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Legends of Supplementary Movies1010

Movie S1: 2-minute collective dynamics of 2 Hilbert agents for a memory M = 2, and1011

enforcing the presence of the wall by means of the rejection procedure.1012

Movie S2: 2-minute collective dynamics of 2 Hilbert agents for a memory M = 2,1013

without enforcing the presence of the wall. Note the occurrence of small and short1014

excursions of the fish outside the limits of the tank.1015

Movie S3: 1-minute collective dynamics of 5 Hilbert agents for a memory M = 2, and1016

enforcing the presence of the wall by means of the rejection procedure.1017

Extended Data Table1018

Extended Data Table 1: We report the mean and standard error for the PDF of
the observables appearing in Fig. 3 (for N = 2 individuals) and Fig. 4 (for N = 5
individuals). The speed V is expressed in cm/s, while the distance to the wall, rw, the
distance between two nearest neighbors, d, and the gyration radius, RGyr (only for
N = 5), are expressed in cm. Finally, the polarization, P , is without unit and between
0 and 1.
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Extended Data Figures1019

Hilbert classification (N=1000): P(1|x)~N([0,2],1) P(-1,x)=N([0,0],1)
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Extended Data Fig. 1: Classification using the Hilbert kernel: A simple example is
shown, with two classes of points drawn from a mixture of 2D unit Normal distributions,
with mean separated by 2. The points are shown in green and red colors (1000 points
of each class). The red vertical line is the Bayes classification boundary. The yellow and
blue colored regions are the Hilbert-predicted classification regions for the green and
red points. The islands of blue in yellow (and vice versa) are due to the interpolative
nature of the classifier, and correspond to the phenomenon of adversarial examples
which are guaranteed for interpolating classifiers on noisy data.
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Extended Data Fig. 2: Behavior of 2 Hilbert fish without the tank wall. This
figure is the analog of Fig. 3 in the main text (also for a memory M = 2), but in the case
where the presence of the tank wall is not enforced in the Hilbert model. The different
panels show the 9 observables used to characterize the individual (a-c) and collective
(d-f) behavior, and the time correlations in the system (g-i): a, PDF of the speed, V ; b,
PDF of the distance to the wall, rw; c, PDF of the heading angle relative to the normal
to the wall, θw; d, PDF of the distance between the pair of individuals, d; e, PDF of the
group polarization, P =

∣∣cos(∆ϕ/2)∣∣, where ∆ϕ is the relative heading angle; f, PDF of
the viewing angle at which an individual perceives the other individual, ψ. See Fig. 2a
and b in the main text for a visual representation of the main variables. g, Mean
squared displacement, Cx(t), and its asymptotic limit, Cx(∞) = 2⟨r2⟩ (dotted lines);
h, Velocity autocorrelation, Cv(t); i, Polarization autocorrelation, CP (t). The black
PDFs correspond to experiments, while the red PDFs correspond to the predictions
of the Hilbert generative model. The plots are on the same scale as in Fig. 3 in the
main text, except for rw, for which the horizontal axis has been extended to negative
values of rw corresponding to instances where an individual is observed outside the
limits of the experimental circular tank. Yet, the Hilbert fish spend 87% of the time
strictly within the tank limits, and when they wander outside the tank, their average
excursion distance from the wall is only 1.3 cm. These excursions are responsible for
the upward and rightward shift of the peak of Cx(t) and for the larger asymptotic limit,
Cx(∞) = 2⟨r2⟩ ≈ 980 cm2 (compared to Cx(∞) ≈ 900 cm2 for fish or for the Hilbert
model implementing the rejection procedure enforcing the presence of the tank wall).
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Extended Data Fig. 3: Entropy time series for 2 Hilbert fish. We plot a 2-
minute time series of the entropy for 2 Hilbert fish, and for a memory M = 2. The
entropy S can be interpreted as log2 N , where N is the effective number of real fish
configurations used to predict the acceleration of the Hilbert fish. The time series
exhibits short periods where N ≈ 1 (S ≈ 0), when the Hilbert scheme has essentially
selected a unique real fish configuration (“copying”). This short time series also presents
three short periods when N > 64 (S > 6). The PDF of the entropy computed over
much longer time is shown in Extended Data Fig. 4.
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Extended Data Fig. 4: Entropy distribution for 2 Hilbert fish. We plot the
PDF of the entropy for 2 Hilbert fish (for a memory M = 2) resulting from an effective
simulation time of 3 hours. The PDF of the entropy is reasonably well fitted by the
normalized functional form ρ(S) = (2Γ[5/4])−1 (Sc S)

−1/2 exp
(
−(S/Sc)

2
)
, although

the fit does not capture some outliers at S > 10. The fitted cut-off entropy scale,
Sc ≈ 3.61, corresponds to Nc = 2Sc ≈ 12.2 real fish configurations contributing to the
acceleration prediction, while the mean entropy ⟨S⟩ ≈ 1.37 corresponds to 2⟨log2 N⟩ =
2⟨S⟩ ≈ 2.6 configurations. The mean number of configurations used for a prediction is
⟨N⟩ = ⟨2S⟩, and is dominated by outliers. If this average is restrained to instance where
S ≤ 10, one finds ⟨N⟩S≤10 ≈ 5.2 (our fit ρ(S) would predict ⟨N⟩S≤10 ≈ 4.7), whereas
the average including all data is ⟨N⟩ ≈ 35. Also note the small peak in the PDF near
S = 1, corresponding to N = 2 relevant configurations contributing almost equally to
the Hilbert prediction. Yet, during the simulation, entropies as high as S ∼ 15 were
recorded, corresponding to N ∼ 32768 fish configurations effectively considered by the
Hilbert kernel. Compared to kNN methods, the Hilbert interpolation scheme is hence
able to adapt the effective number of used data for the prediction to the properties of
the input vector. See also Extended Data Fig. 3 for a short time series of the entropy.
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Extended Data Fig. 5: Autoregressive generative modeling of time series data: three
examples are shown of signals generated by Eq. (9) with simple training data consisting
of N=10000 samples of a single training signal. The three columns respectively show
results corresponding to a training signal generated by white Gaussian noise, a sinusoid,
and iterates of a logistic regression equation xn+1 = λxn(1 − xn) for λ = 3.9. A lag
window size of T = 10 is used (see the next figure for a lag window size of T = 40, and
the signal generation is initiated by random initial conditions consisting of T samples
of a standard normal distributed variable. The second row shows the generated signal.
The third row shows the entropy of the generative weights as a function of generation
time, and the fourth row shows the position of the maximum weight in the training
signal, also as a function of generation time. Note the “copying” behavior, where the
generated signal starts some fragment of the training signal after an initial transient.
During the “copying” phase, the weight entropy falls to zero, and the index of the
maximum weight increments linearly with time.

44



0 500 1000

-2

0

2

White noise input

0 500 1000

-2

0

2

Generated series

0 500 1000

0

5
Entropy of weights

0 500 1000

0

5000

10000
Max weight location

0 500 1000

-1

0

1
Sinusoid

0 500 1000

-1

0

1
Generated series

0 500 1000

0

5

Entropy of weights

0 500 1000

0

5000

10000
Max weight location

0 200 400 600

0

0.5

1
Logistic map

0 200 400 600

0

0.5

1
Generated series

0 200 400 600

0

5

10
Entropy of weights

0 200 400 600

0

5000

10000
Max weight location

Extended Data Fig. 6: Autoregressive generative modeling of time series data:
the same signal examples as in the previous extended data figure (Extended Data
Fig. 5) are shown, this time with a lag window T = 40. In this case, periodic behavior
is observed after an initial transient. The periods themselves contain short episodes
of “copying” where the entropy falls to zero, and also show short episodes of close
to fixed-point behavior of the dynamics, where the generated signal has an almost
constant value. The extent of the “copying”, periodic or constant behaviors depends on
the initial conditions as well as on d.
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Extended Data Fig. 7: Impact of an initial coordinate transformation x → Φ(x).
This example shows two Hilbert kernel fits, with the black curve corresponding to the
original kernel, and the blue curve corresponding to the generalized kernel corresponding
to replacing x → Φ(x) in the weights. The samples xi (i = 1..100) are chosen so
that the transformed coordinates Φ(xi) have a uniform distribution. The red line
corresponds to y = x and uncorrelated Gaussian noise with σ = 0.1 is added to produce
the noisy samples. The two regression functions both interpolate, but show slight
differences, especially in the data-sparse region, with the transformed weights (that
produce uniform sampling of x) being a bit closer to the noise-free function. As proven
in the paper, both estimates are statistically consistent and have the same large-sample
asymptotics in the leading order, but the sub-leading order behavior will generally
depend on Φ in conjunction with the other details of the problem.
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Appendix A Proofs of the theorems1020

A.1 Preliminaries1021

In the following, x ∈ Ω◦ so that ρ(x) > 0, and we will assume for simplicity that the1022

distribution ρ is continuous at x.1023

For the proof of our results, we will often exploit the following integral relation,
valid for β > 0 and z > 0,

1

Γ(β)

∫ +∞

0

tβ−1e−t z dt = z−β . (A1)

In addition, we define

ψ(x, t) :=

∫
ρ(x+ y)e

− t

||y||d ddy, (A2)

which will play a central role. We note that ψ(x, 0) = 1, and that t 7→ ψ(x, t) is a1024

continuous and strictly decreasing function of t. It is even infinitely differentiable at1025

any t > 0, but not necessarily at t = 0. In fact, for a fixed x, controlling the behavior1026

of 1− ψ(x, t) when t→ 0 will be essential to obtain our results.1027

A.2 Moments of the weights: large n behavior1028

In this section, we provide a complete proof of Theorem 1. Several other theorems will1029

use the same method of proof, and some basic steps will not be repeated in their proof.1030

Using Eq. (A1) for β > 0, we can express powers of the weight function as

wβ0 (x) =
1

||x− x0||βd
1

Γ(β)

∫ +∞

0

tβ−1e−t ||x−x0||−d−t
∑n

i=1 ||x−xi||−d

dt. (A3)

By taking the expected value over the n+1 independent random variables Xi, we obtain

E
[
wβ0 (x)

]
=

1

Γ(β)

∫ +∞

0

tβ−1ψn(x, t)ϕβ(x, t) dt, (A4)

with

ϕβ(x, t) :=

∫
ρ(x+ y)

e
− t

||y||d

||y||βd
ddy, (A5)

which is also a strictly decreasing function of t, continuous at any t > 0 (in fact,1031

infinitely differentiable for t > 0).1032

Note that the exchange of the integral over t and over x⃗ = (x0, x1, ..., xn) used to1033

obtain Eq. (A4) is justified by the Fubini theorem, by first noting that the function1034

x⃗ 7→ wβ0 (x)
∏n
i=0 ρ(xi) is in L1(Rd), since 0 ≤ wβ0 (x) ≤ 1, and since ρ is obviously in1035

L1(Rd). Moreover, the function t 7→ tβ−1ψn(x, t)ϕβ(x, t) > 0 is also in L1(R). Indeed,1036
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we will show below that it decays fast enough when t → +∞ (see Eqs. (A7-A16)),1037

ensuring the convergence of its integral at +∞, and that it is bounded (and continuous)1038

near t = 0 (see Eqs. (A29-A34)), ensuring that this function is integrable at t = 0.1039

For β = 1, ϕ1 = −∂tψ, and we obtain E
[
w0(x)

]
= 1

n+1 , as expected. In the1040

following, we first focus on the case β > 1, before addressing the cases 0 < β < 1 and1041

β < 0 at the very end of this section.1042

We now introduce t1 and t2 (to be further constrained later) such that 0 < t1 < t2.
We then express the integral of Eq. (A4) as the sum of corresponding integrals
I1 + I12 + I2. I1 is the integral between 0 and t1, I12 the integral between t1 and t2,
and I2 the integral between t2 and +∞. Thus, we have

I1 ≤ E
[
wβ0 (x)

]
≤ I1 + I12 + I2, (A6)

provided these integral exists, which we will show below, by providing upper bounds1043

for I2 and I12, and tight lower and upper bound for the leading term I1.1044

Bound for I21045

For any R ≥ 1, we can write the integral defining ψ(x, t)1046

ψ(x, t) =

∫
||y||≤R

+

∫
||y||≥R

(A7)

≤ e−
t

Rd +

∫
||y||≥R

ρ(x+ y)
||y||2

R2
ddy, (A8)

≤ e−
t

Rd +
Cx
R2

, (A9)

with Cx = σ2
ρ+ ||x−µρ||2 depending on the mean µρ and variance σ2

ρ of the distribution
ρ. Similarly, for ϕβ(x, t), we obtain the bound

ϕβ(x, t) ≤
1

Rβd
e−

t

Rd +
Cx

R2+βd
, (A10)

valid for t ≥ max(1, β) and R ≤ rt, where rt = (t/β)1/d ≥ 1 is the location of the1047

maximum of the function r 7→ e
− t

rd

rβd .1048

We now set R = t
s
d , with 0 < s < 1, and take T ′

2 ≥ max(1, β, β1/(1−s)) (so1049

that 1 ≤ R ≤ rt) is large enough such that the following conditions are satisfied for1050

t ≥ t2 ≥ T ′
2,1051

e−
t

Rd = e−t
1−s

≤ Cx

t
2s
d

, (A11)
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1

Rβd
e−

t

Rd =
1

tβs
e−t

1−s

≤ Cx

t
2s
d +βs

. (A12)

Hence, for t ≥ t2 ≥ T ′
2, we obtain1052

ψ(x, t) ≤ 2Cx

t
2s
d

, (A13)

ϕβ(x, t) ≤ 2Cx

t
2s
d +βs

. (A14)

In addition, we also impose t2 ≥ T ′′
2 = (4Cx)

d/(2s), so that 2Cx

t
2s
d

≤ 1
2 , for any t ≥

T2 = max(T ′
2, T

′′
2 ). We can now exploit the resulting bounds for ψ(x, t) and ϕβ(x, t) in

Eq. (A13) and Eq. (A14) to compute an explicit bound for I2, for any given t2 ≥ T2:

I2 =
1

Γ(β)

∫ +∞

t2

tβ−1ψn(x, t)ϕβ(x, t) dt ≤
1

Γ(β)

∫ +∞

t2

tβ(1−s)−1

(
2Cx

t
2s
d

)n+1

dt.

(A15)
The integral in the right-hand side of Eq. (A15) only converges for s > 1

1+
2(n+1)

βd

(remember that we also impose s < 1), and we then set s = 1
1+ 2

βd

, which ensures its

convergence for any n ≥ 1. Performing this integral and using the fact that 2Cx

t
2s
d

2

≤ 1
2 ,

we finally obtain

I2 ≤ Cx
d+ 2

β

Γ(β)
× 1

n 2n
. (A16)

We hence obtain the convergence of I2, which, along with the bounds for I1 and I121053

below, justifies our use of Fubini theorem to obtain Eq. (A4). Note that the above1054

bound essentially decays exponentially with n, under the stated conditions.1055

Bound for I121056

Again, exploiting the fact that ψ(x, t) and ϕβ(x, t) are strictly decreasing functions
of t, we obtain

I12 ≤ ϕβ(x, t1)t
β
2

Γ(β)
× ψn(x, t1), (A17)

where we note that ψ(x, t1) < 1, for any t1 > 0, implying that this bound decays1057

exponentially with n.1058

Bound for I11059

We first want to obtain bounds for 1− ψ(x, t), where 0 ≤ t ≤ t1, with t1 > 0 to be1060

constrained below. In addition, exploiting the continuity of ρ at x and the fact that1061

ρ(x) > 0, we introduce ε satisfying 0 < ε < 1/4, and define λ > 0 small enough so that1062

the ball B(x, δ) ⊂ Ω◦, and ||y|| ≤ λ =⇒ |ρ(x + y) − ρ(x)| ≤ ερ(x). Exploiting this1063

definition, we obtain the following lower and upper bounds1064

1− ψ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, (A18)
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1− ψ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy (A19)

+

∫
||y||≥λ

ρ(x+ y)
(
1− e−

t

λd

)
ddy, (A20)

≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy +

t

λd
. (A21)

The integral appearing in these bounds can be simplified by using radial coordinates:1065 ∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, = Sd

∫ λ

0

(
1− e−

t

rd

)
rd−1 dr, (A22)

= Vdt

∫ +∞

t

λd

1− e−u

u2
du, (A23)

where Sd and Vd = Sd

d are respectively the surface and the volume of the d-dimensional1066

unit sphere, and we have used the change of variable u = t
rd

.1067

We note that for 0 < z ≤ 1, we have∫ +∞

z

1− e−u

u2
du = − ln(z) +

∫ 1

z

1− u− e−u

u2
du+

∫ +∞

1

1− e−u

u2
du. (A24)

Exploiting this result and now imposing t1 ≤ λd, we have, for any t ≤ t11068

ln

(
C−

t

)
≤
∫ +∞

t

λd

1− e−u

u2
du ≤ ln

(
C+

t

)
, (A25)

ln(C+) = d ln(λ) +

∫ +∞

1

1− e−u

u2
du, (A26)

ln(C−) = ln(C+) +

∫ 1

0

1− u− e−u

u2
du. (A27)

Combining these bounds with Eq. (A18) and Eq. (A21), we have shown the existence
of two x-dependent constants D± such that, for 0 ≤ t ≤ t1 ≤ λd, we have

(1− ε)Vdρ(x) t ln

(
D−

t

)
≤ 1− ψ(x, t) ≤ (1 + ε)Vdρ(x) t ln

(
D+

t

)
. (A28)

In addition, we will also choose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are1069

positive and strictly increasing for 0 ≤ t ≤ t1. t1 is also taken small enough such that1070

the two bounds in Eq. (A28) are always less than 1/2, for 0 ≤ t ≤ t1 (both bounds1071

vanish when t→ 0).1072
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We now obtain efficient bounds for ϕβ(x, t), for 0 ≤ t ≤ t1. Proceeding similarly as1073

above, we obtain1074

ϕβ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy, (A29)

ϕβ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy +

1

λβd
. (A30)

Again, the integral appearing in these bounds can be rewritten as

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy = Sd

∫ λ

0

rd(1−β)−1e−
t

rd dr. (A31)

For 0 < β < 1, the integral of Eq. (A31) is finite for t = 0, ensuring the existence of1075

ϕβ(x, 0) and the fact that t 7→ tβ−1ψ(x, t)ϕβ(x, t) belongs to L1(R) (hence, justifying1076

our use of Fubini theorem for 0 < β < 1). For β > 1, we have1077

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy = Vd t

1−β
∫ +∞

t

λd

uβ−2e−u du. (A32)

∼
t→0

VdΓ(β − 1)t1−β . (A33)

This integral diverges when t → 0 and the constant term λ−βd in Eq. (A30) can be
made as small as necessary (by a factor less than ε) compared to this leading integral
term, for a small enough t1. Similarly, we can choose t1 small enough so that the
integral Eq. (A31) is approached by the asymptotic result of Eq. (A33) up to a factor
ε. Thus, we find that for 0 ≤ t ≤ t1, one has

(1− 2ε)Vdρ(x)Γ(β − 1)t1−β ≤ ϕβ(x, t) ≤ (1 + 3ε)Vdρ(x)Γ(β − 1)t1−β . (A34)

This shows that tβ−1ϕβ(x, t) has a smooth limit equal to Vdρ(x)Γ(β − 1), when t→ 0,1078

so that, combined with the finite upper bound for I2, t 7→ tβ−1ψ(x, t)ϕβ(x, t) belongs1079

to L1(R), for β > 1, and hence for all β > 0. Hence, the use of the Fubini theorem to1080

derive Eq. (A4) has been justified.1081

Now combining the bounds for ψ(x, t) and ϕβ(x, t), we obtain1082

I1 ≥ (1− 2ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
dt, (A35)

I1 ≤ (1 + 3ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−

t

))n
dt. (A36)

Asymptotic behavior of I1 and E
[
wβ0 (x)

]
1083
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We will show below that∫ t1

0

(
1− E±t ln

(
D±

t

))n
dt ∼

n→+∞

1

E±n ln(n)
, (A37)

where E± = (1∓ ε)Vdρ(x). For a given x, and for t1 and t2 satisfying the requirements1084

mentioned above, the upper bounds for I12 (see Eq. (A17)) and I2 (see Eq. (A16))1085

appearing in Eq. (A6) both decay exponentially with n and can hence be made1086

arbitrarily small compared to I1 which decays as 1/(n ln(n)).1087

Finally, assuming for now the result of Eq. (A37) (to be proven below), we have
obtained the exact asymptotic result

E
[
wβ0 (x)

]
∼

n→+∞

1

(β − 1)n ln(n)
. (A38)

Proof of Eq. (A37)1088

We are then left to prove the result of Eq. (A37). First, we will use the fact that,
for 0 ≤ z ≤ z1 < 1, one has

e−µz ≤ 1− z ≤ e−z, (A39)
where µ = − ln(1− z1)/z1. We can apply this result to the integral of Eq. (A37), using
z±1 = E±t1 ln(D±/t1) > 0. Note that 0 < t1 < D±/3 and hence z±1 > 0 can be made
as close to 0 as desired, and the corresponding µ± > 1 can be made as close to 1 as
desired. Thus, in order to prove Eq. (A37), we need to prove the following equivalent

In =

∫ t1

0

e−nEt ln(
D
t ) dt ∼

n→+∞

1

En ln(n)
, (A40)

for an integral of the form appearing in Eq. (A40). Let us mention again that t1 has1089

been taken small enough so that the function t 7→ t ln
(
D
t

)
is positive and strictly1090

increasing (with its maximum at tmax = D/e < t1), for 0 ≤ t ≤ t1.1091

We now take n large enough so that ln(n)
n < t1 and E ln(n) > 1. One can then write1092

In =
1

n

∫ ln(n)

0

e−Eu ln(Dn
u ) du+

∫ t1

ln(n)
n

e−nEt ln(
D
t ) dt = Jn +Kn, (A41)

Jn ≤ 1

n

∫ 1/E

0

e−Eu ln(DEn) du+
1

n

∫ ln(n)

1/E

e
−Eu ln

(
Dn

ln(n)

)
du, (A42)

≤ 1

E n ln (DEn)
+

ln(n)

DE n2 ln
(
Dn
ln(n)

) , (A43)

Kn ≤
∫ +∞

ln(n)
n

e
−nEt ln

(
D
t1

)
dt ≤ 1

E n
1+E ln

(
D
t1

)
ln
(
D
t1

) . (A44)
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When n→ +∞, we hence find that the upper bound I+n of In satisfies

I+n ∼
n→+∞

1

E n ln (DEn)
∼

n→+∞

1

E n ln (n)
. (A45)

Let us now prove a similar result for a lower bound of In by considering n large1093

enough so that nEt1 > 1, and by introducing δ satisfying 0 ≤ δ < 1/e:1094

In =
1

nE

∫ nEt1

0

e−u ln(DEn)+u ln(u) du, (A46)

≥ 1

nE

∫ δ

0

e−u ln(DEn)+δ ln(δ) du, (A47)

≥ eδ ln(δ)

nE ln (DEn)

(
1− (DEn)

−δ
)
= I−n (δ). (A48)

Hence, for any 0 ≤ δ < 1/e which can be made arbitrarily small, and for n large
enough, we find that In ≥ I−n (δ), with

I−n (δ) ∼
eδ ln(δ)

E n ln (DEn)
∼ eδ ln(δ)

E n ln (n)
. (A49)

Eq. (A49) combined with the corresponding result of Eq. (A45) for the upper bound I+n1095

finally proves Eq. (A40), and ultimately, Eq. (A38) and Theorem 1 for the asymptotic1096

behavior of the moment E
[
wβ0 (x)

]
, for β > 1.1097

Entropy (moment for “β = 1−”)1098

We define the information entropy, S(x), by

S(x) = −
n∑
i=0

wi(x) log[wi(x)]. (A50)

If the weights are equidistributed over N data, one obtains S = −N ×1/N log(1/N ) =
log(N ), and eS = N indeed represents the number of contributing data. The expectation
value of the entropy reads

E[S(x)] = −(n+ 1)E[w0(x) ln(w0(x))]. (A51)

In order to evaluate Eq. (A51), we use an integral representation in the spirit of
Eq. (A1), valid for any z > 0,∫ +∞

0

(ln(t) + γ) e−t z dt = − ln(z)

z
, (A52)
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where γ is Euler’s constant. Using Eq. (A52), we find1099

−w0(x) ln(w0(x)) = − 1

||x− x0||−d

∫ +∞

0

e−t ||x−x0||−d−t
∑n

i=1 ||x−xi||−d

×
(
ln(||x− x0||−d) + ln(t) + γ

)
dt. (A53)

By taking the expected value over the n+1 independent random variables Xi, we obtain

E
[
−w0(x) ln(w0(x))

]
= −

∫ +∞

0

ψn(x, t)
(
Φ1(x, t) + (ln(t) + γ)ϕ1(x, t)

)
dt, (A54)

with

Φ1(x, t) :=

∫
ρ(x+ y) e

− t

||y||d
ln
(
||y||−d

)
||y||d

ddy, (A55)

which is continuous at any t > 0 (in fact, infinitely differentiable for t > 0). In addition,1100

ϕ1(x, t) = −∂tψ(x, t) has been defined in Eq. (A5).1101

By exploiting the same method used to bound ϕβ(x, t) (see Eq. (A34) and above1102

it), we find that1103

Φ1(x, t) ∼
t→0

1

2
Vdρ(x) ln

2(t), (A56)

ϕ1(x, t) ∼
t→0

−Vdρ(x) ln(t), (A57)

where Eq. (A57) is fully consistent with Eq. (A28) (by naively differentiating Eq. (A28)).1104

Finally, exploiting Eqs. (A56,A57), the integral of Eq. (A54) can be evaluated with1105

the same method as in the previous section, leading to1106

E
[
−w0(x) ln(w0(x)

]
∼

n→+∞

1

2
Vdρ(x)

∫ t1

0

e
−nVdρ(x)t ln

(
D±
t

)
ln2(t) dt, (A58)

∼
n→+∞

1

2

ln(n)

n
. (A59)

This last result proves the second part of Theorem 1 (see also the heuristic discussion
below Theorem 1) for the expected value of the entropy:

E[S(x)] = −(n+ 1)E[w0(x) ln(w0(x))] ∼
n→+∞

1

2
ln(n). (A60)

Moments of order 0 < β < 11107

The integral representation Eq. (A1) allows us to also explore moments of order
0 < β < 1. In that case κβ(x) = ϕβ(x, 0) <∞ is finite, with

κβ(x) =

∫
ρ(x+ y)

||y||βd
ddy. (A61)
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By retracing the different steps of our proof in the case β > 1, it is straightforward1108

to show that1109

E
[
wβ0 (x)

]
∼

n→+∞

κβ(x)

Γ(β)

∫ t1

0

tβ−1e
−nVdρ(x)t ln

(
D±
t

)
dt, (A62)

∼
n→+∞

κβ(x)

(Vdρ(x)n ln(n))β
, (A63)

where the equivalent for the integral can be obtained by exploiting the very same1110

method used in our proof of Eq. (A37) above, hence proving the third part of Theorem 1.1111

We observe that contrary to the universal result of Eq. (A38) for β, the asymptotic1112

equivalent for the moment of order 0 < β < 1 is non-universal and explicitly depends1113

on x and the distribution ρ.1114

Moments of order β < 01115

Finally, moments of order β < 0 are unfortunately inaccessible to our methods1116

relying on the integral relation Eq. (A1), which imposes β > 0. However, we can obtain1117

a few rigorous results for these moments (see also the heuristic discussion just after1118

Theorem 1).1119

Indeed, for β = −1, we have

1

w0(x)
= 1 + ∥x− x0∥d

n∑
i=1

1

∥x− xi∥d
. (A64)

But since we have assumed that ρ(x) > 0, E[∥x− xi∥−d] =
∫ ρ(x+y)

||y||d ddy is infinite and1120

moments of order β ≤ −1 are definitely not defined.1121

As for the moment of order −1 < β < 0, it can be easily bounded,

E
[
wβ0 (x)

]
≤ 1 + n

∫
ρ(x+ y)||y|||β|d ddy

∫
ρ(x+ y)

||y|||β|d
ddy, (A65)

and a sufficient condition for its existence is κβ(x) =
∫
ρ(x+ y)||y|||β|d ddy <∞ (the1122

other integral, equal to κ|β|(x), is always finite for |β| < 1), which proves the last part1123

of Theorem 1.1124

Numerical distribution of the weights1125

In the main text below Theorem 1, we presented a heuristic argument showing that
the results of Theorem 1 and Theorem 2 (for the Lagrange function; that we prove
below) were fully consistent with the weight W = w0(x) having a long-tailed scaling
distribution,

Pn(W ) =
1

Wn
p

(
W

Wn

)
. (A66)

The scaling function p was shown to have a universal tail p(w) ∼ w−2 and the scale1126

Wn was shown to obey the equation −Wn ln(Wn) = n−1. To the leading order for1127

large n, we have Wn ∼ 1
n ln(n) , and we can solve this equation recursively to find the1128
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next order approximation, Wn ∼ 1
n ln(n ln(n)) . In Fig. 1b in the main text, we present1129

numerical simulations for the scaling distribution p of the variable w = W/Wn, for1130

n = 65536, using the estimate Wn ≈ 1
n ln(n ln(n)) . We observe that p(w) is very well1131

approximated by the function p̂(w) = 1
(1+w)2 , confirming our non-rigorous results.1132

The data were generated by drawing random values of rdi = ||x − xi||d using1133

(n + 1) i.i.d. random variables ai uniformly distributed in [0, 1[, with the relation1134

ri = [ai/(1−ai)]1/d, and by computing the resulting weight W = r−di /
∑n

j=0 r
−d
j . This1135

corresponds to a distribution of ||x− xi|| given by ρ(x− xi) = 1/Vd/(1 + ||x− xi||d)2.1136

A.3 Lagrange function: scaling limit1137

In this section, we prove Theorem 2 for the scaling limit of the Lagrange function
L0(x) = EX|x0

[w0(x)]. Exploiting again Eq. (A1), the expected Lagrange function can
be written as

L0(x) = ∥x− x0∥−d
∫ +∞

0

ψn(x, t)e−t∥x−x0∥−d

dt, (A67)

where ψ(x, t) is again given by Eq. (A2).1138

For a given t1 > 0, and remembering that ψ(x, t) is a strictly decreasing function
of t, with ψ(x, 0) = 1, we obtain

L1 ≤ L0(x) ≤ L1 + L2, (A68)

with1139

L1 = ∥x− x0∥−d
∫ t1

0

ψn(x, t)e−t∥x−x0∥−d

dt, (A69)

L2 = e−t1∥x−x0∥−d

. (A70)

For ε > 0 and a sufficiently small t1 > 0 (see section A.2), we can use the bound1140

for ψ(x, t) obtained in section A.2, to obtain1141

L1 ≥ (1− 2ε)
1

∥x− x0∥d

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
e
− t

∥x−x0∥d dt,(A71)

L1 ≤ (1 + 3ε)
1

∥x− x0∥d

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−

t

))n
e
− t

∥x−x0∥d dt.(A72)

Then, proceeding exactly as in section A.2, it is straightforward to show that L1 can
be bounded (up to factors 1 +O(ε)) by the two integrals L±

1

L±
1 =

1

∥x− x0∥d

∫ t1

0

e
−nVdρ(x) t ln

(
D±
t

)
− t

∥x−x0∥d dt. (A73)

Like in section A.2, we impose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are1142

positive and strictly increasing for 0 ≤ t ≤ t1.1143
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We now introduce the scaling variable zx(n, x0) = Vdρ(x)∥x− x0∥dn log(n), so that

L±
1 =

1

∥x− x0∥d

∫ t1

0

e
− t

∥x−x0∥d

(
1+z

ln(D±/t)
ln(n)

)
dt =

∫ t1
∥x−x0∥d

0

e
−u
(
1+z

ln(D±∥x−x0∥−d/u)
ln(n)

)
du,

(A74)
where we have used the shorthand notation z ≡ zx(n, x0).1144

For a given real Z ≥ 0, we now want to study the (scaling) limit of L0(x) when1145

n→ ∞, ∥x− x0∥−d → +∞ (i.e., x0 → x), and such that zx(n, x0) → Z, which we will1146

simply denote limZ L0(x). We note that limZ L2 = 0 (see Eq. (A68) and Eq. (A70)), so1147

that we are left to show that limZ L
±
1 = 1

1+Z = limZ L0(x), which will prove Theorem 2.1148

Exploiting the fact that u ln(u) ≥ −1/e, for u ≥ 0, we obtain1149

L±
1 ≥ e−

z
e ln(n)

∫ t1
∥x−x0∥d

0

e
−u
(
1+z

ln(D±∥x−x0∥−d)
ln(n)

)
du, (A75)

≥ 1

1 + z
ln(D±∥x−x0∥−d)

ln(n)

e−
z

e ln(n)

(
1− e

− t1
∥x−x0∥d )

)
. (A76)

Since we have limZ
ln(D±∥x−x0∥−d)

ln(n) = 1, limZ
z

e ln(n) = 0, and limZ
t1

∥x−x0∥d = +∞, we1150

find that L±
1 is bounded from below by a term for which the limZ is 1

1+Z , with a1151

relative difference of order 1/ ln(n) for finite n.1152

Since we will ultimately take the limZ and hence the limit x0 → x, we can impose1153

that the upper limit of the last integral in Eq. (A74) satisfies t1
∥x−x0∥d > 1. Let us now1154

consider K > 0, such that K < t1
∥x−x0∥d . We then obtain,1155

L±
1 ≤

∫ K

0

e
−u
(
1+z

ln(D±∥x−x0∥−d/K)
ln(n)

)
du+

∫ +∞

K

e−u du, (A77)

≤ 1

1 + z
ln(D±∥x−x0∥−d/K)

ln(n)

+ e−K . (A78)

We can now take K such that ln(K) =

[
ln
(

t1
∥x−x0∥d

)]α
, for some fixed α satisfying1156

0 < α < 1. It is clear that K satisfies K < t1
∥x−x0∥d . In addition, we have limZ K = +∞1157

and limZ
ln(K)
ln(n) = 0, implying that the limZ of the upper bound in Eq. (A78) is also1158

1
1+Z , with a relative difference of order 1/[ln(n)]1−α for finite n (the closer α > 0 to 0,1159

the more stringent this bound will be).1160

Finally, since limZ L2 = 0, we have shown that for any real Z ≥ 0, limZ L
±
1 =1161

limZ L0(x) = 1
1+Z , which proves Theorem 2. Note that the two bounds obtained1162

suggest that the relative error between L0(x) and 1
1+Z for finite large n and large1163

∥x− x0∥−d with z(n, x0) remaining close to Z is of order 1/ ln(n), or equivalently, of1164

order 1/ ln(∥x− x0∥).1165
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Numerical simulations for the Lagrange function at finite n1166

In Fig. 1c, we illustrate numerically the scaling result of Theorem 2.1167

Note that, exploiting Theorem 2, we can use a simple heuristic argument to1168

estimate the tail of the distribution of the random variable W = w0(x). Indeed,1169

approximating L0(x) for finite but large n by its asymptotic form 1
1+zx(n,x0)

, with1170

zx(n, x0) = Vdρ(x)n log(n)∥x− x0∥d, we obtain1171 ∫ 1

W

P (W ′) dW ′ ∼
∫
ρ(x0) θ

(
1

1 + Vdρ(x)n log(n)∥x− x0∥d
−W

)
ddx0, (A79)

∼ Vdρ(x)

∫ +∞

0

θ

(
1

1 + Vdρ(x)n log(n)u
−W

)
du, (A80)

∼ 1

n ln(n)W
=⇒ P (W ) ∼ 1

n ln(n)W 2
, (A81)

where θ(.) is the Heaviside function. This heuristic result is again perfectly consistent1172

with our guess (see the discussion below Theorem 1) that P (W ) = 1
Wn

p
(
W
Wn

)
, with the1173

scaling function p having the universal tail, p(w) ∼
w→+∞

w−2, and a scale Wn ∼ 1
n ln(n) .1174

Indeed, in this case and in the limit n→ +∞, we obtain that P (W ) ∼ 1
Wn

(
Wn

W

)2
∼1175

Wn

W 2 ∼ 1
n ln(n)W 2 , which is identical to the result of Eq. (A81).1176

A.4 The variance term1177

We define the variance term V(x) as

V(x) = E
[ n∑
i=0

w2
i (x)[yi − f(xi)]

2
]
= EX

[ n∑
i=0

w2
i (x)σ

2(xi)
]
= (n+ 1)E

[
w2

0(x)σ
2(x0)

]
.

(A82)
If we first assume that σ2(x) is bounded by σ2

0 , we can readily bound V(x) using
Theorem 1 with β = 2:

V(x) ≤ (n+ 1)σ2
0 E
[
w2

0(x)
]
. (A83)

Hence, for any ε > 0, there exists a constant Nx,ε, such that for n ≥ Nx,ε, we obtain
Theorem 3

V(x) ≤ (1 + ε)
σ2
0

ln(n)
. (A84)

However, one can obtain an exact asymptotic equivalent for V(x) by assuming
that σ2 is continuous at x (with σ2(x) > 0), while relaxing the boundedness condition.
Indeed, we now assume the growth condition CσGrowth∫

ρ(y)
σ2(y)

1 + ∥y∥2d
ddy <∞. (A85)

Note that this condition can be satisfied even in the case where the mean variance1178 ∫
ρ(y)σ2(y) ddy is infinite.1179
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Proceeding along the very same line as the proof of Theorem 1 in section A.2, we
can write

E
[
w2

0(x)σ
2(x0)

]
=

∫ +∞

0

tψn(x, t)ϕ(x, t) dt, (A86)

with

ϕ(x, t) :=

∫
ρ(x+ y)σ2(x+ y)

e
− t

||y||d

||y||2d
ddy, (A87)

which as a similar form as Eq. (A5), with β = 2. The condition of Eq. (A85) ensures1180

that the integral defining ϕ(x, t) converges for all t > 0.1181

The continuity of σ2 at x (and hence of ρσ2) and the fact the ρ(x)σ2(x) > 0
implies the existence of a small enough λ > 0 such that the ball B(x, λ) ⊂ Ω◦ and
||y|| ≤ λ =⇒ |ρ(x+ y)σ2(x+ y)− ρ(x)σ2(x)| ≤ ερ(x)σ2(x), a property exploited for
ρ in the proof of Theorem 1 (see Eq. (A18) and the paragraph above it), and which
can now be used to efficiently bound ϕ(x, t). In addition, using the method of proof
of Theorem 1 (see Eq. (A30)) also requires that

∫
||y||≥λ ρ(y)

σ2(y)
∥y∥2d d

dy < ∞, which is
ensured by the condition CσGrowth of Eq. (A85). Apart from these details, one can
proceed strictly along the proof and Theorem 1, leading to the proof of Theorem 4:

V(x) ∼
n→+∞

σ2(x)

ln(n)
. (A88)

Note that if σ2(x) = 0, one can straightforwardly show that for any ε > 0, and for n
large enough, one has

V(x) ≤ ε

ln(n)
, (A89)

while a more optimal estimate can be easily obtained if one specifies how σ2 vanishes1182

at x.1183

A.5 The bias term1184

This section aims at proving Theorem 5, 6, and 7.1185

Assumptions1186

We first impose the following growth condition CfGrowth for f(x) := E[Y | X = x]:∫
ρ(y)

f2(y)

(1 + ||y||d)2
ddy <∞, (A90)

which is obviously satisfied if f is bounded. Since ρ is assumed to have a second moment,
the condition CfGrowth is also satisfied for any function satisfying |f(x)| ≤ Af ||y||d+1

for all y, such that ||y|| ≥ Rf , for some Rf > 0. Using the Cauchy-Schwartz inequality,
we find that the condition CfGrowth also implies that∫

ρ(y)
|f(y)|

1 + ||y||d
ddy <∞. (A91)
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In addition, for any x ∈ Ω◦ (so that ρ(x) > 0), we assume that there exists a
neighborhood of x such that f satisfies a local Hölder condition. In other words, there
exist δx > 0, Kx > 0, and αx > 0, such that the ball B(0, δx) ⊂ Ω, and

||y|| ≤ δx =⇒ |f(x+ y)− f(x)| ≤ Kx||y||αx , (A92)

which defines condition CfHolder.1187

Definition of the bias term and preparatory results1188

We define the bias term B(x) as1189

B(x) = EX
[( n∑

i=0

wi(x)[f(xi)− f(x)]
)2]

= (n+ 1)B1(x) + n(n+ 1)B2(x),(A93)

B1(x) =
1

n+ 1
EX
[ n∑
i=0

w2
i (x)[f(xi)− f(x)]2

]
, (A94)

= EX
[
w2

0(x)[f(x0)− f(x)]2
]
, (A95)

B2(x) =
1

n(n+ 1)
EX
[ ∑
0≤i<j≤n

wi(x)wj(x)[f(xi)− f(x)][f(xj)− f(x)]
]
, (A96)

= EX
[
w0(x)w1(x)[f(x0)− f(x)][f(x1)− f(x)]

]
. (A97)

Exploiting again Eq. (A1) for β = 2 like we did in section A.2, we obtain

B1(x) =

∫ +∞

0

t ψn(x, t)χ1(x, t) dt, (A98)

where ψ(x, t) is again the function defined in Eq. (A2), and where

χ1(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
(f(x+ y)− f(x))2

||y||2d
ddy. (A99)

For any t > 0, and under condition CfGrowth, the integral defining χ1(x, t) is well-defined.1190

Moreover, χ1(x, t) is a strictly positive and strictly decreasing function of t > 0.1191

Now, defining ui = ||x− xi||−d, i = 0, ..., n and exploiting again Eq. (A1) for β = 2,
we can write

w0(x)w1(x) = u0u1

∫ ∞

0

t e−(u0+u1)t−(
∑n

i=2 ui)t dt (A100)

Now taking the expectation value over the n+ 1 independent variables, we obtain1192

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (A101)
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where
χ2(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
f(x+ y)− f(x)

||y||d
ddy. (A102)

Again, for any t > 0, and under condition CfGrowth, the integral defining χ2(x, t) is1193

well-defined. Note that, the integral defining χ2(x, 0) is well-behaved at y = 0 under1194

condition CfHolder. Indeed, for ||y|| ≤ δx, we have |f(x+y)−f(x)|
||y||d ≤ Kx||y||−d+αx , which1195

is integrable at y = 0 in dimension d. Note that, if f(x+ y)− f(x) were only decaying1196

as const./ ln(||y||), then |χ2(x, t)| ∼ const. ln(| ln(t)|) → +∞, when t→ 0, and χ2(x, 0)1197

would not exist (see the end of this section where we relax the local Hölder condition).1198

From now, we denote

κ(x) := χ2(x, 0) =

∫
ρ(x+ y)

f(x+ y)− f(x)

||y||d
ddy. (A103)

Also note that κ(x) = 0 is possible, even if f is not constant. For instance, if Ω is1199

a sphere centered at x or Ω = Rd, if ρ(x + y) = ρ̂(||y||) is isotropic around x and,1200

if fx : y 7→ f(x + y) is an odd function of y, then we indeed have κ(x) = 0 at the1201

symmetry point x.1202

Upper bound for B1(x)1203

For ε > 0, we define λ like in section A.2 and define η = min(λ, δx), so that1204

χ1(x, t) ≤ (1 + ε)Kxρ(x)

∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy + Λx, (A104)

Λx =

∫
||y||≥η

ρ(x+ y)
(f(x+ y)− f(x))2

||y||2d
ddy, (A105)

where the constant Λx <∞ under condition CfGrowth. The integral in Eq. (A104), can1205

be written as1206 ∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy = Sd

∫ η

0

e−
t

rd r2αx−d−1 dr, (A106)

= Vdt
2αx
d −1

∫ +∞

t

ηd

u−
2αx
d e−u du, (A107)

Hence, we find that χ1(x, t) is bounded for αx > d/2. For αx < d/2, and for t < t11207

small enough, there exists a constant M(2αx/d) so that χ1(x, t) ≤M(2αx/d)t
2αx
d −1.1208

Finally, in the marginal case αx = d/2 and for t < t1, we have χ1(x, t) ≤M(1) ln(1/t),1209

for some constant M(1).1210

Now, exploiting again the upper bound of ψ(x, t) obtained in section A.2 and1211

repeating the steps to bound the integrals involving ψn(x, t), we find that, for αx ̸= d/2,1212

B1(x) is bounded up to a multiplicative constant by1213

∫ t1

0

tmin(1, 2αx
d ) e

−nVdρ(x)t ln

(
D−
t

)
dt ∼

n→+∞
M ′(2αx/d)

(
Vdρ(x)n ln(n)

)−min(2, 2αx
d +1)

,(A108)
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where M ′(2αx/d) is a constant depending only on 2αx/d. In the marginal case, αx =1214

d/2, B1(x) is bounded up to a multiplicative constant by n−2 ln(n).1215

In summary, we find that

(n+ 1)B1(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

(A109)

Asymptotic equivalent for B2(x)1216

Let us first assume that κ(x) = χ2(x, 0) ̸= 0. Then again, as shown in detail in1217

section A.2, the integral defining B2(x) is dominated by the small t region, and will be1218

asymptotically equivalent to1219

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (A110)

∼
n→+∞

κ2(x)

∫ t1

0

t e
−nVdρ(x)t ln

(
D±
t

)
dt, (A111)

∼
n→+∞

(
κ(x)

Vdρ(x)n ln(n)

)2

. (A112)

On the other hand, if κ(x) = 0, one can bound χ2(x, t) (up to a multiplicative constant)1220

for t ≤ t1 by the integral1221 ∫
||y||≤η

(
1− e

− t

||y||d

)
||y||αx−d ddy = Sd

∫ η

0

(
1− e−

t

rd

)
rαx−d rd−1 dr, (A113)

= Vdt
αx
d

∫ +∞

t

ηd

u−1−αx
d

(
1− e−u

)
du.(A114)

Hence, for κ(x) = 0, we find that

n(n+ 1)B2(x) = O
(
n−

2αx
d (ln(n))−2− 2αx

d

)
. (A115)

Asymptotic equivalent for the bias term B(x)1222

In the generic case κ(x) ̸= 0, we find that (n + 1)B1(x) is always dominated by
n(n+1)B2(x), and we find the following asymptotic equivalent for B(x) = (n+1)B1(x)+
n(n+ 1)B2(x):

B(x) ∼
n→+∞

(
κ(x)

Vdρ(x) ln(n)

)2

. (A116)
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In the non-generic case κ(x) = 0, the bound for (n+ 1)B1(x) in Eq. (A109) is always
more stringent than the bound for n(n+ 1)B2(x) in Eq. (A115), leading to

B(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

, (A117)

which proves the statements made in Theorem 5.1223

Interpretation of the bias term B(x) for κ(x) ̸= 01224

Here, we assume the generic case κ(x) ̸= 0 and define f̄(x) = E
[
f̂(x)

]
. We have1225

∆(x) := E

 n∑
i=0

wi(x)(f(xi)− f(x))

 = f̄(x)− f(x), (A118)

f̄(x) = E

 n∑
i=0

wi(x)f(xi)

 = (n+ 1)E
[
w0(x)f(x0)

]
. (A119)

By using another time Eq. (A1), we find that,1226

∆(x) = (n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (A120)

∼
n→+∞

nκ(x)

∫ t1

0

e
−nVdρ(x)t ln

(
D±
t

)
dt, (A121)

∼
n→+∞

κ(x)

Vdρ(x) ln(n)
. (A122)

Comparing this result to the one of Eq. (A116), we find that the bias B(x) is asymp-
totically dominated by the square of the difference ∆2(x) between f̄(x) = E

[
f̂(x)

]
and f(x):

B(x) ∼
n→+∞

(
E
[
f̂(x)

]
− f(x)

)2

, (A123)

a statement made in Theorem 5.1227

Relaxing the local Hölder condition1228

We now only assume the condition CfCont. that f is continuous at x (but still1229

assuming the growth conditions). We can now define δx such that the ball B(x, δ) ⊂ Ω◦
1230

and ||y|| ≤ δx =⇒ |f(x+ y)− f(x)| ≤ ε. Then, the proof proceeds as above, but by1231

replacing Kx by ε, αx by 0, and by updating the bounds for χ1(x, t) (for which this1232

replacement is safe) and χ2(x, t) (for which it is not). We now find that for 0 < t ≤ t1,1233
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with t1 small enough1234

0 ≤ χ1(x, t) ≤ ε(1 + 2ε)Vdρ(x)t
−1, (A124)

|χ2(x, t)| ≤ ε(1 + 2ε)Vdρ(x) ln

(
1

t

)
. (A125)

As already mentioned below Eq. (A102), where we provided an explicit counterexample,
we see that relaxing the local Hölder condition does not guarantee anymore that
limt→0 |χ2(x, 0)| <∞. With these new bounds, and carrying the rest of the calculation
as in the previous sections, we ultimately find the following weaker result compared to
Eq. (A116) and Eq. (A117):

B(x) = o

(
1

ln(n)

)
, (A126)

or equivalently, that for any ε > 0, there exists a constant Nx,ε such that, for n ≥ Nx,ε,
we have

B(x) ≤ ε

ln(n)
, (A127)

which proves Theorem 6.1235

The bias term at a point where ρ(x) = 01236

This section aims at proving Theorem 7 expressing the lack of convergence of the
estimator f̂(x) to f(x), when ρ(x) = 0, and under mild conditions. Let us now consider
a point x ∈ ∂Ω for which ρ(x) = 0, let us assume that there exists constants ηx, γx > 0,
and Gx > 0, such that ρ satisfies the local Hölder condition at x

||y|| ≤ ηx =⇒ ρ(x+ y) ≤ Gx||y||γx . (A128)

We will also assume that the growth condition of Eq. (A91) is satisfied. With these1237

two conditions, κ(x) defined in Eq. (A103) exists. The vanishing of ρ at x strongly1238

affects the behavior of ψ(x, t) in the limit t→ 0, which is not singular anymore:1239

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)∥x− y∥−d ddy, (A129)

where the convergence of the integral λ(x) :=
∫
ρ(y)∥x− y∥−d ddy is ensured by the1240

local Hölder condition of ρ at x.1241

Let us now evaluate f̄(x) = limn→+∞ E[f̂(x)], the expectation value of the estimator1242

f̂(x) in the limit n→ +∞, introduced in Eq. (A119). First assuming, κ(x) = χ2(x, 0) ̸=1243

0, we obtain1244

f̄(x)− f(x) = lim
n→+∞

(n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (A130)

= lim
n→+∞

nχ2(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (A131)

=
κ(x)

λ(x)
, (A132)
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which shows that the bias term does not vanish in the limit n → +∞. Eq. (A132)1245

can be straightforwardly shown to remain valid when κ(x) = 0. Indeed, for any ε > 01246

chosen arbitrarily small, we can choose t1 small enough such that |χ2(x, t)| ≤ ε for1247

0 ≤ t ≤ t1, which leads to |f̄(x)− f(x)| ≤ ε/λ(x).1248

Note that relaxing the local Hölder condition for ρ at x and only assuming the1249

continuity of f at x and κ(x) ̸= 0 is not enough to guarantee that f̄(x) ̸= f(x). For1250

instance, if ρ(x+ y) ∼y→0 ρ0/ ln(1/||y||), and there exists a local solid angle ωx > 01251

at x, one can show that 1− ψ(x, t) ∼t→0 ωxSdρ0 t ln(ln(1/t)), and the bias would still1252

vanish in the limit n→ +∞, with f̂(x)− f(x) ∼n→+∞ κ(x)/[ωxSdρ0 ln(ln(n))].1253

A.6 Asymptotic equivalent for the regression risk1254

This section aims at proving Theorem 8. Under conditions CσGrowth, C
f
Growth, and

CfCont., the results of Eq. (A88) and Eq. (A126) show that for ρ(x)σ2(x) > 0 and ρ
and σ2 continuous at x, the bias term B(x) is always dominated by the variance term
V(x) in the limit n→ +∞. Thus, the excess regression risk satisfies

E[(f̂(x)− f(x))2] ∼
n→+∞

σ2(x)

ln(n)
. (A133)

As a consequence, the Hilbert kernel estimate converges pointwise to the regression
function in probability. Indeed, for δ > 0, there exists a constant Nx,δ, such that

E[(f̂(x)− f(x))2] ≤ (1 + δ)
σ2(x)

ln(n)
, (A134)

for n ≥ Nx,δ. Moreover, for any ε > 0, since E[(f̂(x)−f(x))2] ≥ ε2 P[|f̂(x)−f(x)| ≥ ε],
we deduce the following Chebyshev bound, valid for n ≥ Nx,δ

P[|f̂(x)− f(x)| ≥ ε] ≤ 1 + δ

ε2
σ2(x)

ln(n)
. (A135)

A.7 Rates for the plugin classifier1255

In the case of binary classification Y ∈ {0, 1} and f(x) = P[Y = 1 | X = x]. Let
F : Rd → {0, 1} denote the Bayes optimal classifier, defined by F (x) := θ(f(x)− 1/2)
where θ(·) is the Heaviside theta function. This classifier minimizes the risk R0/1(h) :=

E[1{h(X )̸=Y }] = P[h(X) ̸= Y ] under zero-one loss. Given the regression estimator f̂ ,
we consider the plugin classifier F̂ (x) = θ(f̂(x)− 1

2 ), and we will exploit the fact that

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2E[|f̂(x)− f(x)|] ≤ 2

√
E[(f̂(x)− f(x))2] (A136)

Proof of Eq. (A136)1256

For the sake of completeness, let us briefly prove the result of Eq. (A136). The1257

rightmost inequality is simply obtained from the Cauchy-Schwartz inequality, and1258
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we hence focus on proving the first inequality. Obviously, Eq. (A136) is satisfied for1259

f(x) = 1/2, for which E[R0/1(F̂ (x))] = R0/1(F (x)) = 1/2.1260

If f(x) > 1/2, we have F (x) = 1, R0/1(F (x)) = 1− f(x), and1261

E[R0/1(F̂ (x))] = f(x)P[f̂(x) ≤ 1/2] + (1− f(x))P[f̂(x) ≥ 1/2], (A137)

= R0/1(F (x)) + (2f(x)− 1)P[f̂(x) ≤ 1/2], (A138)

which implies E[R0/1(F̂ (x))] ≥ R0/1(F (x)). Since P[f̂(x) ≤ 1/2] = E[θ(1/2− f̂(x))],1262

and using θ(1/2− f̂(x)) ≤ |f̂(x)−f(x)|
f(x)−1/2 , valid for any 1/2 < f(x) ≤ 1, we readily obtain1263

Eq. (A136).1264

Similarly, in the case f(x) < 1/2, we have F (x) = 0, R0/1(F (x)) = f(x), and

E[R0/1(F̂ (x))] = R0/1(F (x)) + (1− 2f(x))P[f̂(x) ≥ 1/2]. (A139)

Since P[f̂(x) ≥ 1/2] = E[θ(f̂(x)− 1/2)], and using θ(f̂(x)− 1/2) ≤ |f̂(x)−f(x)|
1/2−f(x) , valid1265

for any 0 ≤ f(x) < 1/2, we again obtain Eq. (A136) in this case.1266

In fact, for any α > 0, the inequalities θ(1/2− f̂(x)) ≤
(

|f̂(x)−f(x)|
f(x)−1/2

)α
and θ(f̂(x)−1267

1/2) ≤
(

|f̂(x)−f(x)|
1/2−f(x)

)α
hold, respectively, for f(x) > 1/2 and f(x) < 1/2. Combining1268

this remark with the use of the Hölder inequality leads to1269

E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|α

]
, (A140)

≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|

α
β

]β
, (A141)

for any 0 < β ≤ 1. In particular, for 0 < α < 1 and β = α/2, we obtain

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|2

]α
2

. (A142)

The interest of this last bound compared to the more classical bound of Eq. (A136) is1270

to show explicitly the cancellation of the classification risk as f(x) → 1/2, while still1271

involving the regression risk E
[
|f̂(x)− f(x)|2

]
(to the power α/2 < 1/2).1272

Bound for the classification risk1273

Now exploiting the results of section A.6 for the regression risk, and the two1274

inequalities Eq. (A136) and Eq. (A142), we readily obtain Theorem 9.1275

A.8 Extrapolation behavior outside the support of ρ1276

This section aims at proving Theorem 10 characterizing the behavior of the regression1277

estimator f̂ outside the closed support Ω̄ of ρ (extrapolation).1278

Extrapolation estimator in the limit n→ ∞1279
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We first assume the growth condition
∫
ρ(y) |f(y)|

1+∥y∥d d
dy <∞. For x ∈ Rd (i.e., not

necessarily in Ω), we have quite generally

E
[
f̂(x)

]
= (n+ 1)E

[
w0(x)f(x)

]
= (n+ 1)

∫ +∞

0

ψn(x, t)χ(x, t) dt, (A143)

where ψ(x, t) is again given by Eq. (A2) and

χ(x, t) :=

∫
ρ(x+ y)f(x+ y)

e
− t

||y||d

||y||d
ddy, (A144)

which is finite for any t > 0, thanks to the above growth condition for f .1280

Let us now assume that the point x is not in the closed support Ω̄ of the distribution1281

ρ (which excludes the case Ω = Rd ). Since the integral in Eq. (A143) is again dominated1282

by its t→ 0 behavior, we have to evaluate ψ(x, t) and χ(x, t) in this limit, like in the1283

different proofs above. In fact, when x /∈ Ω̄, the integral defining ψ(x, t) and χ(x, t) are1284

not singular anymore, and we obtain1285

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)∥x− y∥−d ddy, (A145)

χ(x, 0) =

∫
ρ(y)f(y)∥x− y∥−d ddy. (A146)

Note that ψ(x, t) has the very same linear behavior as in Eq. (A129), when we assumed1286

x ∈ ∂Ω with ρ(x) = 0, and a local Hölder condition for ρ at x.1287

Finally, by using the same method as in the previous sections to evaluate the1288

integral of Eq. (A143) in the limit n→ +∞, we obtain1289 ∫ +∞

0

ψn(x, t)χ(x, t) dt ∼
n→+∞

χ(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (A147)

∼
n→+∞

1

n

χ(x, 0)

|∂tψ(x, 0)|
, (A148)

which leads to the first result of Theorem 10:

f̂∞(x) := lim
n→+∞

E
[
f̂(x)

]
=

∫
ρ(y)f(y)∥x− y∥−d ddy∫
ρ(y)∥x− y∥−d ddy

. (A149)

Note that since the function (x, y) 7−→ ∥x − y∥−d is continuous at all points x /∈ Ω̄,1290

y ∈ Ω, and thanks to the absolute convergence of the integrals defining f̂∞(x), standard1291

methods show that f̂∞ is continuous (in fact, infinitely differentiable) at all x /∈ Ω̄.1292

Extrapolation far from Ω1293

Let us now investigate the behavior of f̂∞(x) when the distance L := d(x,Ω) =
inf{||x− y||, y ∈ Ω} > 0 between x and Ω goes to infinity, which can only happen for
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certain Ω, in particular, when Ω is bounded. We now assume the stronger condition,
⟨|f |⟩ :=

∫
ρ(y)|f(y)| ddy < ∞, such that the ρ-mean of f , ⟨f⟩ :=

∫
ρ(y)f(y) ddy, is

finite. We consider a point y0 ∈ Ω, so that ||x− y0|| ≥ L > 0, and we will exploit the
following inequality, valid for any y ∈ Ω satisfying ||y − y0|| ≤ R, with R > 0:

0 ≤ 1− Ld

||x− y||d
≤ ||x− y||d − Ld

Ld
≤ (L+R)d − Ld

Ld
≤ e

dR
L − 1. (A150)

Now, for a given ε > 0, there exist R > 0 large enough such that1294 ∫
∥y−y0∥≥R ρ(y) d

dy ≤ ε/2 and
∫
∥y−y0∥≥R ρ(y)|f(y)| d

dy ≤ ε/2. Then, for such a R, we1295

consider L large enough such that the above bound satisfies e
dR
L −1 ≤ εmin(1/⟨|f |⟩, 1)/2.1296

We then obtain1297 ∣∣∣∣Ld ∫ ρ(y)f(y)∥x− y∥−d ddy − ⟨f⟩
∣∣∣∣ ≤ (

e
dR
L − 1

)∫
||y−y0||≤R

ρ(y)|f(y)| ddy(A151)

+

∫
∥y−y0∥≥R

ρ(y)|f(y)| ddy, (A152)

≤ ε

2⟨|f |⟩
× ⟨|f |⟩+ ε

2
≤ ε, (A153)

which shows that under the condition ⟨|f |⟩ <∞, we have

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)f(y)∥x− y∥−d ddy = ⟨f⟩. (A154)

Similarly, one can show that

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)∥x− y∥−d ddy =

∫
ρ(y) ddy = 1. (A155)

Finally, we obtain the second result of Theorem 10,

lim
d(x,Ω)→+∞

f̂∞(x) = ⟨f⟩. (A156)

Continuity of the extrapolation1298

We now consider x /∈ Ω̄ and y0 ∈ ∂Ω, but such that ρ(y0) > 0 (i.e., y0 ∈ ∂Ω ∩ Ω),1299

and we note l := ||x − y0|| > 0. We assume the continuity at y0 of ρ and f as seen1300

as functions restricted to Ω, i.e., limy∈Ω→y0 ρ(y) = ρ(y0) and limy∈Ω→y0 f(y) = f(y0).1301

Hence, for any 0 < ε < 1, there exists δ > 0 small enough such that y ∈ Ω and1302

||y − y0|| ≤ δ =⇒ |ρ(y0)− ρ(y)| ≤ ε and |ρ(y0)f(y0)− ρ(y)f(y)| ≤ ε. Since we intend1303

to take l > 0 arbitrary small, we can impose l < δ/2.1304
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We will also assume that ∂Ω is smooth enough near y0, such that there exists a
strictly positive local solid angle ω0 defined by

ω0 = lim
r→0

1

Vdρ(y0)rd

∫
∥y−y0∥≤r

ρ(y) ddy = lim
r→0

1

Vdrd

∫
y∈Ω/∥y−y0∥≤r

ddy, (A157)

where the second inequality results from the continuity of ρ at y0 and the fact that1305

ρ(y0) > 0. If y0 ∈ Ω◦, we have ω0 = 1, while for y0 ∈ ∂Ω, we have generally 0 ≤ ω0 ≤ 1.1306

Although we will assume ω0 > 0 for our proof below, we note that ω0 = 0 or ω0 = 11307

can happen for y0 ∈ ∂Ω. For instance, we can consider Ω0, Ω1 ⊂ R2 respectively1308

defined by Ω0 = {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≤ x21} and Ω1 = {(x1, x2) ∈ R2/x1 ≤1309

0} ∪ {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≥ x21}. Then, it is clear that the local solid angle at1310

the origin O = (0, 0) is respectively ω0 = 0 and ω0 = 1. Also note that if x is on the1311

surface of a sphere or on the interior of a face of a hypercube (and in general, when1312

the boundary near x is locally a hyperplane; the generic case), we have ωx = 1
2 . If x is1313

a corner of the hypercube, we have ωx = 1
2d

.1314

Returning to our proof, and exploiting Eq. (A157), we consider δ small enough
such that for all 0 ≤ r ≤ δ, we have∣∣∣∣∣

∫
y∈Ω/∥y−y0∥≤r

ddy − ω0Vd r
d

∣∣∣∣∣ ≤ ε ω0Vd r
d. (A158)

We can now use these preliminaries to obtain1315

(ρ(y0)f(y0)− ε)J(x)− C ≤
∫
ρ(y)f(y)∥x− y∥−d ddy ≤ (ρ(y0)f(y0) + ε)J(x) + C,(A159)

(ρ(y0)− ε)J(x)− C ′ ≤
∫
ρ(y)∥x− y∥−d ddy ≤ (ρ(y0) + ε)J(x) + C ′,(A160)

with1316

J(x) :=

∫
y∈Ω / ||y−y0||≤δ

∥x− y∥−d ddy, (A161)

C =

(
2

δ

)2 ∫
||y−y0||≥δ

ρ(y)|f(y)| ddy, (A162)

C ′ =

(
2

δ

)2

. (A163)

Let us now show that liml→0 J(x) = +∞. We define N := [δ/l] ≥ 2, where [ . ] is
the integer part, and we have N ≥ 2, since we have imposed l < δ/2. For n ∈ N ≥ 1,
we define,

In :=

∫
y∈Ω/||y−y0||≤δ/n

ddy, (A164)
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and note that we have1317

In − In+1 =

∫
y∈Ω/||y−y0||≤δ/n,
||y−y0||≥δ/(n+1)

ddy, (A165)

∣∣∣∣∣In − ω0Vd

(
δ

n

)d∣∣∣∣∣ ≤ ε ω0Vd

(
δ

n

)d
. (A166)

We can then write1318

J(x) ≥
N∑
n=1

1(
l + δ

n

)d (In − In+1), (A167)

≥
N∑
n=1

 1(
l + δ

n+1

)d − 1(
l + δ

n

)d
 In+1 +

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d .(A168)

We have1319

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d ≥ ω0Vd

(1− ε)
1(

1 + l
δ

)d − (1 + ε)
1(

1 + (N+1)l
δ

)d
 ,(A169)

≥ ω0Vd

(
(1− ε)

2d

3d
− (1 + ε)

)
=: C ′′, (A170)

which defines the constant C ′′. Now using Eq. (A166), l < δ/2, N = [δ/l], and the fact1320

that (1 + u)d − 1 ≥ d u, for any u ≥ 0, we obtain1321

J(x) ≥ (1− ε)ω0Vd

N∑
n=1

1(
1 + (n+1)l

δ

)d
( l + δ

n

l + δ
n+1

)d
− 1

+ C ′′, (A171)

≥ (1− ε)ω0Sd

N∑
n=1

1(
1 + (n+1)l

δ

)d+1

1

n
+ C ′′, (A172)

≥ (1− ε)ω0 Sd(
1 + (N+1)l

δ

)d+1
ln(N − 1) + C ′′, (A173)

≥ (1− ε)ω0

(
2

5

)d+1

Sd ln

(
δ

l
− 2

)
+ C ′′. (A174)

We hence have shown that liml→0 J(x) = +∞. Note that we can obtain an upper1322

bound for J(x) similar to Eq. (A172) in a similar way as above, and with a bit more1323
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work, it is straightforward to show that we in fact have J(x) ∼l→0 ω0 Sd ln
(
δ
l

)
, a1324

result that we will not need here.1325

Now, using Eq. (A159) and Eq. (A160) and the fact that liml→0 J(x) = +∞, we1326

find that1327 ∫
ρ(y)f(y)∥x− y∥−d ddy ∼

l→0
ρ(y0)f(y0)J(x), (A175)∫

ρ(y)∥x− y∥−d ddy ∼
l→0

ρ(y0)J(x), (A176)

for f(y0) ̸= 0 (remember that ρ(y0) > 0), while for f(y0) = 0, we obtain
∫
ρ(y)f(y)∥x−1328

y∥−d ddy = o(J(x)). Finally, we have shown that1329

lim
x/∈Ω̄,x→y0

f̂∞(x) = f(y0), (A177)

establishing the continuity of the extrapolation and the last part of Theorem 10.1330
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