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Supplementary Figure S1:

Comparison of zero field C/T
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FIG. S1. Comparison of C/T of CeCoIn5 at zero field. Measurements in this work (TISP:

open blue circles, AC calorimetry: black dots) are compared with measurements from References [1–

6]. Over the temperature range of 0.6 K to 2 K, all measurements fall within 10% of each other.
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Supplementary Figure S2:

Evaluation of Tα at 12T
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FIG. S2. Evaluation of Tα at 12 T. a. 1/T1T in Fig. 1d in the main text, shifted vertically to

highlight the crossover region for each temperature sweep. Thin gray lines indicate the limiting

behavior below and above crossover Tα. The value of Tα is determined as the crossing point of the

two gray lines, as indicated by the arrow. b. C/T in Fig. 1c in the main text shifted vertically for

clarity. The location of Tα, as determined by analysis of 1/T1T in panel a, are shown as arrows.
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Supplementary Figure S3:

Evaluation of Tα and Tc for different magnetic fields and field orientations
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FIG. S3. Evaluation of Tα and Tc for different orientations and magnitudes of magnetic

fields. a,c,e. Temperature dependence of 1/T1T from Fig. 2 in the main text at different magnetic

fields, offset vertically for clarity. Solid gray lines indicate the limiting behavior above and below

the crossover temperature Tα, similar to Fig. S2. The crossover temperature Tα is determined as

their intercept, indicated by the solid arrow. The color shading indicates the fitting error bars as

described in the Methods of the main text. b,d,f. Corresponding specific heat of Fig. 2 of the main

text. The open arrows indicate the superconducting transition temperature. Tα, as determined

from 1/T1T , are shown as solid arrows.
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Supplementary Figure S4:

Magnetic field dependence of Tα(B) and Tc(B)
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FIG. S4. Magnetic field dependence of Tα and Tc(B). a,b,c. Magnetic field dependence of

Tα(B) and Tc(B) for magnetic fields along the c-axis, at B∠45◦, and along the ab-plane, respec-

tively. See also Fig. 3 of the main text.
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Supplementary Figure S5:

Determination of q-factors
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FIG. S5. Determination of q-factors. a. Angular dependence of q2(θ) vs cos 2θ determined as

q2(θ) = (Tα/B)2 in Fig. S2 and from the slopes in Fig. S4 using q2(θ) ≈ (dTα/dB)2. The approxi-

mate linear dependence is consistent with lowest-angular-harmonic behavior of the tetragonal lat-

tice structure of CeCoIn5, q
2(θ) = q2c cos

2 θ+q2ab sin
2 θ, or, equivalently q2(θ) = 1/2(q2c+q2ab)+

1/2(q2c−

q2ab) cos 2θ. The linear regression of the data in panel a produces 1/2(q2c + q2ab) = 2.9(5) (mK/T)2

and 1/2(q2c −q2ab) = 2.0(2) (mK/T)2. This corresponds to qc = 70(5) mK/T and qab = 30(5) mK/T.

The solid line represents the linear fit. The dotted curve corresponds to the best-fit with the sec-

ond and fourth harmonics, q2(θ) = a + b cos 2θ + c cos 4θ with parameters a = 3.1(5) (mK/T)2,

b = 2.5(2) (mK/T)2, and c = 0.30(2) (mK/T)2. Such higher order harmonic fit changes the values

of the q-factors to qc = 75(5) mK/T and qab = 25(5) mK/T. b. q(θ) plotted vs cos θ. Solid curve

represents the lowest harmonic approximation, q(θ) = (q2c cos
2 θ + q2ab sin

2 θ)1/2 with qc and qab

determined by linear regression in panel a. The dotted curve represents the the best-fit for the

fourth harmonic approximation.
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Supplementary Figure S6:

Normalized C/T for different magnetic fields and field orientations
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FIG. S6. Normalized C/T for different magnetic fields and field orientations. a,b,c.

Electronic C/T divided by C/T at 12 T along the ab-plane in the normal state. The arrows

represent the crossover temperature Tα(B) determined in Fig. S3.
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Supplementary Note 1:

Two nuclear components in CeCoIn5
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FIG. S7. Heat flow diagram of the calorimeter-sample asembly with two nuclear com-

ponents. a. A sketch of the calorimeter, indicating different components. b. Heat flow diagram

of the calorimeter-sample assembly which determines the thermal impedance in Eq. (S1). CeCoIn5

has two nuclear spin subsystems, that of 115/113In (C1N) and that of 59Co (C2N).

The model described in the Methods of the main text accounts for a single nuclear isotope

species coupled to the electrons via the nuclear spin lattice relaxation rate 1/T1. In CeCoIn5,

about 13% of the nuclear heat capacity comes from 59Co while the rest comes from 115/113In.

The resulting two-nuclear-component heat circuit is described by a larger (9-parameter)

model,

1

ζ(ω)model
2

= κCB − iωCC +
−iω

(
CS +

C1N

−iωT11+1
+ C2N

−iωT22+1

)
κCS

−iω
(
CS +

C1N

−iωT11+1
+ C2N

−iωT22+1

)
+ κCS

, (S1)

where T11 and T22 are the spin-lattice relaxation times for In and Co, respectively. We have

assumed that the cross-relaxation rate 1/T12 [7, 8] is zero.

Detailed investigation of the two-component nuclear specific heat as well as effects of

cross-relaxation is beyond the scope of this work. We now show that in TISP measurements,

inclusion of these effects does not affect the magnitude of the electronic specific heat and

the nuclear spin-lattice relaxation rates at the level of accuracy necessary for the discussion

in the main text.

The weak sensitivity of the magnitude of CS and T1 to changes in the nuclear system
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is rooted in the fact that in TISP measurements, the nuclear specific heat CN and the

electronic specific heat CS are determined independently by the frequency-dependent thermal

impedance. For example, if the calorimeter-sample assembly is described by the single-

isotope thermal impedance (Eq. (M2) in the Methods), then any changes in the magnitude

of the nuclear specific heat CN have zero effect on the magnitude of all other parameters,

including that of CS and T1.

As a consequence of such ”robustness”, even when we modify the nuclear subsystem in a

more significant way, such as the two-isotope (Eq. (S1)) versus single-isotope (Eq. (M2) in the

Methods), the differences in the values of CS and T1 determined from fits to the two models

are parametrically smaller than the differences in the parameters of the nuclear subsystem,

as long as the latter are relatively small (see Supplementary Note 3 for mathematical details).

Specifically, for CeCoIn5, the nuclear specific heat consists of 13%
59Co and 87% 113/115In

and the nuclear spin-lattice relaxation rate of 59Co is about five times smaller than that of

115/113In (Fig. S8) [9, 10]. The relatively small, 13% ”redistribution” of the nuclear specific

heat components in Eq. (S1) has much smaller, less than 1%, effect on the magnitude of the

electronic specific heat and 5% to 10% effect on the spin-lattice relaxation rate.
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FIG. S8. NMR measurements of 1/T1T for 59Co in CeCoIn5 and TISP measurements

of 1/T1T for CeCoIn5. a. Nuclear spin-lattice relaxation rate of 59Co in CeCoIn5 from NMR

measurements [9] for magnetic fields along the c-axis. b. TISP measurements of 1/T1T for CeCoIn5

from Fig. 2 of the main text.

To investigate the effects of two nuclear components, consider a system described by

Eq. (S1) with a fixed set of 9 parameter. We take the corresponding thermal impedance
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spectrum ζ(ω)2 and use the single-isotope model (Eq. (M2) in the Methods) to fit six param-

eters, including CS, CN, and T1. This defines the differences ση(CS), ση(CN), ση(T1) between

the values obtained by such fit and the corresponding model parameters in Eq. (S1) of the

more realistic model. To calculate the ση’s we set

T11 = T1,

T22 = 5T1

C2N = 0.13CN

C1N = 0.87CN (S2)

where the left side corresponds to the values in Eq. (S1) and the right-hand side corresponds

to the values in the single-isotope model (Eq. (M2) in the Methods). The errors ση(CS),

ση(CN), ση(T1), evaluated at four different temperatures, are given in table I.

T ση(CS) ση(1/T1T ) ση(CN)

(K) % % %

0.12 0.2 7 5

0.35 0.03 6 7

1.1 0.001 5 7

3.0 0.001 4 8

TABLE I. Errors introduced by 6-parameter model. Errors introduced by the use of a single

nuclear component, evaluated at a magnetic field of 12 T along the ab-plane.

As indicated above, the values of ση(CS) at temperatures above 0.3 K are much smaller

than the nominal difference in the nuclear specific heat ση(CN). Importantly, the difference

in CS remains small at even lower temperatures due to the near perfect orthogonality in the

parameter space (see Supplementary Note 3 for further details).
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Supplementary Note 2:

Nuclear heat capacity

The nuclear specific heat is described by the high-temperature tail of a Schottky anomaly,

CN = (B/T )2c0 , (S3)

where

c0 = (1/3)NAkB
∑
n

anIn(In + 1)(gnµN/kB)
2 (S4)

is the ”reduced” nuclear specific heat, i.e., its value at 1 T and 1 K. The sum in Eq. (S4)

is over all nuclear species with nuclear spin in the unit cell, an is the number of such atoms

in each unit cell. In and gn are their spin and nuclear g-factors, and µN = 32.5 neV/T

is the nuclear magneton. A small quadrupolar contribution from In becomes important

only at very low fields (below 100 mT). The value of the reduced nuclear specific heat,

c0 = 85 µJK/molT2, is determined in CeCoIn5 by five 115In and 113In nuclei (which have the

same nuclear spin and very close values of the nuclear g-factor [11]) and one 59Co nuclei in

each unit cell. 59Co accounts for about 13% of the total nuclear specific heat both because

of a smaller number of cobalt atoms and because of its smaller nuclear spin [11].

At low temperatures and high magnetic fields, the measured nuclear specific heat deviates

from its expected value, through an additional factor (1+K)2 related to the knight shift K,

CN = (1 +K)2 (B/T )2c0, (S5)

describing enhanced – or screened – magnitude of local magnetic field (1 +K)B. Figure S9

shows (1+K)2 for all fields and temperatures in Fig. 2 in the main text. At low temperatures,

the nuclear specific heat deviates away from its nominal value (K = 0) by as much as a

factor of two, corresponding to values of K up to ±30% (see Fig. S10). We currently do

not exclude that some of the observed effect can arise from measurement errors and the

evaluation errors due to the 6-parameter fit with a single nuclear contribution. We note,

however, that such errors associated with calibration should be independent of the magnetic

field orientation.
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FIG. S9. Measured nuclear specific heat normalized by its nominal value, Eq. (S3).

a,b,c. Nuclear specific heat (normalized by its nominal value, Eq. (S3)) for different magnetic fields

and field orientations. The nuclear specific heat approaches its nominal value (K = 0, dashed line)

at high temperatures. The deviations from the nominal value at lower temperatures indicate a

difference between the applied magnetic field and the effective magnetic field at the nucleus.
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FIG. S10. Temperature dependence of the nuclear specific heat in the superconduct-

ing and normal state of CeCoIn5. a,c,e. Temperature dependence of the nuclear specific heat

for fields 4, 6, and 8 T along the ab-plane. The dashed line indicates the nominal (K = 0) value

of nuclear specific heat. The dotted line indicates the maximum deviation of nuclear specific heat

below the nominal value, more than a factor two smaller. Vertical arrows indicate the supercon-

ducting transition determined from Fig. S3. All solid lines are guides for the eye. b,d,f. Nuclear

specific heat in a,c,e plotted as T 2CN. The dashed line indicates the nominal behavior.
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Supplementary Note 3:

Linear algebra of multiple nuclear species

The “orthogonality” of parameter space noted in Supplementary Note 1 is based on the

following mathematical analysis. To cast the problem into a linear-space language we denote

the observed thermal impedance spectra as Z(ω) and the model as X(ω)λi
. Both are vectors

in the linear space of functions of frequency. We define a scalar product

⟨A(ω)|B(ω)⟩ (S6)

in this vector space via the frequency integrals∫
dωβ(ω)A(ω)∗B(ω) . (S7)

where β(ω) is a given weight function. The goodness function (Methods) is represented by

g({λi}) = ⟨Z(ω)−X(ω)λi
|Z(ω)−X(ω)λi

⟩ . (S8)

For a perfect fit of Z(ω) with X(ω)λi
, the goodness function is at a minimum value equal

to zero for small changes of all λi away from their best fit value λ0
i . Now assume that

the physical behavior Z(ω) is different from the one described by the model X(ω)λi
. Let

the observed behavior be Z(ω) + aη(ω), where a is a small number and η(ω) is a function

describing the deviation from the model X(ω)λi
. We assume that Z(ω) is equal to the model

X(ω)λi
for some parameters λ0

i but Z(ω) + aη(ω) is not equal to X(ω)λi
for any set of λi.

If we do the linear regression of Z(ω) + aη(ω) using the model X(ω)λi
, we would find best

fit parameters λi = λ0
i + dλi instead of λ0

i . What is the relation between dλi, a, and η(ω)?

Define the new best-fit parameters from〈
Z(ω) + aη(ω)−X(ω)λi

∣∣∣Z(ω) + aη(ω)−X(ω)λi

〉
→ min

d

dλi

〈
Z(ω) + aη(ω)−X(ω)λi

∣∣∣Z(ω) + aη(ω)−X(ω)λi

〉
= 0 (S9)

We will only consider small values of a, for which we can truncate the expansion at the

linear term,

λi = λ0
i + a

dλi

da
, (S10)
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i.e., we assume that dλi are proportional to a. The problem is to find a set of derivatives

dλi/da. Equation (S9) has a form,〈
dX(ω)λi

dλi

∣∣∣∣∣Z(ω) + aη(ω)−X(ω)λi

〉
= 0 . (S11)

If a is zero, the ket in Eq. (S11) is identically zero for λi = λ0
i . The set of six functions

Vi(ω) =

(
dX(ω)λi

dλi

)
λi=λ0

i

(S12)

near λ0
i defines a six-dimensional “tangent” linear space at Z(ω) = X(ω)λ0

i
. Equation (S11)

can only constraint parameters a and dλi/da as long as the function η(ω) can be decomposed

into this tangent space. This is because small changes in λi away from λ0
i produce changes

in the functions X(ω)λi
that lie in tangent space, δX(ω) = dλiVi(ω). Therefore we need to

distinguish two orthogonal components of function η(ω),

aη(ω) = aη(ω)⊥ + aη(ω)∥ , (S13)

where aη(ω)∥ is in the tangent space

η(ω)∥ =
∑
i

Vi(ω) ηi (S14)

with the expansion coefficients ηi whereas η(ω)⊥ is orthogonal to the tangent space,〈
η(ω)⊥

∣∣∣∣∣Vi(ω)

〉
= 0 for all i. (S15)

With this, Eq. (S11), is only sensitive to the tangent component η(ω)∥.

The coefficients ηi in Eq. (S14) are given by

ηi =Kij

〈
η(ω)

∣∣∣Vj(ω)
〉
, Kij =

(〈
Vi(ω)

∣∣∣Vj(ω)
〉)−1

(S16)

where matrix Kij accounts for non-orthogonality of the basis Vi(ω) in the tangent space.

Equation (S11) now states that the tangent space component of η(ω)∥ must be “balanced”

by the small changes in the fitting parameters, which immediately results in

dλi

da
= ηi . (S17)

where ηi is given by Eq. (S16).
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A check of this result is that when the function η(ω) coincides with one of the basis

vectors Vi(ω) (i.e., the modified Z(ω)+ aη(ω) is still described exactly by the model X(ω)λi

with simple shift in the fitting parameters), only one of dλi must be nonzero, i.e.,

dλi

dλj

= δij (S18)

This is indeed satisfied because∑
j

Kij

〈
Vi(ω)

∣∣∣Vj(ω)
〉
= δij (S19)
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