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Legends of Supplementary Movies

Movie S1: 2-minute collective dynamics of 2 Hilbert agents for a memory M = 2, and
enforcing the presence of the wall by means of the rejection procedure.

Movie S2: 2-minute collective dynamics of 2 Hilbert agents for a memory M = 2,
without enforcing the presence of the wall. Note the occurrence of small and short

excursions of the fish outside the limits of the tank.

Movie S3: 1-minute collective dynamics of 5 Hilbert agents for a memory M = 2, and
enforcing the presence of the wall by means of the rejection procedure.

Extended Data Table

11.31+0.18 11.91+0.14 15.26 £ 0.13 15.29+0.10
ry 4.11%0.12 3.90 £ 0.05 ry, 7.0810.11 7.17 £ 0.05
d 7.9310.17 8.27 £ 0.09 d 4.06 £ 0.04 5.15+0.05
P 0.954£0.002 0.957 £ 0.002 P 0.964 £ 0.001 0.943  0.002

Ry 7.62+ 0.07 10.42 £ 0.08

Extended Data Table 1: We report the mean and standard error for the PDF of
the observables appearing in Fig. 3 (for N = 2 individuals) and Fig. 4 (for N =5
individuals). The speed V is expressed in cm/s, while the distance to the wall, r,,, the
distance between two nearest neighbors, d, and the gyration radius, Rgy, (only for
N =5), are expressed in cm. Finally, the polarization, P, is without unit and between
0 and 1.
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o Extended Data Figures

3Hilbert classification (N=1000): P(1|x)~N([0,2],1) P(-1,x)=N([0,0],"

-3

-2 -1 0 1 2 3 4
Extended Data Fig. 1: Classification using the Hilbert kernel: A simple example is
shown, with two classes of points drawn from a mixture of 2D unit Normal distributions,
with mean separated by 2. The points are shown in green and red colors (1000 points
of each class). The red vertical line is the Bayes classification boundary. The yellow and
blue colored regions are the Hilbert-predicted classification regions for the green and
red points. The islands of blue in yellow (and vice versa) are due to the interpolative
nature of the classifier, and correspond to the phenomenon of adversarial examples
which are guaranteed for interpolating classifiers on noisy data.
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Extended Data Fig. 2: Behavior of 2 Hilbert fish without the tank wall. This
figure is the analog of Fig. 3 in the main text (also for a memory M = 2), but in the case
where the presence of the tank wall is not enforced in the Hilbert model. The different
panels show the 9 observables used to characterize the individual (a-c) and collective
(d-f) behavior, and the time correlations in the system (g-i): a, PDF of the speed, V; b,
PDF of the distance to the wall, ry; ¢, PDF of the heading angle relative to the normal
to the wall, 6,; d, PDF of the distance between the pair of individuals, d; e, PDF of the
group polarization, P = |cos(Agz5 / 2)|, where A¢ is the relative heading angle; f, PDF of
the viewing angle at which an individual perceives the other individual, 1. See Fig. 2a
and b in the main text for a visual representation of the main variables. g, Mean
squared displacement, C,(t), and its asymptotic limit, C,(c0) = 2(r?) (dotted lines);
h, Velocity autocorrelation, C,(t); i, Polarization autocorrelation, Cp(t). The black
PDFs correspond to experiments, while the red PDFs correspond to the predictions
of the Hilbert generative model. The plots are on the same scale as in Fig. 3 in the
main text, except for ry,, for which the horizontal axis has been extended to negative
values of 7y, corresponding to instances where an individual is observed outside the
limits of the experimental circular tank. Yet, the Hilbert fish spend 87 % of the time
strictly within the tank limits, and when they wander outside the tank, their average
excursion distance from the wall is only 1.3 cm. These excursions are responsible for
the upward and rightward shift of the peak of C,(¢) and for the larger asymptotic limit,
Cy(00) = 2(r?) ~ 980 cm? (compared to C,(c0) a2 900 cm? for fish or for the Hilbert
model implementing the rejection procedure enforcing the presence of the tank wall).
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Extended Data Fig. 3: Entropy time series for 2 Hilbert fish. We plot a 2-
minute time series of the entropy for 2 Hilbert fish, and for a memory M = 2. The
entropy S can be interpreted as log, N, where N is the effective number of real fish
configurations used to predict the acceleration of the Hilbert fish. The time series
exhibits short periods where A" & 1 (S & 0), when the Hilbert scheme has essentially
selected a unique real fish configuration (“copying”). This short time series also presents
three short periods when A/ > 64 (S > 6). The PDF of the entropy computed over
much longer time is shown in Extended Data Fig. 4.
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Extended Data Fig. 4: Entropy distribution for 2 Hilbert fish. We plot the
PDF of the entropy for 2 Hilbert fish (for a memory M = 2) resulting from an effective
simulation time of 3 hours. The PDF of the entropy is reasonably well fitted by the
normalized functional form p(S) = (2I'5/4])~! (S, S)~'/2 exp (—(S/S.)?), although
the fit does not capture some outliers at S > 10. The fitted cut-off entropy scale,
S. ~ 3.61, corresponds to N, = 25 ~ 12.2 real fish configurations contributing to the
acceleration prediction, while the mean entropy (S) & 1.37 corresponds to 2(logs N) —
2(5) ~ 2.6 configurations. The mean number of configurations used for a prediction is
(N') = (2%), and is dominated by outliers. If this average is restrained to instance where
S <10, one finds (N)g<10 =~ 5.2 (our fit p(S) would predict (N)s<i9 =~ 4.7), whereas
the average including all data is (N) ~ 35. Also note the small peak in the PDF near
S =1, corresponding to N = 2 relevant configurations contributing almost equally to
the Hilbert prediction. Yet, during the simulation, entropies as high as S ~ 15 were
recorded, corresponding to A ~ 32768 fish configurations effectively considered by the
Hilbert kernel. Compared to kNN methods, the Hilbert interpolation scheme is hence
able to adapt the effective number of used data for the prediction to the properties of
the input vector. See also Extended Data Fig. 3 for a short time series of the entropy.
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8000
0 0
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Extended Data Fig. 5: Autoregressive generative modeling of time series data: three
examples are shown of signals generated by Eq. (9) with simple training data consisting
of N=10000 samples of a single training signal. The three columns respectively show
results corresponding to a training signal generated by white Gaussian noise, a sinusoid,
and iterates of a logistic regression equation z, 1 = Az, (1 — x,) for A = 3.9. A lag
window size of T' = 10 is used (see the next figure for a lag window size of T' = 40, and
the signal generation is initiated by random initial conditions consisting of 7" samples
of a standard normal distributed variable. The second row shows the generated signal.
The third row shows the entropy of the generative weights as a function of generation
time, and the fourth row shows the position of the maximum weight in the training
signal, also as a function of generation time. Note the “copying” behavior, where the
generated signal starts some fragment of the training signal after an initial transient.
During the “copying” phase, the weight entropy falls to zero, and the index of the
maximum weight increments linearly with time.
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Extended Data Fig. 6: Autoregressive generative modeling of time series data:
the same signal examples as in the previous extended data figure (Extended Data
Fig. 5) are shown, this time with a lag window 7" = 40. In this case, periodic behavior
is observed after an initial transient. The periods themselves contain short episodes
of “copying” where the entropy falls to zero, and also show short episodes of close
to fixed-point behavior of the dynamics, where the generated signal has an almost
constant value. The extent of the “copying”, periodic or constant behaviors depends on

the initial conditions as well as on d.
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Hilbert with coordinate transformation
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Extended Data Fig. 7: Impact of an initial coordinate transformation z — ®(x).
This example shows two Hilbert kernel fits, with the black curve corresponding to the
original kernel, and the blue curve corresponding to the generalized kernel corresponding
to replacing x — ®(z) in the weights. The samples x; (i = 1..100) are chosen so
that the transformed coordinates ®(z;) have a uniform distribution. The red line
corresponds to y = = and uncorrelated Gaussian noise with ¢ = 0.1 is added to produce
the noisy samples. The two regression functions both interpolate, but show slight
differences, especially in the data-sparse region, with the transformed weights (that
produce uniform sampling of x) being a bit closer to the noise-free function. As proven
in the paper, both estimates are statistically consistent and have the same large-sample
asymptotics in the leading order, but the sub-leading order behavior will generally
depend on ® in conjunction with the other details of the problem.
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Appendix A Proofs of the theorems

A.1 Preliminaries

In the following, x € Q° so that p(z) > 0, and we will assume for simplicity that the
distribution p is continuous at x.

For the proof of our results, we will often exploit the following integral relation,
valid for 8 > 0 and z > 0,

L[ 5 8
—_— tPT e Adt = 27, Al
w0 ), (A1)
In addition, we define
vlait) = [ plo-+ye T d, (A2)

which will play a central role. We note that ¢ (z,0) = 1, and that ¢t — ¥(z,t) is a
continuous and strictly decreasing function of ¢. It is even infinitely differentiable at
any t > 0, but not necessarily at ¢ = 0. In fact, for a fixed x, controlling the behavior
of 1 —(x,t) when t — 0 will be essential to obtain our results.

A.2 Moments of the weights: large n behavior

In this section, we provide a complete proof of Theorem 1. Several other theorems will
use the same method of proof, and some basic steps will not be repeated in their proof.
Using Eq. (A1) for 8 > 0, we can express powers of the weight function as

wf (@) = —— : /+Oo - te tllo—moll ™ =t iy lle—=ll ™ g (A3)
’ ||z — ol |74 T(8) Jo '

By taking the expected value over the n+1 independent random variables X;, we obtain

+oo
E [wg(@} - ﬁ/o =1y (2, £) g, t) dt, (A4)
with .
T
op(ant) = [ plo+ ) T 4 (A5)

which is also a strictly decreasing function of ¢, continuous at any ¢ > 0 (in fact,
infinitely differentiable for ¢ > 0).

Note that the exchange of the integral over ¢ and over & = (z¢, z1, ..., ) used to
obtain Eq. (A4) is justified by the Fubini theorem, by first noting that the function
T wg(x) [T p(z;) is in LY (R?), since 0 < wg(x) < 1, and since p is obviously in
L*(R%). Moreover, the function t — t°~1¢"(z,t)¢s(x,t) > 0 is also in L*(R). Indeed,
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we will show below that it decays fast enough when ¢ — +oo (see Eqs. (A7-A16)),
ensuring the convergence of its integral at +o00, and that it is bounded (and continuous)
near t = 0 (see Eqgs. (A29-A34)), ensuring that this function is integrable at ¢ = 0.

For g =1, ¢1 = —0:¢, and we obtain E [wo(x)] = %ﬂ’ as expected. In the
following, we first focus on the case § > 1, before addressing the cases 0 < 8 < 1 and
B < 0 at the very end of this section.

We now introduce ¢; and t2 (to be further constrained later) such that 0 < t; < ts.
We then express the integral of Eq. (A4) as the sum of corresponding integrals
Iy + I1o + I. I is the integral between 0 and t1, I15 the integral between t; and to,
and I the integral between t; and +oo. Thus, we have

I SE{wg(x)} < I + Iis + I, (A6)

provided these integral exists, which we will show below, by providing upper bounds
for Is and I15, and tight lower and upper bound for the leading term 1.

Bound for I,
For any R > 1, we can write the integral defining v (z, t)

vt = /IyIISR+/IIy|2R (A7)

2
s [ perplEan, (A8)
llylI=R
. Oy
< e rR?T + ﬁ’ (A9)

with C; = 02+ ||z —p,||* depending on the mean 1, and variance o of the distribution
p. Similarly, for ¢5(x,t), we obtain the bound

1 C,
(b/g(:l?,t) < We Rd W’ (AlO)

valid for ¢+ > max(1,3) and R < r;, where r; = (t/3)*/¢ > 1 is the location of the

. . d
maximum of the function r — <57

We now set R = ti, with 0 < s < 1, and take Tj > max(1,3,5Y(1=%)) (so
that 1 < R <) is large enough such that the following conditions are satisfied for
t >ty > Ty,

Lt —s C
t _a <

e rRI =¢

8

7 (A11)

= T3
d

%

~
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— e ® = —¢ < (A12)

Hence, for ¢t >ty > T4, we obtain

20,
vlat) < 252, (A13)
2C,

In addition, we also impose to > T4 = (4Cx)d/(2s), so that 2% < %, for any t >
td
T, = max(Ty, Ty ). We can now exploit the resulting bounds for ¢(z,t) and ¢g(z,t) in

Eq. (A13) and Eq. (A14) to compute an explicit bound for I, for any given to > Ts:

1 oo B—1,n 1 oo B(1—s)—1 QCI S
F(B)/t2 t 0 (:E,t)(ﬁg(ﬂ:,t) dt < F(ﬂ)/t2 t (tZdS ) dt.
(A15)

1
1+230

I =

The integral in the right-hand side of Eq. (A15) only converges for s >

(remember that we also impose s < 1), and we then set s = —», which ensures its
Bd

1+
convergence for any n > 1. Performing this integral and using the fact that 2(5;* < %7

t,?

we finally obtain

ﬁ >< 1 .
r@) *n2r
We hence obtain the convergence of I, which, along with the bounds for I; and I
below, justifies our use of Fubini theorem to obtain Eq. (A4). Note that the above
bound essentially decays exponentially with n, under the stated conditions.

Bound for I
Again, exploiting the fact that ¢ (z,t) and ¢g(x,t) are strictly decreasing functions
of ¢, we obtain

I, < C,

(A16)

qj)/ﬁ (337 tl)tg

PPN (1), Al7
where we note that ¥ (z,t;) < 1, for any ¢; > 0, implying that this bound decays
exponentially with n.

Bound for I

We first want to obtain bounds for 1 — ¢ (z,t), where 0 < ¢ < ¢y, with ¢; > 0 to be
constrained below. In addition, exploiting the continuity of p at  and the fact that
p(x) > 0, we introduce ¢ satisfying 0 < ¢ < 1/4, and define A\ > 0 small enough so that
the ball B(z,0) C Q°, and ||y|]| < A = |p(z +y) — p(x)| < ep(z). Exploiting this
definition, we obtain the following lower and upper bounds

Iz <

t-let) = (-2oto) [ (1= ) . (A18)
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1—(a,t) < (1+€)p(x)/ - <1—e‘Jd) ddy (A19)

+Ay>A plz + 1) (1 —e—%d) dy, (A20)

<1 —l—e)p(m)/ 1ox (1 _e_;d) dhy + % (A21)

The integral appearing in these bounds can be simplified by using radial coordinates:

t A t
/ (1 - elyd> ddy, = Sd/ (1 - efﬁ) rd=Ldr, (A22)
[lyll<A 0

+oo 1 _ —u
= Vgt / L= (A23)

t u? ’
1A

where S, and V; = % are respectively the surface and the volume of the d-dimensional
unit sphere, and we have used the change of variable u = r%

We note that for 0 < z < 1, we have

+oo —u 1 —u +oo —u
1—e l—u—e 1—e
/ — du=—In(z) + / o du + /1 5— du. (A24)

U » U

Exploiting this result and now imposing t; < A%, we have, for any ¢ < t;

+o0 1 _ L—u
In (O‘> / L < <C+> : (A25)
t t U t

A\

IN

+oo 1—e ¥

In(Cy) = dIn(A) +/1 2 du, (A26)
In(C_) = In(C.) + /0 1 Hfu%wdu. (A27)

Combining these bounds with Eq. (A18) and Eq. (A21), we have shown the existence
of two a-dependent constants D such that, for 0 < ¢t < t; < A%, we have

(1—¢)Vyp(z)tln (Dt> <1—9(z,t) < (1+e)Vyp(z)tln <Dt+> . (A28)

In addition, we will also choose t; < Dy /3, such that the two functions ¢In (%) are

positive and strictly increasing for 0 < t < t;. t; is also taken small enough such that
the two bounds in Eq. (A28) are always less than 1/2, for 0 < ¢ < ¢; (both bounds
vanish when ¢ — 0).
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We now obtain efficient bounds for ¢g(z,t), for 0 <t < ¢;. Proceeding similarly as
above, we obtain

efuytud
1— e T A29
oa(ant) = (1= (o) [ T (A29)
e_Hyt/Hd 1
— L —. A
op(ant) < (1 (o) [ Ty (A30)

Again, the integral appearing in these bounds can be rewritten as

@dd =S5 )\rd(l_ﬁ)_lefiddr (A31)
[lyl|<A ||y\|5d Y 4 0 .

For 0 < 8 < 1, the integral of Eq. (A31) is finite for ¢ = 0, ensuring the existence of
$s(z,0) and the fact that t — t0~ 1 (x,t)¢s(x,t) belongs to L*(R) (hence, justifying
our use of Fubini theorem for 0 < 8 < 1). For 8 > 1, we have

e Tl 4 1-8 oo B2 —u
/ g @y = Vat / u’"“e™" du. (A32)
[lyl|<A [yl 4
2, Val(B - =7, (A33)

This integral diverges when ¢ — 0 and the constant term A~5? in Eq. (A30) can be
made as small as necessary (by a factor less than €) compared to this leading integral
term, for a small enough ¢;. Similarly, we can choose ¢t; small enough so that the
integral Eq. (A31) is approached by the asymptotic result of Eq. (A33) up to a factor
€. Thus, we find that for 0 < ¢ < ¢y, one has

(1 —2e)Vap(x)L(B — 1)t* P < gp(a,t) < (1 + 3e)Vap(x)T(B — 1)t' P, (A34)

This shows that t*~1¢g(z,t) has a smooth limit equal to Vyp(z)T'(8 — 1), when t — 0,
so that, combined with the finite upper bound for I, t ~— t#~14(z, t)¢s(x, t) belongs
to L*(R), for B > 1, and hence for all 8 > 0. Hence, the use of the Fubini theorem to
derive Eq. (A4) has been justified.

Now combining the bounds for ¢ (x,t) and ¢g(z,t), we obtain

L > (1 _2€)ﬁi 1Vdp(x)/0 1 (1 — (1+¢)Vap(x)tin (%)) dt, (A35)

I < (1+35)6i lvdp(x)/ol (1 — (1 —e)Vap(x) tln <[;>> dt.  (A36)

Asymptotic behavior of I, and E [wg(x)]
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We will show below that

/tl g (P2)) @ _ (A37)
0 * t n—+oo Eynln(n)’

where E1 = (1 F¢)Vyp(x). For a given x, and for ¢; and ¢ satisfying the requirements
mentioned above, the upper bounds for I15 (see Eq. (A17)) and I (see Eq. (A16))
appearing in Eq. (A6) both decay exponentially with n and can hence be made
arbitrarily small compared to I; which decays as 1/(n ln(n)).

Finally, assuming for now the result of Eq. (A37) (to be proven below), we have
obtained the exact asymptotic result

1
B[of@)], 2t Gormey (A38)

Proof of Eq. (A37)
We are then left to prove the result of Eq. (A37). First, we will use the fact that,
for 0 < z < z; < 1, one has
e <l—2<e?, (A39)
where = —In(1 — z1)/2z1. We can apply this result to the integral of Eq. (A37), using
zf = ExtyIn(D4/t;) > 0. Note that 0 < t; < D+ /3 and hence zf > 0 can be made
as close to 0 as desired, and the corresponding o > 1 can be made as close to 1 as
desired. Thus, in order to prove Eq. (A37), we need to prove the following equivalent

t1 1
L= [ emP™(P)ar ~ —— A40
n /0 © n—+oo Enln(n)’ (A40)
for an integral of the form appearing in Eq. (A40). Let us mention again that ¢; has
been taken small enough so that the function ¢ — ¢In (%) is positive and strictly
increasing (with its maximum at tpmax = D/e < t1), for 0 < ¢ < ¢;.
We now take n large enough so that @ < t; and Eln(n) > 1. One can then write

1 In(n) " t1
I, = ’/ e~ Buln(5 )du+/ e PINR) gp — J, + K,,  (Adl)
0

0 In(n)
\E In(n) n
Jn S l/ efEu In(DEn) du + l/ e_Eu ln(hﬁn)) dua (A42)
n Jo nJi/e
1 In(n)
_ . 7 (A43)
Enln (D En) DEnﬂn(lIﬂZ))
Foo —nEt ln(Q) 1
Ko [ e s - (A4

In(n D
In(n) En1+E1n(t1)ln(£>
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When n — +00, we hence find that the upper bound I} of I,, satisfies

1 1
I+ ~ _— ~ —_ . A4
" notoo Enln(DEn) n—+oo Enln(n) (A45)
1003 Let us now prove a similar result for a lower bound of I,, by considering n large
1ea enough so that nEt; > 1, and by introducing ¢ satisfying 0 < § < 1/e:
1 nhh —uln(DEn)4uIn(u)
I, = — e du, (A46)
nE J,
1 /9
> efuln(DEn)+6ln(5) du, (A47)
nE J,
M (1 (DB ) = 15 A48
> — =1 .
~ nEln(DEn) ( (DEn) ) n(0) (A48)

Hence, for any 0 < 6 < 1/e which can be made arbitrarily small, and for n large
enough, we find that I, > I (4), with

o0 1n(8) o0 1n(8)

I (6

n )NEnln(DEn)NEnln(n)' (A49)

1005 Eq. (A49) combined with the corresponding result of Eq. (A45) for the upper bound I,
1006 finally proves Eq. (A40), and ultimately, Eq. (A38) and Theorem 1 for the asymptotic

1007 behavior of the moment E {wg (x)}, for g > 1.

100 Entropy (moment for “4 = 177)
We define the information entropy, S(z), by

S(z) == wi(x)logw;(x)]. (A50)
1=0

If the weights are equidistributed over A data, one obtains S = —A x 1/N'log(1/N) =
log(N\), and e® = A indeed represents the number of contributing data. The expectation
value of the entropy reads

E[S(x)] = —(n + 1) Elwo(x) In(wo ()] (A51)

In order to evaluate Eq. (A51), we use an integral representation in the spirit of
Eq. (A1), valid for any z > 0,

/ T n(t) + 4y et d = &) (A52)
0 z
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where 7 is Euler’s constant. Using Eq. (A52), we find

1 2 tlle—rol ==t S0, [fo—ai]|
—wo(z) In(wo(x)) = —W ; e i=1 i
(e = ol [*) + In(t) +7) d. (A53)

By taking the expected value over the n+1 independent random variables X;, we obtain

“+o0

E [~wo(z) In(wo ()] = — A U™ (x,1) (Pr(@,t) + (In(t) +7)¢1(, 1)) dt, (Abd)

with J
__t 1 -
Bi(e.0) = [ o) y”('|'y'|'d)ddy, (A55)
Yy

which is continuous at any ¢ > 0 (in fact, infinitely differentiable for ¢ > 0). In addition,
¢1(x,t) = —0p(x, t) has been defined in Eq. (A5).

By exploiting the same method used to bound ¢g(z,t) (see Eq. (A34) and above
it), we find that

@il 1)~ 5 Vapla) (1), (A36)
d)l (I’ t) t:O —Vd,l)(JC) ln(t)v (A57)

where Eq. (A57) is fully consistent with Eq. (A28) (by naively differentiating Eq. (A28)).
Finally, exploiting Egs. (A56,A57), the integral of Eq. (A54) can be evaluated with
the same method as in the previous section, leading to

B [—un(a) n(un(e)] | gVaro) [ O g, o
Lin(n) (A59)

n—+oo 2 N

This last result proves the second part of Theorem 1 (see also the heuristic discussion
below Theorem 1) for the expected value of the entropy:

E[S(x)] = =(n+ 1) Elwo(z) In(wo(z))] ~ 1hﬂ(n)- (A60)

n—-+oo 2

Moments of order 0 < <1
The integral representation Eq. (A1) allows us to also explore moments of order
0 < 8 < 1. In that case kg(z) = ¢(z,0) < oo is finite, with

GRS
ﬁg(x)—/ Pz d%y. (A61)
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By retracing the different steps of our proof in the case 5 > 1, it is straightforward
to show that

E [wg(as)} e ’;1‘3((;)) /Otl tﬁqe*anp(z)tln( i) " (A62)
N rg(@) (A63)

n—too (Vgp(z)nln(n))?’

where the equivalent for the integral can be obtained by exploiting the very same
method used in our proof of Eq. (A37) above, hence proving the third part of Theorem 1.

We observe that contrary to the universal result of Eq. (A38) for §, the asymptotic
equivalent for the moment of order 0 < 8 < 1 is non-universal and explicitly depends
on x and the distribution p.

Moments of order B <0

Finally, moments of order § < 0 are unfortunately inaccessible to our methods
relying on the integral relation Eq. (A1), which imposes 8 > 0. However, we can obtain
a few rigorous results for these moments (see also the heuristic discussion just after
Theorem 1).

Indeed, for 8 = —1, we have

1 " 1
=14z =zt ——. (A64)
) Z: o — ]

wo(x

=[L i ﬁ'ﬁﬁ’ ) 4y is infinite and

But since we have assumed that p(x) > 0, E[||lz — ;]| =9
moments of order 8 < —1 are definitely not defined.

As for the moment of order —1 < 8 < 0, it can be easily bounded,

plz +y)
Eluf(e)] < e [ ol aty [EEER at (a6s)
and a sufficient condition for its existence is k(x) = [ p(z + y)||y[|/’!? d?y < oo (the

other integral, equal to x|g|(x), is always finite for | B| < 1), which proves the last part
of Theorem 1.

Numerical distribution of the weights

In the main text below Theorem 1, we presented a heuristic argument showing that
the results of Theorem 1 and Theorem 2 (for the Lagrange function; that we prove
below) were fully consistent with the weight W = wq(z) having a long-tailed scaling
distribution,

P (W) = Winp (V‘gfn) . (AG6)

The scaling function p was shown to have a universal tail p(w) ~ w~2 and the scale

W, was shown to obey the equation —W,, In(W,,) = n~!. To the leading order for

large n, we have W,, ~ ﬁ(n)? and we can solve this equation recursively to find the
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next order approximation, W,, ~ Dk In Fig. 1b in the main text, we present

1
nln(nln(n
numerical simulations for the scaling distribution p of the variable w = W/W,,, for

n = 65536, using the estimate W,, ~ W We observe that p(w) is very well
approximated by the function p(w) = W, confirming our non-rigorous results.

The data were generated by drawing random values of r¢ = ||z — 2;||? using
(n 4+ 1) 4.i.d. random variables a; uniformly distributed in [0, 1], with the relation
r; = [a;/(1 - a;)]*/%, and by computing the resulting weight W =,/ >0 rj_d. This
corresponds to a distribution of ||z — z;|| given by p(z — x;) = 1/Vy/(1 + ||z — z;||%)%

A.3 Lagrange function: scaling limit

In this section, we prove Theorem 2 for the scaling limit of the Lagrange function
Lo(z) = Ex |z, [wo(z)]. Exploiting again Eq. (A1), the expected Lagrange function can

be written as
—+o0

Lo(z) = [}z — w0~ / v (a, eIl ar, (AGT)
0
where ¥(z,t) is again given by Eq. (A2).

For a given t; > 0, and remembering that 1 (z,t) is a strictly decreasing function
of t, with ¢ (z,0) = 1, we obtain

Ly < Lo(z) < Ly + Lo, (A68)
with
t1 4
Ly = || — ol / o (a, t)e~ el gy, (A69)
0
Ly = o—tullo=mol ™, (A70)

For € > 0 and a sufficiently small ¢; > 0 (see section A.2), we can use the bound
for ¥ (z,t) obtained in section A.2, to obtain

1 t1 D " _ t
Ly > (1—25)“6_370”11/0 (1—(1+€)Vdp(l")tln (;)) e l===ol? dt(ATL)

1 f DA\
Ll < (1+3€)M—WlA (1 — (1 *5)Vdp($)thl (t)) e llz==oll dt(A?Q)

Then, proceeding exactly as in section A.2, it is straightforward to show that L; can
be bounded (up to factors 1+ O(e)) by the two integrals LT

1 t1 —nVyp(z)tln DTi -t
o e
|z —zoll* Jo

Like in section A.2, we impose t; < D4 /3, such that the two functions ¢In (%) are

positive and strictly increasing for 0 <t < ¢;.
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1155

1156

1157

1158

1159

1160

1161

1162

1163
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1165

We now introduce the scaling variable 2, (n, zo) = Vap()||x — 20||%n log(n), so that

ln(Di/t) 1n(DiHI*IoH7‘i/u)

ty
1 t1 — B 7t K <1+z TYeD) ) Tz—zol@ 7u<1+zT)
L:1|: Ty e e dt = e dU
0 0

[l = o
(AT4)
where we have used the shorthand notation z = z,(n, zo).
For a given real Z > 0, we now want to study the (scaling) limit of Lo(z) when
n — o0, ||x — 2ol "% = 400 (i.e., ¥g — ), and such that z,(n,z¢) — Z, which we will
simply denote limz Lo(x). We note that limz Ly = 0 (see Eq. (A68) and Eq. (A70)), so
that we are left to show that limy LT = 1—5%2 = limy Lo(x), which will prove Theorem 2.
Exploiting the fact that wln(u) > —1/e, for u > 0, we obtain

t (D le—agll =<
t o = [T —u(l+¥>
Ly 2 e =nm e du, (AT5)
0
> L Eano) (1 = d)) (A76)
e elin(n J— e .7.'71'0 .
- In(D ||lz—z0||~¢)

In(Dy lz—=z0| = %)
In(n)
find that Lf is bounded from below by a term for which the limy is H%, with a
relative difference of order 1/1n(n) for finite n.
Since we will ultimately take the limy and hence the limit xy — x, we can impose
that the upper limit of the last integral in Eq. (A74) satisfies szijggud > 1. Let us now

consider K > 0, such that K < We then obtain,

. . _ . z _ . tl _
Since we have limy =1, limy T = 0, and limyg Te—wga = 100, we

t1
llz—=oll4"

Dy [lo—wgl~¢/K)

K _u<1+zln(—> +o00
4 Ta(n) —u
L3 S/ e du+/ e " du, (ATT)
0

K

1 -K
. A
]__|_Zln(DiH2;n_(Z(;|‘7d/K) +e ( 78)

IN

We can now take K such that In(K) = [ln (|J7taljl)|d>:| , for some fixed « satisfying

0 < a < 1. It is clear that K satisfies K < W In addition, we have limz K = +o00

t
x
and limy 11';1((5)) = 0, implying that the limy of the upper bound in Eq. (A78) is also

H%’ with a relative difference of order 1/[In(n)]'~® for finite n (the closer a > 0 to 0,
the more stringent this bound will be).
Finally, since limz Lo = 0, we have shown that for any real Z > 0, limy Lf =

limy Lo(z) = H%’ which proves Theorem 2. Note that the two bounds obtained
suggest that the relative error between Lg(z) and H% for finite large n and large

|z — 20|~ with z(n, z¢) remaining close to Z is of order 1/1In(n), or equivalently, of
order 1/In(||x — zo]).
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1177
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Numerical simulations for the Lagrange function at finite n

In Fig. 1c, we illustrate numerically the scaling result of Theorem 2.

Note that, exploiting Theorem 2, we can use a simple heuristic argument to
estimate the tail of the distribution of the random variable W = wq(z). Indeed,

approximating Lo(z) for finite but large n by its asymptotic form m, with

2x(n, 20) = Vap(x)nlog(n)||z — zo]|¢, we obtain

1 ! "~ x ! — dy
[, avnaw~ [ o 0>9<1+vdp<x>mog<n>||xxond W>d o (A79)

W
o0 1
Vi) [0 (e ) B (4s0)
~ nln(ln)W = PW)~ nln(vl”L)W2’ (A81)

where 6(.) is the Heaviside function. This heuristic result is again perfectly consistent
with our guess (see the discussion below Theorem 1) that P(W) = 5p (Wﬂ), with the

scaling function p having the universal tail, p(w) ~ w2, and a scale W,, ~ R
w—r+00

2
Indeed, in this case and in the limit n — 00, we obtain that P(W) ~ =i (W") ~

W, \ W
VV‘% ~ W, which is identical to the result of Eq. (A81).

A.4 The variance term
We define the variance term V(x) as

n n

V(@) = E[Y wi(@)ly: - f@)2] = Ex [} wi(@)o?(@)] = (n+ DE [wh(2)o* (o) -

i=0 1=0
(A82)
If we first assume that o?(z) is bounded by o2, we can readily bound V() using
Theorem 1 with g = 2:

V(z) < (n+1)02E [wg(ag)} . (A83)

Hence, for any € > 0, there exists a constant N ., such that for n > N, ., we obtain

Theorem 3

i

In(n)’

However, one can obtain an exact asymptotic equivalent for V(x) by assuming
that o2 is continuous at x (with o%(z) > 0), while relaxing the boundedness condition.
Indeed, we now assume the growth condition Cg, .1,

V(@) < (1+¢) (A84)

0_2
/ p<y>1+”(;;’|)2d dy < oo, (A85)

Note that this condition can be satisfied even in the case where the mean variance
[ p(y)o*(y) dly is infinite.
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1180

1181

1182

1183

1184

1185

1186

Proceeding along the very same line as the proof of Theorem 1 in section A.2, we
can write

+oo
B b)) = [ w0 (et at (AS6)
with .
= T o (z 76_W d
o(w.0) = [ ol +y)o*(a+ ) a4 (A8T)

which as a similar form as Eq. (A5), with § = 2. The condition of Eq. (A85) ensures
that the integral defining ¢(x,t) converges for all ¢ > 0.

The continuity of 02 at = (and hence of po?) and the fact the p(z)o?(z) > 0
implies the existence of a small enough A > 0 such that the ball B(z,\) C 2° and
Iyl <X = |p(z +y)o?(z+y) — p(x)o?(x)| < ep(x)o?(x), a property exploited for
p in the proof of Theorem 1 (see Eq. (A18) and the paragraph above it), and which

can now be used to efficiently bound ¢(z,t). In addition, using the method of proof
2

of Theorem 1 (see Eq. (A30)) also requires that fHUII>/\ p(y)% d?y < oo, which is

ensured by the condition C&, .., of Eq. (A85). Apart from these details, one can

proceed strictly along the proof and Theorem 1, leading to the proof of Theorem 4:

o*(x)

oo In(n)

V() (A88)

Note that if o%(x) = 0, one can straightforwardly show that for any e > 0, and for n
large enough, one has
€
V(z) < ——,
(z) < In(n)
while a more optimal estimate can be easily obtained if one specifies how o
at z.

(A89)

2 yanishes

A.5 The bias term

This section aims at proving Theorem 5, 6, and 7.
Assumptions

We first impose the following growth condition C’é for f(x) :=E[Y | X = z:

rowth

o ! ||(5)|d>2 Ay <, (490)

which is obviously satisfied if f is bounded. Since p is assumed to have a second moment,
the condition C’émwth is also satisfied for any function satisfying |f(x)| < Ay|ly||?*!
for all y, such that ||y|| > Ry, for some Ry > 0. Using the Cauchy-Schwartz inequality,
we find that the condition C’émwth also implies that

[ ot 20 dty < o (A91)
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In addition, for any x € Q° (so that p(z) > 0), we assume that there exists a
neighborhood of = such that f satisfies a local Holder condition. In other words, there
exist 6, > 0, K, > 0, and a, > 0, such that the ball B(0,d,) C €2, and

Wil <6 = |f(z+y) — f2)] < Kallyl|*, (A92)

11sz  which defines condition 0{101 der

1188 Definition of the bias term and preparatory results
1180 We define the bias term B(z) as

=0
Bi(w) = — x| S w@)f ) - S, (A94)
=0
= Ex [w}(@)[f(0) - F@)?] (A95)
Bafe) = ompsBx | X w0l — @) — F@)]. (290
0<i<j<n
= Ex [wo(e)un () (o) — F@)][f (1) ~ @] (A97)

Exploiting again Eq. (A1) for § = 2 like we did in section A.2, we obtain

+o00
By(z) = /0 b (s ) (o, 1) (A98)

where ¥(z,t) is again the function defined in Eq. (A2), and where

Ja+9) = F@)? 0
Tyl

x1(w,t) = /,o(ery)67W (A99)

100 For any ¢ > 0, and under condition C(érowth’ the integral defining x1(x, t) is well-defined.
o1 Moreover, x1(z,t) is a strictly positive and strictly decreasing function of ¢ > 0.
Now, defining u; = ||z — 2;||~%, i = 0, ..., n and exploiting again Eq. (A1) for 8 = 2,
we can write -
wo(z)w1 () = uguq / t e~ (wotun)i— (i, wi)t gy (A100)
0
102 Now taking the expectation value over the n + 1 independent variables, we obtain

“+o0
By(z) = /0 Fm (2, D2 (a8 dt, (A101)
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1201
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1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

where

Xo(z,t) = /p(x + y)eim W ddy. (A102)

Again, for any ¢t > 0, and under condition Cérowth’ the integral defining xo(x,t) is
well-defined. Note that, the integral defining x2(z,0) is well-behaved at y = 0 under

condition Cﬁolder. Indeed, for ||y|| < 6, we have W < K,||ly||~4+=, which

is integrable at y = 0 in dimension d. Note that, if f(z +y) — f(x) were only decaying

as const./In(||y||), then |x2(z,t)| ~ const.ln(|In(t)|) — 400, when ¢ — 0, and x2(x,0)

would not exist (see the end of this section where we relax the local Holder condition).
From now, we denote

) = xa(o0) = [ oo+ LEE LI g, (A103)

Also note that x(z) = 0 is possible, even if f is not constant. For instance, if Q is
a sphere centered at z or = R%, if p(x + y) = p(||y||) is isotropic around x and,
if fo 1y~ f(z+y) is an odd function of y, then we indeed have x(z) = 0 at the
symmetry point x.

Upper bound for By(x)
For £ > 0, we define X like in section A.2 and define n = min(\, d,.), so that

xi(z,t) < (1+E)sz(w)/ o T [y XD dty 4 A, (A104)

[lyll<n

= oL@y = f@)* 4
o AyIZn plet) [|y|]2¢ 'y, (A105)

where the constant A, < co under condition Cé The integral in Eq. (A104), can

be written as

rowth*

t n t
/ e Tl [[y[[2e==D) gy = sd/ e rdpes—d=l gy (A106)
llyll<n 0
2o¢m71 Foo _ 2ag —u
= Vgt d u” 4 e “du, (A107)

nd

Hence, we find that xi(z,t) is bounded for o, > d/2. For a; < d/2, and for t < t;
small enough, there exists a constant M (2a,/d) so that x1(z,t) < M(2aw/d)t2uTz_1.
Finally, in the marginal case o, = d/2 and for ¢ < t1, we have x1(z,t) < M(1)In(1/t),
for some constant M (1).

Now, exploiting again the upper bound of ¢(x,t) obtained in section A.2 and
repeating the steps to bound the integrals involving ™ (z, t), we find that, for a, # d/2,
B1(x) is bounded up to a multiplicative constant by

t 2a —nVgap(x)tin D—’ — min 2ag
/ poin(1,250) g~ ar@n (5 ) M’ (20, /d) (Vap(a)nn(n)) ~ ™55 (Wgs)
0

n—-+oo
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1215

1216

1217

1218

1219

1220

1221

1222

where M’(2a,/d) is a constant depending only on 2a, /d. In the marginal case, o, =
d/2, Bi(x) is bounded up to a multiplicative constant by n=21In(n).
In summary, we find that

_ 20

o (n a (ln(n))_l_%) , for d > 2a,
(n+1)Bi(z) = ¢ O (n~'(In(n)) '), for d = 2a, (A109)

@) (nil(ln(n))fz) , for d < 2a;

Asymptotic equivalent for Ba(x)

Let us first assume that k(z) = x2(z,0) # 0. Then again, as shown in detail in
section A.2, the integral defining Bs(z) is dominated by the small ¢ region, and will be
asymptotically equivalent to

By(x) = /;Oo“/f"l(x,t)xg(ﬂf,t)dt, (A110)

t1 —nVgp(x)tiln Dy
~ n2(x)/ o Verim (5 >dt, (A111)
0

n—-+o0o

On the other hand, if x(z) = 0, one can bound x2(z,t) (up to a multiplicative constant)
for ¢t < t; by the integral

t n :
/ (1 —e‘|y|d> llyl[#= =4 dty = Sd/ (1 —e*%) roe=dpd=1 g (A113)
[lyll<n 0

= Vytf T (1 e ") du(Al14)

Hence, for k(z) = 0, we find that

20,

n(n+1)Bz(z) = O (n_ a (ln(n))_Q_zaTI> . (A115)

Asymptotic equivalent for the bias term B(z)

In the generic case x(x) # 0, we find that (n + 1)B;(x) is always dominated by
n(n+1)Ba(x), and we find the following asymptotic equivalent for B(xz) = (n+1)B;(x)+
n(n + 1)Ba(x):

K()

2
50, 21 (vt ) A
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In the non-generic case k(x) = 0, the bound for (n + 1)Bi(x) in Eq. (A109) is always
more stringent than the bound for n(n + 1)Ba(x) in Eq. (A115), leading to

O (n_hTI(ln(n))_l_mTz) , for d > 2ay,
B(z) = q O (n~'(In(n))"1), for d = 20, - (A117)
O (n'(In(n))~2), for d < 2a,

1223 which proves the statements made in Theorem 5.

1224 Interpretation of the bias term B(x) for x(x) # 0
1225 Here, we assume the generic case x(x) # 0 and define f(z) = E [f(m)] We have

A(z) == E | wi(z)(f(z:) = f(2)| = f(a) = f(2), (A118)
1=0

f@) = B> wi(@)f(x:)| = (n+ 1)E [wo() f(wo)] - (A119)
i=0

1226 By using another time Eq. (A1), we find that,

+oo
Alx) = (n+1) ; Y™ (x, t)x2(x, t) dt, (A120)

1 pVyp(z)tin Dt
~ n/f(m)/ e o ( ’ )dt, (A121)
0

n——+00
K(z)

n—too Vgp(z)In(n)’ (A122)

Comparing this result to the one of Eq. (A116), we find that the bias B(x) is asymp-
totically dominated by the square of the difference A%(z) between f(z) = E [ f (m)}
and f(x):

s, (E[fw)] 1) (A123)

n——+oo

1227 a statement made in Theorem 5.

1228 Relaxing the local Holder condition

1220 We now only assume the condition C’éont. that f is continuous at x (but still
1230 assuming the growth conditions). We can now define 4, such that the ball B(z, ) C °
1 and ||y|| <d, = |f(x +y) — f(z)| < e. Then, the proof proceeds as above, but by
1232 replacing K, by ¢, a, by 0, and by updating the bounds for x;(z,t) (for which this
1233 replacement is safe) and ya(x,t) (for which it is not). We now find that for 0 < ¢ < ¢4,
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with ¢; small enough
0 < xi(w,t) < e(1+25)Vap(a)t ™, (A124)
1
Ix2(x,t)] < e(1+2e)Vyp(x)In (t) . (A125)
As already mentioned below Eq. (A102), where we provided an explicit counterexample,
we see that relaxing the local Holder condition does not guarantee anymore that

lim; 0 |x2(z,0)| < co. With these new bounds, and carrying the rest of the calculation
as in the previous sections, we ultimately find the following weaker result compared to

Eq. (A116) and Eq. (A117): X
B(z)=o0 (ln(n)) , (A126)

or equivalently, that for any € > 0, there exists a constant N, . such that, for n > N, .,
we have

Blr) < ——, (A127)

In(n)
which proves Theorem 6.
The bias term at a point where p(x) =0
This section aims at proving Theorem 7 expressing the lack of convergence of the
estimator f(z) to f(z), when p(z) = 0, and under mild conditions. Let us now consider
a point z € 9N for which p(x) = 0, let us assume that there exists constants 7,, vy, > 0,
and G, > 0, such that p satisfies the local Holder condition at x

[yl < ne = plz+y) < G|yl (A128)

We will also assume that the growth condition of Eq. (A91) is satisfied. With these
two conditions, k() defined in Eq. (A103) exists. The vanishing of p at z strongly
affects the behavior of ¥ (x,t) in the limit ¢ — 0, which is not singular anymore:

L= 0wt) ot [ pwlle = ol -, (A120)

where the convergence of the integral A(z) := [ p(y)||z — y||~¢ d?y is ensured by the
local Holder condition of p at x.

Let us now evaluate f(z) = lim,,_, ;o E[f(2)], the expectation value of the estimator
f(x) in the limit n — 400, introduced in Eq. (A119). First assuming, x(z) = x2(x,0) #
0, we obtain

+oo
flx) = f(x) = Jim (n+1) V" (z, t)x2 (2, t) dt, (A130)
0 .
— ngrfoonxg(x,())/o entoev(@0) gt (A131)
_ K(7)
= 3@ (A132)
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1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

which shows that the bias term does not vanish in the limit n — 4o00. Eq. (A132)
can be straightforwardly shown to remain valid when x(z) = 0. Indeed, for any € > 0
chosen arbitrarily small, we can choose ¢; small enough such that |x2(z,t)| < € for
0 <t < t1, which leads to |f(z) — f(2)| < e/A(2).

Note that relaxing the local Hoélder condition for p at z and only assuming the
continuity of f at z and x(x) # 0 is not enough to guarantee that f(z) # f(x). For
instance, if p(z 4+ y) ~y—0 po/In(1/||y||), and there exists a local solid angle w, > 0
at x, one can show that 1 —(x,t) ~0 wySapo tIn(In(1/t)), and the bias would still
vanish in the limit n — 400, with f(2) — f(2) ~n_too £(2)/[wsSapo In(In(n))].

A.6 Asymptotic equivalent for the regression risk

This section aims at proving Theorem 8. Under conditions C&,,.ips C’érowth, and
C’éont_, the results of Eq. (A88) and Eq. (A126) show that for p(z)o?(x) > 0 and p

and o2 continuous at x, the bias term B(z) is always dominated by the variance term
V() in the limit n — +oo. Thus, the excess regression risk satisfies

o*(x)

oo In(n) "

E[(f(2) - f(2))?]

(A133)

As a consequence, the Hilbert kernel estimate converges pointwise to the regression
function in probability. Indeed, for 6 > 0, there exists a constant IV, s, such that

E[(f(2) = f(2))*] < (1 +9) i (A134)

for n > N, 5. Moreover, for any & > 0, since E[(f(z) — f(2))?] > €2 P[|f(z) — f(x)] > €],
we deduce the following Chebyshev bound, valid for n > N, 5

2 1+6 o%(x)
Pllj) - f@ 2 e < 1522

(A135)

A.7 Rates for the plugin classifier

In the case of binary classification ¥ € {0,1} and f(z) = P[Y = 1| X = z]. Let
F:R? — {0,1} denote the Bayes optimal classifier, defined by F(z) := 0(f(z) — 1/2)
where 6(-) is the Heaviside theta function. This classifier minimizes the risk Rg,1(h) :=
E[l{nx)2vy] = P[R(X) # Y] under zero-one loss. Given the regression estimator f,
we consider the plugin classifier F'(z) = 0(f(z) — 1), and we will exploit the fact that

0 < E[Ro/1(F(2))] = Roj1 (F(2)) < 2E[ f(2) - f(2)]] < 2\/E[(f(:v) — f(2))?] (A136)

Proof of Eq. (A136)
For the sake of completeness, let us briefly prove the result of Eq. (A136). The
rightmost inequality is simply obtained from the Cauchy-Schwartz inequality, and
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we hence focus on proving the first inequality. Obviously, Eq. (A136) is satisfied for
f(z) =1/2, for which E[Rq /1 (F(z))] = Ro/1 (F(z)) = 1/2.
If f(x) > 1/2, we have F(x) = 1, Ro/1(F(z)) = 1 — f(z), and

E[Ro/ (F(2))] = f(2)P[f(z) < 1/2] + (1 — f(2))P[f(2)
= Ro/1(F(2)) + (2f(2) — DP[f(2) < 1/2

which implies E[Rq /1 (F(z))] > Ro/1(F(x)). Since P[f(z) < 1/2] = E[0(1/2 — f(x))],

and using 0(1/2 — f(z)) < ];(Tfl(/;)l, valid for any 1/2 < f(z) < 1, we readily obtain
Eq. (A136).
Similarly, in the case f(z) < 1/2, we have F'(x) = 0, Ro/1(F(z)) = f(x), and

>1/2],  (A137)
1, (A138)

E[Ro/1(F(x))] = Rop (F(2)) + (1 = 2f () Pf(z) > 1/2]. (A139)
Since P[f(z) > 1/2] = E[0(f(z) — 1/2)], and using 0(f(z) — 1/2) < W, valid
for any 0 < f(x) < 1/2, we again obtain Eq. (A136) in this case.

In fact, for any a > 0, the inequalities 0(1/2— f(z)) < (W) and 0(f () —

1/2—f(x)
this remark with the use of the Holder inequality leads to

1/2) < (f(x)f(m)) hold, respectively, for f(x) > 1/2 and f(z) < 1/2. Combining

IN

B[Rop (F(2))] - Royi (F(@)) < 21f() = 1/2E [|f(z) - f@)|] . (A140)

20f(x)  1/2PE [|f(e) - £@)7]. (a141)

IN

for any 0 < 8 < 1. In particular, for 0 < a < 1 and = «/2, we obtain

g3
2

0 < E[Ro/1 (F(2)] = Ropt (F(x) < 2f(2) = /2 *E[If(@) = f@)P] " (A142)

The interest of this last bound compared to the more classical bound of Eq. (A136) is
to show explicitly the cancellation of the classification risk as f(x) — 1/2, while still

involving the regression risk E [|f(x) — f(a:)ﬂ (to the power a/2 < 1/2).

Bound for the classification risk

Now exploiting the results of section A.6 for the regression risk, and the two
inequalities Eq. (A136) and Eq. (A142), we readily obtain Theorem 9.
A.8 Extrapolation behavior outside the support of p

This section aims at proving Theorem 10 characterizing the behavior of the regression
estimator f outside the closed support €2 of p (extrapolation).

Extrapolation estimator in the limit n — oo
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We first assume the growth condition [ p(y) 1%?”'(1 d%y < co. For z € R? (i.e., not

necessarily in ), we have quite generally

~ too
E [f(a:)} = (n+ 1)E [wy(z) f(z)] = (n+1) ; Y™ (z, t)x(x, t) dt, (A143)
where ¢ (z,t) is again given by Eq. (A2) and
X(z,t) = /p(x +y)f (@ + y)@ dy (A144)
’ lyll* =~

which is finite for any ¢ > 0, thanks to the above growth condition for f.

Let us now assume that the point x is not in the closed support € of the distribution
p (which excludes the case Q2 = R? ). Since the integral in Eq. (A143) is again dominated
by its t — 0 behavior, we have to evaluate 1 (x,t) and x(z,t) in this limit, like in the
different proofs above. In fact, when z ¢ ), the integral defining (x,t) and x(z,t) are
not singular anymore, and we obtain

L= vlat) ot [ owlle = ol -, (A145)

x(z,0) = / o) F @)z — ]~ dy. (A146)

Note that ¥ (x,t) has the very same linear behavior as in Eq. (A129), when we assumed
x € 00 with p(z) = 0, and a local Holder condition for p at x.

Finally, by using the same method as in the previous sections to evaluate the
integral of Eq. (A143) in the limit n — 400, we obtain

+oo ty
et x(w0) [entdvear (A147)
0

0 n—-+o0o
1 x(z,0)

which leads to the first result of Theorem 10:

e L E o] = LP@IWllz —yl = d%
P = i B@) = Sp o e AW

Note that since the function (z,y) — ||z — y||~¢ is continuous at all points = ¢ (,
y € €, and thanks to the absolute convergence of the integrals defining f (), standard
methods show that f., is continuous (in fact, infinitely differentiable) at all = ¢ Q.

Ezxtrapolation far from .
Let us now investigate the behavior of f.(z) when the distance L := d(x,Q) =
inf{||z — y||, y € Q} > 0 between x and ) goes to infinity, which can only happen for

67



1294

1295

1296

1297

1208

1299

1300

1301

1302

1303

1304

certain 2, in particular when 2 is bounded. We now assume the stronger condition
(f]) == fp (y)|dy < oo, such that the p-mean of f, (f) :== [ p(y)f(y)dly, is

finite. We con51der a point yo € , so that ||z — yo|| > L > 0 and we Will exp101t the

following inequality, valid for any y € Q satisfying ||y — yo|| < R, with R > 0:

L —yl¢— L (L+R)?— L¢ .
0<1 [l =yl PR <e? 1. (A150)

T eyl L - L

Now, for a given ¢ > 0, there exist R > 0 large enough such that
fl\y—yol\ZRp(y) dy < /2 and fl\y—on\ZR p(v)|f(y)|d?y < /2. Then, for such a R, we

consider L large enough such that the above bound satisfies ez’ —1 < e min(1/(|f]), 1)/2.
We then obtain

hié

£ [ o) sl — vl 'y - (7 '< e >/|y WIS sy

v il (A1)
ly=yoll>R
< x(fh+S<e (A153)
— 2D 277
which shows that under the condition (| f]) < co, we have
tm d'@,2) [ )l -yl 'y = (5). (A154)
d(z,Q2)—+oc0

Similarly, one can show that

a9 [olle - vty = [pwaty=1.  (a155)

d(x,Q)—+o0

Finally, we obtain the second result of Theorem 10,

olm @) = (). (A156)

Continuity of the extrapolation

We now consider = ¢ Q and yo € 99, but such that p(yo) > 0 (i.e., yo € 92N Q),
and we note [ := ||z — yo|| > 0. We assume the continuity at yo of p and f as seen
as functions restricted to €, i.e., limyco_sy, p(y) = p(yo) and limyca_y, f(y) = f(¥0)-
Hence, for any 0 < ¢ < 1, there exists § > 0 small enough such that y € Q and
Iy —yoll <8 = Ip(yo) — p(y)| < & and |p(yo)f(yo) — p(y)F()] < &. Since we intend
to take [ > 0 arbitrary small, we can impose | < §/2.
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We will also assume that 02 is smooth enough near yg, such that there exists a
strictly positive local solid angle wg defined by

1 1 .
wp = lim 7/ ply) d%y = lim / d%y,  (A157)
r=0 Vap(yo)r® Jyy—yoli<r r=0 Var? Jyeq/y—yoll<r

1305 where the second inequality results from the continuity of p at yy and the fact that
1306 p(yo) > 0. If yg € Q°, we have wg = 1, while for yy € 99, we have generally 0 < wy < 1.
1307 Although we will assume wqg > 0 for our proof below, we note that wyg = 0 or wg = 1
130s can happen for y, € 9. For instance, we can consider g, Q; C R? respectively
0o defined by Qo = {(z1,72) € R?/z1 > 0, |22| < 23} and Q1 = {(z1,22) € R?/z; <
1o 0} U{(z1,22) € R?/xq >0, |xa] > 2%}, Then, it is clear that the local solid angle at
1311 the origin O = (0,0) is respectively wg = 0 and wg = 1. Also note that if x is on the
1312 surface of a sphere or on the interior of a face of a hypercube (and in general, when
1313 the boundary near z is locally a hyperplane; the generic case), we have w, = % If  is
11a & corner of the hypercube, we have w, = 57.

Returning to our proof, and exploiting Eq. (A157), we consider ¢ small enough

such that for all 0 < r < 4, we have

/ ddy —woVyrd
y€Q/|ly—vyoll<r

1315 We can now use these preliminaries to obtain

< ewyVyrd. (A158)

(p(yo) f(yo) —€)J(x) = C < /p(y)f(y)llx —yllmd% < (p(yo) f(yo) + €)J (z) 4059)

(p(yo) —€)J(x) — C" < /p(y)llx —yllmd% < (p(yo) + €)J () 4£160)

1316 Wlth
. —d jd
J(z) = / e — gl d%y, (A161)
yeQ / |ly—yol| <
2\ 2 J
c=(3) [ swlrwldy (A162)
ly—yol||>6
2 2

Let us now show that lim;_,o J(z) = +00. We define N := [§/I] > 2, where [.] is
the integer part, and we have N > 2, since we have imposed | < §/2. Forn € N > 1,
we define,

I, = ddy, (A164)

/y€Q/|yyo|<5/n
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and note that we have

_ _ d
In = Int1 Len/uy—yousa/n, &, (A165)
ly=yol|>6/(n+1)
5\ 5\
I, —woVy () < ewoVy () . (A166)
n n
We can then write
N 1
J(@) 2 Y ————(Tn = Int1), (A167)
n=1 (142
N
1 1 I In
>y — - i In+1+(l+6)d7 - (A168)
S\l 9 =y
We have
I I 1 1
; 15d— ML >V | (l—e)—— — (1 4+ ) (]A169)
N+1)I
=07 (14 525) (1+4) (14 )
2d
> wOVd (1 — 5)? - (1 + E) =: CN7 (A170)

which defines the constant C”. Now using Eq. (A166), I < §/2, N = [§/l], and the fact
that (1 +u)? — 1 > du, for any u > 0, we obtain

T 1 44\
J(x) > (1—e)weVa ) ( ( H)z)d (z n n ) —1|+0C”, (A171)
n=1 1+ nT n+1
al 1 1,
n=1 (1 + %)
(N+1)1
(14 )
9 d+1 5

We hence have shown that lim;_,o J(z) = +00. Note that we can obtain an upper
bound for J(z) similar to Eq. (A172) in a similar way as above, and with a bit more
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1325
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1327
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1329

1330

work, it is straightforward to show that we in fact have J(z) ~;_0 wo Sqln (%), a

result that we will not need here.
Now, using Eq. (A159) and Eq. (A160) and the fact that lim;_,¢ J(x) = 400, we
find that

[ o))l =yl 'y~ plan) F0) ), (A175)
[ rwlie = ol aty 1~ pla) @) (AL76)

for f(yo) # 0 (remember that p(yo) > 0), while for f(yo) = 0, we obtain [ p(y)f(y)|lz—
y||=¢ d% = o(J(x)). Finally, we have shown that

lim  foo(2) = f(y0), (A177)

xZQ,x—yo

establishing the continuity of the extrapolation and the last part of Theorem 10.

71



