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1 Matrix factorization-based methods
1.1 SL2MF
Liu et al. proposed the SL2MF1 model for predicting SL interactions, which is based on matrix factorization. Specifically,
this model employs logistic matrix factorization (LMF) to map genes into a low-dimensional latent space and model the
probabilities of SL interactions between genes using their latent representations. The matrix U ∈ Rn×d represents the latent
vectors of each gene Ui ∈ R1×d , where d is the dimensionality of the latent space. The probability of an SL interaction
between two genes gi and g j is calculated using the following logistic function:
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In order to improve the predictive accuracy of the model, the authors integrated knowledge from the PPI network and
GO annotation into their approach. The authors hypothesized that genes with similar functional and/or network properties
should exhibit similar representations in the latent space. To incorporate this information, they utilized additional loss
functions in the model that take into account the GO and PPI similarities between genes for SL interaction prediction.
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where NG and NP represent the nearest neighbors of each gene in the GO and PPI similarity matrices, respectively.

1.2 GRSMF
Huang et al. proposed a graph regularized self-representative matrix factorization (GRSMF) model2, which is based on the
self-representative matrix factorization (SMF)3 method. In traditional SMF models, the input data X is self-represented by
a linear combination of its columns as X ≈ XU, where U ∈ Rn×n is the coefficient matrix that represents the columns of X.
Since the SL interaction matrix is symmetric, the representation of its rows should be the same as the representations of
its columns, and thus the self-representation of the symmetric matrix X is given by X ≈ UT XU. For the ith gene gi, Uli
denotes the probability of gene gi being represented by gl , which captures the similarity between gi and gl based on their
SL interactions with other genes. By taking into account some constraints, the following regularized self-representative
matrix factorization model can be built
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U

∥∥X−UT XU
∥∥2

F +λ∥U∥2
F (4)
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where ∥·∥F is the Frobenius norm and λ is a tuning parameter which controls the influence of the l2 regularization.
Due to the limited number of known SL interactions, it can be challenging to learn a comprehensive representation

matrix. To address this limitation, the authors incorporated prior information that captures similarities among genes, by
introducing a graph regularization term to the SMF model. Specifically, let S ∈ Rn×n denote the GO similarity matrix,
where Si j represents the functional similarity between genes gi and g j. The graph regularization based on S is defined as
follows:
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where Tr(·) denotes the trace of a matrix, D is a diagonal matrix with dii = ∑ j=1,n Si j and L = D−S.
Above all, the final objective optimization function of GRSMF is formulated as
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where β controls the effect of graph regularization.

1.3 CMF-W
Biological data sets are usually represented as matrices that include paired relationship data between two entities. Matrix
sets can have many relationships between organisms. Collective matrix factorization (CMF)4 and its extension are models
designed to collectively learn numerous such connections. Liany et al. proposed a new method called CMF-W5, which is
an extension of the CMF approach. Specifically, the authors introduced three improvement measures:

First, generate the feature vector of the matrix using principal component analysis (PCA). When performing dimen-
sionality reduction using PCA, the authors selected the minimum number of principal components required to achieve a
cumulative explained variance ratio greater than 0.9 as the dimension of the reduced matrix. Second, provide the graph-
based features that are matrix-specific. Including node degree, compactness centrality, intermediate centrality6, information
centrality7, feature vector centrality8, Gil Schmidt power index9 and Flow Between score10. Third, incorporating the
matrix-specific weight matrix.

In the CMF-W method, each matrix is modeled as the product of three factors:

X(m) ≈ U(rm)U(cm)
T

W(m) (9)

The first two items are consistent with the original CMF method, that is, the row and column entity representation of
the matrix, and the third item is the matrix specific weight matrix W(m). For two matrices with the same row and column
potential factors, W(m) can be different.

The latent factors (including W(m)) are learned by solving the optimization problem:
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where d is the Frobenius norm of the difference between X(m) and U(rm)U(cm)
T

W(m). For m×n matrix X(m) and latent
dimension k, the dimensions of U(rm), U(cm)

T
, W(m) are m× k, n× k, n×n, respectively.

CMF-W overcomes the issue that arises when several input matrices include the same entity type, the classic CMF
cannot learn the unique representation of each entity. Furthermore, the revised model can be directly utilized for input data
and derived features, minimizing the effort of feature engineering.

2 Graph neural network methods
2.1 DDGCN
Due to the extreme sparsity of known SL interactions, overfitting is a common issue when training on such a sparse
graph. While dropout is usually used to prevent overfitting, the effect of traditional dropout may be inadequate for SL
interaction prediction. To enhance the robustness of gene representation for SL prediction, Cai et al. proposed a more
effective and robust double dropout mechanism based on GCN, called DDGCN11. This model is composed of two paths
with shared parameters that model the dual forms of dropout, namely coarse-grained node dropout and fine-grained edge
dropout. The DDGCN model is designed to improve the accuracy of SL interaction prediction by enabling more robust
gene representation.

Coarse-grained node dropout is achieved by using the identity matrix I. Dropout is applied to the identity matrix, and
subsequently encode the first-layer representation of each gene using graph convolution:

H(1)
I = ReLU

(
Â
(

M(1)
I ⊙ I

)
W(1)

)
, (11)
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where ⊙ is the element-wise multiplication. M(1)
I ∈ Rn×n is the dropout mask in the first layer. W(1) ∈ Rn×d1 is a

trainable weight matrix for the first layer. Â = D− 1
2 ÃD− 1

2 is the normalized graph adjacency matrix following Kipt et al.12,
where Ã = A+ I, A is the adjacency matrix and D ∈ Rn×n is a diagonal matrix which the diagonal elements are defined as
dii = ∑

n
j=1 Ãi j.

Fine-grained edge dropout is achieved by using the adjacency matrix A, where the ith row or column of A corresponds
to the SL interactions between gene gi and others. Authors apply dropout to A as follows

H(1)
A = ReLU

(
Â
(
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)
W(1)

)
(12)
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where M(l)
A is the dropout mask in the lth layer.

An important aspect of this model is parameter sharing, which allows the GCN parameters M(l) in each layer to be
shared by the dual dropouts.

The DDGCN model generates two embedding matrices H(2)
I and H(2)

A through the two paths. To estimate the interaction
confidence of each gene pair (gi,g j), the following formula will be used:

ŷI(i, j) = Dec
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I

)
(14)
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)
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where Dec(·) is the inner-product decoder13 defined as

Dec(U) = σ

(
UU⊤

)
=

1
1+ exp

(
−UU⊤) (16)

Let yi j = 1, if (gi,g j) is a known SL interaction, otherwise yi j = 0. Thus, the overall loss function can be formulated as
follows:

L =
n

∑
i=1

n

∑
j=i+1

CE(yi j, ŷI(i, j))+α CE(yi j, ŷA(i, j)) , (17)

where CE is the cross entropy loss, α > 0 is a hyperparameter controlling the trade-off between the two paths. For the
final prediction, they use the geometric mean to aggregate the two prediction scores ŷI(i, j) and ŷA(i, j):

ŷ(i, j) = 1+α
√

ŷI(i, j)× ŷA(i, j)α (18)

2.2 MGE4SL
In order to tackle the sparsity of SL data, Lai et al.14 suggested a multi graph integrated network structure, and added
seven additional biological features by integrating other gene relational databases (such as GO, Corum, Reactome, etc.) to
improve the performance of SL prediction.

For each graph, a two-layer GCN is used to generate the embeddings of the nodes. The layers are formulated as follows:

H(1)
A = ReLU

(
ÂXW(1)+B

)
(19)

H(2)
A = ÂH(1)

A W(2)+B (20)

where the Â is defined in the same way as in the previous DDGCN.
Since the data from Corum were too sparse, the authors eventually used the other six graphs to obtain the multi-type

node embeddings separately, and then they separately tried summing, splicing, and using CNNs to fuse these features
and use them to predict SL interactions. Among these, concat method has better results. The author believes that this is
because concat method keeps more knowledge information, and a simpler fully connected network is more successful than
a complex CNN network.
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2.3 GCATSL
Long et al. proposed GCATSL15, which is a graph context attention network based on GAT16 that utilizes multiple
biological data sources to generate diverse feature maps as input. The authors introduced a dual attention mechanism,
operating at both the node and feature level, to capture the influence of local and global neighbors for learning gene
expression from different feature maps. The extracted features were aggregated with the original features using a multilayer
perceptron.

Local representations are obtained from the set of nodes that are directly connected to gene gi, which are defined as
its local neighbors. The authors introduce a node-level attention mechanism to learn the different levels of importance
of nodes in local representations. Specifically, for a given gene gi, the importance of its local neighbors is calculated as
follows:

el
i j (gi,g j) = f (W1hi,W1b j) , (21)

where el
i j is the attention score that indicates the importance of the neighbor g j to gi. f (·) denotes a single-layer

feed-forward neural network and W1 ∈ Rd1×d2 is a learnable weight matrix. And hi is come from the feature matrix
H ∈ Rn×d1 , which is the GO or PPI similarity score matrix obtained by dimensionality reduction using PCA.

In order to make the attention scores comparable across different nodes, a softmax function is applied to normalize the
scores across all local neighbors (note as N l

i ) of gene gi. The resulting normalized score is denoted as α l
i j.

Then, a new local representation hl
i for gi was derived by aggregating the representations of its local neighbors according

to their attention coefficients. However, the attention of an individual node may be unstable and may introduce noise in the
model. To address this issue and reduce the noise, the node attention is extended to multi-head attention by repeating the
node attention mechanism K times, and then concatenate the K learned representations into gene gi’s local representation
as follows:

hl
i =∥K

k=1 ReLU

 ∑
j∈N l

i

α
l
i j ·Wk

1b j

 (22)

where ∥ denotes the operation of vector concatenation.
Global representations are obtained from the global neighbors of gene gi. Global neighbors are defined as nodes that

are at least two hops away from a given node in the graph. Intuitively, global neighbors can provide valuable information
for modeling the center node. To this end, a random walk with restart (RWR)17 based attention mechanism was employed
to learn the node representations from the global neighbors.

After obtaining the global neighborhood of a node, similar to the local representations, the global representations of a
node hg

i can be obtained by the following equation:

hg
i =∥K

k=1 ReLU

 ∑
j∈N g

i

α
g
i j ·W

k
1b j

 (23)

To combine the representations more accurately, the bi-interaction aggregator is used, which encodes feature interactions
through two MLPs. The bi-interaction aggregator is formulated as follows:

zi = LeakyReLU
(

W2

(
hi +hl

i +hg
i

)
+b2

)
+LeakyReLU

(
W3

(
bi

∥∥∥hl
i

∥∥∥hg
i

)
+b3

)
, (24)

where W2 ∈ RKd2×d3 , W3 ∈ R3Kd2×d3 , b2 ∈ Rd3 and b3 ∈ Rd3 are trainable weight operation. zi is the feature-specific
representation of gene gi.

As different feature graphs contain distinct contextual information, a feature-level attention was implemented to
aggregate feature-specific representations. The attention score wk

i represents the importance of the kth feature graph to the
gene gi.

The final representation Zi for gi is:
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Zi =
T

∑
k=1

β
k
i · zk

i (25)

where T is the number of feature graphs, β k
i is the normalized attention score using the softmax function. zk

i is the
feature-specific representation of gi.

The final probability score matrix Q and reconstruction loss are:

Q = sigmoid
(
ZWdeZT ) (26)

LTotal = ∑
(i, j)∈Ω+∪Ω−

Φ(Qi j,Ai j)+ γ ∥ Wde ∥2
F (27)

where Wde is a learnable latent factor that projects representations back to original feature space for genes. Φ(·) is the
MSE loss. γ is weight factor that is used to control the impact of Wde.

2.4 SLMGAE
Hao et al. proposed a method for predicting SL interactions using Multi-view Graph Auto-Encoder, named SLMGAE18. In
this approach, the authors utilized graphs from diverse data sources(e.g. PPI, GO, etc.) as support views, and the SL graph
as the main view. They applied the GAE to reconstruct the graphs for different views and employed a two-layer GCN to
calculate the node embedding matrix Zm

2 and reconstruct graph Sm for the main view using the following equations:

Zm
1 = LeakyReLU

(
ÂFWm

1
)

(28)

Zm
2 = LeakyReLU

(
ÂZm

1 Wm
2
)

(29)

Sm = Zm
2 Wm

d ZmT
2 (30)

where the Â is defined in the same way as in the previous DDGCN. F is the initial feature matrix. Wm
1 and Wm

2 are the
weight matrices, and σ1 and σ2 are the activation functions in the first and second layers. Wm

d is a view specific trainable
matrix in the decoder.

Similarly, for each support view u, the node embedding matrix Zu
2 and reconstruct graph Su can be computed by

Zu
1 = LeakyReLU

(
ÂuFWu

1
)

(31)

Zu
2 = LeakyReLU

(
ÂuZu

1Wu
2
)

(32)

Su = Zu
2Wu

dZuT
2 (33)

Then the reconstruction loss LM for the main view and LS for the support views can be derived as follows

LM = Φ(A,Sm) (34)

LS = ∑
u

Φ(A,Su) (35)

where Φ is the MSE loss, and A is the adjacency matrix of SL graph.
In addition, because different data sources may play various roles in SL prediction, the author further designs an

edge-level attention mechanism to assign different weights to support views to merge all rebuilt graphs.
Based on the attention scheme, a weighted similarity matrix Wsupp can be derived as

Wsupp =
ns

∑
u

au ⊙Su (36)

where ⊙ is the element-wise multiplication and au is the normalized weight for the support view u.
And then, the final score matrix SP will be derived by combining the main view matrix Sm and the weighted score

matrix Wsupp from the support views as follows:
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SP = Sm + cWsupp (37)

where c is a hyper-parameter to control the contribution of Wsupp for final prediction.
Therefore, the final prediction loss LP is

LP = ∑
u

Φ
(
A,SP) (38)

Combine the reconstruction loss and prediction loss, the overall loss LTotal can be obtained as follows:

LTotal = LM +αLS +βLP (39)

where α and β are hyper-parameters, controlling the contributions from LS and LP, respectively.

2.5 PTGNN
Long et al. introduced a new Pre-Training Graph Neural Networks-based framework named PT-GNN19, which is utilized
to integrate different data sources of link prediction in biomedical networks. Protein sequences contain rich knowledge,
and CNNs are able to learn high-order protein features from their sequences for various applications. Following Lee et
al.20 and Nguyen et al.21, the authors adopt CNN to encode protein features from sequence data. In particular, they split a
protein sequence sp into a set of overlapping n-gram amino acid segments with r as the size of sliding window. Assume
that a n-gram amino acid segment is considered as a word, and each word is represented by a d1-dimension feature vector.
The feature vectors of all words are denoted by Fw ∈ RNw×d1 , where Nw denotes the number of all possible words in the
dataset, and each row of Fw is the feature vector of a possible word. The word feature matrix Fw is set as a trainable
parameter matrix, which is randomly initialized and can be updated in the pre-training phase for more accurately capturing
the intrinsic features of sequences.

Using a CNN-based sequence encoder, an initial feature matrix Xp ∈ RNw×d1 can be obtained. Subsequently, the
authors propose a GCN-based interaction graph encoder to learn protein representations with input graph Gp and initial
node feature Xp. For a node vi in Gp, the main purpose of the graph encoder is to learn its representation by iteratively
aggregating the representations of its neighbors. The ℓ-th layer of a GCN-based graph encoder is as follows:

H(ℓ)
p = ReLU

(
ÃpH(ℓ−1)

p W(ℓ−1)
2 +b(ℓ−1)

2

)
(40)

where Ãp is the normalized diagonal adjacency matrix with self-connection, H(ℓ−1)
p denotes the outputs of the model at

the (ℓ−1)-th layer, which H(0)
p is defined as the input feature matrix Xp. W(ℓ−1)

2 and b(ℓ−1)
2 are trainable weight matrix

and bias vector, respectively. After several GCN layers, the representations of proteins Hp ∈ RNp×d3 can be adopted, where
d3 denotes the dimension of the protein representations. Similarly, the representations of proteins Hg ∈ RNp×d3 from the
protein GO graph Gg can be obtained with node features Xp.

The prediction scores and loss functions of SL are as follows:

P = ReLU
(

HH⊤
)

(41)

L = ∑
(i, j)∈Ω+∪Ω−

Φ(P(i, j),A(i, j))+δ∥Θ∥2
F (42)

where P is the reconstructed score matrix where each element describes the interaction score for a node pair, H =
λHp+(1−λ )Hg is the final representations of proteins obtained from the GCN-based graph encoder, λ a tuning parameter
which controls the influence of the representations from different data, Θ is the parameter matrix of the pre-training model.
δ is weight factor that is used to control the influence of Θ, Φ(·) is the MSE loss.
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2.6 KG4SL
The knowledge graph (KG) integrates multi-source data through standardized semantics, and can support the mining and
analysis of complex associated data through the map reasoning ability. Therefore, Wang et al. proposed a GNN based
model, KG4SL22, which integrates the KG into the task of SL prediction. The model is basically formed of three sections.

Gene-specific weighted subgraph. Given an SL-related gene, a weighted subgraph from KG can be constructed.
Identifying relevant nodes and determining the weights are two key operations to construct the gene-specific weighted
subgraph. For gene g, N(g) denotes the set of neighbors of g, from which k neighbors are screened out and denoted as
P(g). In a gene-specific subgraph, different weights for edges can be assigned to describe the importance of the relations.
For an SL pair (gi,g j), the weight for an edge rg,g′ in gi’s subgraph is computed by ω

gi
g,g′ = g

(
g j,rg,g′

)
, where g is one

of the entities in the subgraph of gi, and g′ ∈ P(g). g j and rg,g′ are the feature embedding of gene g j and relation rg,g′ ,
respectively. g is an inner product function.

Aggregation of node representations. For any central entity e in the subgraph of gene gi, the representations of all its
picked neighbors were aggregated to update its own representation. To show the topological neighborhood structure of
entity e in the KG, the weighted average combination of e’s neighborhood is computed as follows:

eP(e) = ∑
e′∈P(e)

ω̃
ei
e,e′e′ (43)

where e is the representation of entity e, gene gi and gene g j are a pair in the SL matrix, and ω̃
ei
e,e =

exp(ω
ei
e,e)

∑ê∈P(e) exp
(

ω
ei
e,ê

) is

the normalized gene-relation score by applying a softmax function.
After obtaining the picked neighbors’ representation eP(e) of a central entity in one hop, similar to Wang et al.23, it

integrates the entity representation e in to a single vector to update e:

e[h+1] = φ
(
W

(
e[!h]+ eP(e)

)
+b

)
(44)

where W and b are the linear transformation weight and bias, respectively, and φ is an activation function. After
aggregating neighbors’ information through H hops, the final feature representation of gene ĝi is e[!h], ĝ j is obtained in the
same way.

SL prediction. Finally, the predicted interaction probability between gene gi and gene g j is calculated by ŝi, j =
φ ( f (ĝi, ĝ j)), where f is the inner product function and φ is a sigmoid function, squashing the output to a range between 0
and 1.

The base loss L is computed through cross-entropy of the truth label and the predicted label for the edges, represented
as follows:

L = max(ŝi, j,0)− ŝi, j × si, j + log
(
1+ exp

(
−
∣∣ŝi, j

∣∣)) (45)

where ŝi, j is the predicted label and si, j is the truth label for the edge.
With an L2-regulatizer, the final loss is defined as:

min
W,A,b

ℓ= min
W,A,b∑

i, j
J+α∥Γ∥ (46)

where ∥Γ∥= ∥e∥+∥r∥+∥W∥
2 , A is the trainable weight matrix in which each element represents the gene-relation score

and α is a balancing hyper-parameter.

2.7 PiLSL
Liu et al. proposed PiLSL24, a GNN model based on paired interactive learning, to learn the paired interactive representation
of two genes with SL interaction. The author claims that most of the current methods are to learn the expression of each
gene independently, ignoring the representation of the pairwise interaction between two genes. PiLSL consists of three
steps to learn the representations of pairwise interactions.

Pairwise enclosing graph extraction. There are abundant biomedical entities connected to the genes by various
relations in SynLethKG and there exists interaction information between two genes, authors focus on the local enclosing
graph of each gene pair to capture the gene-gene interaction information. For a given gene pair u and v, the enclosing graph
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is defined as Gen = {(u,r,v) | u,v ∈ Nk(u)∩Nk(v),r ∈ R}, where Nk(u) = {s | d(s,u)≤ k} and Nk(v) = {s | d(s,v)≤ k},
d(·, ·) denotes the shortest distance between two elements.

Attentive embedding propagation. To reduce the noisy information and extract biological meaning from the prediction,
attentive embedding propagation was adapted to discriminate the importance among the edges in the enclosing graph,
which consists of three components: message passing, relation-aware attention and message aggregation.

At the l-th layer, message passing used to combine the representations of the neighbors with the node u,

m(l)
Nu

=
NR

∑
r=1

∑
v∈Nr(u)

a(l)r(u,v)W
l
rh

(l−1)
v (47)

where NR is the total number of the relations in SynLethKG, Nr(u) denotes the set of directly connected neighbors
of node u under relation r, Wl

r is the weighted matrix to transform hidden representation in the l-th layer over relation r,
a(l)r(u,v) is the attention weight, controlling how much message being passed from v to u via relation r.

Then, the node representations are updated by node self-representation and message passing from its neighbors as
follows:

h(l)
u = ReLU

(
W(l)

self h(l−1)
u +m(l)

Nu

)
, (48)

where W(l)
self is the weight matrix of transforming the node self-representation, h(l) is the embeddings of all entities in

the layer l, h(0) were initialized by TransE.
Latent and explicit features fusion. Latent features consist of information at the node level and the graph level.

At the node level, the representation h(l) will be obtained by attentive embedding propagation. At the graph level, the
representation h(l)

Gen
can be got by the average of all node representations in the enclosing graph. The representation of h(l)

Gen
at layer l is:

h(l)
Gen

=
1
|V | ∑

i∈V

h(l)
i (49)

where V is the set of nodes in the enclosing graph Gen.
The final predicted interaction probability is p̂uv = Wpredhuv, where Wpred is the weight matrix of the decoder.
Two kinds of losses are used for optimization:

LCE =− 1
|τ| ∑

(u,v)∈τ

pw log p̂uv +(1− puv) log(1− p̂uv) (50)

LW = ∥Wall∥2
2 (51)

where τ is the sampled training set of gene pairs and puv denotes true label for the SL interaction, Wall denotes all
weight parameters.

The total loss is LTotal = LCE + λ

2 LW , where λ is the coefficient of LW .

2.8 NSF4SL
Because the prediction task of SL usually encounters the problem of lacking high-quality negative samples, inspired by the
negative-sample-free contrastive learning frameworks, Wang et al. proposed a new SL prediction model, NSF4SL25, which
gives priority to the positive samples. NSF4SL first extracts the feature augmentation view of each gene, and then inputs the
augmentation features and original features of two genes in the SL gene pair into two branches of the contrastive learning
framework respectively. First, they extract a feature-wise augmented view for each gene. Second, they feed augmented
features of the two genes in an SL pair into the online branch, and the original features of them into the target branch.
Third, they obtain the gene embeddings and maximize the similarity between them.

Feature-wise data augmentation is designed to address the sparsity of the training data. Given a gene training set
Gt , for a gene g ∈ Gt , they obtain the initial feature of g as xg = {x(1)g , · · ·x(d)g }, where xi

g denotes the ith element of xg,
and d denotes the dimension of the vector. Then, they select a random subset of xg and replace them by the respective
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feature-level average values. Specifically, in each iteration of training, they sample an augmented view Vg for each gene g
of length q,

Vg = u(xg), q = ⌊r ·d⌋, (52)

where u(·) is the uniformly sampling function, ⌊·⌋ is the floor function and r is the defined augmented ratio. Next, they
obtain the augmented representation x̃g for gene g as follows,

x̃(i)g =

{
x(i), if xi

g ∈ Vg

x(i)g , otherwise
(53)

where x(i) is mean of the ith element over the whole gene set Gt .
Negative-sample-free architecture is to avoid the negative sampling bias in the models for SL prediction. They

employ a non-symmetric two-branch network as the backbone model. Instead of classifying SL and non-SL pairs, this
network learns to recognize similarities between input SL pairs. The architecture relies on two parallel branches: they
contain an online encoder fθ and a target encoder fξ with the corresponding trained weights θ and ξ , respectively. fθ

and fξ share the same architecture but have different weights. One key design is the predictor pϕ following the online
encoder. As the target encoder is used to output the target SLs, pϕ uses the gene embeddings of the same SLs from the
online encoder to be close to them.

In the end of training, they adopt contrastive learning loss to maximize the similarity between the representations of
two genes in an SL pair. Let (gi,gj) be the features of an input pair of genes known to have SL relation with each other.
The online branch output are

go
i = pϕ ( fθ (g̃i)) and go

j = pϕ ( fθ (g̃ j)) , (54)

and the target branch output as

gt
i = fξ (gi) and gt

j = fξ (g j). (55)

They minimize the following objective function L to maximize the similarity between the representations of the two genes
from the two branches,

L =−1
2
(

h(go
i ,g

t
j)+h(go

j ,g
t
i)
)
, (56)

where h(·) is the inner product function between two representations.
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Table S1. List of classical machine learning methods for SL prediction.

Model & Ref. Year Description

Paladugu et al.26 2008 A SVM system that uses graph-theoretic properties of two proteins in a protein
interaction network as input features for prediction of synthetic sick/lethal interactions.

Pandey et al.27 2010 The author defines a large number of more comprehensive SL independent features,
and uses these features to develop a MNMC framework for predicting SL interaction.
The system can realize multiple classification processes at the same time.

MetaSL28 2014 The author proposed an ensemble method for predicting yeast SL, named MetaSL,
which integrates the output of 17 genomic and proteomic features and 10 classification
methods.

SL2MF1 2018 SL2MF uses logistic matrix factorization to learn gene representations, which are
then used to identify potential SL interactions. The authors design an importance
weighting scheme to distinguish known and unknown SL pairs and combine PPI and
GO information for the prediction.

GRSMF2 2019 GRSMF is a method based on graph regularized self-representation matrix factorization
(MF). It learns self-representation from known SL interactions and further integrates
GO information to predict potential SL interactions.

Yin et al.29 2019 The author developed a DT based method and used the features based on mutation and
copy number variation level to predict gene pairs with SL interaction.

DiscoverSL30 2019 This is a multi-parameter RF classifier, to predict and visualize synthetic lethality in
cancers using multi-omic cancer data.

Li et al.31 2019 Using the selected functional features obtained from GO and KEGG data, the author
proposed a method based on RF to predict SL gene pairs.

CMFW5 2020 CMFW is a collective matrix factorization-based method that integrates multiple
heterogeneous data sources for SL prediction.

SLant32 2019 This is an RF based method, which works by identifying and exploiting conserved
patterns in protein interaction network topology both within and across species.

Wu et al.33 2021 Multiple types of gene similarity measures are integrated and k-NN algorithm is applied
to achieve the similarity-based classification task between gene pairs.

De Kegel et al.34 2021 By analyzing the genome-wide CRISPR screening and the molecular map of cancer
cell lines, the author identified the shared PPI and evolutionary conservation features to
predict SL, and developed a classifier based on RF according to these features.

PARIS35 2021 PARIS is an RF based method, it predicts SL interactions by combining CRISPR
viability screens with genomics and transcriptomics data across hundreds of cancer cell
lines profiled within the Cancer Dependency Map.

SBSL36 2022 The authors introduced regularized logistic regression or RF into the selection
bias resistant synthetic lethality (SBSL) prediction for each gene pair molecularly
characterized from cell lines, cancer patient tissues and healthy donor tissue samples.
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Table S2. List of deep learning methods for SL prediction.

Model & Ref. Year Description

EXP2SL37 2020 A method based on semi-supervised neural network uses the cell-specific gene
expression profile data obtained in the L1000 project to provide features for predicting
human SL interaction.

DDGCN11 2020 DDGCN is the first graph neural network (GNN)-based method for SL prediction. It
uses graph convolutional network (GCN) and known SL interaction matrix as features.
The authors use coarse-grained node dropout and fine-grained edge dropout to address
the issue of overfitting of GCNs on sparse graphs.

GCATSL15 2021 GCATSL proposes a graph contextualized attention network to learn gene representa-
tions for SL prediction. The authors use data of GO and PPI to generate a set of feature
graphs as model inputs and introduce attention mechanisms at the node and feature
levels to capture the influence of neighbors and learn gene expression from different
feature graphs.

SLMGAE18 2021 SLMGAE is a method for predicting SL interactions by leveraging a multi-view graph
autoencoder. The authors incorporate data from PPI and GO as supporting views, while
utilizing the SL graph as the main view, and apply a graph autoencoder (GAE) to
reconstruct these views.

MGE4SL14 2021 MGE4SL is a method based on Multi-Graph Ensemble (MGE) to integrate biological
knowledge from PPI, GO, and Pathway. It combines the embeddings of features with
different neural networks.

KG4SL22 2021 KG4SL is a novel model based on graphical neural networks (GNN), and the first
method that utilizes knowledge graph (KG) for SL prediction. The integration of KG
helps the model obtain more information.

PiLSL24 2021 PiLSL is a graph neural network (GNN)-based method that predicts SL by learning the
representation of pairwise interaction between two genes.

PTGNN19 2021 PTGNN is a pre-training method based on graph neural networks that can integrate
various data sources and leverage the features obtained from graph-based reconstruction
tasks to initialize models for downstream link prediction tasks.

NSF4SL25 2022 NSF4SL is a contrastive learning-based model for SL prediction that eliminates the
need for negative samples. It frames the SL prediction task as a gene ranking problem
and utilizes two interacting neural network branches to learn representations of SL-
related genes, thereby capturing the characteristics of positive SL samples.

MAGCN38 2022 A multiple attention graph convolutional network for predicting synthetic lethality. The
authors used GCN to accumulate knowledge from topological structures and genetic
features obtained from PPI, GO, and constructed a multi-graph attention model to
learn the contributing factors of different graphs and aggregate these graphs to generate
embeddings.

MVGCN-iSL39 2023 A multi-view graph convolutional network (GCN) model to predict cancer cell-specific
SL gene pairs by integrating five biogram features and multi-omics data.

SLGNN40 2023 A GNN model that enables a better understanding of the underlying biological
mechanisms predicting SL, which models the preferences of genes with different
relationships in the knowledge graph, ultimately providing better interpretability.
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Figure S1. Result under CV1 and NSMRand

Figure S2. Result under CV2 and NSMRand
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Figure S3. Result under CV3 and NSMRand

Figure S4. Result under CV1 and NSMExp
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Figure S5. Result under CV2 and NSMExp

Figure S6. Result under CV3 and NSMExp
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Figure S7. Result under CV1 and NSMDep

Figure S8. Result under CV2 and NSMDep
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Figure S9. Result under CV3 and NSMDep

Figure S10. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the GRSMF
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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Figure S11. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the SL2MF
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.

Figure S12. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the CMFW
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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Figure S13. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the
SLMGAE model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and
(CV1, 1:50) scenarios, respectively.

Figure S14. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the NSF4SL
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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Figure S15. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the PTGNN
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.

Figure S16. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the PiLSL
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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Figure S17. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the KG4SL
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.

Figure S18. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the GCATSL
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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Figure S19. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the DDGCN
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.

Figure S20. Distribution of predicted score. A, B, C, D, E and F show the predicted score distributions of the MGE4SL
model in the training and testing sets under (CV1, 1:1), (CV2, 1:1), (CV3, 1:1), (CV1, 1:5), (CV1, 1:20), and (CV1, 1:50)
scenarios, respectively.
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