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Supplementary Figure S1:

Comparison of zero field C/T
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FIG. S1. Comparison of C/T of CeColn; at zero field. Measurements in this work (TISP:
open blue circles, AC calorimetry: black dots) are compared with measurements from References [1—

6]. Over the temperature range of 0.6 K to 2 K, all measurements fall within 10% of each other.



Supplementary Figure S2:

Evaluation of T, at 12T
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FIG. S2. Evaluation of T, at 12 T. a. 1/T1T in Fig. 1d in the main text, shifted vertically to
highlight the crossover region for each temperature sweep. Thin gray lines indicate the limiting
behavior below and above crossover T,. The value of T, is determined as the crossing point of the
two gray lines, as indicated by the arrow. b. C/T in Fig. 1c in the main text shifted vertically for

clarity. The location of T,, as determined by analysis of 1/77T in panel a, are shown as arrows.



Supplementary Figure S3:

Evaluation of T,, and T, for different magnetic fields and field orientations
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FIG. S3. Evaluation of T,, and T, for different orientations and magnitudes of magnetic
fields. a,c,e. Temperature dependence of 1/T17T from Fig. 2 in the main text at different magnetic
fields, offset vertically for clarity. Solid gray lines indicate the limiting behavior above and below
the crossover temperature Ty, similar to Fig. S2. The crossover temperature T, is determined as
their intercept, indicated by the solid arrow. The color shading indicates the fitting error bars as
described in the Methods of the main text. b,d,f. Corresponding specific heat of Fig. 2 of the main
text. The open arrows indicate the superconducting transition temperature. T,, as determined

from 1/T1T, are shown as solid arrows.



Supplementary Figure S4:
Magnetic field dependence of T, (B) and T.(B)
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FIG. S4. Magnetic field dependence of T,, and T.(B). a,b,c. Magnetic field dependence of
T, (B) and T,(B) for magnetic fields along the c-axis, at BZ45°, and along the ab-plane, respec-

tively. See also Fig. 3 of the main text.



Supplementary Figure S5:

Determination of ¢-factors
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FIG. S5. Determination of g-factors. a. Angular dependence of ¢%(#) vs cos 26 determined as
¢*(9) = (T,,/B)? in Fig. S2 and from the slopes in Fig. S4 using ¢?(6) ~ (dT,/dB)?. The approxi-
mate linear dependence is consistent with lowest-angular-harmonic behavior of the tetragonal lat-
tice structure of CeColns, ¢?(0) = g2 cos® f+¢2, sin® 0, or, equivalently ¢*(0) = 1/2(q2+q2,)+1/2(q>—
q%,) cos20. The linear regression of the data in panel a produces 1/2(¢? + ¢2,) = 2.9(5) (mK/T)?
and 1/2(q2 — ¢%,) = 2.0(2) (mK/T)?. This corresponds to ¢. = 70(5) mK/T and gq, = 30(5) mK/T.
The solid line represents the linear fit. The dotted curve corresponds to the best-fit with the sec-
ond and fourth harmonics, ¢>() = a + bcos 26 + ccos 46 with parameters a = 3.1(5) (mK/T)?,
b=2.5(2) (mK/T)?, and ¢ = 0.30(2) (mK/T)?2. Such higher order harmonic fit changes the values
of the g-factors to ¢. = 75(5) mK/T and g4, = 25(5) mK/T. b. ¢(0) plotted vs cosf. Solid curve

represents the lowest harmonic approximation, ¢() = (g2 cos® 6 + ng sin? 9)1/ 2

with ¢. and qgp
determined by linear regression in panel a. The dotted curve represents the the best-fit for the

fourth harmonic approximation.



Supplementary Figure S6:

Normalized C/T for different magnetic fields and field orientations
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FIG. S6. Normalized C/T for different magnetic fields and field orientations. a,b,c.
Electronic C/T divided by C/T at 12 T along the ab-plane in the normal state. The arrows

represent the crossover temperature T, (B) determined in Fig. S3.



Supplementary Note 1:

Two nuclear components in CeColnj

nuclear e 12
\C ‘ o C
a b spins 12N} N
TZA] fﬂ
electrons
& phonons S
“cs /'
platform/ﬂ CC
T Pleo) “ca,/”
membrane!  platform ?heat bath heat bath

FIG. S7. Heat flow diagram of the calorimeter-sample asembly with two nuclear com-
ponents. a. A sketch of the calorimeter, indicating different components. b. Heat flow diagram
of the calorimeter-sample assembly which determines the thermal impedance in Eq. (S1). CeColns

has two nuclear spin subsystems, that of 115/113In (C}x) and that of **Co (Chx).

The model described in the Methods of the main text accounts for a single nuclear isotope
species coupled to the electrons via the nuclear spin lattice relaxation rate 1/7}. In CeColns,
about 13% of the nuclear heat capacity comes from *?Co while the rest comes from '5/113In.

The resulting two-nuclear-component heat circuit is described by a larger (9-parameter)

model,
1 ) W <CS + fifil’ll\iJrl + %f:ﬁiﬂ) kcs
model = kcB — ZwCC + ) (Sl)
C(w)s —iw(C’s +—GNn 4 Cox ) + Kcs

—wwTi1+1 —iwTha+1
where T1; and Ty are the spin-lattice relaxation times for In and Co, respectively. We have

assumed that the cross-relaxation rate 1/T5 [7, 8] is zero.

Detailed investigation of the two-component nuclear specific heat as well as effects of
cross-relaxation is beyond the scope of this work. We now show that in TISP measurements,
inclusion of these effects does not affect the magnitude of the electronic specific heat and
the nuclear spin-lattice relaxation rates at the level of accuracy necessary for the discussion

in the main text.

The weak sensitivity of the magnitude of C's and T} to changes in the nuclear system



is rooted in the fact that in TISP measurements, the nuclear specific heat Cx and the
electronic specific heat Cg are determined independently by the frequency-dependent thermal
impedance. For example, if the calorimeter-sample assembly is described by the single-
isotope thermal impedance (Eq. (M2) in the Methods), then any changes in the magnitude
of the nuclear specific heat Cy have zero effect on the magnitude of all other parameters,

including that of Cs and Tj.

As a consequence of such "robustness”, even when we modify the nuclear subsystem in a
more significant way, such as the two-isotope (Eq. (S1)) versus single-isotope (Eq. (M2) in the
Methods), the differences in the values of Cg and 7} determined from fits to the two models
are parametrically smaller than the differences in the parameters of the nuclear subsystem,

as long as the latter are relatively small (see Supplementary Note 3 for mathematical details).

Specifically, for CeColns, the nuclear specific heat consists of 13% %°Co and 87% 3/15In
and the nuclear spin-lattice relaxation rate of **Co is about five times smaller than that of
U5/13[n (Fig. S8) [9, 10]. The relatively small, 13% “redistribution” of the nuclear specific
heat components in Eq. (S1) has much smaller, less than 1%, effect on the magnitude of the

electronic specific heat and 5% to 10% effect on the spin-lattice relaxation rate.
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FIG. S8. NMR measurements of 1/717T for *?Co in CeColn; and TISP measurements
of 1/TyT for CeColns. a. Nuclear spin-lattice relaxation rate of 5°Co in CeColns from NMR
measurements [9] for magnetic fields along the c-axis. b. TISP measurements of 1/717 for CeColns

from Fig. 2 of the main text.

To investigate the effects of two nuclear components, consider a system described by

Eq. (S1) with a fixed set of 9 parameter. We take the corresponding thermal impedance
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spectrum ((w)s and use the single-isotope model (Eq. (M2) in the Methods) to fit six param-
eters, including Cg, C, and T;. This defines the differences o, (Cs), 0,(Cx), 0,(T1) between
the values obtained by such fit and the corresponding model parameters in Eq. (S1) of the

more realistic model. To calculate the o,’s we set

Tll = T17

T5 = 5T}

Con = 0.13Cy

Cix = 0.87Cx (S2)

where the left side corresponds to the values in Eq. (S1) and the right-hand side corresponds
to the values in the single-isotope model (Eq. (M2) in the Methods). The errors o,(Cy),

0,(Cn), 0,(T1), evaluated at four different temperatures, are given in table I.

T on(Cs)  on(1/TAT)  oy(Cx)
(K) % % %
0.12 0.2 7 5
0.35 0.03 6 7
1.1 0.001 5 7
3.0 0.001 4 8

TABLE I. Errors introduced by 6-parameter model. Errors introduced by the use of a single

nuclear component, evaluated at a magnetic field of 12 T along the ab-plane.

As indicated above, the values of 0, (Cs) at temperatures above 0.3 K are much smaller
than the nominal difference in the nuclear specific heat o, (Cy). Importantly, the difference
in C's remains small at even lower temperatures due to the near perfect orthogonality in the

parameter space (see Supplementary Note 3 for further details).
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Supplementary Note 2:

Nuclear heat capacity

The nuclear specific heat is described by the high-temperature tail of a Schottky anomaly,
Ox = (B/T)c, (S3)

where

co = (1/3) Naks Z andn(In + 1)(9nNN/kB)2 (S4)

n

is the "reduced” nuclear specific heat, i.e., its value at 1 T and 1 K. The sum in Eq. (54)
is over all nuclear species with nuclear spin in the unit cell, a,, is the number of such atoms
in each unit cell. [, and g, are their spin and nuclear g-factors, and puy = 32.5 neV/T
is the nuclear magneton. A small quadrupolar contribution from In becomes important
only at very low fields (below 100 mT). The value of the reduced nuclear specific heat,
co = 85 uJK/molT?, is determined in CeColns by five 1'°In and 3In nuclei (which have the
same nuclear spin and very close values of the nuclear g-factor [11]) and one %*Co nuclei in
each unit cell. *Co accounts for about 13% of the total nuclear specific heat both because

of a smaller number of cobalt atoms and because of its smaller nuclear spin [11].

At low temperatures and high magnetic fields, the measured nuclear specific heat deviates

from its expected value, through an additional factor (1+ K)? related to the knight shift K,
Cx = (1+ K)?(B/T) c, (S5)

describing enhanced — or screened — magnitude of local magnetic field (1 + K)B. Figure S9
shows (1+K)? for all fields and temperatures in Fig. 2 in the main text. At low temperatures,
the nuclear specific heat deviates away from its nominal value (K = 0) by as much as a
factor of two, corresponding to values of K up to £30% (see Fig. S10). We currently do
not exclude that some of the observed effect can arise from measurement errors and the
evaluation errors due to the 6-parameter fit with a single nuclear contribution. We note,
however, that such errors associated with calibration should be independent of the magnetic

field orientation.



12

a 3 F T T T T b = T T T T Cr T T T T
10T
N 2F Bic | | B.c45" | i Biab | 8T
¥
< %,
-~ /(9'\)«
e =S Skl *ﬁ%gsc%“;“*" IR B
O t 1 1 1 f =3 1 1 1 f =3 1 ! ! H
0.1 03 1 3 10 01 03 1 3 10 01 03 1 3 10
T(K) T(K) T(K)

FIG. S9. Measured nuclear specific heat normalized by its nominal value, Eq. (S3).
a,b,c. Nuclear specific heat (normalized by its nominal value, Eq. (S3)) for different magnetic fields
and field orientations. The nuclear specific heat approaches its nominal value (K = 0, dashed line)
at high temperatures. The deviations from the nominal value at lower temperatures indicate a

difference between the applied magnetic field and the effective magnetic field at the nucleus.
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FIG. S10. Temperature dependence of the nuclear specific heat in the superconduct-
ing and normal state of CeColns. a,c,e. Temperature dependence of the nuclear specific heat
for fields 4, 6, and 8 T along the ab-plane. The dashed line indicates the nominal (K = 0) value
of nuclear specific heat. The dotted line indicates the maximum deviation of nuclear specific heat
below the nominal value, more than a factor two smaller. Vertical arrows indicate the supercon-
ducting transition determined from Fig. S3. All solid lines are guides for the eye. b,d,f. Nuclear

specific heat in a,c,e plotted as T?Cy. The dashed line indicates the nominal behavior.
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Supplementary Note 3:

Linear algebra of multiple nuclear species

The “orthogonality” of parameter space noted in Supplementary Note 1 is based on the
following mathematical analysis. To cast the problem into a linear-space language we denote
the observed thermal impedance spectra as Z(w) and the model as X (w),,. Both are vectors

in the linear space of functions of frequency. We define a scalar product
(A(w)|B(w)) (S6)
in this vector space via the frequency integrals

/ dwB(w) A(w) B(w) (87)

where f(w) is a given weight function. The goodness function (Methods) is represented by
g({Ai}) = (Z(w) = X(w)x | Z(w) = X(w)x,) - (S8)

For a perfect fit of Z(w) with X (w),,, the goodness function is at a minimum value equal
to zero for small changes of all \; away from their best fit value \?. Now assume that
the physical behavior Z(w) is different from the one described by the model X (w),,. Let
the observed behavior be Z(w) + an(w), where a is a small number and n(w) is a function
describing the deviation from the model X (w),,. We assume that Z(w) is equal to the model
X (w)y, for some parameters \? but Z(w) + an(w) is not equal to X (w),, for any set of \;.
If we do the linear regression of Z(w) + an(w) using the model X (w),,, we would find best
fit parameters \; = \Y + d)\; instead of \?. What is the relation between d);, a, and n(w)?

Define the new best-fit parameters from

(2(w) + an(ew) = X (@) |2 (@) + anw) = X(w)x, ) = min

(2(w) + an(w) = X(w)x

d
d\;

Z(w) + an(ew) = X(w)y, ) =0 (59)

We will only consider small values of a, for which we can truncate the expansion at the
linear term,

d;

A =\
Z+ada’

(S10)
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i.e., we assume that d)\; are proportional to a. The problem is to find a set of derivatives

d\;/da. Equation (S9) has a form,

dX (w))\i
d;

Z(w) + an(w) —X(w),\i> =0. (S11)
If a is zero, the ket in Eq. (S11) is identically zero for A; = AY. The set of six functions

\am:(ﬁ%gﬁliw (812)

near A} defines a six-dimensional “tangent” linear space at Z(w) = X (w)yo. Equation (S11)
can only constraint parameters a and d\;/da as long as the function n(w) can be decomposed
into this tangent space. This is because small changes in )\; away from ) produce changes
in the functions X (w),, that lie in tangent space, 0.X (w) = d\;V;(w). Therefore we need to

distinguish two orthogonal components of function n(w),
an(w) = an(w) L + an(w), (513)
where an(w) is in the tangent space

n(w) = Z Vi(w) n; (S14)

with the expansion coefficients 1; whereas n(w), is orthogonal to the tangent space,

<77(w)¢

With this, Eq. (S11), is only sensitive to the tangent component n(w)j.

V;(w)> =0 for all 1. (S15)

The coefficients 7; in Eq. (S14) are given by

m =y (nle) Vi) (516)

Vilw), Ky = ((Viw)

where matrix K;; accounts for non-orthogonality of the basis V;(w) in the tangent space.

Equation (S11) now states that the tangent space component of 7(w); must be “balanced”

by the small changes in the fitting parameters, which immediately results in

A\

where 7); is given by Eq. (516).
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A check of this result is that when the function n(w) coincides with one of the basis
vectors V;(w) (i.e., the modified Z(w) + an(w) is still described exactly by the model X (w)j,

with simple shift in the fitting parameters), only one of d\; must be nonzero, i.e.,

d;
D Oij (S18)
This is indeed satisfied because
> Ky (Viw)|Vi(w)) = b (519)
J
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