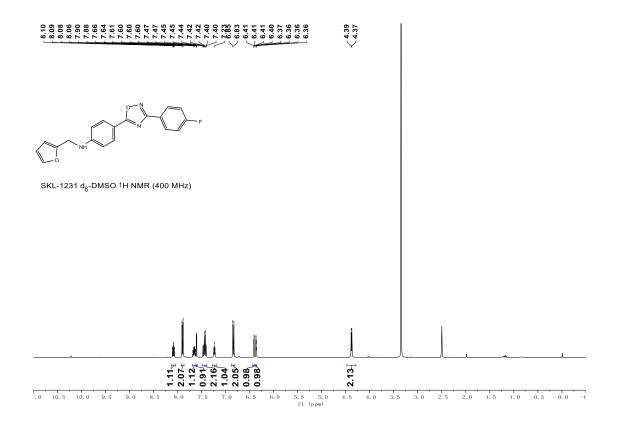


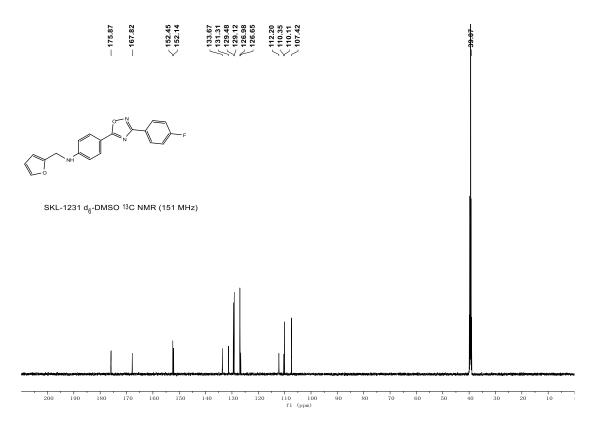


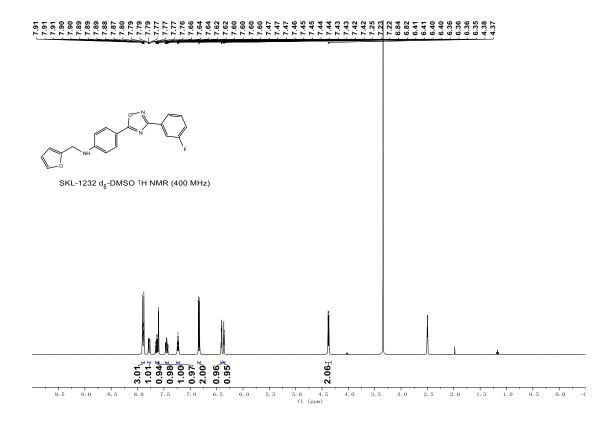


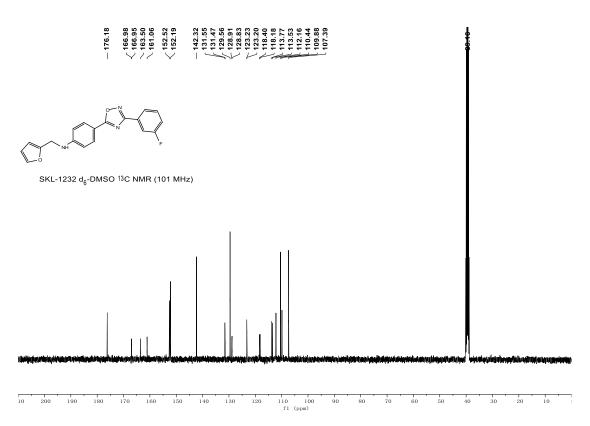


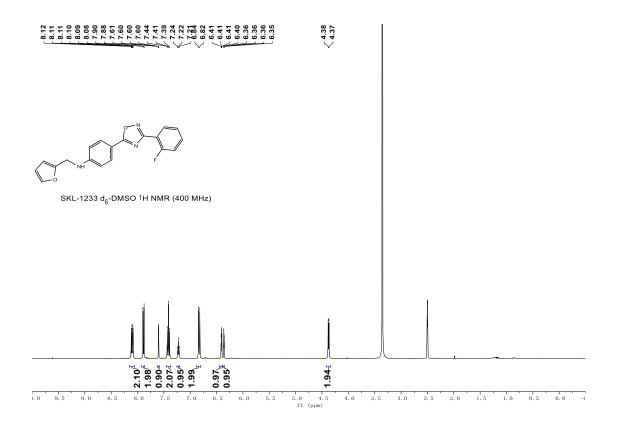


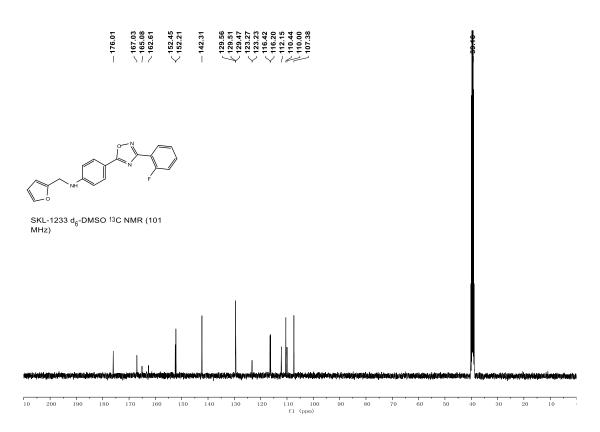


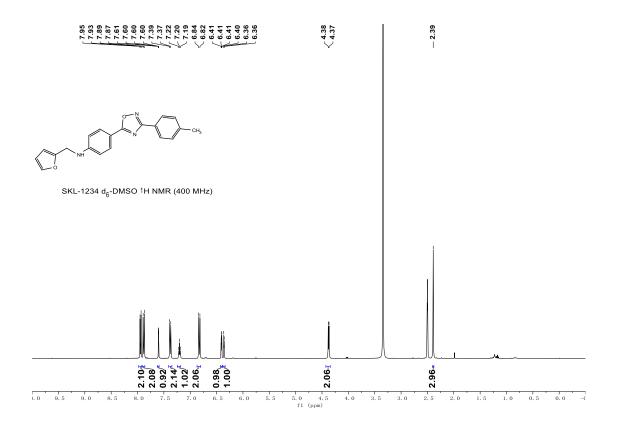


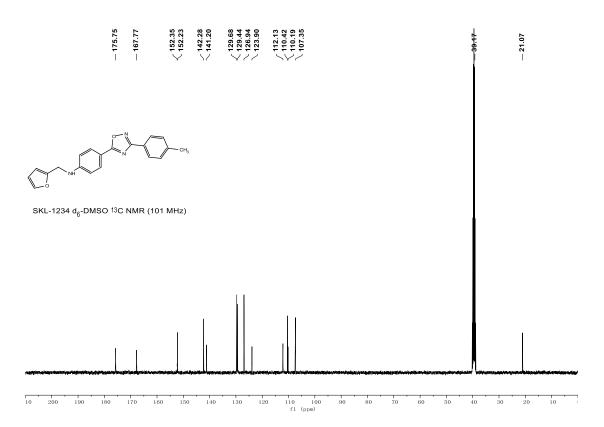

SKL-1230 $\mathrm{d_6}\text{-DMSO}$ ¹H NMR (400 MHz)

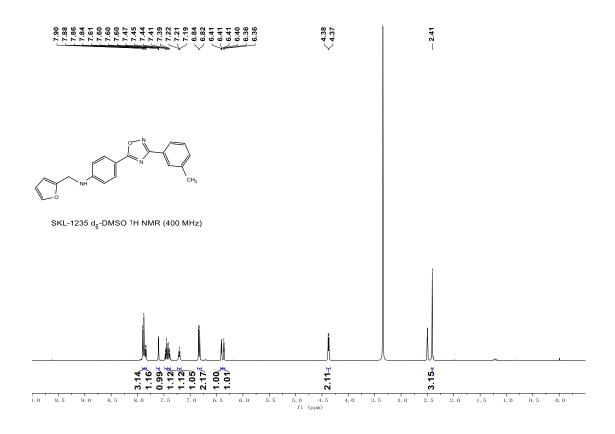


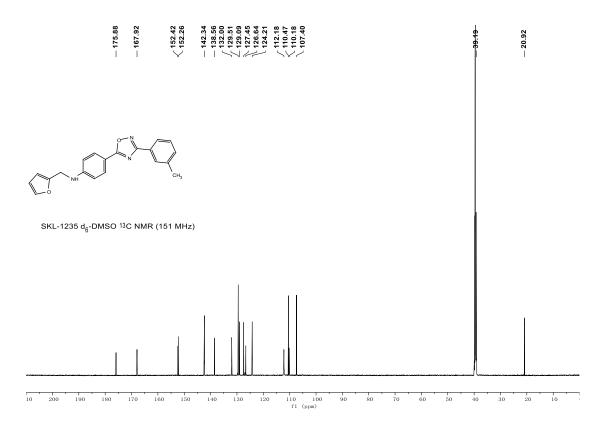


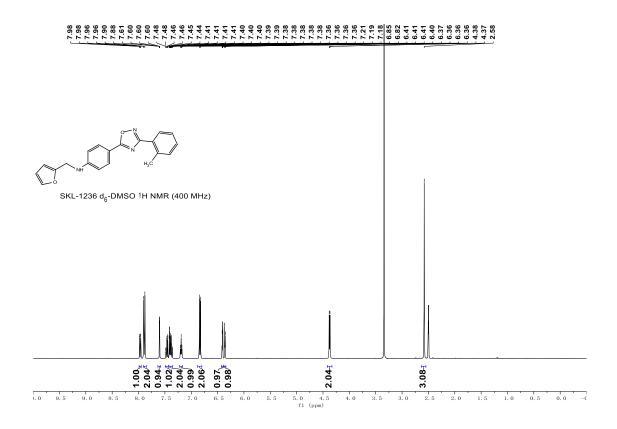


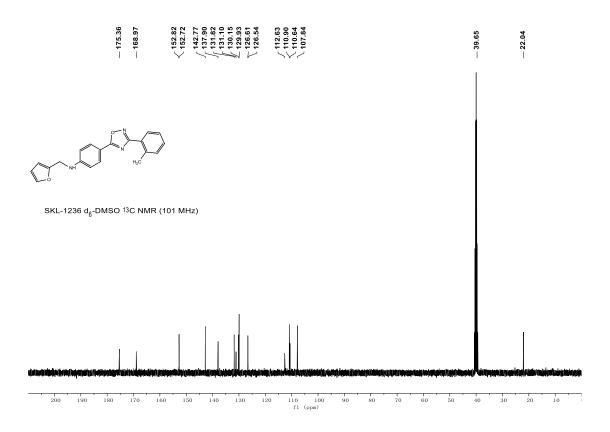


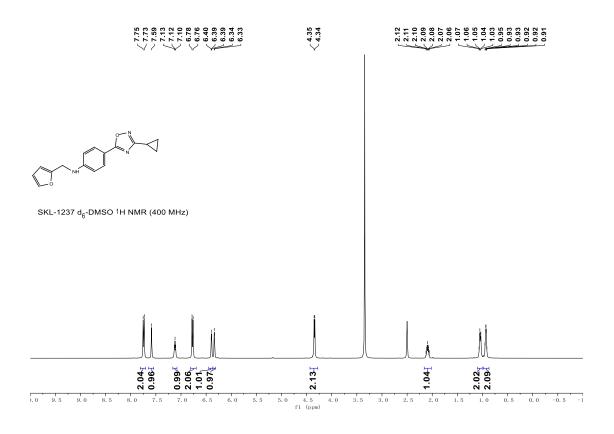


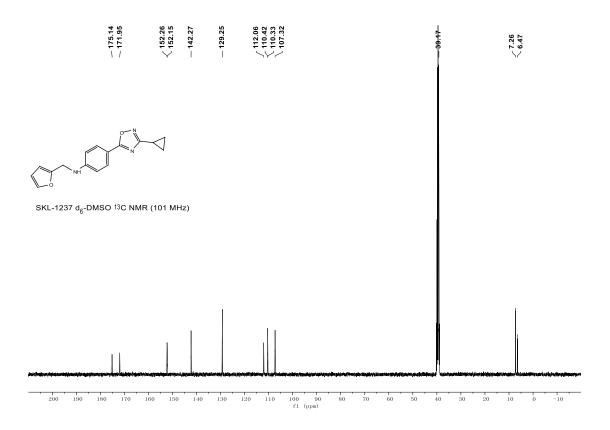


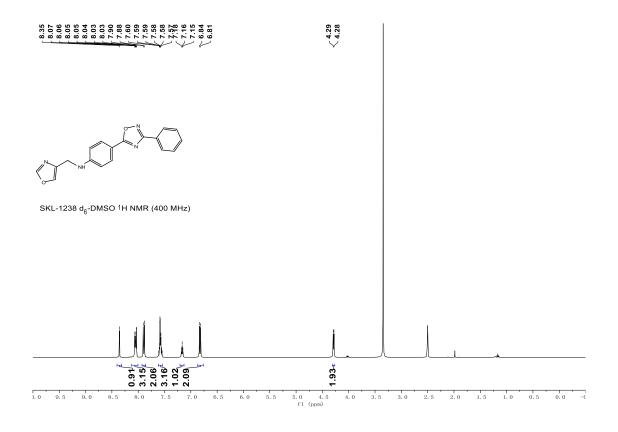


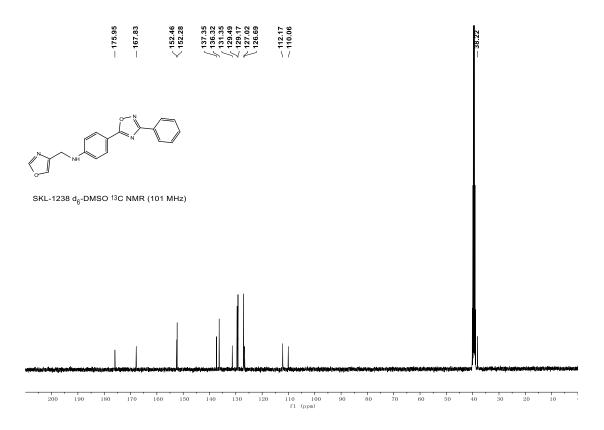


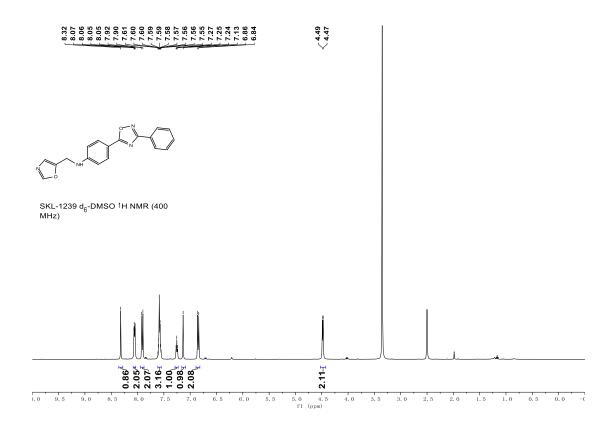


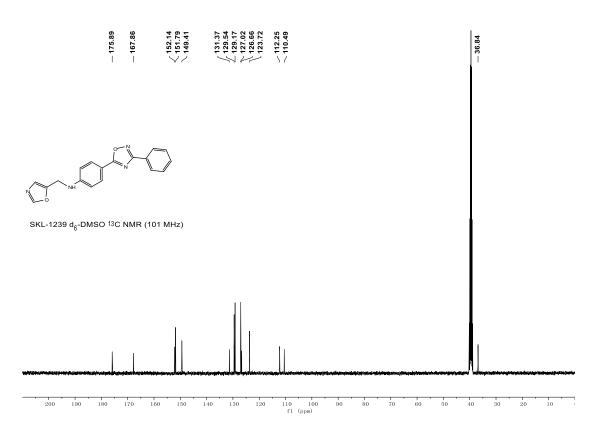


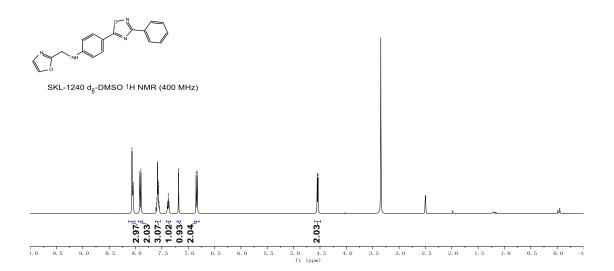


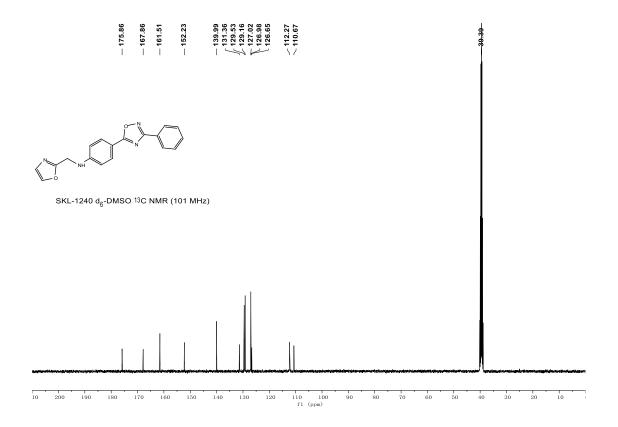


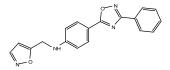


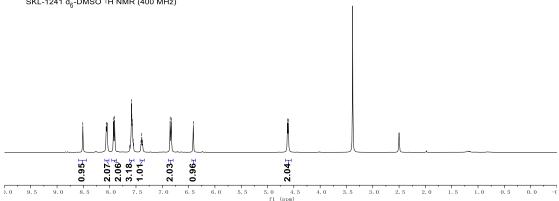


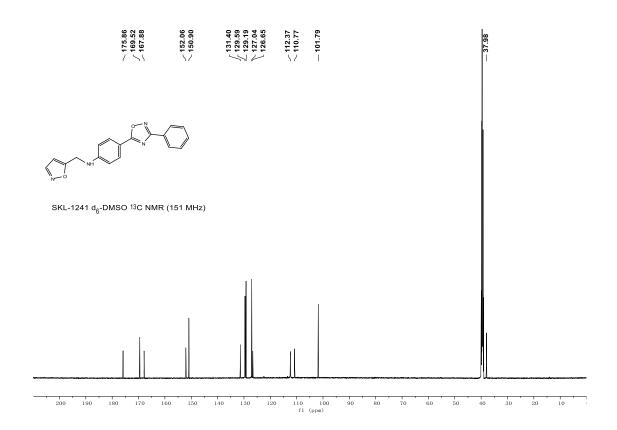


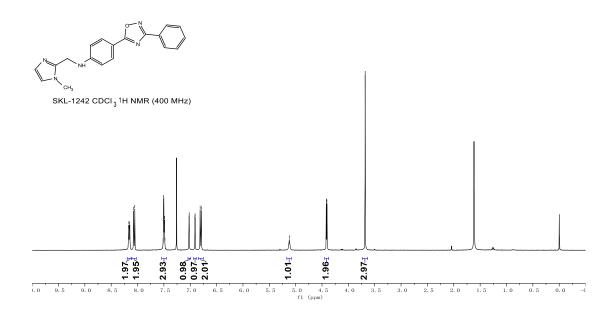


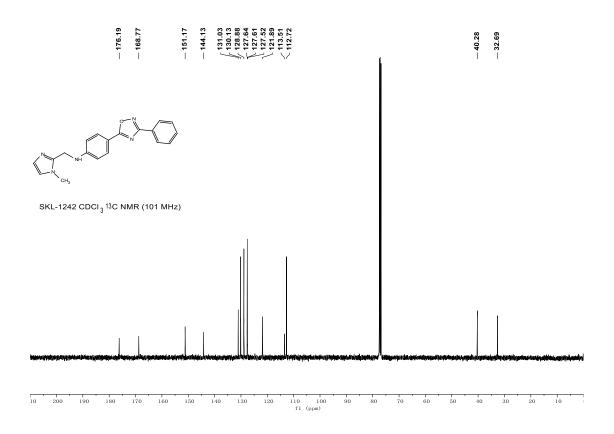


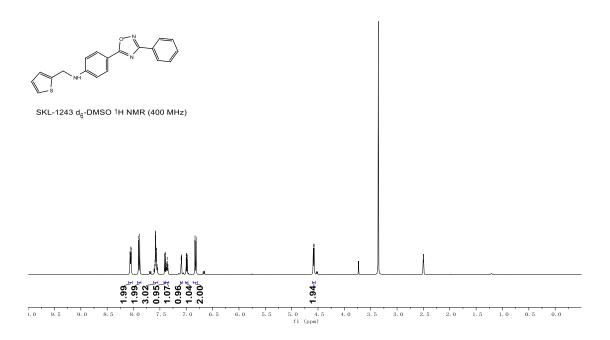


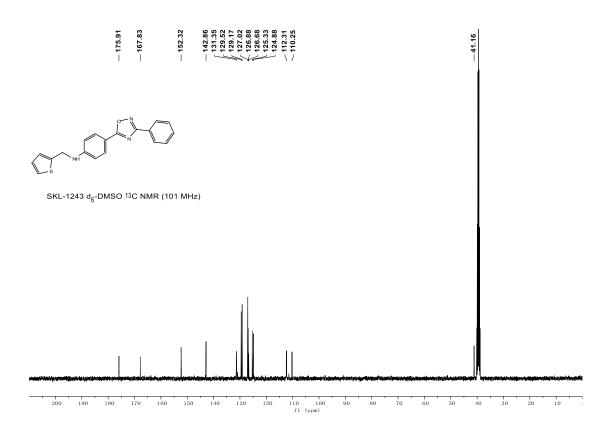


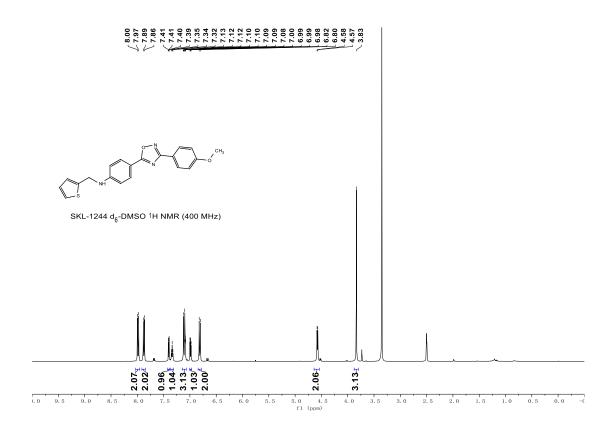


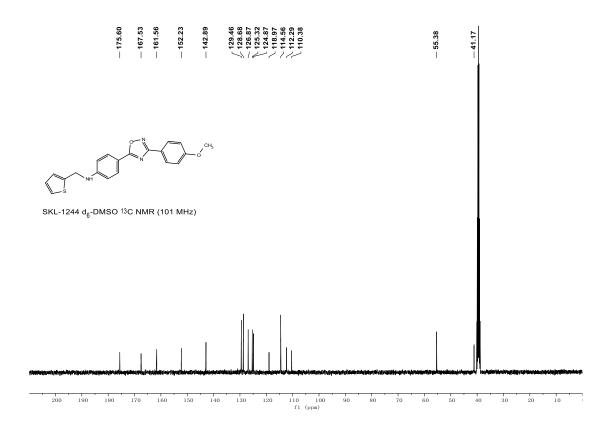


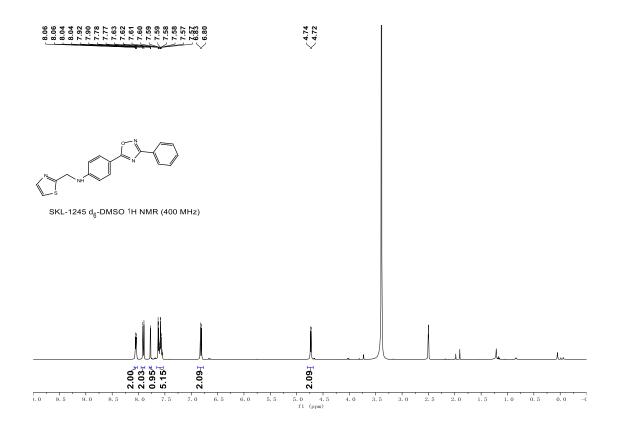


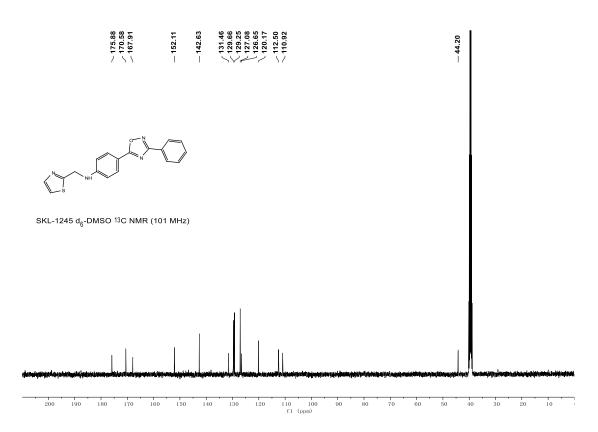

SKL-1241 d_6 -DMSO 1 H NMR (400 MHz)

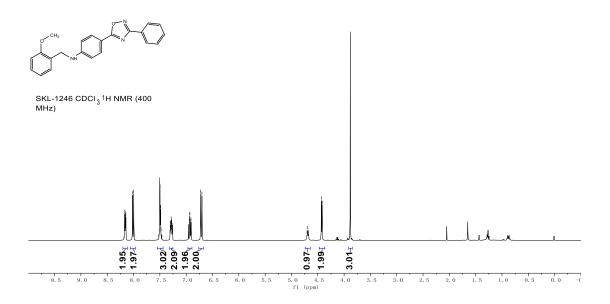


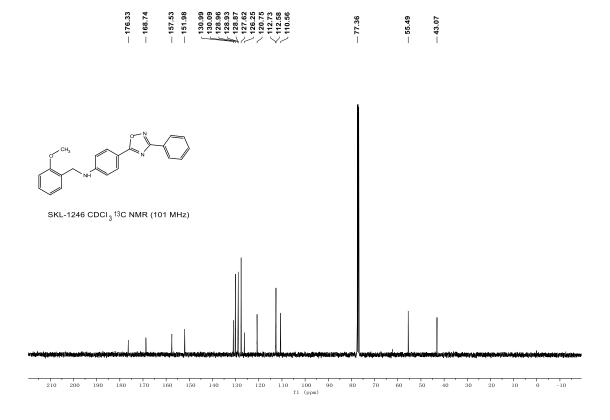


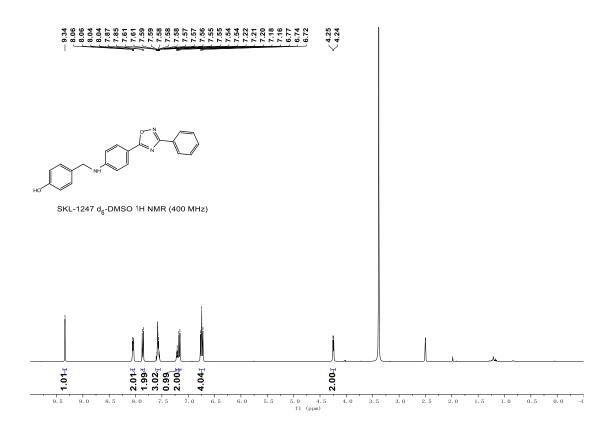


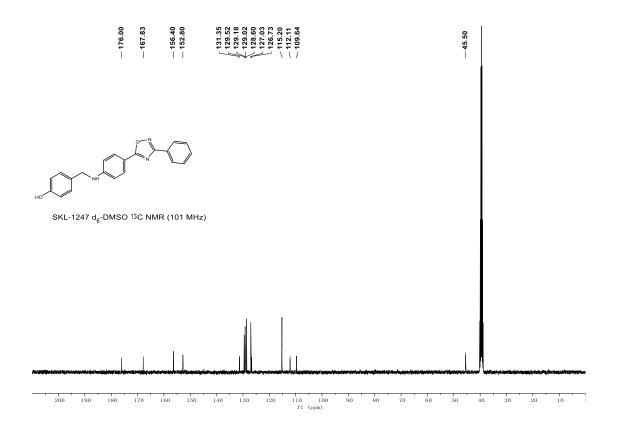


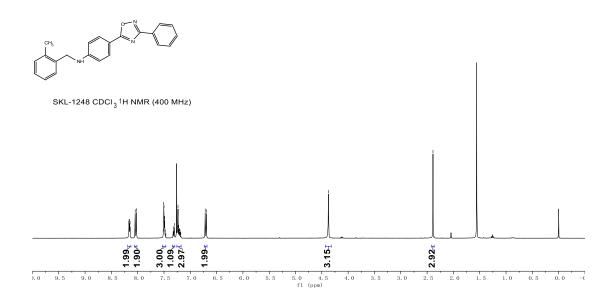


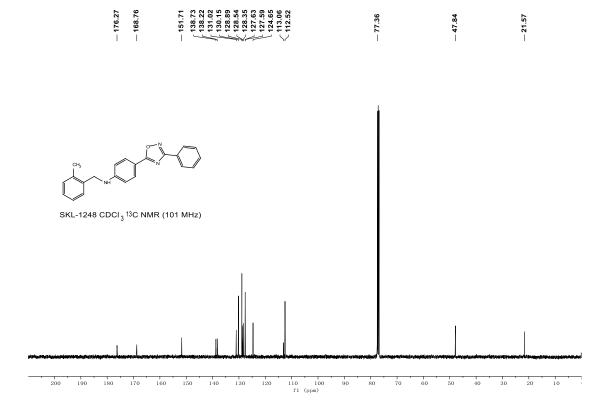


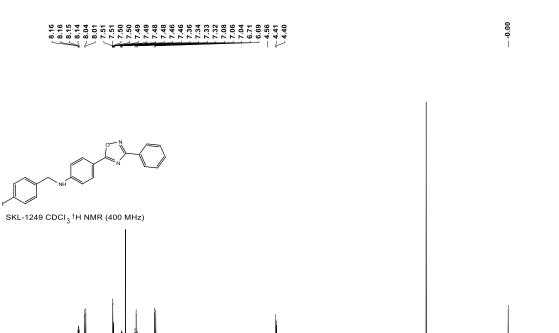


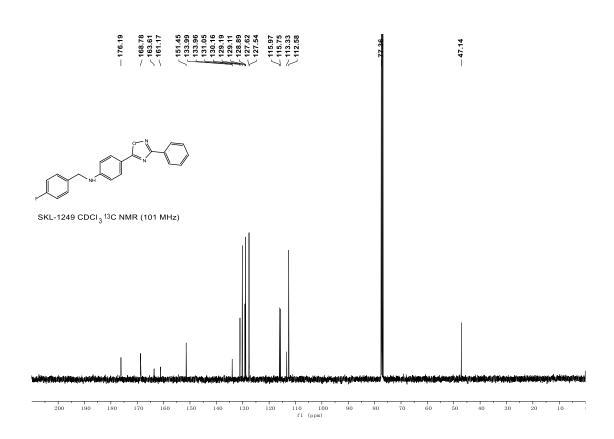


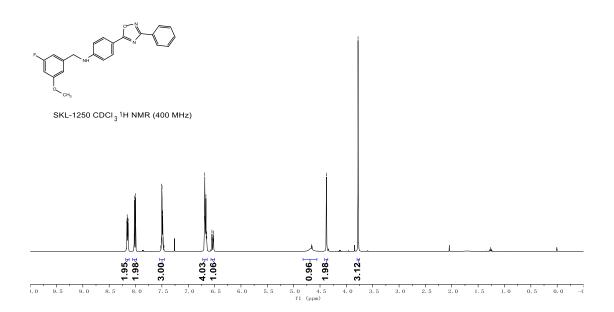


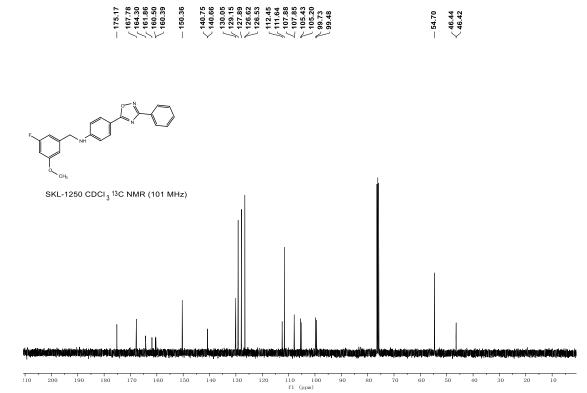


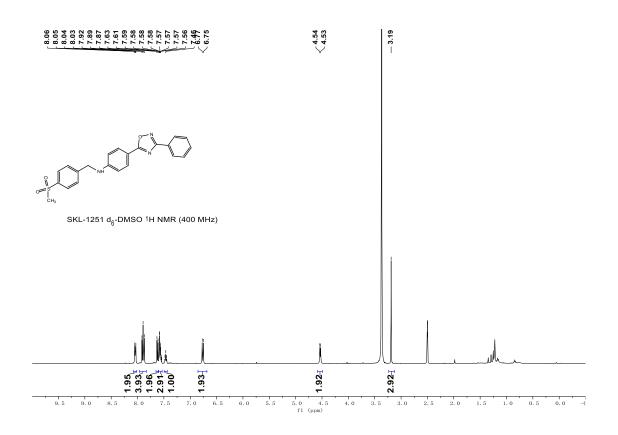


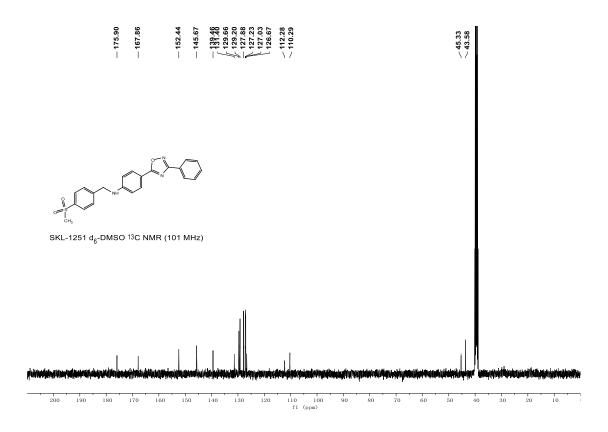


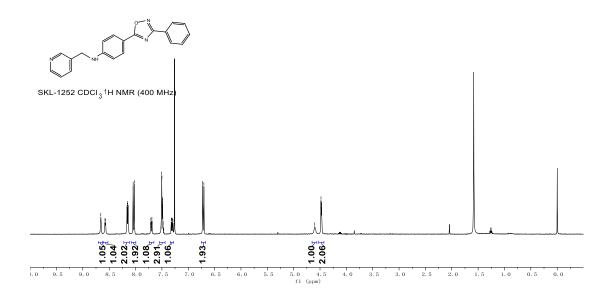











5.0 4.5 f1 (ppm)

