

1007
1008
1009

Supplementary Information for *AI without networks*, by P. P. Mitra and C. Sire

1010 Legends of Supplementary Movies

1011 **Movie S1:** 2-minute collective dynamics of 2 Hilbert agents for a memory $M = 2$, and
1012 enforcing the presence of the wall by means of the rejection procedure.

1013 **Movie S2:** 2-minute collective dynamics of 2 Hilbert agents for a memory $M = 2$,
1014 without enforcing the presence of the wall. Note the occurrence of small and short
1015 excursions of the fish outside the limits of the tank.

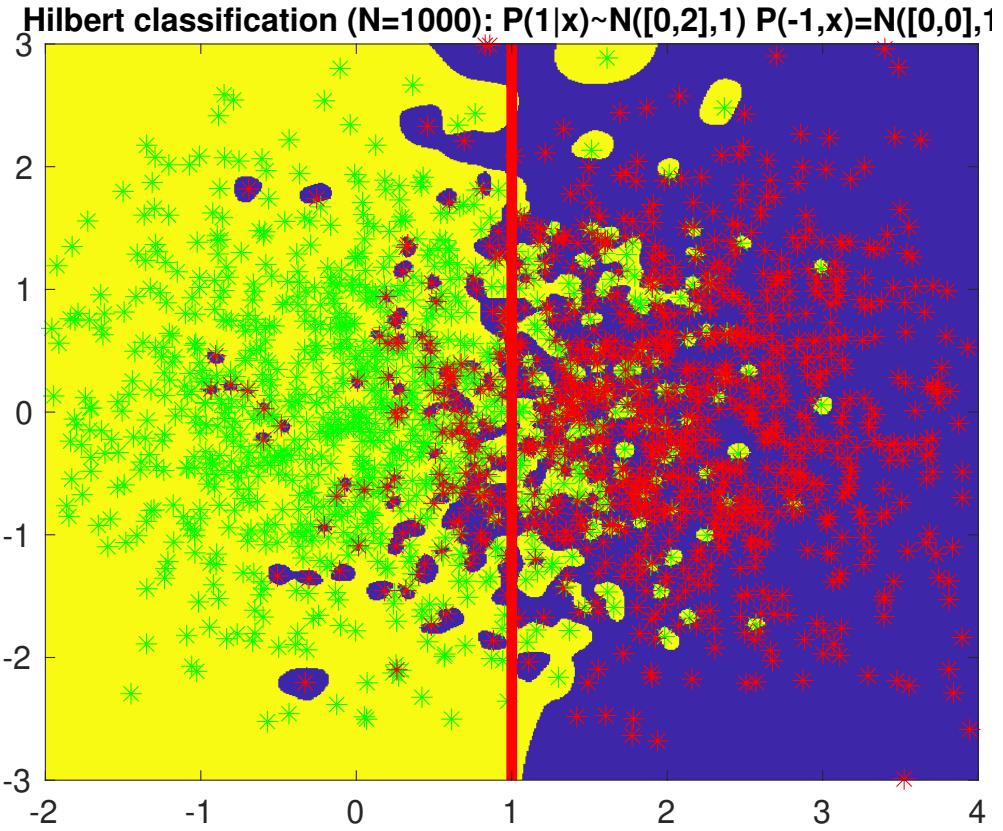
1016 **Movie S3:** 1-minute collective dynamics of 5 Hilbert agents for a memory $M = 2$, and
1017 enforcing the presence of the wall by means of the rejection procedure.

1018 Extended Data Table

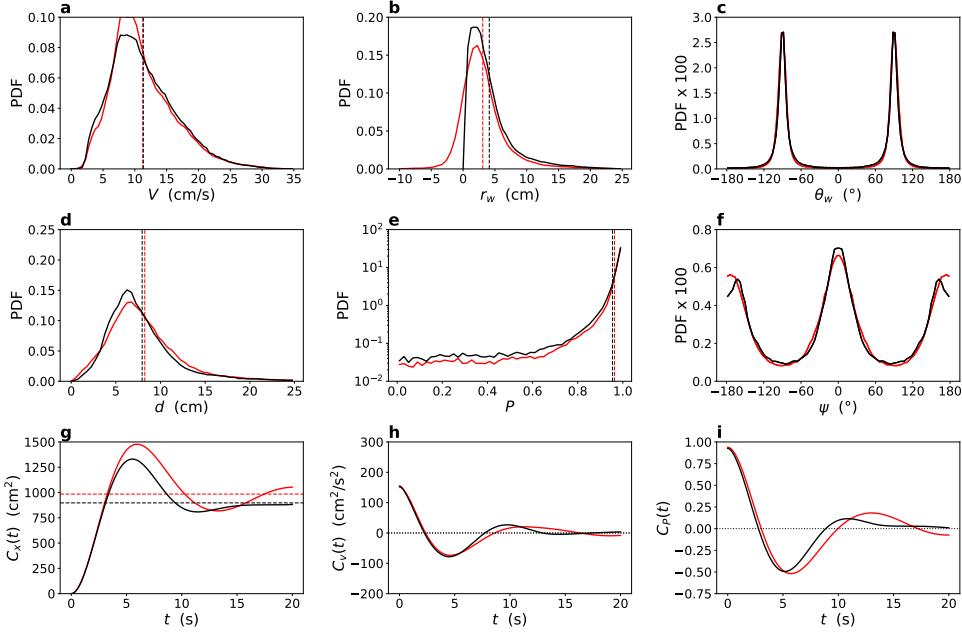
$N = 2$	Fish	Hilbert agents	$N = 5$	Fish	Hilbert agents
V	11.31 ± 0.18	11.91 ± 0.14	V	15.26 ± 0.13	15.29 ± 0.10
r_w	4.11 ± 0.12	3.90 ± 0.05	r_w	7.08 ± 0.11	7.17 ± 0.05
d	7.93 ± 0.17	8.27 ± 0.09	d	4.06 ± 0.04	5.15 ± 0.05
P	0.954 ± 0.002	0.957 ± 0.002	P	0.964 ± 0.001	0.943 ± 0.002
			R_{Gyr}	7.62 ± 0.07	10.42 ± 0.08

Extended Data Table 1: We report the mean and standard error for the PDF of the observables appearing in Fig. 3 (for $N = 2$ individuals) and Fig. 4 (for $N = 5$ individuals). The speed V is expressed in cm/s, while the distance to the wall, r_w , the distance between two nearest neighbors, d , and the gyration radius, R_{Gyr} (only for $N = 5$), are expressed in cm. Finally, the polarization, P , is without unit and between 0 and 1.

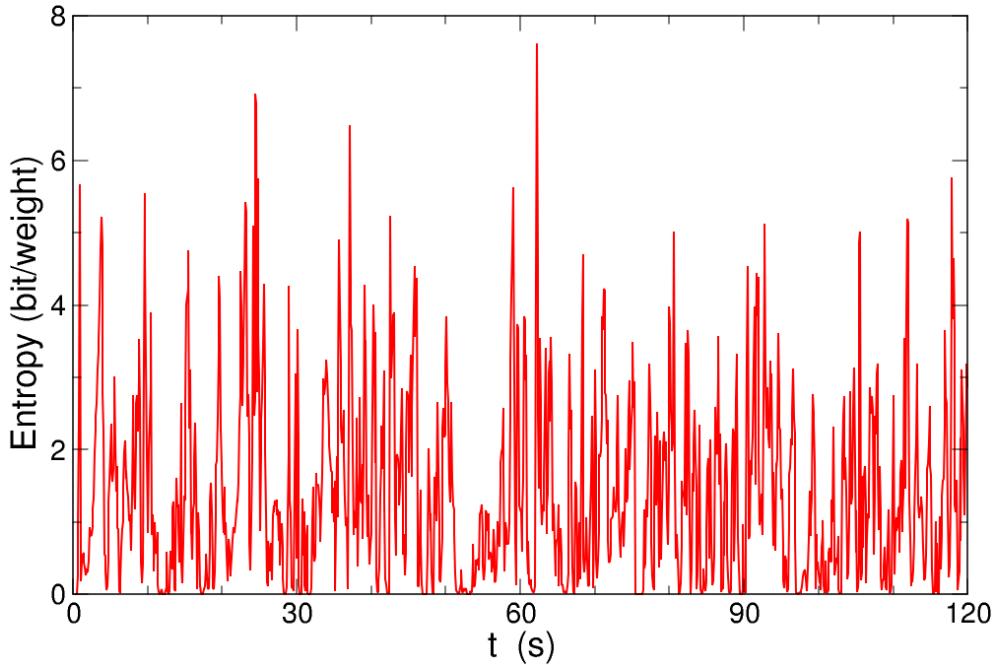
1019 **Extended Data Figures**



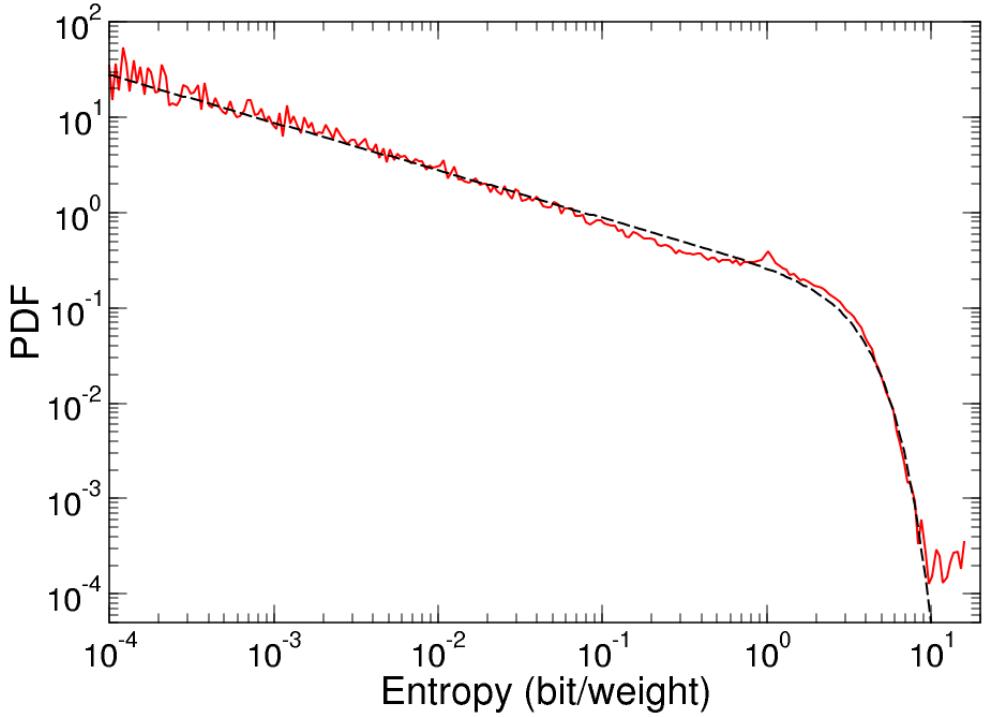
Extended Data Fig. 1: Classification using the Hilbert kernel: A simple example is shown, with two classes of points drawn from a mixture of 2D unit Normal distributions, with mean separated by 2. The points are shown in green and red colors (1000 points of each class). The red vertical line is the Bayes classification boundary. The yellow and blue colored regions are the Hilbert-predicted classification regions for the green and red points. The islands of blue in yellow (and vice versa) are due to the interpolative nature of the classifier, and correspond to the phenomenon of adversarial examples which are guaranteed for interpolating classifiers on noisy data.



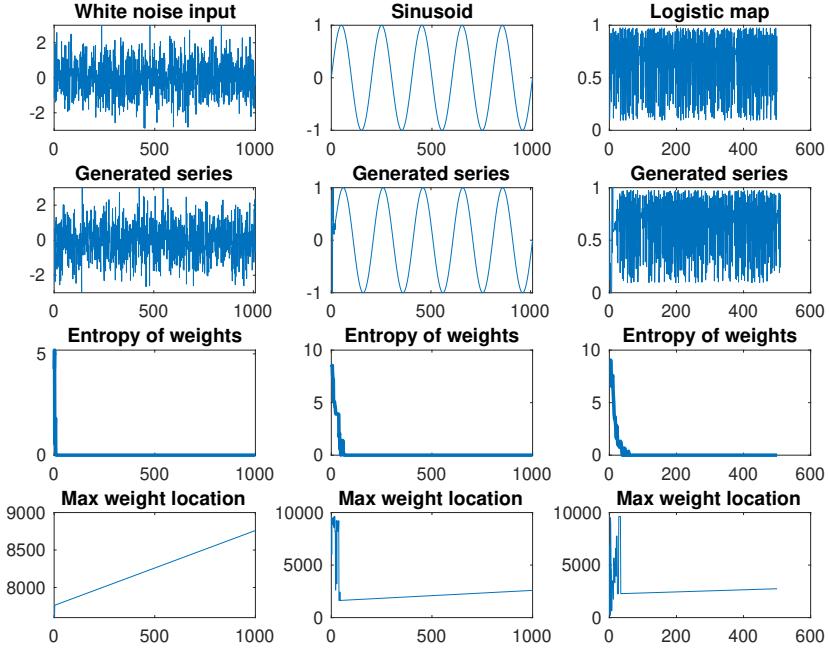
Extended Data Fig. 2: Behavior of 2 Hilbert fish without the tank wall. This figure is the analog of Fig. 3 in the main text (also for a memory $M = 2$), but in the case where the presence of the tank wall is not enforced in the Hilbert model. The different panels show the 9 observables used to characterize the individual (a-c) and collective (d-f) behavior, and the time correlations in the system (g-i): **a**, PDF of the speed, V ; **b**, PDF of the distance to the wall, r_w ; **c**, PDF of the heading angle relative to the normal to the wall, θ_w ; **d**, PDF of the distance between the pair of individuals, d ; **e**, PDF of the group polarization, $P = |\cos(\Delta\phi/2)|$, where $\Delta\phi$ is the relative heading angle; **f**, PDF of the viewing angle at which an individual perceives the other individual, ψ . See Fig. 2a and b in the main text for a visual representation of the main variables. **g**, Mean squared displacement, $C_x(t)$, and its asymptotic limit, $C_x(\infty) = 2\langle r^2 \rangle$ (dotted lines); **h**, Velocity autocorrelation, $C_v(t)$; **i**, Polarization autocorrelation, $C_P(t)$. The black PDFs correspond to experiments, while the red PDFs correspond to the predictions of the Hilbert generative model. The plots are on the same scale as in Fig. 3 in the main text, except for r_w , for which the horizontal axis has been extended to negative values of r_w corresponding to instances where an individual is observed outside the limits of the experimental circular tank. Yet, the Hilbert fish spend 87 % of the time strictly within the tank limits, and when they wander outside the tank, their average excursion distance from the wall is only 1.3 cm. These excursions are responsible for the upward and rightward shift of the peak of $C_x(t)$ and for the larger asymptotic limit, $C_x(\infty) = 2\langle r^2 \rangle \approx 980 \text{ cm}^2$ (compared to $C_x(\infty) \approx 900 \text{ cm}^2$ for fish or for the Hilbert model implementing the rejection procedure enforcing the presence of the tank wall).



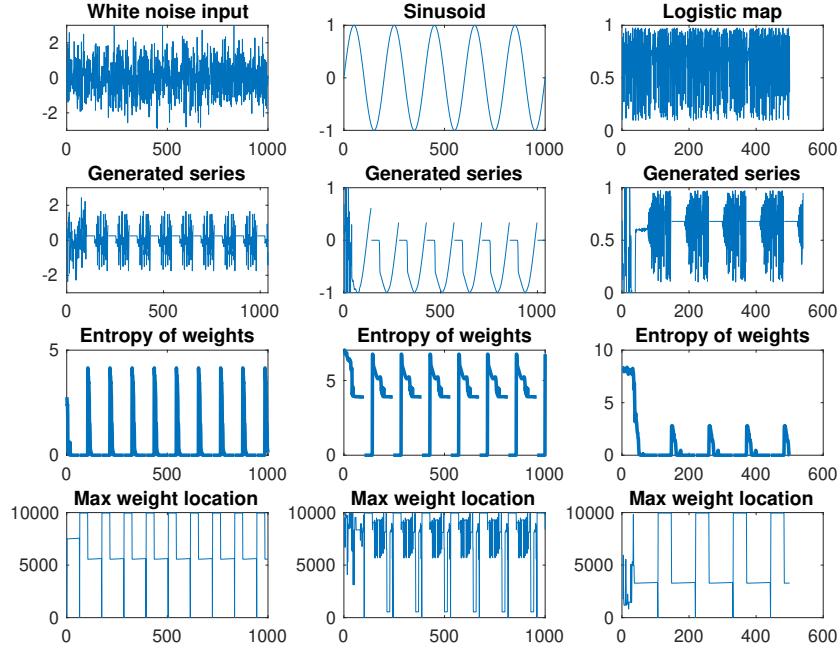
Extended Data Fig. 3: Entropy time series for 2 Hilbert fish. We plot a 2-minute time series of the entropy for 2 Hilbert fish, and for a memory $M = 2$. The entropy S can be interpreted as $\log_2 \mathcal{N}$, where \mathcal{N} is the effective number of real fish configurations used to predict the acceleration of the Hilbert fish. The time series exhibits short periods where $\mathcal{N} \approx 1$ ($S \approx 0$), when the Hilbert scheme has essentially selected a unique real fish configuration (“copying”). This short time series also presents three short periods when $\mathcal{N} > 64$ ($S > 6$). The PDF of the entropy computed over much longer time is shown in Extended Data Fig. 4.



Extended Data Fig. 4: Entropy distribution for 2 Hilbert fish. We plot the PDF of the entropy for 2 Hilbert fish (for a memory $M = 2$) resulting from an effective simulation time of 3 hours. The PDF of the entropy is reasonably well fitted by the normalized functional form $\rho(S) = (2\Gamma[5/4])^{-1} (S_c S)^{-1/2} \exp(-(S/S_c)^2)$, although the fit does not capture some outliers at $S > 10$. The fitted cut-off entropy scale, $S_c \approx 3.61$, corresponds to $\mathcal{N}_c = 2^{S_c} \approx 12.2$ real fish configurations contributing to the acceleration prediction, while the mean entropy $\langle S \rangle \approx 1.37$ corresponds to $2^{\langle \log_2 \mathcal{N} \rangle} = 2^{\langle S \rangle} \approx 2.6$ configurations. The mean number of configurations used for a prediction is $\langle \mathcal{N} \rangle = \langle 2^S \rangle$, and is dominated by outliers. If this average is restrained to instances where $S \leq 10$, one finds $\langle \mathcal{N} \rangle_{S \leq 10} \approx 5.2$ (our fit $\rho(S)$ would predict $\langle \mathcal{N} \rangle_{S \leq 10} \approx 4.7$), whereas the average including all data is $\langle \mathcal{N} \rangle \approx 35$. Also note the small peak in the PDF near $S = 1$, corresponding to $\mathcal{N} = 2$ relevant configurations contributing almost equally to the Hilbert prediction. Yet, during the simulation, entropies as high as $S \sim 15$ were recorded, corresponding to $\mathcal{N} \sim 32768$ fish configurations effectively considered by the Hilbert kernel. Compared to $k\text{NN}$ methods, the Hilbert interpolation scheme is hence able to adapt the effective number of used data for the prediction to the properties of the input vector. See also Extended Data Fig. 3 for a short time series of the entropy.

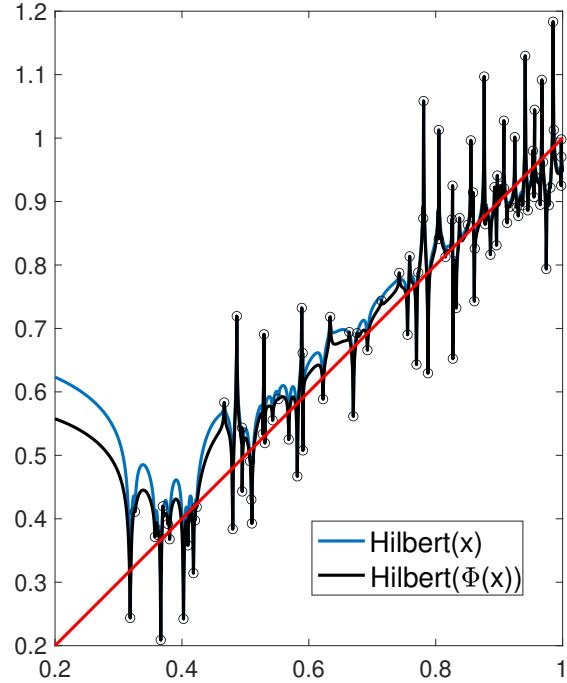


Extended Data Fig. 5: Autoregressive generative modeling of time series data: three examples are shown of signals generated by Eq. (9) with simple training data consisting of $N=10000$ samples of a single training signal. The three columns respectively show results corresponding to a training signal generated by white Gaussian noise, a sinusoid, and iterates of a logistic regression equation $x_{n+1} = \lambda x_n(1 - x_n)$ for $\lambda = 3.9$. A lag window size of $T = 10$ is used (see the next figure for a lag window size of $T = 40$, and the signal generation is initiated by random initial conditions consisting of T samples of a standard normal distributed variable. The second row shows the generated signal. The third row shows the entropy of the generative weights as a function of generation time, and the fourth row shows the position of the maximum weight in the training signal, also as a function of generation time. Note the “copying” behavior, where the generated signal starts some fragment of the training signal after an initial transient. During the “copying” phase, the weight entropy falls to zero, and the index of the maximum weight increments linearly with time.



Extended Data Fig. 6: Autoregressive generative modeling of time series data: the same signal examples as in the previous extended data figure (Extended Data Fig. 5) are shown, this time with a lag window $T = 40$. In this case, periodic behavior is observed after an initial transient. The periods themselves contain short episodes of “copying” where the entropy falls to zero, and also show short episodes of close to fixed-point behavior of the dynamics, where the generated signal has an almost constant value. The extent of the “copying”, periodic or constant behaviors depends on the initial conditions as well as on d .

Hilbert with coordinate transformation



Extended Data Fig. 7: Impact of an initial coordinate transformation $x \rightarrow \Phi(x)$. This example shows two Hilbert kernel fits, with the black curve corresponding to the original kernel, and the blue curve corresponding to the generalized kernel corresponding to replacing $x \rightarrow \Phi(x)$ in the weights. The samples x_i ($i = 1..100$) are chosen so that the transformed coordinates $\Phi(x_i)$ have a uniform distribution. The red line corresponds to $y = x$ and uncorrelated Gaussian noise with $\sigma = 0.1$ is added to produce the noisy samples. The two regression functions both interpolate, but show slight differences, especially in the data-sparse region, with the transformed weights (that produce uniform sampling of x) being a bit closer to the noise-free function. As proven in the paper, both estimates are statistically consistent and have the same large-sample asymptotics in the leading order, but the sub-leading order behavior will generally depend on Φ in conjunction with the other details of the problem.

1020 Appendix A Proofs of the theorems

1021 A.1 Preliminaries

1022 In the following, $x \in \Omega^\circ$ so that $\rho(x) > 0$, and we will assume for simplicity that the
 1023 distribution ρ is continuous at x .

For the proof of our results, we will often exploit the following integral relation, valid for $\beta > 0$ and $z > 0$,

$$\frac{1}{\Gamma(\beta)} \int_0^{+\infty} t^{\beta-1} e^{-t} z \, dt = z^{-\beta}. \quad (\text{A1})$$

In addition, we define

$$\psi(x, t) := \int \rho(x + y) e^{-\frac{t}{||y||^d}} d^d y, \quad (\text{A2})$$

1024 which will play a central role. We note that $\psi(x, 0) = 1$, and that $t \mapsto \psi(x, t)$ is a
 1025 continuous and strictly decreasing function of t . It is even infinitely differentiable at
 1026 any $t > 0$, but not necessarily at $t = 0$. In fact, for a fixed x , controlling the behavior
 1027 of $1 - \psi(x, t)$ when $t \rightarrow 0$ will be essential to obtain our results.

1028 A.2 Moments of the weights: large n behavior

1029 In this section, we provide a complete proof of Theorem 1. Several other theorems will
 1030 use the same method of proof, and some basic steps will not be repeated in their proof.

Using Eq. (A1) for $\beta > 0$, we can express powers of the weight function as

$$w_0^\beta(x) = \frac{1}{||x - x_0||^{\beta d}} \frac{1}{\Gamma(\beta)} \int_0^{+\infty} t^{\beta-1} e^{-t} ||x - x_0||^{-d} - t \sum_{i=1}^n ||x - x_i||^{-d} \, dt. \quad (\text{A3})$$

By taking the expected value over the $n+1$ independent random variables X_i , we obtain

$$\mathbb{E} [w_0^\beta(x)] = \frac{1}{\Gamma(\beta)} \int_0^{+\infty} t^{\beta-1} \psi^n(x, t) \phi_\beta(x, t) \, dt, \quad (\text{A4})$$

with

$$\phi_\beta(x, t) := \int \rho(x + y) \frac{e^{-\frac{t}{||y||^d}}}{||y||^{\beta d}} d^d y, \quad (\text{A5})$$

1031 which is also a strictly decreasing function of t , continuous at any $t > 0$ (in fact,
 1032 infinitely differentiable for $t > 0$).

1033 Note that the exchange of the integral over t and over $\vec{x} = (x_0, x_1, \dots, x_n)$ used to
 1034 obtain Eq. (A4) is justified by the Fubini theorem, by first noting that the function
 1035 $\vec{x} \mapsto w_0^\beta(x) \prod_{i=0}^n \rho(x_i)$ is in $L^1(\mathbb{R}^d)$, since $0 \leq w_0^\beta(x) \leq 1$, and since ρ is obviously in
 1036 $L^1(\mathbb{R}^d)$. Moreover, the function $t \mapsto t^{\beta-1} \psi^n(x, t) \phi_\beta(x, t) > 0$ is also in $L^1(\mathbb{R})$. Indeed,

1037 we will show below that it decays fast enough when $t \rightarrow +\infty$ (see Eqs. (A7-A16)),
1038 ensuring the convergence of its integral at $+\infty$, and that it is bounded (and continuous)
1039 near $t = 0$ (see Eqs. (A29-A34)), ensuring that this function is integrable at $t = 0$.

1040 For $\beta = 1$, $\phi_1 = -\partial_t \psi$, and we obtain $\mathbb{E}[w_0(x)] = \frac{1}{n+1}$, as expected. In the
1041 following, we first focus on the case $\beta > 1$, before addressing the cases $0 < \beta < 1$ and
1042 $\beta < 0$ at the very end of this section.

We now introduce t_1 and t_2 (to be further constrained later) such that $0 < t_1 < t_2$. We then express the integral of Eq. (A4) as the sum of corresponding integrals $I_1 + I_{12} + I_2$. I_1 is the integral between 0 and t_1 , I_{12} the integral between t_1 and t_2 , and I_2 the integral between t_2 and $+\infty$. Thus, we have

$$I_1 \leq \mathbb{E}[w_0^\beta(x)] \leq I_1 + I_{12} + I_2, \quad (\text{A6})$$

1043 provided these integral exists, which we will show below, by providing upper bounds
1044 for I_2 and I_{12} , and tight lower and upper bound for the leading term I_1 .

1045 *Bound for I_2*

1046 For any $R \geq 1$, we can write the integral defining $\psi(x, t)$

$$\psi(x, t) = \int_{||y|| \leq R} + \int_{||y|| \geq R} \quad (\text{A7})$$

$$\leq e^{-\frac{t}{R^d}} + \int_{||y|| \geq R} \rho(x+y) \frac{||y||^2}{R^2} d^d y, \quad (\text{A8})$$

$$\leq e^{-\frac{t}{R^d}} + \frac{C_x}{R^2}, \quad (\text{A9})$$

with $C_x = \sigma_\rho^2 + ||x - \mu_\rho||^2$ depending on the mean μ_ρ and variance σ_ρ^2 of the distribution ρ . Similarly, for $\phi_\beta(x, t)$, we obtain the bound

$$\phi_\beta(x, t) \leq \frac{1}{R^{\beta d}} e^{-\frac{t}{R^d}} + \frac{C_x}{R^{2+\beta d}}, \quad (\text{A10})$$

1047 valid for $t \geq \max(1, \beta)$ and $R \leq r_t$, where $r_t = (t/\beta)^{1/d} \geq 1$ is the location of the
1048 maximum of the function $r \mapsto \frac{e^{-\frac{t}{r^d}}}{r^{\beta d}}$.

1049 We now set $R = t^{\frac{s}{d}}$, with $0 < s < 1$, and take $T'_2 \geq \max(1, \beta, \beta^{1/(1-s)})$ (so
1050 that $1 \leq R \leq r_t$) is large enough such that the following conditions are satisfied for
1051 $t \geq t_2 \geq T'_2$,

$$e^{-\frac{t}{R^d}} = e^{-t^{1-s}} \leq \frac{C_x}{t^{\frac{2s}{d}}}, \quad (\text{A11})$$

$$\frac{1}{R^{\beta d}} e^{-\frac{t}{R^d}} = \frac{1}{t^{\beta s}} e^{-t^{1-s}} \leq \frac{C_x}{t^{\frac{2s}{d} + \beta s}}. \quad (\text{A12})$$

1052 Hence, for $t \geq t_2 \geq T'_2$, we obtain

$$\psi(x, t) \leq \frac{2C_x}{t^{\frac{2s}{d}}}, \quad (\text{A13})$$

$$\phi_\beta(x, t) \leq \frac{2C_x}{t^{\frac{2s}{d} + \beta s}}. \quad (\text{A14})$$

In addition, we also impose $t_2 \geq T''_2 = (4C_x)^{d/(2s)}$, so that $\frac{2C_x}{t_2^{\frac{2s}{d}}} \leq \frac{1}{2}$, for any $t \geq T_2 = \max(T'_2, T''_2)$. We can now exploit the resulting bounds for $\psi(x, t)$ and $\phi_\beta(x, t)$ in Eq. (A13) and Eq. (A14) to compute an explicit bound for I_2 , for any given $t_2 \geq T_2$:

$$I_2 = \frac{1}{\Gamma(\beta)} \int_{t_2}^{+\infty} t^{\beta-1} \psi^n(x, t) \phi_\beta(x, t) dt \leq \frac{1}{\Gamma(\beta)} \int_{t_2}^{+\infty} t^{\beta(1-s)-1} \left(\frac{2C_x}{t^{\frac{2s}{d}}} \right)^{n+1} dt. \quad (\text{A15})$$

The integral in the right-hand side of Eq. (A15) only converges for $s > \frac{1}{1 + \frac{2(n+1)}{\beta d}}$ (remember that we also impose $s < 1$), and we then set $s = \frac{1}{1 + \frac{2}{\beta d}}$, which ensures its convergence for any $n \geq 1$. Performing this integral and using the fact that $\frac{2C_x}{t_2^{\frac{2s}{d}}} \leq \frac{1}{2}$, we finally obtain

$$I_2 \leq C_x \frac{d + \frac{2}{\beta}}{\Gamma(\beta)} \times \frac{1}{n 2^n}. \quad (\text{A16})$$

1053 We hence obtain the convergence of I_2 , which, along with the bounds for I_1 and I_{12}
1054 below, justifies our use of Fubini theorem to obtain Eq. (A4). Note that the above
1055 bound essentially decays exponentially with n , under the stated conditions.

1056 *Bound for I_{12}*

Again, exploiting the fact that $\psi(x, t)$ and $\phi_\beta(x, t)$ are strictly decreasing functions of t , we obtain

$$I_{12} \leq \frac{\phi_\beta(x, t_1) t_2^\beta}{\Gamma(\beta)} \times \psi^n(x, t_1), \quad (\text{A17})$$

1057 where we note that $\psi(x, t_1) < 1$, for any $t_1 > 0$, implying that this bound decays
1058 exponentially with n .

1059 *Bound for I_1*

1060 We first want to obtain bounds for $1 - \psi(x, t)$, where $0 \leq t \leq t_1$, with $t_1 > 0$ to be
1061 constrained below. In addition, exploiting the continuity of ρ at x and the fact that
1062 $\rho(x) > 0$, we introduce ε satisfying $0 < \varepsilon < 1/4$, and define $\lambda > 0$ small enough so that
1063 the ball $B(x, \delta) \subset \Omega^\circ$, and $\|y\| \leq \lambda \implies |\rho(x+y) - \rho(x)| \leq \varepsilon \rho(x)$. Exploiting this
1064 definition, we obtain the following lower and upper bounds

$$1 - \psi(x, t) \geq (1 - \varepsilon) \rho(x) \int_{\|y\| \leq \lambda} \left(1 - e^{-\frac{t}{\|y\|^d}} \right) d^d y, \quad (\text{A18})$$

$$1 - \psi(x, t) \leq (1 + \varepsilon)\rho(x) \int_{||y|| \leq \lambda} \left(1 - e^{-\frac{t}{||y||^d}}\right) d^d y \quad (\text{A19})$$

$$+ \int_{||y|| \geq \lambda} \rho(x + y) \left(1 - e^{-\frac{t}{\lambda^d}}\right) d^d y, \quad (\text{A20})$$

$$\leq (1 + \varepsilon)\rho(x) \int_{||y|| \leq \lambda} \left(1 - e^{-\frac{t}{||y||^d}}\right) d^d y + \frac{t}{\lambda^d}. \quad (\text{A21})$$

1065 The integral appearing in these bounds can be simplified by using radial coordinates:

$$\int_{||y|| \leq \lambda} \left(1 - e^{-\frac{t}{||y||^d}}\right) d^d y, = S_d \int_0^\lambda \left(1 - e^{-\frac{t}{r^d}}\right) r^{d-1} dr, \quad (\text{A22})$$

$$= V_d t \int_{\frac{t}{\lambda^d}}^{+\infty} \frac{1 - e^{-u}}{u^2} du, \quad (\text{A23})$$

1066 where S_d and $V_d = \frac{S_d}{d}$ are respectively the surface and the volume of the d -dimensional
1067 unit sphere, and we have used the change of variable $u = \frac{t}{r^d}$.

We note that for $0 < z \leq 1$, we have

$$\int_z^{+\infty} \frac{1 - e^{-u}}{u^2} du = -\ln(z) + \int_z^1 \frac{1 - u - e^{-u}}{u^2} du + \int_1^{+\infty} \frac{1 - e^{-u}}{u^2} du. \quad (\text{A24})$$

1068 Exploiting this result and now imposing $t_1 \leq \lambda^d$, we have, for any $t \leq t_1$

$$\ln \left(\frac{C_-}{t} \right) \leq \int_{\frac{t}{\lambda^d}}^{+\infty} \frac{1 - e^{-u}}{u^2} du \leq \ln \left(\frac{C_+}{t} \right), \quad (\text{A25})$$

$$\ln(C_+) = d \ln(\lambda) + \int_1^{+\infty} \frac{1 - e^{-u}}{u^2} du, \quad (\text{A26})$$

$$\ln(C_-) = \ln(C_+) + \int_0^1 \frac{1 - u - e^{-u}}{u^2} du. \quad (\text{A27})$$

Combining these bounds with Eq. (A18) and Eq. (A21), we have shown the existence of two x -dependent constants D_\pm such that, for $0 \leq t \leq t_1 \leq \lambda^d$, we have

$$(1 - \varepsilon)V_d\rho(x)t \ln \left(\frac{D_-}{t} \right) \leq 1 - \psi(x, t) \leq (1 + \varepsilon)V_d\rho(x)t \ln \left(\frac{D_+}{t} \right). \quad (\text{A28})$$

1069 In addition, we will also choose $t_1 < D_\pm/3$, such that the two functions $t \ln \left(\frac{D_\pm}{t} \right)$ are
1070 positive and strictly increasing for $0 \leq t \leq t_1$. t_1 is also taken small enough such that
1071 the two bounds in Eq. (A28) are always less than $1/2$, for $0 \leq t \leq t_1$ (both bounds
1072 vanish when $t \rightarrow 0$).

1073 We now obtain efficient bounds for $\phi_\beta(x, t)$, for $0 \leq t \leq t_1$. Proceeding similarly as
1074 above, we obtain

$$\phi_\beta(x, t) \geq (1 - \varepsilon)\rho(x) \int_{\|y\| \leq \lambda} \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^{\beta d}} d^d y, \quad (\text{A29})$$

$$\phi_\beta(x, t) \leq (1 + \varepsilon)\rho(x) \int_{\|y\| \leq \lambda} \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^{\beta d}} d^d y + \frac{1}{\lambda^{\beta d}}. \quad (\text{A30})$$

Again, the integral appearing in these bounds can be rewritten as

$$\int_{\|y\| \leq \lambda} \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^{\beta d}} d^d y = S_d \int_0^\lambda r^{d(1-\beta)-1} e^{-\frac{t}{r^d}} dr. \quad (\text{A31})$$

1075 For $0 < \beta < 1$, the integral of Eq. (A31) is finite for $t = 0$, ensuring the existence of
1076 $\phi_\beta(x, 0)$ and the fact that $t \mapsto t^{\beta-1}\psi(x, t)\phi_\beta(x, t)$ belongs to $L^1(\mathbb{R})$ (hence, justifying
1077 our use of Fubini theorem for $0 < \beta < 1$). For $\beta > 1$, we have

$$\int_{\|y\| \leq \lambda} \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^{\beta d}} d^d y = V_d t^{1-\beta} \int_{\frac{t}{\lambda^d}}^{+\infty} u^{\beta-2} e^{-u} du. \quad (\text{A32})$$

$$\underset{t \rightarrow 0}{\sim} V_d \Gamma(\beta - 1) t^{1-\beta}. \quad (\text{A33})$$

This integral diverges when $t \rightarrow 0$ and the constant term $\lambda^{-\beta d}$ in Eq. (A30) can be made as small as necessary (by a factor less than ε) compared to this leading integral term, for a small enough t_1 . Similarly, we can choose t_1 small enough so that the integral Eq. (A31) is approached by the asymptotic result of Eq. (A33) up to a factor ε . Thus, we find that for $0 \leq t \leq t_1$, one has

$$(1 - 2\varepsilon)V_d \rho(x) \Gamma(\beta - 1) t^{1-\beta} \leq \phi_\beta(x, t) \leq (1 + 3\varepsilon)V_d \rho(x) \Gamma(\beta - 1) t^{1-\beta}. \quad (\text{A34})$$

1078 This shows that $t^{\beta-1}\phi_\beta(x, t)$ has a smooth limit equal to $V_d \rho(x) \Gamma(\beta - 1)$, when $t \rightarrow 0$,
1079 so that, combined with the finite upper bound for I_2 , $t \mapsto t^{\beta-1}\psi(x, t)\phi_\beta(x, t)$ belongs
1080 to $L^1(\mathbb{R})$, for $\beta > 1$, and hence for all $\beta > 0$. Hence, the use of the Fubini theorem to
1081 derive Eq. (A4) has been justified.

1082 Now combining the bounds for $\psi(x, t)$ and $\phi_\beta(x, t)$, we obtain

$$I_1 \geq (1 - 2\varepsilon) \frac{1}{\beta - 1} V_d \rho(x) \int_0^{t_1} \left(1 - (1 + \varepsilon)V_d \rho(x) t \ln \left(\frac{D_+}{t} \right) \right)^n dt, \quad (\text{A35})$$

$$I_1 \leq (1 + 3\varepsilon) \frac{1}{\beta - 1} V_d \rho(x) \int_0^{t_1} \left(1 - (1 - \varepsilon)V_d \rho(x) t \ln \left(\frac{D_-}{t} \right) \right)^n dt. \quad (\text{A36})$$

1083 *Asymptotic behavior of I_1 and $\mathbb{E}[w_0^\beta(x)]$*

We will show below that

$$\int_0^{t_1} \left(1 - E_{\pm} t \ln \left(\frac{D_{\pm}}{t}\right)\right)^n dt \underset{n \rightarrow +\infty}{\sim} \frac{1}{E_{\pm} n \ln(n)}, \quad (\text{A37})$$

where $E_{\pm} = (1 \mp \varepsilon) V_d \rho(x)$. For a given x , and for t_1 and t_2 satisfying the requirements mentioned above, the upper bounds for I_{12} (see Eq. (A17)) and I_2 (see Eq. (A16)) appearing in Eq. (A6) both decay exponentially with n and can hence be made arbitrarily small compared to I_1 which decays as $1/(n \ln(n))$.

Finally, assuming for now the result of Eq. (A37) (to be proven below), we have obtained the exact asymptotic result

$$\mathbb{E} [w_0^{\beta}(x)] \underset{n \rightarrow +\infty}{\sim} \frac{1}{(\beta - 1)n \ln(n)}. \quad (\text{A38})$$

Proof of Eq. (A37)

We are then left to prove the result of Eq. (A37). First, we will use the fact that, for $0 \leq z \leq z_1 < 1$, one has

$$e^{-\mu z} \leq 1 - z \leq e^{-z}, \quad (\text{A39})$$

where $\mu = -\ln(1 - z_1)/z_1$. We can apply this result to the integral of Eq. (A37), using $z_1^{\pm} = E_{\pm} t_1 \ln(D_{\pm}/t_1) > 0$. Note that $0 < t_1 < D_{\pm}/3$ and hence $z_1^{\pm} > 0$ can be made as close to 0 as desired, and the corresponding $\mu_{\pm} > 1$ can be made as close to 1 as desired. Thus, in order to prove Eq. (A37), we need to prove the following equivalent

$$I_n = \int_0^{t_1} e^{-nEt \ln(\frac{D}{t})} dt \underset{n \rightarrow +\infty}{\sim} \frac{1}{En \ln(n)}, \quad (\text{A40})$$

for an integral of the form appearing in Eq. (A40). Let us mention again that t_1 has been taken small enough so that the function $t \mapsto t \ln(\frac{D}{t})$ is positive and strictly increasing (with its maximum at $t_{\max} = D/e < t_1$), for $0 \leq t \leq t_1$.

We now take n large enough so that $\frac{\ln(n)}{n} < t_1$ and $E \ln(n) > 1$. One can then write

$$I_n = \frac{1}{n} \int_0^{\ln(n)} e^{-Eu \ln(\frac{Dn}{u})} du + \int_{\frac{\ln(n)}{n}}^{t_1} e^{-nEt \ln(\frac{D}{t})} dt = J_n + K_n, \quad (\text{A41})$$

$$J_n \leq \frac{1}{n} \int_0^{1/E} e^{-Eu \ln(De n)} du + \frac{1}{n} \int_{1/E}^{\ln(n)} e^{-Eu \ln(\frac{Dn}{\ln(n)})} du, \quad (\text{A42})$$

$$\leq \frac{1}{E n \ln(D En)} + \frac{\ln(n)}{D E n^2 \ln(\frac{Dn}{\ln(n)})}, \quad (\text{A43})$$

$$K_n \leq \int_{\frac{\ln(n)}{n}}^{+\infty} e^{-nEt \ln(\frac{D}{t_1})} dt \leq \frac{1}{E n^{1+E \ln(\frac{D}{t_1})} \ln(\frac{D}{t_1})}. \quad (\text{A44})$$

When $n \rightarrow +\infty$, we hence find that the upper bound I_n^+ of I_n satisfies

$$I_n^+ \underset{n \rightarrow +\infty}{\sim} \frac{1}{E n \ln(DEn)} \underset{n \rightarrow +\infty}{\sim} \frac{1}{E n \ln(n)}. \quad (\text{A45})$$

Let us now prove a similar result for a lower bound of I_n by considering n large enough so that $nEt_1 > 1$, and by introducing δ satisfying $0 \leq \delta < 1/e$:

$$I_n = \frac{1}{nE} \int_0^{nEt_1} e^{-u \ln(DEn) + u \ln(u)} du, \quad (\text{A46})$$

$$\geq \frac{1}{nE} \int_0^\delta e^{-u \ln(DEn) + \delta \ln(\delta)} du, \quad (\text{A47})$$

$$\geq \frac{e^{\delta \ln(\delta)}}{nE \ln(DEn)} \left(1 - (DEn)^{-\delta}\right) = I_n^-(\delta). \quad (\text{A48})$$

Hence, for any $0 \leq \delta < 1/e$ which can be made arbitrarily small, and for n large enough, we find that $I_n \geq I_n^-(\delta)$, with

$$I_n^-(\delta) \sim \frac{e^{\delta \ln(\delta)}}{E n \ln(DEn)} \sim \frac{e^{\delta \ln(\delta)}}{E n \ln(n)}. \quad (\text{A49})$$

Eq. (A49) combined with the corresponding result of Eq. (A45) for the upper bound I_n^+ finally proves Eq. (A40), and ultimately, Eq. (A38) and Theorem 1 for the asymptotic behavior of the moment $\mathbb{E}[w_0^\beta(x)]$, for $\beta > 1$.

Entropy (moment for “ $\beta = 1^-$ ”)

We define the information entropy, $S(x)$, by

$$S(x) = - \sum_{i=0}^n w_i(x) \log[w_i(x)]. \quad (\text{A50})$$

If the weights are equidistributed over \mathcal{N} data, one obtains $S = -\mathcal{N} \times 1/\mathcal{N} \log(1/\mathcal{N}) = \log(\mathcal{N})$, and $e^S = \mathcal{N}$ indeed represents the number of contributing data. The expectation value of the entropy reads

$$\mathbb{E}[S(x)] = -(n+1) \mathbb{E}[w_0(x) \ln(w_0(x))]. \quad (\text{A51})$$

In order to evaluate Eq. (A51), we use an integral representation in the spirit of Eq. (A1), valid for any $z > 0$,

$$\int_0^{+\infty} (\ln(t) + \gamma) e^{-t z} dt = -\frac{\ln(z)}{z}, \quad (\text{A52})$$

1099 where γ is Euler's constant. Using Eq. (A52), we find

$$\begin{aligned} -w_0(x) \ln(w_0(x)) &= -\frac{1}{\|x - x_0\|^{-d}} \int_0^{+\infty} e^{-t \|x - x_0\|^{-d} - t \sum_{i=1}^n \|x - x_i\|^{-d}} \\ &\quad \times \left(\ln(\|x - x_0\|^{-d}) + \ln(t) + \gamma \right) dt. \end{aligned} \quad (\text{A53})$$

By taking the expected value over the $n+1$ independent random variables X_i , we obtain

$$\mathbb{E}[-w_0(x) \ln(w_0(x))] = - \int_0^{+\infty} \psi^n(x, t) (\Phi_1(x, t) + (\ln(t) + \gamma) \phi_1(x, t)) dt, \quad (\text{A54})$$

with

$$\Phi_1(x, t) := \int \rho(x + y) e^{-\frac{t}{\|y\|^d}} \frac{\ln(\|y\|^{-d})}{\|y\|^d} d^d y, \quad (\text{A55})$$

1100 which is continuous at any $t > 0$ (in fact, infinitely differentiable for $t > 0$). In addition, 1101 $\phi_1(x, t) = -\partial_t \psi(x, t)$ has been defined in Eq. (A5).

1102 By exploiting the same method used to bound $\phi_\beta(x, t)$ (see Eq. (A34) and above 1103 it), we find that

$$\Phi_1(x, t) \underset{t \rightarrow 0}{\sim} \frac{1}{2} V_d \rho(x) \ln^2(t), \quad (\text{A56})$$

$$\phi_1(x, t) \underset{t \rightarrow 0}{\sim} -V_d \rho(x) \ln(t), \quad (\text{A57})$$

1104 where Eq. (A57) is fully consistent with Eq. (A28) (by naively differentiating Eq. (A28)).

1105 Finally, exploiting Eqs. (A56, A57), the integral of Eq. (A54) can be evaluated with 1106 the same method as in the previous section, leading to

$$\mathbb{E}[-w_0(x) \ln(w_0(x))] \underset{n \rightarrow +\infty}{\sim} \frac{1}{2} V_d \rho(x) \int_0^{t_1} e^{-n V_d \rho(x) t \ln\left(\frac{D_\pm}{t}\right)} \ln^2(t) dt, \quad (\text{A58})$$

$$\underset{n \rightarrow +\infty}{\sim} \frac{1}{2} \frac{\ln(n)}{n}. \quad (\text{A59})$$

This last result proves the second part of Theorem 1 (see also the heuristic discussion below Theorem 1) for the expected value of the entropy:

$$\mathbb{E}[S(x)] = -(n+1) \mathbb{E}[w_0(x) \ln(w_0(x))] \underset{n \rightarrow +\infty}{\sim} \frac{1}{2} \ln(n). \quad (\text{A60})$$

1107 *Moments of order $0 < \beta < 1$*

The integral representation Eq. (A1) allows us to also explore moments of order $0 < \beta < 1$. In that case $\kappa_\beta(x) = \phi_\beta(x, 0) < \infty$ is finite, with

$$\kappa_\beta(x) = \int \frac{\rho(x + y)}{\|y\|^{\beta d}} d^d y. \quad (\text{A61})$$

1108 By retracing the different steps of our proof in the case $\beta > 1$, it is straightforward
 1109 to show that

$$\mathbb{E} [w_0^\beta(x)] \underset{n \rightarrow +\infty}{\sim} \frac{\kappa_\beta(x)}{\Gamma(\beta)} \int_0^{t_1} t^{\beta-1} e^{-nV_d \rho(x)t \ln\left(\frac{D_\pm}{t}\right)} dt, \quad (\text{A62})$$

$$\underset{n \rightarrow +\infty}{\sim} \frac{\kappa_\beta(x)}{(V_d \rho(x) n \ln(n))^\beta}, \quad (\text{A63})$$

1110 where the equivalent for the integral can be obtained by exploiting the very same
 1111 method used in our proof of Eq. (A37) above, hence proving the third part of Theorem 1.

1112 We observe that contrary to the universal result of Eq. (A38) for β , the asymptotic
 1113 equivalent for the moment of order $0 < \beta < 1$ is non-universal and explicitly depends
 1114 on x and the distribution ρ .

1115 *Moments of order $\beta < 0$*

1116 Finally, moments of order $\beta < 0$ are unfortunately inaccessible to our methods
 1117 relying on the integral relation Eq. (A1), which imposes $\beta > 0$. However, we can obtain
 1118 a few rigorous results for these moments (see also the heuristic discussion just after
 1119 Theorem 1).

Indeed, for $\beta = -1$, we have

$$\frac{1}{w_0(x)} = 1 + \|x - x_0\|^d \sum_{i=1}^n \frac{1}{\|x - x_i\|^d}. \quad (\text{A64})$$

1120 But since we have assumed that $\rho(x) > 0$, $\mathbb{E}[\|x - x_i\|^{-d}] = \int \frac{\rho(x+y)}{\|y\|^d} d^d y$ is infinite and
 1121 moments of order $\beta \leq -1$ are definitely not defined.

As for the moment of order $-1 < \beta < 0$, it can be easily bounded,

$$\mathbb{E} [w_0^\beta(x)] \leq 1 + n \int \rho(x+y) \|y\|^{\beta|d|} d^d y \int \frac{\rho(x+y)}{\|y\|^{\beta|d|}} d^d y, \quad (\text{A65})$$

1122 and a sufficient condition for its existence is $\kappa_\beta(x) = \int \rho(x+y) \|y\|^{\beta|d|} d^d y < \infty$ (the
 1123 other integral, equal to $\kappa_{|\beta|}(x)$, is always finite for $|\beta| < 1$), which proves the last part
 1124 of Theorem 1.

1125 *Numerical distribution of the weights*

In the main text below Theorem 1, we presented a heuristic argument showing that the results of Theorem 1 and Theorem 2 (for the Lagrange function; that we prove below) were fully consistent with the weight $W = w_0(x)$ having a long-tailed scaling distribution,

$$P_n(W) = \frac{1}{W_n} p\left(\frac{W}{W_n}\right). \quad (\text{A66})$$

1126 The scaling function p was shown to have a universal tail $p(w) \sim w^{-2}$ and the scale
 1127 W_n was shown to obey the equation $-W_n \ln(W_n) = n^{-1}$. To the leading order for
 1128 large n , we have $W_n \sim \frac{1}{n \ln(n)}$, and we can solve this equation recursively to find the

1129 next order approximation, $W_n \sim \frac{1}{n \ln(n \ln(n))}$. In Fig. 1b in the main text, we present
1130 numerical simulations for the scaling distribution p of the variable $w = W/W_n$, for
1131 $n = 65536$, using the estimate $W_n \approx \frac{1}{n \ln(n \ln(n))}$. We observe that $p(w)$ is very well
1132 approximated by the function $\hat{p}(w) = \frac{1}{(1+w)^2}$, confirming our non-rigorous results.

1133 The data were generated by drawing random values of $r_i^d = \|x - x_i\|^d$ using
1134 $(n+1)$ *i.i.d.* random variables a_i uniformly distributed in $[0, 1]$, with the relation
1135 $r_i = [a_i/(1-a_i)]^{1/d}$, and by computing the resulting weight $W = r_i^{-d} / \sum_{j=0}^n r_j^{-d}$. This
1136 corresponds to a distribution of $\|x - x_i\|$ given by $\rho(x - x_i) = 1/V_d/(1 + \|x - x_i\|^d)^2$.

1137 A.3 Lagrange function: scaling limit

In this section, we prove Theorem 2 for the scaling limit of the Lagrange function $L_0(x) = \mathbb{E}_{X|x_0}[w_0(x)]$. Exploiting again Eq. (A1), the expected Lagrange function can be written as

$$L_0(x) = \|x - x_0\|^{-d} \int_0^{+\infty} \psi^n(x, t) e^{-t\|x - x_0\|^{-d}} dt, \quad (\text{A67})$$

1138 where $\psi(x, t)$ is again given by Eq. (A2).

For a given $t_1 > 0$, and remembering that $\psi(x, t)$ is a strictly decreasing function of t , with $\psi(x, 0) = 1$, we obtain

$$L_1 \leq L_0(x) \leq L_1 + L_2, \quad (\text{A68})$$

1139 with

$$L_1 = \|x - x_0\|^{-d} \int_0^{t_1} \psi^n(x, t) e^{-t\|x - x_0\|^{-d}} dt, \quad (\text{A69})$$

$$L_2 = e^{-t_1\|x - x_0\|^{-d}}. \quad (\text{A70})$$

1140 For $\varepsilon > 0$ and a sufficiently small $t_1 > 0$ (see section A.2), we can use the bound
1141 for $\psi(x, t)$ obtained in section A.2, to obtain

$$L_1 \geq (1 - 2\varepsilon) \frac{1}{\|x - x_0\|^d} \int_0^{t_1} \left(1 - (1 + \varepsilon)V_d\rho(x) t \ln\left(\frac{D_+}{t}\right)\right)^n e^{-\frac{t}{\|x - x_0\|^d}} dt \quad (\text{A71})$$

$$L_1 \leq (1 + 3\varepsilon) \frac{1}{\|x - x_0\|^d} \int_0^{t_1} \left(1 - (1 - \varepsilon)V_d\rho(x) t \ln\left(\frac{D_-}{t}\right)\right)^n e^{-\frac{t}{\|x - x_0\|^d}} dt \quad (\text{A72})$$

Then, proceeding exactly as in section A.2, it is straightforward to show that L_1 can be bounded (up to factors $1 + O(\varepsilon)$) by the two integrals L_1^\pm

$$L_1^\pm = \frac{1}{\|x - x_0\|^d} \int_0^{t_1} e^{-n V_d \rho(x) t \ln\left(\frac{D_\pm}{t}\right) - \frac{t}{\|x - x_0\|^d}} dt. \quad (\text{A73})$$

1142 Like in section A.2, we impose $t_1 < D_\pm/3$, such that the two functions $t \ln\left(\frac{D_\pm}{t}\right)$ are
1143 positive and strictly increasing for $0 \leq t \leq t_1$.

We now introduce the scaling variable $z_x(n, x_0) = V_d \rho(x) \|x - x_0\|^d n \log(n)$, so that

$$L_1^\pm = \frac{1}{\|x - x_0\|^d} \int_0^{t_1} e^{-\frac{t}{\|x - x_0\|^d} \left(1 + z \frac{\ln(D_\pm/t)}{\ln(n)}\right)} dt = \int_0^{\frac{t_1}{\|x - x_0\|^d}} e^{-u \left(1 + z \frac{\ln(D_\pm \|x - x_0\|^{-d}/u)}{\ln(n)}\right)} du, \quad (\text{A74})$$

where we have used the shorthand notation $z \equiv z_x(n, x_0)$.

For a given real $Z \geq 0$, we now want to study the (scaling) limit of $L_0(x)$ when $n \rightarrow \infty$, $\|x - x_0\|^{-d} \rightarrow +\infty$ (i.e., $x_0 \rightarrow x$), and such that $z_x(n, x_0) \rightarrow Z$, which we will simply denote $\lim_Z L_0(x)$. We note that $\lim_Z L_2 = 0$ (see Eq. (A68) and Eq. (A70)), so that we are left to show that $\lim_Z L_1^\pm = \frac{1}{1+Z} = \lim_Z L_0(x)$, which will prove Theorem 2.

Exploiting the fact that $u \ln(u) \geq -1/e$, for $u \geq 0$, we obtain

$$L_1^\pm \geq e^{-\frac{z}{e \ln(n)}} \int_0^{\frac{t_1}{\|x - x_0\|^d}} e^{-u \left(1 + z \frac{\ln(D_\pm \|x - x_0\|^{-d})}{\ln(n)}\right)} du, \quad (\text{A75})$$

$$\geq \frac{1}{1 + z \frac{\ln(D_\pm \|x - x_0\|^{-d})}{\ln(n)}} e^{-\frac{z}{e \ln(n)}} \left(1 - e^{-\frac{t_1}{\|x - x_0\|^d}}\right). \quad (\text{A76})$$

Since we have $\lim_Z \frac{\ln(D_\pm \|x - x_0\|^{-d})}{\ln(n)} = 1$, $\lim_Z \frac{z}{e \ln(n)} = 0$, and $\lim_Z \frac{t_1}{\|x - x_0\|^d} = +\infty$, we find that L_1^\pm is bounded from below by a term for which the \lim_Z is $\frac{1}{1+Z}$, with a relative difference of order $1/\ln(n)$ for finite n .

Since we will ultimately take the \lim_Z and hence the limit $x_0 \rightarrow x$, we can impose that the upper limit of the last integral in Eq. (A74) satisfies $\frac{t_1}{\|x - x_0\|^d} > 1$. Let us now consider $K > 0$, such that $K < \frac{t_1}{\|x - x_0\|^d}$. We then obtain,

$$L_1^\pm \leq \int_0^K e^{-u \left(1 + z \frac{\ln(D_\pm \|x - x_0\|^{-d}/K)}{\ln(n)}\right)} du + \int_K^{+\infty} e^{-u} du, \quad (\text{A77})$$

$$\leq \frac{1}{1 + z \frac{\ln(D_\pm \|x - x_0\|^{-d}/K)}{\ln(n)}} + e^{-K}. \quad (\text{A78})$$

We can now take K such that $\ln(K) = \left[\ln\left(\frac{t_1}{\|x - x_0\|^d}\right)\right]^\alpha$, for some fixed α satisfying $0 < \alpha < 1$. It is clear that K satisfies $K < \frac{t_1}{\|x - x_0\|^d}$. In addition, we have $\lim_Z K = +\infty$ and $\lim_Z \frac{\ln(K)}{\ln(n)} = 0$, implying that the \lim_Z of the upper bound in Eq. (A78) is also $\frac{1}{1+Z}$, with a relative difference of order $1/[\ln(n)]^{1-\alpha}$ for finite n (the closer $\alpha > 0$ to 0, the more stringent this bound will be).

Finally, since $\lim_Z L_2 = 0$, we have shown that for any real $Z \geq 0$, $\lim_Z L_1^\pm = \lim_Z L_0(x) = \frac{1}{1+Z}$, which proves Theorem 2. Note that the two bounds obtained suggest that the relative error between $L_0(x)$ and $\frac{1}{1+Z}$ for finite large n and large $\|x - x_0\|^{-d}$ with $z(n, x_0)$ remaining close to Z is of order $1/\ln(n)$, or equivalently, of order $1/\ln(\|x - x_0\|)$.

1166 *Numerical simulations for the Lagrange function at finite n*

1167 In Fig. 1c, we illustrate numerically the scaling result of Theorem 2.

1168 Note that, exploiting Theorem 2, we can use a simple heuristic argument to
1169 estimate the tail of the distribution of the random variable $W = w_0(x)$. Indeed,
1170 approximating $L_0(x)$ for finite but large n by its asymptotic form $\frac{1}{1+z_x(n,x_0)}$, with
1171 $z_x(n, x_0) = V_d \rho(x) n \log(n) \|x - x_0\|^d$, we obtain

$$\int_W^1 P(W') dW' \sim \int \rho(x_0) \theta \left(\frac{1}{1 + V_d \rho(x) n \log(n) \|x - x_0\|^d} - W \right) d^d x_0, \quad (\text{A79})$$

$$\sim V_d \rho(x) \int_0^{+\infty} \theta \left(\frac{1}{1 + V_d \rho(x) n \log(n) u} - W \right) du, \quad (\text{A80})$$

$$\sim \frac{1}{n \ln(n) W} \implies P(W) \sim \frac{1}{n \ln(n) W^2}, \quad (\text{A81})$$

1172 where $\theta(\cdot)$ is the Heaviside function. This heuristic result is again perfectly consistent
1173 with our guess (see the discussion below Theorem 1) that $P(W) = \frac{1}{W_n} p \left(\frac{W}{W_n} \right)$, with the
1174 scaling function p having the universal tail, $p(w) \underset{w \rightarrow +\infty}{\sim} w^{-2}$, and a scale $W_n \sim \frac{1}{n \ln(n)}$.

1175 Indeed, in this case and in the limit $n \rightarrow +\infty$, we obtain that $P(W) \sim \frac{1}{W_n} \left(\frac{W_n}{W} \right)^2 \sim$
1176 $\frac{W_n}{W^2} \sim \frac{1}{n \ln(n) W^2}$, which is identical to the result of Eq. (A81).

1177 A.4 The variance term

We define the variance term $\mathcal{V}(x)$ as

$$\mathcal{V}(x) = \mathbb{E} \left[\sum_{i=0}^n w_i^2(x) [y_i - f(x_i)]^2 \right] = \mathbb{E}_X \left[\sum_{i=0}^n w_i^2(x) \sigma^2(x_i) \right] = (n+1) \mathbb{E} \left[w_0^2(x) \sigma^2(x_0) \right]. \quad (\text{A82})$$

If we first assume that $\sigma^2(x)$ is bounded by σ_0^2 , we can readily bound $\mathcal{V}(x)$ using Theorem 1 with $\beta = 2$:

$$\mathcal{V}(x) \leq (n+1) \sigma_0^2 \mathbb{E} \left[w_0^2(x) \right]. \quad (\text{A83})$$

Hence, for any $\varepsilon > 0$, there exists a constant $N_{x,\varepsilon}$, such that for $n \geq N_{x,\varepsilon}$, we obtain Theorem 3

$$\mathcal{V}(x) \leq (1 + \varepsilon) \frac{\sigma_0^2}{\ln(n)}. \quad (\text{A84})$$

However, one can obtain an exact asymptotic equivalent for $\mathcal{V}(x)$ by assuming that σ^2 is continuous at x (with $\sigma^2(x) > 0$), while relaxing the boundedness condition. Indeed, we now assume the growth condition $C_{\text{Growth}}^{\sigma}$

$$\int \rho(y) \frac{\sigma^2(y)}{1 + \|y\|^{2d}} d^d y < \infty. \quad (\text{A85})$$

1178 Note that this condition can be satisfied even in the case where the mean variance
1179 $\int \rho(y) \sigma^2(y) d^d y$ is infinite.

Proceeding along the very same line as the proof of Theorem 1 in section A.2, we can write

$$\mathbb{E} \left[w_0^2(x) \sigma^2(x_0) \right] = \int_0^{+\infty} t \psi^n(x, t) \phi(x, t) dt, \quad (\text{A86})$$

with

$$\phi(x, t) := \int \rho(x+y) \sigma^2(x+y) \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^{2d}} d^d y, \quad (\text{A87})$$

which as a similar form as Eq. (A5), with $\beta = 2$. The condition of Eq. (A85) ensures that the integral defining $\phi(x, t)$ converges for all $t > 0$.

The continuity of σ^2 at x (and hence of $\rho\sigma^2$) and the fact the $\rho(x)\sigma^2(x) > 0$ implies the existence of a small enough $\lambda > 0$ such that the ball $B(x, \lambda) \subset \Omega^\circ$ and $\|y\| \leq \lambda \implies |\rho(x+y)\sigma^2(x+y) - \rho(x)\sigma^2(x)| \leq \varepsilon \rho(x)\sigma^2(x)$, a property exploited for ρ in the proof of Theorem 1 (see Eq. (A18) and the paragraph above it), and which can now be used to efficiently bound $\phi(x, t)$. In addition, using the method of proof of Theorem 1 (see Eq. (A30)) also requires that $\int_{\|y\| \geq \lambda} \rho(y) \frac{\sigma^2(y)}{\|y\|^{2d}} d^d y < \infty$, which is ensured by the condition C_{Growth}^σ of Eq. (A85). Apart from these details, one can proceed strictly along the proof and Theorem 1, leading to the proof of Theorem 4:

$$\mathcal{V}(x) \underset{n \rightarrow +\infty}{\sim} \frac{\sigma^2(x)}{\ln(n)}. \quad (\text{A88})$$

Note that if $\sigma^2(x) = 0$, one can straightforwardly show that for any $\varepsilon > 0$, and for n large enough, one has

$$\mathcal{V}(x) \leq \frac{\varepsilon}{\ln(n)}, \quad (\text{A89})$$

while a more optimal estimate can be easily obtained if one specifies how σ^2 vanishes at x .

A.5 The bias term

This section aims at proving Theorem 5, 6, and 7.

Assumptions

We first impose the following growth condition C_{Growth}^f for $f(x) := \mathbb{E}[Y | X = x]$:

$$\int \rho(y) \frac{f^2(y)}{(1 + \|y\|^d)^2} d^d y < \infty, \quad (\text{A90})$$

which is obviously satisfied if f is bounded. Since ρ is assumed to have a second moment, the condition C_{Growth}^f is also satisfied for any function satisfying $|f(x)| \leq A_f \|y\|^{d+1}$ for all y , such that $\|y\| \geq R_f$, for some $R_f > 0$. Using the Cauchy-Schwartz inequality, we find that the condition C_{Growth}^f also implies that

$$\int \rho(y) \frac{|f(y)|}{1 + \|y\|^d} d^d y < \infty. \quad (\text{A91})$$

In addition, for any $x \in \Omega^\circ$ (so that $\rho(x) > 0$), we assume that there exists a neighborhood of x such that f satisfies a local Hölder condition. In other words, there exist $\delta_x > 0$, $K_x > 0$, and $\alpha_x > 0$, such that the ball $B(0, \delta_x) \subset \Omega$, and

$$\|y\| \leq \delta_x \implies |f(x+y) - f(x)| \leq K_x \|y\|^{\alpha_x}, \quad (\text{A92})$$

1187 which defines condition C_{Holder}^f .

1188 *Definition of the bias term and preparatory results*

1189 We define the bias term $\mathcal{B}(x)$ as

$$\mathcal{B}(x) = \mathbb{E}_X \left[\left(\sum_{i=0}^n w_i(x) [f(x_i) - f(x)] \right)^2 \right] = (n+1)\mathcal{B}_1(x) + n(n+1)\mathcal{B}_2(x), \quad (\text{A93})$$

$$\mathcal{B}_1(x) = \frac{1}{n+1} \mathbb{E}_X \left[\sum_{i=0}^n w_i^2(x) [f(x_i) - f(x)]^2 \right], \quad (\text{A94})$$

$$= \mathbb{E}_X \left[w_0^2(x) [f(x_0) - f(x)]^2 \right], \quad (\text{A95})$$

$$\mathcal{B}_2(x) = \frac{1}{n(n+1)} \mathbb{E}_X \left[\sum_{0 \leq i < j \leq n} w_i(x) w_j(x) [f(x_i) - f(x)][f(x_j) - f(x)] \right], \quad (\text{A96})$$

$$= \mathbb{E}_X \left[w_0(x) w_1(x) [f(x_0) - f(x)][f(x_1) - f(x)] \right]. \quad (\text{A97})$$

Exploiting again Eq. (A1) for $\beta = 2$ like we did in section A.2, we obtain

$$\mathcal{B}_1(x) = \int_0^{+\infty} t \psi^n(x, t) \chi_1(x, t) dt, \quad (\text{A98})$$

where $\psi(x, t)$ is again the function defined in Eq. (A2), and where

$$\chi_1(x, t) := \int \rho(x+y) e^{-\frac{t}{\|y\|^d}} \frac{(f(x+y) - f(x))^2}{\|y\|^{2d}} d^d y. \quad (\text{A99})$$

1190 For any $t > 0$, and under condition C_{Growth}^f , the integral defining $\chi_1(x, t)$ is well-defined.
1191 Moreover, $\chi_1(x, t)$ is a strictly positive and strictly decreasing function of $t > 0$.

Now, defining $u_i = \|x - x_i\|^{-d}$, $i = 0, \dots, n$ and exploiting again Eq. (A1) for $\beta = 2$, we can write

$$w_0(x) w_1(x) = u_0 u_1 \int_0^\infty t e^{-(u_0 + u_1)t - (\sum_{i=2}^n u_i)t} dt \quad (\text{A100})$$

1192 Now taking the expectation value over the $n+1$ independent variables, we obtain

$$\mathcal{B}_2(x) = \int_0^{+\infty} t \psi^{n-1}(x, t) \chi_2^2(x, t) dt, \quad (\text{A101})$$

where

$$\chi_2(x, t) := \int \rho(x + y) e^{-\frac{t}{\|y\|^d}} \frac{f(x + y) - f(x)}{\|y\|^d} d^d y. \quad (\text{A102})$$

Again, for any $t > 0$, and under condition C_{Growth}^f , the integral defining $\chi_2(x, t)$ is well-defined. Note that, the integral defining $\chi_2(x, 0)$ is well-behaved at $y = 0$ under condition C_{Holder}^f . Indeed, for $\|y\| \leq \delta_x$, we have $\frac{|f(x+y) - f(x)|}{\|y\|^d} \leq K_x \|y\|^{-d+\alpha_x}$, which is integrable at $y = 0$ in dimension d . Note that, if $f(x + y) - f(x)$ were only decaying as $\text{const.}/\ln(\|y\|)$, then $|\chi_2(x, t)| \sim \text{const.} \ln(|\ln(t)|) \rightarrow +\infty$, when $t \rightarrow 0$, and $\chi_2(x, 0)$ would not exist (see the end of this section where we relax the local Hölder condition).

From now, we denote

$$\kappa(x) := \chi_2(x, 0) = \int \rho(x + y) \frac{f(x + y) - f(x)}{\|y\|^d} d^d y. \quad (\text{A103})$$

Also note that $\kappa(x) = 0$ is possible, even if f is not constant. For instance, if Ω is a sphere centered at x or $\Omega = \mathbb{R}^d$, if $\rho(x + y) = \hat{\rho}(\|y\|)$ is isotropic around x and, if $f_x : y \mapsto f(x + y)$ is an odd function of y , then we indeed have $\kappa(x) = 0$ at the symmetry point x .

Upper bound for $\mathcal{B}_1(x)$

For $\varepsilon > 0$, we define λ like in section A.2 and define $\eta = \min(\lambda, \delta_x)$, so that

$$\chi_1(x, t) \leq (1 + \varepsilon) K_x \rho(x) \int_{\|y\| \leq \eta} e^{-\frac{t}{\|y\|^d}} \|y\|^{2(\alpha_x - d)} d^d y + \Lambda_x, \quad (\text{A104})$$

$$\Lambda_x = \int_{\|y\| \geq \eta} \rho(x + y) \frac{(f(x + y) - f(x))^2}{\|y\|^{2d}} d^d y, \quad (\text{A105})$$

where the constant $\Lambda_x < \infty$ under condition C_{Growth}^f . The integral in Eq. (A104), can be written as

$$\int_{\|y\| \leq \eta} e^{-\frac{t}{\|y\|^d}} \|y\|^{2(\alpha_x - d)} d^d y = S_d \int_0^\eta e^{-\frac{t}{r^d}} r^{2\alpha_x - d - 1} dr, \quad (\text{A106})$$

$$= V_d t^{\frac{2\alpha_x}{d} - 1} \int_{\frac{t}{\eta^d}}^{+\infty} u^{-\frac{2\alpha_x}{d}} e^{-u} du, \quad (\text{A107})$$

Hence, we find that $\chi_1(x, t)$ is bounded for $\alpha_x > d/2$. For $\alpha_x < d/2$, and for $t < t_1$ small enough, there exists a constant $M(2\alpha_x/d)$ so that $\chi_1(x, t) \leq M(2\alpha_x/d) t^{\frac{2\alpha_x}{d} - 1}$. Finally, in the marginal case $\alpha_x = d/2$ and for $t < t_1$, we have $\chi_1(x, t) \leq M(1) \ln(1/t)$, for some constant $M(1)$.

Now, exploiting again the upper bound of $\psi(x, t)$ obtained in section A.2 and repeating the steps to bound the integrals involving $\psi^n(x, t)$, we find that, for $\alpha_x \neq d/2$, $\mathcal{B}_1(x)$ is bounded up to a multiplicative constant by

$$\int_0^{t_1} t^{\min(1, \frac{2\alpha_x}{d})} e^{-n V_d \rho(x) t \ln\left(\frac{D_-}{t}\right)} dt \underset{n \rightarrow +\infty}{\sim} M'(2\alpha_x/d) (V_d \rho(x) n \ln(n))^{-\min(2, \frac{2\alpha_x}{d})} \quad (\text{A108})$$

1214 where $M'(2\alpha_x/d)$ is a constant depending only on $2\alpha_x/d$. In the marginal case, $\alpha_x =$
1215 $d/2$, $\mathcal{B}_1(x)$ is bounded up to a multiplicative constant by $n^{-2} \ln(n)$.

In summary, we find that

$$(n+1)\mathcal{B}_1(x) = \begin{cases} O\left(n^{-\frac{2\alpha_x}{d}} (\ln(n))^{-1-\frac{2\alpha_x}{d}}\right), & \text{for } d > 2\alpha_x \\ O\left(n^{-1} (\ln(n))^{-1}\right), & \text{for } d = 2\alpha_x \\ O\left(n^{-1} (\ln(n))^{-2}\right), & \text{for } d < 2\alpha_x \end{cases} \quad (\text{A109})$$

1216 *Asymptotic equivalent for $\mathcal{B}_2(x)$*

1217 Let us first assume that $\kappa(x) = \chi_2(x, 0) \neq 0$. Then again, as shown in detail in
1218 section A.2, the integral defining $\mathcal{B}_2(x)$ is dominated by the small t region, and will be
1219 asymptotically equivalent to

$$\mathcal{B}_2(x) = \int_0^{+\infty} t \psi^{n-1}(x, t) \chi_2^2(x, t) dt, \quad (\text{A110})$$

$$\underset{n \rightarrow +\infty}{\sim} \kappa^2(x) \int_0^{t_1} t e^{-n V_d \rho(x) t \ln\left(\frac{D_\pm}{t}\right)} dt, \quad (\text{A111})$$

$$\underset{n \rightarrow +\infty}{\sim} \left(\frac{\kappa(x)}{V_d \rho(x) n \ln(n)} \right)^2. \quad (\text{A112})$$

1220 On the other hand, if $\kappa(x) = 0$, one can bound $\chi_2(x, t)$ (up to a multiplicative constant)
1221 for $t \leq t_1$ by the integral

$$\int_{\|y\| \leq \eta} \left(1 - e^{-\frac{t}{\|y\|^d}}\right) \|y\|^{\alpha_x - d} d^d y = S_d \int_0^\eta \left(1 - e^{-\frac{t}{r^d}}\right) r^{\alpha_x - d} r^{d-1} dr, \quad (\text{A113})$$

$$= V_d t^{\frac{\alpha_x}{d}} \int_{\frac{t}{\eta^d}}^{+\infty} u^{-1 - \frac{\alpha_x}{d}} (1 - e^{-u}) du. \quad (\text{A114})$$

Hence, for $\kappa(x) = 0$, we find that

$$n(n+1)\mathcal{B}_2(x) = O\left(n^{-\frac{2\alpha_x}{d}} (\ln(n))^{-2-\frac{2\alpha_x}{d}}\right). \quad (\text{A115})$$

1222 *Asymptotic equivalent for the bias term $\mathcal{B}(x)$*

In the generic case $\kappa(x) \neq 0$, we find that $(n+1)\mathcal{B}_1(x)$ is always dominated by
 $n(n+1)\mathcal{B}_2(x)$, and we find the following asymptotic equivalent for $\mathcal{B}(x) = (n+1)\mathcal{B}_1(x) +$
 $n(n+1)\mathcal{B}_2(x)$:

$$\mathcal{B}(x) \underset{n \rightarrow +\infty}{\sim} \left(\frac{\kappa(x)}{V_d \rho(x) \ln(n)} \right)^2. \quad (\text{A116})$$

In the non-generic case $\kappa(x) = 0$, the bound for $(n+1)\mathcal{B}_1(x)$ in Eq. (A109) is always more stringent than the bound for $n(n+1)\mathcal{B}_2(x)$ in Eq. (A115), leading to

$$\mathcal{B}(x) = \begin{cases} O\left(n^{-\frac{2\alpha_x}{d}}(\ln(n))^{-1-\frac{2\alpha_x}{d}}\right), & \text{for } d > 2\alpha_x \\ O(n^{-1}(\ln(n))^{-1}), & \text{for } d = 2\alpha_x \\ O(n^{-1}(\ln(n))^{-2}), & \text{for } d < 2\alpha_x \end{cases}, \quad (\text{A117})$$

which proves the statements made in Theorem 5.

Interpretation of the bias term $\mathcal{B}(x)$ for $\kappa(x) \neq 0$

Here, we assume the generic case $\kappa(x) \neq 0$ and define $\bar{f}(x) = \mathbb{E}[\hat{f}(x)]$. We have

$$\Delta(x) := \mathbb{E}\left[\sum_{i=0}^n w_i(x)(f(x_i) - f(x))\right] = \bar{f}(x) - f(x), \quad (\text{A118})$$

$$\bar{f}(x) = \mathbb{E}\left[\sum_{i=0}^n w_i(x)f(x_i)\right] = (n+1)\mathbb{E}[w_0(x)f(x_0)]. \quad (\text{A119})$$

By using another time Eq. (A1), we find that,

$$\Delta(x) = (n+1) \int_0^{+\infty} \psi^n(x, t) \chi_2(x, t) dt, \quad (\text{A120})$$

$$\underset{n \rightarrow +\infty}{\sim} n \kappa(x) \int_0^{t_1} e^{-n V_d \rho(x) t \ln\left(\frac{D_\pm}{t}\right)} dt, \quad (\text{A121})$$

$$\underset{n \rightarrow +\infty}{\sim} \frac{\kappa(x)}{V_d \rho(x) \ln(n)}. \quad (\text{A122})$$

Comparing this result to the one of Eq. (A116), we find that the bias $\mathcal{B}(x)$ is asymptotically dominated by the square of the difference $\Delta^2(x)$ between $\bar{f}(x) = \mathbb{E}[\hat{f}(x)]$ and $f(x)$:

$$\mathcal{B}(x) \underset{n \rightarrow +\infty}{\sim} \left(\mathbb{E}[\hat{f}(x)] - f(x)\right)^2, \quad (\text{A123})$$

a statement made in Theorem 5.

Relaxing the local Hölder condition

We now only assume the condition $C_{\text{Cont.}}^f$ that f is continuous at x (but still assuming the growth conditions). We can now define δ_x such that the ball $B(x, \delta) \subset \Omega^\circ$ and $\|y\| \leq \delta_x \implies |f(x+y) - f(x)| \leq \varepsilon$. Then, the proof proceeds as above, but by replacing K_x by ε , α_x by 0, and by updating the bounds for $\chi_1(x, t)$ (for which this replacement is safe) and $\chi_2(x, t)$ (for which it is not). We now find that for $0 < t \leq t_1$,

¹²³⁴ with t_1 small enough

$$0 \leq \chi_1(x, t) \leq \varepsilon(1 + 2\varepsilon)V_d\rho(x)t^{-1}, \quad (\text{A124})$$

$$|\chi_2(x, t)| \leq \varepsilon(1 + 2\varepsilon)V_d\rho(x)\ln\left(\frac{1}{t}\right). \quad (\text{A125})$$

As already mentioned below Eq. (A102), where we provided an explicit counterexample, we see that relaxing the local Hölder condition does not guarantee anymore that $\lim_{t \rightarrow 0} |\chi_2(x, 0)| < \infty$. With these new bounds, and carrying the rest of the calculation as in the previous sections, we ultimately find the following weaker result compared to Eq. (A116) and Eq. (A117):

$$\mathcal{B}(x) = o\left(\frac{1}{\ln(n)}\right), \quad (\text{A126})$$

or equivalently, that for any $\varepsilon > 0$, there exists a constant $N_{x,\varepsilon}$ such that, for $n \geq N_{x,\varepsilon}$, we have

$$\mathcal{B}(x) \leq \frac{\varepsilon}{\ln(n)}, \quad (\text{A127})$$

¹²³⁵ which proves Theorem 6.

¹²³⁶ *The bias term at a point where $\rho(x) = 0$*

This section aims at proving Theorem 7 expressing the lack of convergence of the estimator $\hat{f}(x)$ to $f(x)$, when $\rho(x) = 0$, and under mild conditions. Let us now consider a point $x \in \partial\Omega$ for which $\rho(x) = 0$, let us assume that there exists constants $\eta_x, \gamma_x > 0$, and $G_x > 0$, such that ρ satisfies the local Hölder condition at x

$$\|y\| \leq \eta_x \implies \rho(x + y) \leq G_x\|y\|^{\gamma_x}. \quad (\text{A128})$$

¹²³⁷ We will also assume that the growth condition of Eq. (A91) is satisfied. With these ¹²³⁸ two conditions, $\kappa(x)$ defined in Eq. (A103) exists. The vanishing of ρ at x strongly ¹²³⁹ affects the behavior of $\psi(x, t)$ in the limit $t \rightarrow 0$, which is not singular anymore:

$$1 - \psi(x, t) \underset{t \rightarrow 0}{\sim} t \int \rho(y)\|x - y\|^{-d} d^d y, \quad (\text{A129})$$

¹²⁴⁰ where the convergence of the integral $\lambda(x) := \int \rho(y)\|x - y\|^{-d} d^d y$ is ensured by the ¹²⁴¹ local Hölder condition of ρ at x .

¹²⁴² Let us now evaluate $\bar{f}(x) = \lim_{n \rightarrow +\infty} \mathbb{E}[\hat{f}(x)]$, the expectation value of the estimator ¹²⁴³ $\hat{f}(x)$ in the limit $n \rightarrow +\infty$, introduced in Eq. (A119). First assuming, $\kappa(x) = \chi_2(x, 0) \neq$ ¹²⁴⁴ 0, we obtain

$$\bar{f}(x) - f(x) = \lim_{n \rightarrow +\infty} (n + 1) \int_0^{+\infty} \psi^n(x, t)\chi_2(x, t) dt, \quad (\text{A130})$$

$$= \lim_{n \rightarrow +\infty} n \chi_2(x, 0) \int_0^{t_1} e^{n t \partial_t \psi(x, 0)} dt, \quad (\text{A131})$$

$$= \frac{\kappa(x)}{\lambda(x)}, \quad (\text{A132})$$

which shows that the bias term does not vanish in the limit $n \rightarrow +\infty$. Eq. (A132) can be straightforwardly shown to remain valid when $\kappa(x) = 0$. Indeed, for any $\varepsilon > 0$ chosen arbitrarily small, we can choose t_1 small enough such that $|\chi_2(x, t)| \leq \varepsilon$ for $0 \leq t \leq t_1$, which leads to $|\bar{f}(x) - f(x)| \leq \varepsilon/\lambda(x)$.

Note that relaxing the local Hölder condition for ρ at x and only assuming the continuity of f at x and $\kappa(x) \neq 0$ is not enough to guarantee that $\bar{f}(x) \neq f(x)$. For instance, if $\rho(x+y) \sim_{y \rightarrow 0} \rho_0/\ln(1/||y||)$, and there exists a local solid angle $\omega_x > 0$ at x , one can show that $1 - \psi(x, t) \sim_{t \rightarrow 0} \omega_x S_d \rho_0 t \ln(\ln(1/t))$, and the bias would still vanish in the limit $n \rightarrow +\infty$, with $\hat{f}(x) - f(x) \sim_{n \rightarrow +\infty} \kappa(x)/[\omega_x S_d \rho_0 \ln(\ln(n))]$.

1254 A.6 Asymptotic equivalent for the regression risk

This section aims at proving Theorem 8. Under conditions C_{Growth}^σ , C_{Growth}^f , and $C_{\text{Cont.}}^f$, the results of Eq. (A88) and Eq. (A126) show that for $\rho(x)\sigma^2(x) > 0$ and ρ and σ^2 continuous at x , the bias term $\mathcal{B}(x)$ is always dominated by the variance term $\mathcal{V}(x)$ in the limit $n \rightarrow +\infty$. Thus, the excess regression risk satisfies

$$\mathbb{E}[(\hat{f}(x) - f(x))^2] \underset{n \rightarrow +\infty}{\sim} \frac{\sigma^2(x)}{\ln(n)}. \quad (\text{A133})$$

As a consequence, the Hilbert kernel estimate converges pointwise to the regression function in probability. Indeed, for $\delta > 0$, there exists a constant $N_{x,\delta}$, such that

$$\mathbb{E}[(\hat{f}(x) - f(x))^2] \leq (1 + \delta) \frac{\sigma^2(x)}{\ln(n)}, \quad (\text{A134})$$

for $n \geq N_{x,\delta}$. Moreover, for any $\varepsilon > 0$, since $\mathbb{E}[(\hat{f}(x) - f(x))^2] \geq \varepsilon^2 \mathbb{P}[|\hat{f}(x) - f(x)| \geq \varepsilon]$, we deduce the following Chebyshev bound, valid for $n \geq N_{x,\delta}$

$$\mathbb{P}[|\hat{f}(x) - f(x)| \geq \varepsilon] \leq \frac{1 + \delta}{\varepsilon^2} \frac{\sigma^2(x)}{\ln(n)}. \quad (\text{A135})$$

1255 A.7 Rates for the plugin classifier

In the case of binary classification $Y \in \{0, 1\}$ and $f(x) = \mathbb{P}[Y = 1 \mid X = x]$. Let $F: \mathbb{R}^d \rightarrow \{0, 1\}$ denote the Bayes optimal classifier, defined by $F(x) := \theta(f(x) - 1/2)$ where $\theta(\cdot)$ is the Heaviside theta function. This classifier minimizes the risk $\mathcal{R}_{0/1}(h) := \mathbb{E}[\mathbf{1}_{\{h(X) \neq Y\}}] = \mathbb{P}[h(X) \neq Y]$ under zero-one loss. Given the regression estimator \hat{f} , we consider the plugin classifier $\hat{F}(x) = \theta(\hat{f}(x) - \frac{1}{2})$, and we will exploit the fact that

$$0 \leq \mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] - \mathcal{R}_{0/1}(F(x)) \leq 2 \mathbb{E}[|\hat{f}(x) - f(x)|] \leq 2\sqrt{\mathbb{E}[(\hat{f}(x) - f(x))^2]} \quad (\text{A136})$$

1256 *Proof of Eq. (A136)*

1257 For the sake of completeness, let us briefly prove the result of Eq. (A136). The
1258 rightmost inequality is simply obtained from the Cauchy-Schwartz inequality, and

1259 we hence focus on proving the first inequality. Obviously, Eq. (A136) is satisfied for
1260 $f(x) = 1/2$, for which $\mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] = \mathcal{R}_{0/1}(F(x)) = 1/2$.
1261 If $f(x) > 1/2$, we have $F(x) = 1$, $\mathcal{R}_{0/1}(F(x)) = 1 - f(x)$, and

$$\mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] = f(x)\mathbb{P}[\hat{f}(x) \leq 1/2] + (1 - f(x))\mathbb{P}[\hat{f}(x) \geq 1/2], \quad (\text{A137})$$

$$= \mathcal{R}_{0/1}(F(x)) + (2f(x) - 1)\mathbb{P}[\hat{f}(x) \leq 1/2], \quad (\text{A138})$$

1262 which implies $\mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] \geq \mathcal{R}_{0/1}(F(x))$. Since $\mathbb{P}[\hat{f}(x) \leq 1/2] = \mathbb{E}[\theta(1/2 - \hat{f}(x))]$,
1263 and using $\theta(1/2 - \hat{f}(x)) \leq \frac{|\hat{f}(x) - f(x)|}{f(x) - 1/2}$, valid for any $1/2 < f(x) \leq 1$, we readily obtain
1264 Eq. (A136).

Similarly, in the case $f(x) < 1/2$, we have $F(x) = 0$, $\mathcal{R}_{0/1}(F(x)) = f(x)$, and

$$\mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] = \mathcal{R}_{0/1}(F(x)) + (1 - 2f(x))\mathbb{P}[\hat{f}(x) \geq 1/2]. \quad (\text{A139})$$

1265 Since $\mathbb{P}[\hat{f}(x) \geq 1/2] = \mathbb{E}[\theta(\hat{f}(x) - 1/2)]$, and using $\theta(\hat{f}(x) - 1/2) \leq \frac{|\hat{f}(x) - f(x)|}{1/2 - f(x)}$, valid
1266 for any $0 \leq f(x) < 1/2$, we again obtain Eq. (A136) in this case.

1267 In fact, for any $\alpha > 0$, the inequalities $\theta(1/2 - \hat{f}(x)) \leq \left(\frac{|\hat{f}(x) - f(x)|}{f(x) - 1/2}\right)^\alpha$ and $\theta(\hat{f}(x) -$
1268 $1/2) \leq \left(\frac{|\hat{f}(x) - f(x)|}{1/2 - f(x)}\right)^\alpha$ hold, respectively, for $f(x) > 1/2$ and $f(x) < 1/2$. Combining
1269 this remark with the use of the Hölder inequality leads to

$$\mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] - \mathcal{R}_{0/1}(F(x)) \leq 2|f(x) - 1/2|^{1-\alpha} \mathbb{E} \left[|\hat{f}(x) - f(x)|^\alpha \right], \quad (\text{A140})$$

$$\leq 2|f(x) - 1/2|^{1-\alpha} \mathbb{E} \left[|\hat{f}(x) - f(x)|^{\frac{\alpha}{\beta}} \right]^\beta, \quad (\text{A141})$$

for any $0 < \beta \leq 1$. In particular, for $0 < \alpha < 1$ and $\beta = \alpha/2$, we obtain

$$0 \leq \mathbb{E}[\mathcal{R}_{0/1}(\hat{F}(x))] - \mathcal{R}_{0/1}(F(x)) \leq 2|f(x) - 1/2|^{1-\alpha} \mathbb{E} \left[|\hat{f}(x) - f(x)|^2 \right]^{\frac{\alpha}{2}}. \quad (\text{A142})$$

1270 The interest of this last bound compared to the more classical bound of Eq. (A136) is
1271 to show explicitly the cancellation of the classification risk as $f(x) \rightarrow 1/2$, while still
1272 involving the regression risk $\mathbb{E} \left[|\hat{f}(x) - f(x)|^2 \right]$ (to the power $\alpha/2 < 1/2$).

1273 *Bound for the classification risk*

1274 Now exploiting the results of section A.6 for the regression risk, and the two
1275 inequalities Eq. (A136) and Eq. (A142), we readily obtain Theorem 9.

1276 A.8 Extrapolation behavior outside the support of ρ

1277 This section aims at proving Theorem 10 characterizing the behavior of the regression
1278 estimator \hat{f} outside the closed support $\bar{\Omega}$ of ρ (extrapolation).

1279 *Extrapolation estimator in the limit $n \rightarrow \infty$*

We first assume the growth condition $\int \rho(y) \frac{|f(y)|}{1+\|y\|^d} d^d y < \infty$. For $x \in \mathbb{R}^d$ (i.e., not necessarily in Ω), we have quite generally

$$\mathbb{E} [\hat{f}(x)] = (n+1) \mathbb{E} [w_0(x) f(x)] = (n+1) \int_0^{+\infty} \psi^n(x, t) \chi(x, t) dt, \quad (\text{A143})$$

where $\psi(x, t)$ is again given by Eq. (A2) and

$$\chi(x, t) := \int \rho(x+y) f(x+y) \frac{e^{-\frac{t}{\|y\|^d}}}{\|y\|^d} d^d y, \quad (\text{A144})$$

which is finite for any $t > 0$, thanks to the above growth condition for f .

Let us now assume that the point x is not in the closed support $\bar{\Omega}$ of the distribution ρ (which excludes the case $\Omega = \mathbb{R}^d$). Since the integral in Eq. (A143) is again dominated by its $t \rightarrow 0$ behavior, we have to evaluate $\psi(x, t)$ and $\chi(x, t)$ in this limit, like in the different proofs above. In fact, when $x \notin \bar{\Omega}$, the integral defining $\psi(x, t)$ and $\chi(x, t)$ are not singular anymore, and we obtain

$$1 - \psi(x, t) \underset{t \rightarrow 0}{\sim} t \int \rho(y) \|x-y\|^{-d} d^d y, \quad (\text{A145})$$

$$\chi(x, 0) = \int \rho(y) f(y) \|x-y\|^{-d} d^d y. \quad (\text{A146})$$

Note that $\psi(x, t)$ has the very same linear behavior as in Eq. (A129), when we assumed $x \in \partial\Omega$ with $\rho(x) = 0$, and a local Hölder condition for ρ at x .

Finally, by using the same method as in the previous sections to evaluate the integral of Eq. (A143) in the limit $n \rightarrow +\infty$, we obtain

$$\int_0^{+\infty} \psi^n(x, t) \chi(x, t) dt \underset{n \rightarrow +\infty}{\sim} \chi(x, 0) \int_0^{t_1} e^{n t \partial_t \psi(x, 0)} dt, \quad (\text{A147})$$

$$\underset{n \rightarrow +\infty}{\sim} \frac{1}{n} \frac{\chi(x, 0)}{|\partial_t \psi(x, 0)|}, \quad (\text{A148})$$

which leads to the first result of Theorem 10:

$$\hat{f}_\infty(x) := \lim_{n \rightarrow +\infty} \mathbb{E} [\hat{f}(x)] = \frac{\int \rho(y) f(y) \|x-y\|^{-d} d^d y}{\int \rho(y) \|x-y\|^{-d} d^d y}. \quad (\text{A149})$$

Note that since the function $(x, y) \mapsto \|x-y\|^{-d}$ is continuous at all points $x \notin \bar{\Omega}$, $y \in \Omega$, and thanks to the absolute convergence of the integrals defining $\hat{f}_\infty(x)$, standard methods show that \hat{f}_∞ is continuous (in fact, infinitely differentiable) at all $x \notin \bar{\Omega}$.

1293 *Extrapolation far from Ω*

Let us now investigate the behavior of $\hat{f}_\infty(x)$ when the distance $L := d(x, \Omega) = \inf\{\|x-y\|, y \in \Omega\} > 0$ between x and Ω goes to infinity, which can only happen for

certain Ω , in particular, when Ω is bounded. We now assume the stronger condition, $\langle |f| \rangle := \int \rho(y)|f(y)| d^d y < \infty$, such that the ρ -mean of f , $\langle f \rangle := \int \rho(y)f(y) d^d y$, is finite. We consider a point $y_0 \in \Omega$, so that $\|x - y_0\| \geq L > 0$, and we will exploit the following inequality, valid for any $y \in \Omega$ satisfying $\|y - y_0\| \leq R$, with $R > 0$:

$$0 \leq 1 - \frac{L^d}{\|x - y\|^d} \leq \frac{\|x - y\|^d - L^d}{L^d} \leq \frac{(L + R)^d - L^d}{L^d} \leq e^{\frac{dR}{L}} - 1. \quad (\text{A150})$$

Now, for a given $\varepsilon > 0$, there exist $R > 0$ large enough such that $\int_{\|y - y_0\| \geq R} \rho(y) d^d y \leq \varepsilon/2$ and $\int_{\|y - y_0\| \geq R} \rho(y)|f(y)| d^d y \leq \varepsilon/2$. Then, for such a R , we consider L large enough such that the above bound satisfies $e^{\frac{dR}{L}} - 1 \leq \varepsilon \min(1/\langle |f| \rangle, 1)/2$. We then obtain

$$\left| L^d \int \rho(y)f(y)\|x - y\|^{-d} d^d y - \langle f \rangle \right| \leq \left(e^{\frac{dR}{L}} - 1 \right) \int_{\|y - y_0\| \leq R} \rho(y)|f(y)| d^d y \quad (\text{A151})$$

$$+ \int_{\|y - y_0\| \geq R} \rho(y)|f(y)| d^d y, \quad (\text{A152})$$

$$\leq \frac{\varepsilon}{2\langle |f| \rangle} \times \langle |f| \rangle + \frac{\varepsilon}{2} \leq \varepsilon, \quad (\text{A153})$$

which shows that under the condition $\langle |f| \rangle < \infty$, we have

$$\lim_{d(x, \Omega) \rightarrow +\infty} d^d(x, \Omega) \int \rho(y)f(y)\|x - y\|^{-d} d^d y = \langle f \rangle. \quad (\text{A154})$$

Similarly, one can show that

$$\lim_{d(x, \Omega) \rightarrow +\infty} d^d(x, \Omega) \int \rho(y)\|x - y\|^{-d} d^d y = \int \rho(y) d^d y = 1. \quad (\text{A155})$$

Finally, we obtain the second result of Theorem 10,

$$\lim_{d(x, \Omega) \rightarrow +\infty} \hat{f}_\infty(x) = \langle f \rangle. \quad (\text{A156})$$

1298 Continuity of the extrapolation

We now consider $x \notin \bar{\Omega}$ and $y_0 \in \partial\Omega$, but such that $\rho(y_0) > 0$ (i.e., $y_0 \in \partial\Omega \cap \Omega$), and we note $l := \|x - y_0\| > 0$. We assume the continuity at y_0 of ρ and f as seen as functions restricted to Ω , i.e., $\lim_{y \in \Omega \rightarrow y_0} \rho(y) = \rho(y_0)$ and $\lim_{y \in \Omega \rightarrow y_0} f(y) = f(y_0)$. Hence, for any $0 < \varepsilon < 1$, there exists $\delta > 0$ small enough such that $y \in \Omega$ and $\|y - y_0\| \leq \delta \implies |\rho(y_0) - \rho(y)| \leq \varepsilon$ and $|\rho(y_0)f(y_0) - \rho(y)f(y)| \leq \varepsilon$. Since we intend to take $l > 0$ arbitrary small, we can impose $l < \delta/2$.

We will also assume that $\partial\Omega$ is smooth enough near y_0 , such that there exists a strictly positive local solid angle ω_0 defined by

$$\omega_0 = \lim_{r \rightarrow 0} \frac{1}{V_d \rho(y_0) r^d} \int_{\|y-y_0\| \leq r} \rho(y) d^d y = \lim_{r \rightarrow 0} \frac{1}{V_d r^d} \int_{y \in \Omega / \|y-y_0\| \leq r} d^d y, \quad (\text{A157})$$

where the second inequality results from the continuity of ρ at y_0 and the fact that $\rho(y_0) > 0$. If $y_0 \in \Omega^\circ$, we have $\omega_0 = 1$, while for $y_0 \in \partial\Omega$, we have generally $0 \leq \omega_0 \leq 1$. Although we will assume $\omega_0 > 0$ for our proof below, we note that $\omega_0 = 0$ or $\omega_0 = 1$ can happen for $y_0 \in \partial\Omega$. For instance, we can consider $\Omega_0, \Omega_1 \subset \mathbb{R}^2$ respectively defined by $\Omega_0 = \{(x_1, x_2) \in \mathbb{R}^2 / x_1 \geq 0, |x_2| \leq x_1^2\}$ and $\Omega_1 = \{(x_1, x_2) \in \mathbb{R}^2 / x_1 \leq 0\} \cup \{(x_1, x_2) \in \mathbb{R}^2 / x_1 \geq 0, |x_2| \geq x_1^2\}$. Then, it is clear that the local solid angle at the origin $O = (0, 0)$ is respectively $\omega_0 = 0$ and $\omega_0 = 1$. Also note that if x is on the surface of a sphere or on the interior of a face of a hypercube (and in general, when the boundary near x is locally a hyperplane; the generic case), we have $\omega_x = \frac{1}{2^d}$. If x is a corner of the hypercube, we have $\omega_x = \frac{1}{2^d}$.

Returning to our proof, and exploiting Eq. (A157), we consider δ small enough such that for all $0 \leq r \leq \delta$, we have

$$\left| \int_{y \in \Omega / \|y-y_0\| \leq r} d^d y - \omega_0 V_d r^d \right| \leq \varepsilon \omega_0 V_d r^d. \quad (\text{A158})$$

We can now use these preliminaries to obtain

$$(\rho(y_0) f(y_0) - \varepsilon) J(x) - C \leq \int \rho(y) f(y) \|x - y\|^{-d} d^d y \leq (\rho(y_0) f(y_0) + \varepsilon) J(x) \quad (\text{A159})$$

$$(\rho(y_0) - \varepsilon) J(x) - C' \leq \int \rho(y) \|x - y\|^{-d} d^d y \leq (\rho(y_0) + \varepsilon) J(x) \quad (\text{A160})$$

with

$$J(x) := \int_{y \in \Omega / \|y-y_0\| \leq \delta} \|x - y\|^{-d} d^d y, \quad (\text{A161})$$

$$C = \left(\frac{2}{\delta} \right)^2 \int_{\|y-y_0\| \geq \delta} \rho(y) |f(y)| d^d y, \quad (\text{A162})$$

$$C' = \left(\frac{2}{\delta} \right)^2. \quad (\text{A163})$$

Let us now show that $\lim_{l \rightarrow 0} J(x) = +\infty$. We define $N := [\delta/l] \geq 2$, where $[\cdot]$ is the integer part, and we have $N \geq 2$, since we have imposed $l < \delta/2$. For $n \in \mathbb{N} \geq 1$, we define,

$$I_n := \int_{y \in \Omega / \|y-y_0\| \leq \delta/n} d^d y, \quad (\text{A164})$$

1317 and note that we have

$$I_n - I_{n+1} = \int_{\substack{y \in \Omega / ||y - y_0|| \leq \delta/n, \\ ||y - y_0|| \geq \delta/(n+1)}} d^d y, \quad (\text{A165})$$

$$\left| I_n - \omega_0 V_d \left(\frac{\delta}{n} \right)^d \right| \leq \varepsilon \omega_0 V_d \left(\frac{\delta}{n} \right)^d. \quad (\text{A166})$$

1318 We can then write

$$J(x) \geq \sum_{n=1}^N \frac{1}{\left(l + \frac{\delta}{n} \right)^d} (I_n - I_{n+1}), \quad (\text{A167})$$

$$\geq \sum_{n=1}^N \left(\frac{1}{\left(l + \frac{\delta}{n+1} \right)^d} - \frac{1}{\left(l + \frac{\delta}{n} \right)^d} \right) I_{n+1} + \frac{I_1}{(l + \delta)^d} - \frac{I_{N+1}}{\left(l + \frac{\delta}{N+1} \right)^d}. \quad (\text{A168})$$

1319 We have

$$\frac{I_1}{(l + \delta)^d} - \frac{I_{N+1}}{\left(l + \frac{\delta}{N+1} \right)^d} \geq \omega_0 V_d \left((1 - \varepsilon) \frac{1}{\left(1 + \frac{l}{\delta} \right)^d} - (1 + \varepsilon) \frac{1}{\left(1 + \frac{(N+1)l}{\delta} \right)^d} \right) \quad (\text{A169})$$

$$\geq \omega_0 V_d \left((1 - \varepsilon) \frac{2^d}{3^d} - (1 + \varepsilon) \right) =: C'', \quad (\text{A170})$$

1320 which defines the constant C'' . Now using Eq. (A166), $l < \delta/2$, $N = [\delta/l]$, and the fact
1321 that $(1 + u)^d - 1 \geq d u$, for any $u \geq 0$, we obtain

$$J(x) \geq (1 - \varepsilon) \omega_0 V_d \sum_{n=1}^N \frac{1}{\left(1 + \frac{(n+1)l}{\delta} \right)^d} \left(\left(\frac{l + \frac{\delta}{n}}{l + \frac{\delta}{n+1}} \right)^d - 1 \right) + C'', \quad (\text{A171})$$

$$\geq (1 - \varepsilon) \omega_0 S_d \sum_{n=1}^N \frac{1}{\left(1 + \frac{(n+1)l}{\delta} \right)^{d+1}} \frac{1}{n} + C'', \quad (\text{A172})$$

$$\geq \frac{(1 - \varepsilon) \omega_0 S_d}{\left(1 + \frac{(N+1)l}{\delta} \right)^{d+1}} \ln(N - 1) + C'', \quad (\text{A173})$$

$$\geq (1 - \varepsilon) \omega_0 \left(\frac{2}{5} \right)^{d+1} S_d \ln \left(\frac{\delta}{l} - 2 \right) + C''. \quad (\text{A174})$$

1322 We hence have shown that $\lim_{l \rightarrow 0} J(x) = +\infty$. Note that we can obtain an upper
1323 bound for $J(x)$ similar to Eq. (A172) in a similar way as above, and with a bit more

1324 work, it is straightforward to show that we in fact have $J(x) \sim_{l \rightarrow 0} \omega_0 S_d \ln \left(\frac{\delta}{l} \right)$, a
1325 result that we will not need here.

1326 Now, using Eq. (A159) and Eq. (A160) and the fact that $\lim_{l \rightarrow 0} J(x) = +\infty$, we
1327 find that

$$\int \rho(y) f(y) \|x - y\|^{-d} d^d y \underset{l \rightarrow 0}{\sim} \rho(y_0) f(y_0) J(x), \quad (\text{A175})$$

$$\int \rho(y) \|x - y\|^{-d} d^d y \underset{l \rightarrow 0}{\sim} \rho(y_0) J(x), \quad (\text{A176})$$

1328 for $f(y_0) \neq 0$ (remember that $\rho(y_0) > 0$), while for $f(y_0) = 0$, we obtain $\int \rho(y) f(y) \|x - y\|^{-d} d^d y = o(J(x))$. Finally, we have shown that

$$\lim_{x \notin \bar{\Omega}, x \rightarrow y_0} \hat{f}_\infty(x) = f(y_0), \quad (\text{A177})$$

1330 establishing the continuity of the extrapolation and the last part of Theorem 10.