Supplementary Notes and Methods for
Whole proteome disease variant prediction with deep
generative modeling of evolutionary scale and population
scale genetic variation

December 7, 2023
Contents

1 Methods 2
1.1 Dataacquisition . . . .. ... ... ... 2
1.1.1 Multiple sequence alignments . . . . ... .................. 2
1.1.2 Humanvariationdata . . ... ... ... ... ... ... ... 2
1.1.3 Developmental Disorder Cohorts . . . . ... ... ... ........... 2
1.1.4 ClinVar Benign and Pathogenic Variants . . . . .. ... ... ... ..... 3
1.1.5 Deep mutational scans from ProteinGym . . . .. ... ... ........ 3
12 ModelBuilding . . . ... ... ... . 3
121 Overview of modelling strategy . . . . ... ... ... ... ...... 3
1.2.2 Modelling individual proteins using evolutionary data . . . . ... .. .. 4
1.2.3 Estimating variant level constraint in humans using Gaussian Processes . 6
1.2.4 Ensembles of models with only partially intersecting domains . . . . . . . 8
1.3 Performance AsseSSments . . . . . . . . . . . . i e e 9
1.3.1 Comparing model performance within proteins . . . ... ... ... ... 10
1.3.2 Comparing model performance across proteins . . . ... ......... 10
14 Analysisof patientdata . . ... ...... ... ... . L 11
1.4.1 Direct case-variant association . . . ... .. ... .. ... .. .. ..... 11
142 Gene-collapsingmodel . . . . .. ... ... ... .. . 0L, 11
1.5 Structural and Functional Analysis of deleterious mutations . . . ... ... ... 12
1.5.1 Manual Structure Analysis . . . . ... ... ... . . 0 L. 12

1.5.2 Functional interactions in 3D structures for high-scoring pathogenic vari-
ants . ... e e e e e 12
1.5.3 Functional Network . . . ... .. .. ... . ... ... ... ... ... 12



Supp. Whole proteome disease variant prediction with deep generative modelling of evolutionary scale
and population scale genetic variation

1. Data Acquisition | 1, 4. Disease gene/ variant
: . discovery
1.1 Protein sequences  — 1.2 Human variation — 1.3 & 1.4 Patient data
l 1 I 4.1. Per-patient
2. Model Building 3. Performance assessment pOpEVE score
T 7 | threshold ‘
I A-
Bl
4.2. Cohort-wide

protein models GP to model human variation as
EVE, Potts model, ESM1v, ... = 3 function of evolutionary score ™ >

1 | gene collapsing

/\/\\ 3.1. Protein clinical labels: i
- = pathogenic Vs benign 5. Structural & /
evolutionary score popEVE . . ?
functional analysis }
2.2. Protein models of 2.3 & 2.4. Proteome 3.2. Rare-disease cohort: (1)
evolutionary data popEVE model cases Vs controls -

Structure of workflow and methods section

1 Methods

1.1 Data acquisition
1.1.1 Multiple sequence alignments

Described in section 1.2, some models require a preprocessing step, where training data is con-
verted to multiple sequence alignments. Following a protocol similar to Hopf et al. [101] and
Riesselman et al. [102], the EVCouplings pipeline [103], which builds on the profile HMM ho-
mology search tool Jackhmmer [104], was used to build multiple sequence alignments, where
sequences were obtained from the UniRef100 database of non-redundant protein [105], down-
loaded in March 2022.

1.1.2 Human variation data

Variants from UKBB 450k and from the final 500k release were annotated using VEP GRCh38
RefSeq and custom RefSeq annotation built from NCBI genebank files to maximize number of
variants for pre-existing models. Variants were filtered for genotyping quality across all samples
and annotations are filtered based off matching between RefSeq reference sequence and tran-
script sequences. When analyzing variants seen in the UKBB outside of training, we removed
genes in which less than 95% of UK Biobank participants had at least 10x coverage [106].

1.1.3 Developmental Disorder Cohorts

Severe Developmental Disorder Metacohort De novo mutations from a metacohort com-
posed of subjects from the Deciphering Developmental Disorders study, GeneDx and Radboud
Medical center were aquired from Kaplanis et al. [107]. Quality filtering was performed by the

20f 16



Supp. Whole proteome disease variant prediction with deep generative modelling of evolutionary scale
and population scale genetic variation

respective centers as described in the supplement of Ref. [107]. The variants were re-annotated
with VEP using GRCh37 RefSeq and custom mapping based on NCBI RefSeq assembly mapping
files.

Autism Spectrum and Unaffected Siblings Metacohort De novo mutations from SFARI’s
SPARK and SCC cohorts and (the other two cohorts) were aquired from [108]. The variants
were re-annotated with VEP using GRCh37 RefSeq and custom mapping based on NCBI Ref-
Seq assembly mapping files. Sibling pairs with shared de novo variants were discarded due to
the shear improbability of sharing DNMs between siblings, assumed to be some error either
due to sequencing or the DNM calling pipeline.

Deciphering Developmental Disorders Cohort Variants from whole exome sequencing for
the Deciphering Developmental Disorders cohort, a subset of the SDD metacohort, were re-
annotated with VEP using GRCh37 RefSeq and custom mapping files. Variants were then fil-
tered by quality (RD > 7, QD > 3, FS < 60, SOR < 5, M@Q > 50, MQRankSum > -2,
ReadPosRankSum > —8).

1.1.4 ClinVar Benign and Pathogenic Variants

We made use of three sets of clinically labelled variants from the ClinVar public archive [109]
for assessing the predictive performance of various models (described in Sec. 1.3.1). One set
was downloaded in June 2023 and was processed with the same procedure used in Ref. [110].
Briefly, only missense variants with at least a one star rating were considered and class labels
were remapped to a binary system where "benign" and "likely benign" were both relabeled as
"Benign" and similarly "likely pathogenic" and "pathogenic" were relabelled as "Pathogenic".
Two more sets of labels from 2019 and 2020, which were curated in Ref. [111] were also used
for comparing the performance of supervised models.

1.1.5 Deep mutational scans from ProteinGym

For assessing the predictive performance of a models based on their correlation with high-
throughput functional assays, otherwise known as deep mutational scans, or multiplexed as-
says of variant effects, we consider the Human subset of Protein Gym [112] which are thought to
be clinically relevant. Due to the method by which the reference sequences are chosen (Sec.1.1.2),
we do not have have sequence matches for all available assays. Thus the resulting test set con-
sists of 23 assays across 18 proteins, so a modest expansion of the set considered in Ref. [110].

1.2 Model Building
1.2.1 Overview of modelling strategy

From a methodological standpoint, our central goal is to rank the severity of the effect of genetic
variants seen across an individual’s proteome. To this end, we developed a probabilistic model
which utilises protein sequence data from across diverse organisms (UniRef100) and within
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the human population (The UK Biobank). These two types of sequence data have complemen-
tary characteristics. As discussed in Ref. [110], sequence data from diverse organisms may be
viewed as the result of millions of years of evolutionary experiments and looking for patterns
of conservation in these sequences has long been appreciated as a powerful means of relating
sequence to protein structure and function, enabling the relative effects of individual amino
acid substitutions to be resolved. Sequence data from the human population on the other hand,
and in particular, whole exome sequencing, provides a human specific means of measuring the
degree of constraint acting on one coding region vs another. The intention in using both types
of data, therefore, is to take advantage of the contrasting properties of these two data sets to
achieve a model which can not only predict the effect of genetic variation across the proteome,
but also do so with missense level resolution.

In the following sections, we first introduce the models used for identifying patterns of con-
servation across diverse organisms. We refer to these models as “evo” models. These models
provide a "fitness" score for a given sequence of interest by obtaining an estimate for the log-

odds . ( () ) "
p(xel) )

where x represents the sequence of interest and z™' is the reference sequence. In words, a
sequence is considered "unfit" if it is an outlier compared to a reference sequence, with respect
to the learned sequence distribution. We then introduce popEVE, a new model which takes as
input these fitness scores and predicts the presence or absence of a variant in the UK Biobank,
conditioned on the scores from these underlying models. This model naturally provides a new
fitness score, which may be viewed as a rescaled/calibrated ensembling of the scores from the
underlying models, such that the effect of variants in distinct proteins can be compared. We
then describe our assessment of the performance of the model. We conclude that the model
presents a significant improvement over previous models at ranking variants across genes and
also provides a new state-of-the-art at ranking variants within the same gene, albeit a more
modest step forwards.

1.2.2 Modelling individual proteins using evolutionary data

It has recently emerged that unsupervised models which fit the distribution of sequences across
diverse organisms can distinguish benign from pathogenic variants in genes already associated
with disease, performing on par with high-throughput functional assays [110,113]. This class
of models have enjoyed rapid development, in part due to their diverse applications, spanning
protein design, to pathogen forecasting [114-116]. We make use of two sub-classes of models
which can be categorized as 1. alignment-based models; which use as training data the multiple
sequence alignment obtained for a given gene of interest (Sec. 1.1.1), and 2. alignment-free
models which are inspired by large language models and are trained on entire protein databases
such as UniRef90. Here we summarise each model.

The Bayesian Variational Autoencoder (EVE) Variational autoencoders (VAEs) [117,118]
are a class of latent variable models which have been shown to be effective at capturing high-
dimensional distributions in computer vision [119,120], natural language processing [121] and
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more. The assumption underlying a VAE is that the observed high-dimensional distribution is
generated by a much smaller number of hidden (a.k.a latent) variables z;. The generative story
is thus

z ~ N(O, ID)
p(af|z,0) = softmax((f°(2))f) , (2)

where z¢ is an indicator function for the presence of amino acid a (superscript Greek indices)
at position i and the "decoder” f?(z) is modelled with a fully-connected neural network, with
spherical Gaussian prior for the parameters 8. In words, the VAE models the conditional prob-
ability of seeing the amino acid « at position ¢, given the latent variables z. Parameter inference
is achieved via the use of amortized inference, where we model the distribution ¢(z|z;;, @) with
another fully-connect neural network, often referred to as the encoder. In Ref. [110] we found
a symmetric relationship between between encoder and decoder to work well, with 3 layers,
consisting of 2,000 - 1,000 - 300 and 300 - 1,000 - 2,000 nodes respectively.

To score a sequence, we use the evidence lower bound (ELBO) which is a lower bound on
the log-marginal likelihood p(x)

ELBO(%) = Nett- Ep(a) [Eq(0p)q(sle) (108 (2|2, 0p)) — DicL(a(2l®, ¢p)|Ip(2))] —DKL((J(Hp)Ilp(ip)))
3

where Neg = 27]1\[:1 wgn and wgn is defined in Eq. (5). The fitness score is then simply

p(:v\Qp)
o =log ————
& p(@i]dy)

~ ELBO(z) — ELBO(z"") (4)
Sequence reweighting All models used in this work make the false assumption that the train-
ing data is independently and identically distributed (iid). Ths iid assumption does not hold,
due to phylogeny and also biases in which organisms have been sequenced. The fact that the
VAE is trained on aligned data presents an opportunity to correct for these two biases with se-
quence re-weighting. Following the approach described in Ekeberg et al. [122], we re-weight
each protein sequence x; from a given MSA according to the reciprocal of the number of se-
quences in the corresponding MSA within a given Hamming distance cutoff T'.

-1
N

wgn = Z 1[Dist(xy, Tm) < T (5)
m=1
m#n
where N is the number of sequences in the MSA, and bold, lowercase « represents a protein
sequence, indexed by subscript Latin indices. As in Hopf et al. [101], we set 7" = 0.2 for all
human proteins.

Masked Language Model (ESM1v) The transformer architecture has enabled the training of
single, alignment free, models of essentially all known proteins. In this work we make use of
ESM-1v [123,124], which is trained on UniRef90. It achieves a comparable performance to EVE
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on a number of tasks (see 1.3) and has complementary properties. By combining the two we
expect to obtain a stronger model than would be achieved by building on EVE or ESM-1v alone.
ESM-1v [123,124] is a high-capacity 650M parameter language model which employs a form
of self-supervision known as masking. During training, each sequence has a randomly sampled
fraction of its amino acids replaced with a "mask" token and the network is then trained to
predict the amino acids which have been masked. For each masked amino acid, the negative
log likelihood of the missing amino acid, conditioned on the sequence context, is independently
minimized.
L =EupxEn Y —logp(ailzn). (6)
i€M
Hence, in order for the model to successfully perform this task, the dependencies between the
masked amino acid and the unmasked sequence context must be learned.

1.2.3 Estimating variant level constraint in humans using Gaussian Processes

While the models described in the previous section perform well at ranking variants within
a given gene of interest, they do not perform well at ranking variants across genes (Figure 1,
Supplementary Table 5). This is not surprising, since these models were not developed for
that task and in the case of the alignhment-based models, the models are trained completely
independently for each coding region of interest. Indeed, to our knowledge, while proteome-
wide predictions have been provided for numerous models (e.g. those in Fig 2e of main text), no
model to date has been developed to explicitly address the problem of ranking variants across
genes. As such, here we introduce what might be regarded as the first proteome model, which
we call popEVE.

Similar to above, we define the evo score from one of the evo models, which we index A, with
A € {1, 2}, as the log-odds between the sequence of interest « and some reference sequence ;¢

o — log (pszfl)) | 7)

In what follows, sequences which differ from the reference sequence by a single amino acid
substitution play a special role, so it is convenient to define (¢#)4 as the score from model A
for a protein sequence, which differs from the reference x!*! sequence for protein n solely by
having amino acid « at position 1.

We expect the probability of observing a sequence in the population to depend, in a fairly
simple manner, on the score from the underlying evo models. We adopt a simple Bayesian,
non-linear and non-parametric approach to modelling this relation; with the use of a Bernoulli
likelihood, and latent Gaussian process. Specifically, we model the presence or absence of the
variant in the UK Biobank as

o (yloft) = Ber (yile(fa (95:1)) (8)

where y;;1, € {1,0} indicates the presence or absence of variant in the UK Biobank, the link
function ¢(-) is the inverse logit function (also referred to as the logistic function) ¢(z) =
exp(2)(1 + exp(z))~", and the function f/!(c) is drawn from a Gaussian process prior

f(o) ~ GP(m(0),K(o,0")), 9)
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with zero mean function m(o) = 0 and radial basis function kernel
K(o,0") = exp (—y(o — 0'/)2). (10)

The inferred function f/'(c) can be thought of as a new fitness score. The intuition is that
by modelling the amount of variation seen per protein in the UK Biobank, f(c) essentially
rescales the the evo score o7 to account for the degree of constraint acting on a per variant basis
in the population, and how that constraint depends on o7, thus resulting in a score which can
rank the pathogenicity of variants across different coding regions.

Efficient function inference by restoring conjugacy with Pélya-Gamma data augmentation
For each protein of interest, indexed n, and each underlying evo model, indexed A, we seek to
infer the functions f:'. To do so, we consider the scores of all possible single amino acid sub-
stitutions in that protein and their corresponding labels v, indicating if that variant has been
observed, or not, in the UK Biobank. Dropping the indices n and A for compactness, we denote
the training data as the set of scores o = [o],...,02] € RN and y = [y1,...,yn] € {0,1}7,
where L is the number of amino acids in the protein and N = 19L, being the total number
of possible single amino acid substitutions. Let f = [f1,..., fn], be the function values corre-
sponding to the input o, then Eq. (8), together with the Gaussian process prior for f implies

p(fly, o) < p(ylf)p(flo), (11)

where p(f|o) = N(f|0, Kyn), with Ky denoting the kernel matrix evaluated at the training
points. Thus, in contrast to models with a Gaussian process prior and Gaussian likelihood, in-
ference is analytically intractable due to the Gaussian prior not being conjugate to the Bernoulli
likelihood.

One appealing approach to overcoming this is to introduce additional latent variables that
restore conjugacy. Following Ref. [125], we introduce the auxiliary variables w and define the
augmented likelihood to factorise as

p(yaw) :p(y|f,QJ)p(LU) (12>

The goal then is to find a prior p(w) to satisfy two properties: 1. That when marginalising
out w the original model is recovered. 2. The Gaussian prior p(f) is conjugate to the likeli-
hood p(y|f,w). These conditions are satisfied by the Pélya-gamma distribution, which may be
thought of as an infinite convolution of Gamma distributions. i.e. w ~ PG(b, c), where

o0

Im
= (m—5)2 4 (5)?

(13)

1
w=—
272
and g, ~ I'(b,1). Alternatively, we can define the Pélya-gamma distribution in terms of its
moment generating function (These two definitions are related by the Laplace transform):

1

—
cosh ( %)

Epglexp (—wt)] = (14)
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This second definition is useful, since it suggests that the logistic link function may be expressed
in terms of Pélya-gamma variables

L e(=)
#) = T exp(z)
_ ep(3)

1 Z; ziz
= 5 /exp (2 — 2w,>p(wl)dwi . (15)

Hence, substituting z; = y; f(0;), we obtain

ol £) xoxp (u"F - 37708 ) (16)

where @ = diag(w) is the diagonal matrix of the Pdlya-gamma variables. This augmented
likelihood is conjugate to p(f) as required.

Developed in [126], once conditional conjugacy is restored, it is possible to derive closed-
form updates for variational inference with natural gradients and a learning rate close to one,
enabling highly efficient inference of f.

Making the models scale with inducing points Inference in GPs with Gaussian a likelihood,
while exact, take O(N?) time and hence additional methods are required in order to perform
inference when the training data is large. One such method is to learn a “summary” of the data
with M < N pseudo inputs, otherwise known as inducing points [127] and hence reduce the
complexity to O(M?). Following [126], we introduce M additional variable w = [u1, ..., u],
where the function values of the GP f are related to u by

p(flu) = N(FIEnm Ky u, K)

p(u) = N(ul0, Knnr) (17)
where k) is the kernel matrix resulting from evaluating the kernel at the M/ indNuCing points,
Ky is the kernel between the training points and the inducing points and K = Kyy —
KnuK ;41]\/[ Kyn.

Hence, the complete joint distribution of our model is given by
p(y,w, f,u) = p(ylw, fp(w)p(flu)p(u). (18)

Implementation This model is implemented in GPyTorch [128] and will be made publicly
available via a dedicated GitHub repository soon.

1.2.4 Ensembles of models with only partially intersecting domains

Ensembles of models can often achieve a performance similar to, and sometimes even stronger
than, the strongest constituent model [129]. Our setup provides a novel opportunity to build
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a highly performant ensemble model by incorporating the scores from multiple evo models.
By training a separate Gaussian process model for each evo model, we naturally create directly
comparable scores between models, thereby enabling the typical, but potentially problematic,
standardization step to be bypassed entirely. We also gain an additional measure of uncertainty
since we can assess the degree of concordance between the models. We define the popEVE score
o to simply be the mean of the means of the posteriors of each GP, for each evo model who's
domain contains the variant of interest.

Q3
LS R[] (19)

—Q
O'. . =
R 05wt

where Qf} is the number of evo models capable of making a prediction for the amino acid
substitution « at position 7 in protein j.

An alternative approach would have been to ensemble the scores from the evo models di-
rectly, and then only train a single GP per protein, rather than one per evo model, per protein.
Choosing the latter brings a number of advantages. First, the scores from the underlying evo
models do not have the same distribution, meaning that some form of standardization of the
scores would be required if they were to be ensembled directly. In contrast, the function scores
fJA are directly comparable, thereby providing a principled basis for ensembling (and uncer-
tainty estimation. This point is particularly important for protein modelling, since the domain
of each evo model can be different, hence the number of models contributing to scoring a given
amino acid substitution can vary. This incomplete overlap of coverage between the models leads
to discontinuities in the ensembled score, potentially damaging the performance of the model.
This problem is to some degree alleviated with the use of the GP scores for ensembling. Sec-
ond, by training independent GPs for each evo model, it facilitates future model updates, where
additional evo models may be included in a way that is flexible with regard to reweighting the
relative importance of each model (i.e. using a weighted sum in Eq. (1.2.4)), which will become
increasingly necessary as more models are included, where some are more similar than others.

1.3 Performance Assessments

We constructed a number of tests in order to assess key properties of the model, and compare its
performance to preexisting models. Broadly, we wanted to assess the model’s ability to perform
two tasks; The ability to rank the pathogencity of variants within the same gene and across the
proteome. The former is especially important for burden testing analysis (Sec. 1.4.2) and anal-
ysis at the level of individual proteins more generally, while the latter is critical for identifying
candidate disease causing variants in whole exome data and the discovery of disease causing
variants in genes where no disease association is currently known. Given that the popEVE score
for each constituent model is simply a one-dimensional, often monotonic, function of the un-
derlying score f;!(c), we expect the performance, on a per protein basis, to only be a modest
improvement over the underlying evo models. This is because the ranking of variants will be
approximately preserved, so the only potential benefit of the new score comes from the en-
sembling aspect of the model. In contrast, when comparing variants across proteins, popEVE
should provide a significant improvement as compared to the underlying models.
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1.3.1 Comparing model performance within proteins

To assess model performance at ranking the pathogenicity of variants within the same gene,
similar to Ref. [110] we consider two tests — correlation of model predictions with deep muta-
tional scans (multiplexed assays of variant effects) (Sec. 1.1.5) and ability to predict benign and
pathogenic labels in ClinVar (Sec. 1.1.1).

To assess concordance with deep mutational scans, we compute the Spearman’s correlation
between the model score and the experimental readout (e.g. expression). Extended Data Figure
5. shows a comparison of performance of popEVE and its constituent evo models (described
in Sec. 1.2.2) (Top) and other state-of-the-art models designed to predict pathogenic variants
(Bottom), which were downloaded from dbNSFP [130] and are the same set of models that
were analysed in Ref. [111]. On average, popEVE outperforms all models as well as having
more consistent performance; typically ranking top, or near the top, for each protein, as expected
given that it is an ensemble model (described in Sec 1.2.4).

For comparison with clinical labels, we made use of three curated sets of ClinVar labels
(Sec.1.1.4). For assessing the performance of popEVE and its constituents, none of which make
use of clinical labels during training, we used the 2023 set of clinical labels following the same
procedure as in Ref. [110]. This set enables performance to be assessed on a per-protein ba-
sis across 860 proteins. For comparison with other state-of-the-art models, designed to pre-
dict pathogenic variants, most of which use supervised learning on clinical labels, we use the
recently released ClinGen curated 2019 and 2020 sets, where labels used in training by these
models have been removed [111]. Requiring a gene to have at least 5 Benign and 5 Pathogenic
labels to be included in the benchmark, with these sets we were able to assess the performance
across 50 and 31 proteins and in 2019 and 2020 data sets respectively. Comparing popEVE to
its constituent models (Supplementary Table 5), we see that on average, popEVE outperforms
both EVE and ESM-1v. We also find that on average popEVE matches (2019 set, Extended Data
Figure 4a, Supplementary Table 5), or outperforms (2020 set, Extended Data Figure 4b, Supple-
mentary Table 5) all current state-of-the-art models designed to predict pathogenic variants.

1.3.2 Comparing model performance across proteins

To assess the performance of the model at ranking the pathogenicity of variants across proteins
we constructed a test set based on the de novo variants found in patients with severe devel-
opmental disorders (Sec 1.1.3) and the unaffected siblings of patients with autism spectrum
disorder 1.1.3. The basic objective was to test if the model could distinguish patients harbour-
ing a de novo variant likely causal for a severe developmental disorder from patients whose de
novo variants are not expected to play a role in disease. To this end, we built approximately
balanced "case" and "control" sets. To obtain the case set we only considered individuals who
had at least one de novo variant in a gene known to be involved in a developmental disorder,
according to DDG2P [131], downloaded January 2023. The reasoning being that this subset will
be enriched for individual’s whose disease is caused by a de novo variant, as compared to the
full meta-cohort. The resulting test set is provided in Supplementary Table 9. Shown in Figure
2e of the main text and Supplementary Table 5, we find popEVE to outperform all current state-
of-the-art models designed to predict pathogenic variants, as well as its constituent evo models
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(Supplementary Table 5).

1.4 Analysis of patient data

We explored two approaches to analysing de novo mutations from a metacohort composed of
subjects from the Deciphering Developmental Disorders study, GeneDx and Radboud Medical
center in the hope that popEVE may provide novel evidence for the genetic diagnosis of cur-
rently unsolved cases. One approach was burden testing, which has the important advantage of
gaining statistical power thanks to the design of the cohort. The second approach was analyse
patient data on a case by case basis. The advantage of this second approach being that we may
be able to find evidence for the genetic diagnosis of diseases which are so rare that building a
sufficiently large cohort to discover via burden testing is not possible. The second approach is
also of course more widely applicable albeit less robust.

1.4.1 Direct case-variant association

Based on the test set of de novo variants from cases and controls, described in Sec. 1.3.2 we
constructed a Bayesian Gaussian Mixture Model to determine a score cutoff as

p1 ~ N (po, Zo)
p2 ~ N (po, Xo)
A1 ~ Lognormal(py, o)
A2 ~ Lognormal(py, o)
7 ~ Dirichlet(a)
Fori=1,...,N:
a; ~ Categorical()
x; ~ N (ta;s Aay) (20)

where pyp = —3.6 and Xy = 0.7. We then identified an uncertainty cutoff corresponding to a
greater than 99.99% likelihood of being in the lower fitness distribution, ¢ < —5.056.

Based on the threshold ¢ < —5.056, we then searched the full developmental disorder co-
hort (Sec. 1.1.3) for individuals with at least one de novo variant below this score, who also do
not have any loss of function variants. For those individuals, we consider these variants to be
strong candidates for being the causal variant. In addition to the high accuracy of the Gaussian
mixture model, further support for variants below this threshold is provided by noting the high
enrichment of such variants in the metacohort compared to the naive expectation (Figure 2c of
the main text). A full list of the variants found in the metacohort together with their associated
popEVE scores may be found in Supplementary Table 3.

1.4.2 Gene-collapsing model

For comparison with previous methods, we built gene-collapsing models to identify gene-disorder
associations in the SDD cohort in the style of DeNovoWEST [132]. The probability of seeing an
overall score worse for a particular gene than the observed score z, is assessed by testing from
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0 to N until the likelihood of the number of mutations, modeled using a Poisson distribution and
mutation rates (described below) goes to zero. De novo mutation rates of bases in their genomic
context, from Samocha et al 2016, are used to both determine the number of expected de novo
mutations in a particular gene of a given cohort size and to select mutations when performing
simulations. For each gene, we performed 10,000 simulations of gene mutations expected to be
seen in a single generation of a cohort this size. In addition to testing the overall enrichment
and likelihood of the observed score z.,s given the distribution of scores in a single gene, we
added a component that assesses the likelihood of seeing the observed score across the entire
proteome.

N
p(gene) = Z P(n = ngene‘)\gene)P(xgene S xobs|n)P($proteome S mobs‘”) (21>

n=0

1.5 Structural and Functional Analysis of deleterious mutations
1.5.1 Manual Structure Analysis

From the 131 novel popEVE mutations, we individually investigated structures for the top 20
most predicted deleterious. We only analyzed cryo-electron microscopy or crystallographic
structures where our mutation is included in the resolved protein structure. To enhance our
analysis, we prioritized structures that exhibited interactions with other proteins and/or lig-
ands. This allowed us to capture and understand the potential consequences of these interac-
tions. The structural figures were generated using PyMol [133]. The mutated residues were
depicted as sticks, with their corresponding elemental colors assigned for clarity. All distances
listed were calculated with the distance function in PyMol.

1.5.2 Functional interactions in 3D structures for high-scoring pathogenic variants

Available 3D structures for proteins with high-scoring pathogenic variants were retrieved and
mapped to the target sequence by alignment-based search against sequences in the SIFTS database
[134] using the EVcouplings package [135] with a single iteration of HMMER [136] at an inclu-
sion threshold of 0.2 bits/residue. High-scoring pathogenic variants were considered to have
positive evidence for functional interactions if there was at least one 3D contact between the
variant position and another non-self PDB entity within a minimum atom distance of 8A in at
least of the identified structures, excluding waters and the most frequent chemical additives for
structure determination (entity information obtained from the PDBe entry REST API [137]).

1.5.3 Functional Network

We created a functional gene network with 389 significant genes from popEVE (with a 99.99
threshold) using STRING [138]. We show edges from medium-confidence (0.4) experiments.
Genes were denoted as previously discovered if they were already observed in DDG2P [131] or
DeNovoWEST [132].

Additionally, we used medium-confidence (0.4) experiments annotations to calculate the
average node degree of DDG2P genes and DeNovoWEST genes with and without our significant
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popEVE genes included. In order to see the relative difference that the significant genes make
vs a random set of genes, we performed t-tests 100,000 times with random samples of genes
from the whole human genome (with the known and popEVE genes excluded).
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