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Discussion 

1. Requirements for next-generation intelligent machines 

In the working process of intelligent machines, there are three core parts: perception, 

processing, and execution. Among these, perception is particularly important because it provides 

basic raw data. However, as intelligent machines venture into unknown environments, building an 

effective perception system for these unfamiliar external environments has become an urgent 

problem to solve. This is particularly important for machines designed for extreme adventures, 

where the detection accuracy of external damage signals significantly impacts the quality of services 

rendered and their overall lifespan (1–3). 

In unknown environments, intelligent machines often interact with the environment and objects 

that have unknown attributes and complex features. This necessitates the need for intelligent 

machines to possess comprehensive perception abilities, which refers to the ability to fully 

understand the main information in the environment, extract the key features, and preprocess it 

accordingly. The perception method should be scalable and generalizable, allowing intelligent 

machines to perceive and understand information in different modalities (including vision and touch) 

and adapt flexibly to unlearned or unexperienced scenarios or stimuli. When an intelligent machine 

lacks comprehensive perception ability, key features of the object can be lost during the perception 

process, resulting in poor interactions. For example, in robot grasping, if an unknown object has a 

smooth surface and is fragile, the lack of perception of the smooth surface characteristics may lead 

to an excessive force being applied during grasping, potentially damaging its structure. Therefore, 

it is crucial for intelligent machines to possess comprehensive perception abilities (4–6). 

Biology possesses this comprehensive perception ability to perceive the external world. During 

the process of biological perception, various sensory receptors (such as nociceptors, fast-adapting 

receptors, and slow-adapting receptors) work in synergy with neurons to extract key features from 

external stimuli and carry out corresponding preprocessing. For example, in tactile information 

perception, nociceptors help organisms recognize harmful stimuli such as mechanical stress and 

extreme temperatures, enabling them to swiftly initiate motor reflexes. Meanwhile, adapting 

receptors can adapt to milder stimuli and reduce computational load. This structure of the perception 

method is scalable, not only for tactile information but also for visual and auditory stimuli. By 

extracting features from raw sensory information and differentiating processing through distinct 

neural pathways, this method allows us to adapt to the external environment in a highly generalized 

manner rather than being limited to specific scenes or objects. 
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In conclusion, this highly efficient perception mechanism serves as a valuable reference for the 

advancement of future intelligent machines. We aspire to equip these intelligent machines with a 

comprehensive perceptual capability akin to that of living organisms, enabling them to better 

comprehend environmental information. 

 

2. The challenges of unstructured working environments and current research 

overview 

Considering the requisites outlined for contemporary robots in the previous discussion section 

1, it becomes evident that these requisites primarily arise from the development trend of intelligent 

machines. This trend extends from controlled laboratory and factory environments to include 

dynamic home and business environments, characterized by heightened unpredictability. These 

environments, often referred to as unstructured environments, present challenges to a robot's ability 

to perceive its surroundings. In this section, we start by exploring the definition of unstructured 

environments to gain a comprehensive overview of the attributes of working environments for future 

robotics. Subsequently, we will discuss the challenges posed by unstructured environments, 

focusing specifically on grasping and autonomous driving tasks. Furthermore, we review current 

research efforts aimed at addressing these challenges associated with unstructured environments. 

2.1 The definition of unstructured working environments 

Unstructured environments refer to environments that are not prearranged or modified to 

facilitate a robot's task execution. These environments consist of various objects and interaction 

scenarios where the robot lacks prior knowledge of object and environment properties. For instance, 

in robot grasping scenarios, traditional industrial robots operate in structured environments where 

they have prior knowledge of object properties (geometric shapes, masses, friction coefficients, etc.), 

whereas in unstructured environments, the contact properties of objects are completely unknown 

and highly variable, posing significant challenges for robots operating in such unpredictable 

surroundings (7, 8). 

2.2 Detailed challenges in grasping and autodriving 

In this section, we will discuss the impact of unstructured environments on two specific tasks: 

grasping and autodriving. 

2.2.1 Grasping 

In a structured environment, the robot possesses precise information about the position and 

shape of the object to be grasped, which can be described using a straightforward mathematical 

model. Consequently, the entire grasping task benefits from well-defined modeling assumptions, 
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enabling the robot to establish its grasping plan with precision. Nonetheless, in unstructured 

environments, the variety of objects to be grasped is extensive, and their contact properties remain 

unknown. As a result, there is no explicit mathematical model available, rendering precise grasping 

planning unfeasible in such unstructured settings. To address the uncertainties posed by unstructured 

environments during the grasping process, it is crucial to enable the robot to acquire and comprehend 

object properties. This perception needs to be robust, generalizable, and capable of sensing multiple 

properties of the object. Furthermore, it should assist the robot in adjusting its grasping strategy, 

including the mode and force control, based on the learned sensory information. This adaptive 

approach is essential for enhancing the robot's performance in unstructured environments (9–12). 

2.2.2 Autodriving 

In structured environments, the driving process benefits from prior knowledge, such as the 

expected appearance of objects and their corresponding motion trajectories. Additionally, structured 

environments are more deterministic and often characterized by explicit map and road information. 

Conversely, there is a lack of a priori knowledge and high levels of uncertainty in unstructured 

environments, which encompasses variables such as unknown obstacle locations and the erratic 

movement of dynamic obstacles. This complex and uncertain nature of unstructured environments 

demands a strong visual perception capability for autonomous driving. One crucial requirement is 

the swift detection and screening of dynamic obstacles and environmental information, which 

facilitates the system's decision-making process, ensuring driving safety and enhancing 

environmental understanding (13–15). 

2.3 The current research 

When external environmental information is dynamic and unstructured, perceiving and 

comprehensively understanding this information requires a significant amount of storage and 

computation. Conventional intelligent machines operate within the von Neumann separated storage 

and computation architecture, leading to transmission bottlenecks and processing delays. However, 

memristors, devices with the ability to simultaneously store and process information, are well-suited 

for real-time sensing and processing of unstructured information in unknown environments. This 

similarity opens up the possibility of achieving comprehensive perception ability in intelligent 

machines (16–18). This section will review the work on memristor-based environment perception 

in intelligent machines. 

The current memristor-based tactile perception method mainly focuses on imitating biological 

receptors, particularly nociceptors (19–21). Yoon et al. implemented a biological nociceptor with a 

thermoelectric module, a memristor, and a resistor in series with the memristor. The thermoelectric 

module acts as the external signal source, generating voltage pulses of different amplitudes 
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depending on external thermal stimuli (22). The conductance of the memristor changes with the 

voltage pulses, and the voltage characteristics observed from the resistor define key functions of the 

biological nociceptor, such as "threshold," "relaxation," "no adaptation," "sensitization," and "cure." 

Similarly, Kim et al. demonstrated a solid-state nociceptor based on a Pt/HfO2/TiN memristor with 

the functions of threshold, relaxation, allodynia, and hyperalgesia. In their design, a p-FET was 

considered to be the spinal cord, which amplifies the output signal of the nociceptor (23). However, 

a major limitation of these efforts is that they primarily focus on emulating individual biological 

receptors using a single memristor, which may result in the loss of key environmental features and 

limit the ability to achieve a comprehensive understanding of environmental information. 

In terms of visual perception systems, memristors can map external image information to its 

conductance. Similar to the tactile perception system, visual perception systems can be 

demonstrated by connecting light-sensitive devices to ordinary memristors. Light-sensitive devices 

convert optical signals to electrical signals, which can trigger the switching of memristors (24, 25). 

However, these works primarily focus on converting visual information, and there is still a gap in 

regard to enabling intelligent machines to comprehend the environment. In the field of 

neuromorphic computing (where devices are not limited to memristors), inspired by biological rod 

cells, Zhang et al. designed a neuromorphic moving object detection system (26). The system 

operates by comparing two frames of visual information to identify disparities. However, it is not 

well suited for real-world autonomous driving scenarios. Slow background changes can introduce 

noise interference when swiftly detecting and screening dynamic obstacles and environmental 

information. Das et al. imitated the biological lobula giant movement detector (LGMD) neuron to 

detect driving collisions with a blue light-emitting diode (LED) as the optical source (27). Through 

designing the programming stimulation, they realize a photoreceptor that can generate a similar 

escape response in LGMD neurons used to detect collisions. However, in real-world scenarios, the 

lighting environment is intricate, and there is a disparity exists between the actual environment and 

the hypothetical environment used for collision detection. 

In summary, intelligent machines still require a method that can equip them with 

comprehensive perception capabilities and enable them to exhibit high performance in real-world 

scenarios. 

 

3. Differential sensory processing in biology and its advantages. 

To address the current issues with memristor-based biological environmental information 

perception systems, we will first discuss the structural framework for processing unstructured 

environmental data in biological systems. Next, we will delve into the core perceptual mechanisms 
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involved and conduct a comparative analysis to elucidate the distinct advantages of the biological 

core perception mechanism (the sensory information differentiation and learning mechanism). 

3.1 The structure of biological sensory systems 

Biological sensory systems play a crucial role in gathering information from the surroundings 

and transmitting it to the central nervous system, enabling behavior and physiological responses 

(28–30). Commonly recognized systems include touch, vision, and hearing. These sensory systems 

consist of sensory neurons (sensory receptors), neural pathways, and parts of the brain involved in 

sensory perception. When exposed to external stimuli, receptors simultaneously encode and 

transform the stimuli into action potentials, which are then understood and processed differentially 

by the nervous system. After this conversion, the action potentials or signals are transmitted along 

dedicated neural pathways to the central nervous system. These pathways are composed of chains 

of neurons that relay information from one neuron to another, eventually reaching the appropriate 

regions of the brain for further processing. For example, visual information reaches the visual cortex, 

while auditory information targets the auditory cortex, and so on. Subsequently, the brain interprets 

and integrates the sensory input, allowing us to perceive and understand our environment. This 

interpretation of sensory information performed by the brain is defined as perception. 

3.2 Differential sensory processing in the sensory system 

The sensory information differentiation processing and learning mechanism is the most 

important processing mechanism for the biological perception of unstructured environmental 

information (31–35). This differentiation is reflected in two aspects, the encoding of external sensory 

stimuli by receptor neurons and the processing and learning of the encoded information by neural 

pathways. The encoding mainly refers to the specificity of the receptor neuron in response to the 

same stimulus; for example, the nociceptive receptor only responds to the dangerous stimulus 

specifically. This process of differential response is essentially the extraction of features from the 

current stimulus. During this perception process, organisms utilize the differentiation of sensory 

neural responses to encode different features and perceive the multidimensional features of the 

external stimulus. Subsequently, the encoded neural pulses are processed by different subsequent 

neural pathways, which typically have different structures and synaptic connection weights, 

representing subsequent differential processing and learning functions (36–39). 

3.3 The differential sensory process model 

From the onset of external stimulus action to encoding into neural impulses, the model can be 

classified into two stages. The first stage can be envisioned as a filter stage, where the sensory 

stimulus is filtered based on the feature selectivity of a given neuron. The second stage serves as an 
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input-output stage, transforming the filtered stimulus input into a firing rate output. Different 

receptor neurons initially exhibit variability in feature selection, manifested by their ability to extract 

various features from the same stimulus. Subsequently, they encode the input feature information 

into neural impulses based on these features. The encoding process also displays variability, 

primarily influenced by the properties of the receptor neurons themselves. Ultimately, the neural 

pathways will process these encoding stimuli differentially. 

3.4 Advantages 

This differential processing and learning mechanism enables organisms to perceive multiple 

features of external stimuli in unstructured environments and perform different processing functions 

accordingly, thus allowing them to clearly understand unknown environments. For example, in 

tactile perception, multiple afferents with different response characteristics are utilized to actively 

perceive environmental features, including the shape, the material and the roughness of contacting 

objects, providing information to support our subsequent decision-making. Similarly, in visual 

perception, our visual afferents exhibit frequency differentiation for processing visual information, 

aiding in the filtration of rapidly changing objects. 

 

4. Mathematical proof of the advantages of differential neuromorphic computing 

For the local system of a single memristor, it is assumed that the external input is , the 

conductance of the memristor is , and the output is . The input and output relationship can be 

expressed as: 

 

where  is the linearization of the  function as  and ,  

the error after  is linearized.  

Suppose that , and the function  has a first-order differential and a second-

order differential; we obtain 

 

where . Generally, the  function is a linear operation or a 
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where  is the current passing through the memristor and  is the relationship between the 

memristor conductance change and current. Generally, the current is relevant to current stimuli, thus 

there is a functional relationship  between  and . 

When , ,  and  are fixed,  is also determined. When the system adopts 

differential encoding, the function  is not fixed but is related to the characteristics of the external 

input at this time to realize various differentiation functions. 

 

5. Differential modulation schemes for memristors 

The implementation of a differential process and learning model for living beings can be 

conceptually divided into two computational phases. The first phase involves feature extraction and 

the encoding of sensory information, while the second phase is the differential processing of the 

feature information based on the memristors. 

In the initial phase, the output signal from the sensor may manifest as either analog or digital. 

For analog sensor signals, feature extraction can be executed with analog/digital circuits, including 

the utilization of an analog filter to isolate high-frequency information from the current sensor or 

first employing an analog-to-digital converter for quantizing sensory data and then performing 

certain feature extraction operations. It is important to note that the use of analog circuits for feature 

extraction ensures real-time processing but may introduce potential signal transmission disturbances. 

In contrast, digital circuits offer performance characteristics opposite to those mentioned above. 

Next, for processing the feature information extracted based on memristors, it becomes imperative 

to encode this information into analog signals. If the feature information is already analog, some 

preprocessing steps (such as amplification or limiting) can be performed to prepare the encoded 

signal for processing by memristors in the second stage. However, if the feature information is 

originally in digital format, it is essential to convert it into analog signals before subjecting it to the 

signal processing steps outlined earlier. 

The second stage involves the differential processing of feature information using memristors. 

This stage resembles the attainment of computational functions through the memristor's intrinsic 

ability to alter its resistance value in response to differential stimulus encoding. The distinctiveness 

of this processing function becomes more pronounced when the nature of the stimulus varies 

according to feature encoding. For instance, in the context of processing tactile information, stimuli 

associated with dangerous features are encoded as positive voltage pulses, while those related to 

mild features are encoded as negative voltage pulses. In the case of stimuli corresponding to the 

dangerous features, the memristor's conductance increases, whereas it decreases for stimuli 

0 0 0 0( , ) ( , ) ( )x Gdy h s G ds h s G m s= +

I Z

m s dG

s G ds m dy

m
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associated with mild features. Furthermore, given the memristor's role as a synaptic weight in 

transmitting sensory information, it possesses the capability to amplify dangerous stimuli and adjust 

to mild ones. This capacity enables the differential processing of information. 

The sensory information differentiation learning mechanism is the most important processing 

mechanism for the biological perception of unstructured environmental information, which can be 

reflected in two parts: the encoding of external sensory stimuli by receptor neurons and the 

processing and learning of the encoded information by neural pathways. First, diverse receptor 

neurons generate specialized encodings when perceiving the stimulus. For example, the nociceptive 

receptor encodes the injury stimulus specifically while the adaptive receptor encodes the mild 

stimuli. This process of differential encoding is essentially the extraction of different features from 

the current stimulus. During this perception process, organisms utilize the differentiation of sensory 

neurons' responses to encode the different features, perceiving the multidimensional features of the 

external stimulus. Second, the encoded neural impulses are processed by different subsequent neural 

pathways, which typically have different structures and synaptic connection weights, enabling 

differential processing and learning functions. 

 

6. Learning of external sensory information 

The synapse-like characteristics of memristors offer intriguing possibilities for learning from 

external sensory information. In this perceptual approach, we encode environmental feature 

information as voltage stimuli, leading to changes in memristor resistance. Each specific state of the 

memristor represents the acquisition of distinct feature information. In our demonstration of tactile 

information perception, the memristor resistance adjusts according to the real-time attributes of the 

current external tactile stimulus. The memristor's state information at each moment reflects the 

cumulative effect of past stimulus history. For instance, a low memristor resistance value indicates 

that the robot has encountered potentially dangerous stimuli for an extended period, serving as a 

basis for the robot to trigger a pain reflex. This continuous learning capability enhances the robot's 

autonomy, particularly in unfamiliar environments (43). 

Similarly, in the realm of visual information processing, high-frequency visual data are 

encoded as positive voltage pulse stimuli, with pulse amplitude escalating in proportion to the 

degree of variation. Consequently, memristors with lower resistance values exhibit heightened 

sensitivity to high-frequency changes in light intensity within a given region. This heightened 

responsiveness is of paramount significance for real-time decision-making, particularly in 

autonomous driving scenarios. In conjunction with the extraction of environmental feature 

information, memristors can proficiently acquire a multifaceted understanding of the surroundings, 
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making them exceptionally well suited for intelligent machines functioning in unstructured 

environments. 

 

7. Biological tactile sensory system implementation based on memristors 

Within living organisms, multiple receptors play a pivotal role in detecting external tactile 

stimuli, resulting in intricate and nuanced tactile perception. In this section, we elucidate how 

organisms differentially process and acquire tactile information and demonstrate how our 

methodology can be applied to attain biomimetic perception. 

7.1 Biological differential processing and learning 

Differential processing of tactile stimuli in organisms primarily encompasses two crucial 

functions: amplification of dangerous stimuli and adaptation to mild stimuli. The former is achieved 

through the engagement of nociceptors and their corresponding neural pathways, while the latter is 

orchestrated by fast-adapting and slow-adapting receptors, along with their respective neural 

pathways. 

Nociceptors are the receptors responsible for sensing potentially dangerous sensory stimuli in 

living organisms (44–47). Through the subsequent neural pathways, they perform crucial functions, 

including ‘threshold’, ‘no adaptation’, ‘sensitization’ and ‘relaxation’. The “threshold” refers to the 

condition where the nociceptor responds only when external tactile stimuli reach a certain threshold, 

typically possessing dangerous characteristics. ‘No adaptation’ means that the nociceptor 

consistently increases its response intensity to strong stimuli as it learns and assimilates the 

environmental danger information. ‘Sensitization’ signifies that after perceiving certain dangerous 

stimuli, the nociceptor enters a sensitized state, further intensifying its response to dangerous stimuli. 

The ‘relaxation’ indicates that when external dangerous stimuli are removed, the nociceptor returns 

to its normal state, reducing the level of sensitivity amplification to external stimuli back to its initial 

value. Based on these nociceptor functions, organisms can swiftly detect dangerous stimuli, 

ensuring their safety. These functions are necessary for intelligent machines operating in unknown 

environments. 

In contrast, rapidly adapting receptors and slowly adapting receptors, along with their 

subsequent neural pathways, adapt to external stimuli by gradually reducing their response levels 

(48–50). These receptors are the key components in achieving sensory adaptation, a function 

primarily referring to the adaptation to mild external stimuli, which involves learning environmental 

information related to mild stimuli and continuously reducing their response intensity to such stimuli. 

Rapidly adapting receptors adapt to stimuli swiftly, whereas slowly adapting receptors do so at a 

more gradual pace. This perceptual mechanism aids in lightening the processing burden on the 
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central nervous system and enables the prompt detection of changes in stimuli. For instance, when 

the intensity of a mild stimulus undergoes a sudden alteration, it becomes more noticeable due to 

prior adaptation processing. Therefore, sensory adaptation also holds significant relevance in 

scenarios such as stable grasping in robotics. 

7.2 Implementation based on memristors 

In the perception of external tactile information, we utilize the current pressure magnitude as 

the stimulus input, considering the memristor as a synapse. The tactile response strength is 

determined by multiplying the stimulus input by the current relative conductance value of the 

memristor. The implementation of nociception and sensory adaptation is as follows: 

For the processing of hazardous stimuli, we first evaluate whether the magnitude of the current 

pressure matches the criteria for dangerous features. Only when the current pressure surpasses a 

predefined threshold does the encoding unit generate positive voltage pulses, increasing the 

memristor's conductance. This corresponds to the ‘threshold’ function of biological nociceptors, as 

demonstrated in the following formula: 

  for ,  

  otherwise 

where  represents the voltage stimuli applied to the memristor, and only if the pressure 

stimulus meets the hazard characteristics  is a voltage pulse with amplitude  and duration 

from  to  is generated. For continuous hazardous stimuli, the memristor's conductance 

gradually increases under sustained positive voltage stimuli, achieving ‘no adaptation’ to dangerous 

stimuli. The process can be represented as follows: 

  

where  represents the memristor state. Under voltage pulses, the increase in the conductance of 

the memristor realizes the ‘no adaptation’ processing of the stimulus. Furthermore, to realize the 

‘sensitization’ function, we draw inspiration from biology, where information from different time 

scales is simultaneously considered during processing. When the stimulus matches hazardous 

features and the memristor's conductance has already exceeded a certain threshold, it can be inferred 

that the robot has received hazardous stimulus information for a certain duration. At this point, we 

increase the amplitude of the positive voltage stimuli to further amplify the response to hazardous 

stimuli. When external stimuli are removed or no longer meet the hazardous criteria, the encoding 

unit re-encodes. Upon stimulus removal, the encoding unit generates recovery pulses, restoring the 

memristor to its initial resistance, achieving the ‘recovery’ function. 

The processing of mild stimuli follows a similar procedure to that of hazardous stimuli. First, 

we extract and analyze the characteristics of external stimuli. When the tactile stimulus meets the 
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mild criteria (the force magnitude falls within a certain range), the encoding unit generates negative 

voltage pulses, reducing the memristor's conductance. When a mild stimulus remains stable within 

a range, the memristor’s conductance continuously decreases, achieving adaptation to mild stimuli. 

This differentiation processing method allows us to adjust the adaptation speed by modifying the 

features of the encoding pulses based on mild characteristics, thereby emulating both rapidly 

adapting and slowly adapting receptors. When the force is removed or no longer meets the criteria 

for a mild stimulus, the encoding unit re-encodes. Upon stimulus removal, the memristor is reset to 

its initial setpoint resistance. 

This differentiation processing method showcases multifunctional processing potential. In 

addition to the aforementioned biomimetic functions, we have also implemented normal perception 

functionality, which maintains the memristor resistance at a stable level i.e., it neither amplifies nor 

adapts to external stimuli. It is evident that this method holds great potential in processing 

unstructured tactile information. By further designing feature extraction logic and corresponding 

pulse encoding, robots can acquire multidimensional tactile sensing capabilities and improve their 

understanding of environmental information. 

 

8. Biological visual sensory system and implementation based on memristors 

The biological visual system consists of sensory organs (eyes) and parts of the central nervous 

system (sensory cells, optic nerves, optic tracts, and visual cortex). Through their coordinated efforts, 

living organisms are able to detect and interpret visual information. In this section, we will provide 

a detailed description of how biology processes and learns visual information, as well as the 

implementation of it on memristors we have achieved. 

8.1 Biological differential processing and learning 

In the process of human visual information perception, incoming light enters the eye and passes 

through a compound lens composed of the cornea and crystalline lens before being projected onto 

the retina. In the retina, two types of photoreceptor cells are involved in vision: rod cells and cone 

cells (51–53). These two classes of cells further transmit information to bipolar cells and ganglion 

cells, ultimately relaying it to the visual cortex, where visual perception occurs. Rod cells and cone 

cells exhibit distinct differentiation in their processing of light information. They differ in their 

sensitivity to light, with rod cells being highly sensitive to light and capable of functioning in dim 

lighting conditions, while cone cells are less light-sensitive and work in bright lighting conditions. 

Additionally, the time course of a light response is different between rods and cones: rods exhibit a 

sustained response to a flash of light, while cones show a brief response. This difference in response 

time affects the temporal resolution of rods and cones: cones are more effective than rods at 
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detecting high-frequency light flickering and are likely better suited for perceiving quickly moving 

objects. This differential processing and learning of light frequency information is crucial for 

detecting rapid changes in light intensity and distinguishing them from slower changes. In 

autonomous driving scenarios, the differential processing of light frequency information is also 

crucial for making timely driving decisions, leading the driver to respond appropriately. 

8.2 Implementation based on memristors 

In the proposed method, we initially use analog filters to extract changes in light intensity and 

generate corresponding encoding stimuli based on high-frequency and low-frequency 

characteristics. High-frequency light intensity information is crucial for real-time decision-making, 

whereas low-frequency information typically corresponds to slowly moving or stationary objects. 

To differentiate and learn the frequency features of visual information, we encode high-frequency 

information as positive voltage pulses and low-frequency information as negative pulses, causing 

corresponding changes in the memristor's resistance value. The stimuli encoded based on frequency 

can be represented by the following formula: 

   

   
where  is the frequency information of the light intensity,  and  represent high-

frequency and low-frequency change features, respectively, and the remaining parameters are 

constant coefficients. When the memristor exhibits a low-resistance state, it has effectively learned 

to detect high-frequency stimuli from the external environment. Consequently, executing 

emergency obstacle avoidance control in such circumstances is a reasonable course of action. 

Conversely, when the memristor is in a high-resistance state, it suggests that the changes in light 

intensity within that area have been gradual or slow. 

 

9. The multisensory scalability of this differential perception method 

By mimicking the intrinsic nature of human low-level perception mechanisms in electronic 

memristive neural circuits, the proposed differential perception method has the potential to process 

multimodal sensory information. In this discussion, we will discuss the principles of this method 

for processing multisensory information and its potential applications. 

9.1 The principles of processing multisensory information 

Expanding the perception method from single-sensory to multisensory information involves 

adjusting the front-end sensors to accommodate different types of physical stimuli. After obtaining 

the raw perceptual information through sensors, feature extraction and differentiation processing 

can still be applied to this sensory information, regardless of the original nature of the physical 

( ) 0lightv t m f b= ´ + > light highf fÌ

( ) 0lightv t n f c= ´ + < light lowf fÌ

lightf highf lowf
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stimuli. This scalability in perception is rooted in the fact that differentiation processing is a 

fundamental sensory mechanism in biology, existing across multiple senses and capable of handling 

stimuli with varying properties and quantities. In our proposed method, when the nature of external 

stimuli changes and the corresponding sensors are replaced, some modules can be fine-tuned, such 

as adjusting the voltage pulse amplitude generated by the encoding module, but the overall 

perceptual structure remains unchanged. 

9.2 Outlook 

Leveraging the scalability of our proposed perception method, intelligent machines can attain 

comprehensive perception abilities across diverse sensory inputs. When combined with various 

sensors, these intelligent machines can better comprehend environmental information through 

senses including touch, vision, and hearing, among others. Such perceptual and learning capabilities 

empower intelligent machines to excel in unknown environments by learning various environmental 

object features, addressing critical issues such as path planning, object recognition and grasping. 

Moreover, with the power of differential neuromorphic computing, intelligent machines can acquire 

human-like sensory abilities, allowing them to interact more naturally with humans. This includes 

perceiving and conveying information through speech, gestures, facial expressions, and sound, 

resulting in a better understanding and responsiveness to human needs. Furthermore, as intelligent 

machines continue to evolve, they will exhibit creative capabilities. Art and creativity frequently 

hinge on the ability to perceive the world and grasp its intricacies. When robots possess 

comprehensive perception abilities across multiple senses, including visual, auditory, tactile, 

olfactory, and gustatory information, they gain access to a wealth of input data, which becomes 

instrumental in observing and understanding the surrounding environment, human behaviors, and 

emotions. As a result, robots have access to a wider range of materials and background information 

to fuel their artistic and creative endeavors. Finally, intelligent machines hold the potential to surpass 

human capabilities. Combined with the Turing machine, intelligent machines not only possess 

efficient and sophisticated sensory capabilities akin to humans but can also quantitatively process 

sensory information to achieve virtually any computational functions, thereby surpassing the 

limitations of human abilities. 
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Supplementary Figures  

Fig S1. The structure and properties of the piezoresistive film. 
 

 
Fig S1. The structure and properties of the piezoresistive film. The specific structure of the device 
consists of the following layers: a protective layer of thermoplastic polyurethane elastomer rubber 
(TPU), a layer of conductive silver paste, a layer of pressure-sensitive material, and another layer 
of conductive silver paste, all enclosed between TPU protective layers. When external pressure is 
applied, the conductive silver paste makes contact with the pressure-sensitive material, enhancing 
conductivity and reducing the resistance of the device. Each point within the device can achieve a 
minimum resistance value of 10 kΩ, which increases to over 300 kΩ when no force is applied. In 
terms of performance, the piezoresistive film offers a wide range of force measurement capabilities, 
spanning from 0 to 6 N. The pressure characteristic curve exhibits a high degree of fitting. Specific 
fitting results can be observed in the figure. 
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Fig S2. The switching mechanisms of the self-directed channel (SDC) memristor. 

 
Fig S2. The switching mechanisms of the self-directed channel (SDC) memristor. Following 
fabrication, SDC devices start in a high-resistance state ranging from MΩ–GΩ. Upon first use of 
the device, the positive voltage applied to the top electrode can trigger the creation of the self-
directed conductive channel in the SDC device. During this initial operation, Sn ions are generated 
from the SnSe layer and incorporated into the active Ge2Se3 layer. Theory suggests that these Sn 
ions promote the replacement of Ge by Ag at Ge-Ge bond sites in the active layer. 

After Sn ions from the SnSe layer are incorporated into the Ge2Se3 layer, pairs of self-trapped 
electrons are produced within the Ge2Se3 layer. This process facilitates the replacement of Ge by Ag 
at the Ge-Ge bonds, creating "openings" near these bonds. These open regions serve as conduits for 
Ag+ ions, allowing them to access the Ag-Ge sites and become natural "conductive channels" within 
the active layer during device operation. 

The self-directed channel follows with the position of the initial Ge-Ge dimers in the glass, 
influenced by its inherent structure. Due to the tendency of Ag atoms to agglomerate, these specific 
sites can foster Ag accumulation within the glass. This accumulation results in varied Ag 
concentrations at these clustering points. Consequently, the device's resistance is primarily decided 
by the Ag concentration at a given site and the distance between agglomeration sites. By applying 
positive or negative potentials across the device, Ag can be moved onto or away from these 
agglomeration sites, allowing the resistance to be tuned in both lower and higher directions. 
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Fig S3. The control circuit for the memristor. 

 

Fig S3. The control circuit for the memristor, based on the operational amplifier, is responsible for 
regulating the memristor state and providing feedback on its current state. The input terminal 
receives the encoded voltage from the signal generation module. By utilizing the negative feedback 
connection of the backend operational amplifier, the potential of the memristor bottom electrode is 
maintained at approximately 0 volts (virtual ground). This ensures that the voltage stimulus 
generated by the signal encoding remains undistorted and fully applies to both ends of the memristor, 
resulting in the modulation of the memristor. Moreover, the output voltage of the circuit allows for 
the feedback of the memristor state representing the long-term characteristics of the sensory stimuli. 
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Fig S4. The main system structure. 

 
Fig S4. The main structure in tactile differentiation processing. The system is composed of several 
main components. The FPGA serves as the primary controller, with Intel's E4CE10F17C8 chosen 
as the FPGA main control chip. The external crystal oscillator operates at a frequency of 50 MHz. 
The front-end sensing module consists of a DAC, ADC, and piezoresistive film. The DAC is 
responsible for implementing neural coding to achieve differentiation encoding. The ADC, along 
with the memristor process circuit, forms the memristor neuromorphic processing module. To 
facilitate communication, the CY7C68013A chip works in conjunction with the PC host computer, 
enabling USB communication within the system. This setup enables the transmission of current 
perception information and the state information of the memristor's resistance value. 
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Fig S5. The system control schemes. 

 
Fig S5. The control schemes in tactile differentiation processing. The system initiates by entering 
the initialization phase, where it performs an initial power-on reset on the device. Afterward, the 
system proceeds to the normal working cycle. Within each working cycle, the system first employs 
a digital-to-analog converter (DA) and an analog-to-digital converter (AD) to detect the resistance 
value of the piezoresistive film. It then waits for the system analog switch to activate after detection. 
Subsequently, it detects the resistance value of the memristor through the memristor read and write 
control circuit. Once both detections are completed, according to the differentiation logic, the DA 
circuits generate the corresponding differentiation voltage. This voltage is then used to modulate the 
resistance value of the memristor, achieving the differentiation calculation of pressure information. 
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Fig S6. The system background noise test. 

 
Fig S6. The system background noise test. (a) Measurement results of the fixed-value resistor. The 
memristor resistance device was substituted with a fixed-value resistor of varying values for testing 
purposes. By comparing the measured values with the actual values, it was observed that the overall 
system noise is relatively low. However, when testing a resistor with a high resistance value, it was 
found that the signal can be subject to fluctuations when exposed to noise. (b) The average value of 
the measured resistor. (c) The standard deviation of the measured resistor.  
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Fig S7. The different modulation types. 

 
Fig S7. The memristor different modulation types. (a) In tactile information differential processing, 
there are three modulation modes: adaptation, nociception, and recovery. The amplitude of the 
modulation pulse of the adaptation type is negative, increasing the memristor resistance. In contrast, 
the amplitude of the nociception type is positive, decreasing the memristor resistance. The recovery 
pulse is responsible for resetting the memristor to the initial resistance interval; it is a negative pulse 
if the current state is low-resistance, a positive pulse if the current state is high-resistance, or no 
pulse is applied if it is already in the set interval. (b) The adaptation modulation pulse. (c) The 
nociception modulation pulse. (d) The recovery modulation pulse. 
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Fig S8. Tactile stimuli differential processing by biological receptors. 

 
Fig S8. Differential processing of tactile stimuli by biological afferents. Two types, termed fast-
adapting type Ⅰ (FA-Ⅰ) and fast-adapting type Ⅱ (FA-Ⅱ) afferents, respond only during dynamic 
phases of tissue deformation caused by tactile stimuli. Another two types, termed slowly adapting 
type Ⅰ (SA-Ⅰ) and slowly adapting type Ⅱ (SA-Ⅱ) afferents, respond to sustained skin deformation 
with graded sustained discharge. In addition, the nociceptor produces a sustained response to 
dangerous stimuli with increased intensity. 
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Fig S9. Other differential process functions. 

 

Fig S9. Other differential process functions. During actual tactile perception, there are scenarios 
where there is no need to amplify or adapt to external tactile stimuli. For instance, when there is no 
external tactile stimulus present (as depicted in Figure S9 b), modulating the memristor would result 
in unnecessary energy consumption. Similarly, in another case, when the external pressure has a 
specific intensity but does not require amplification and the system is desired to accurately perceive 
its real intensity, there is no need to modulate the resistance value of the memristor. This corresponds 
to the normal process function depicted in Figure S9 a. 
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Fig S10. Processing functions in dynamic scenarios. 
 

 
Fig S10. Processing functions in dynamic scenarios. In some dynamic scenarios, the features of the 
environmental information may change, and our proposed method is also capable of handling such 
dynamic information. As shown in Figure S10, when a dangerous stimulus is quickly withdrawn 
and then quickly applied again, the memristor resistance value has not yet reset completely. Thus, 
the memristor can achieve faster amplification of the external stimulus than that of the first stimulus, 
which demonstrates the function of ‘secondary nociception’. 
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Fig S11. Control logic for pain reflex and slip detection. 

 
Fig S11. Control logic for pain reflex and slip detection. (a) The control logic for pain reflex. When 
working in unknown environments, robots need to have the ability to detect dangerous stimuli and 
provide a timely response. In such situations, the memristor is modulated to the low-resistance state 
under the positive pulses generated by the encoding module. When the memristor is less than a set 
threshold, it can be assumed that the robot has been subjected to dangerous stimuli for a period of 
time, and the pain reflex can be executed to protect the robot itself. (b) The control logic for slip 
detection. Once the robot has grasped the object to achieve stabilization, the slipping of the object 
primarily results from external interference. Thus, the memristor resistance will increase at first and 
decrease at the moment the object falls. The peak point of the memristor resistance will indicate the 
slipping of the object. 
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Fig S12. A memristor model used in visual information processing. 

 
Fig S12. The voltage threshold adaptive memristor (VTEAM) model used in visual information 
processing. (a) The hysteresis curve of the memristor model. In this simulation, the tested sine wave 
has a peak-to-peak value of 1 V, and its frequency is 20 Hz. (b) The pulse test result of the memristor 
model. In this simulation, the amplitude of the pulse is 0.2 V, with a 0.1 s duration. 
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Fig S13. The circuit design of visual differential process system. 

 
Fig S13. Circuit Design of the Visual Differential Process System. In this simulation, the external 
visual stimuli captured by the CMOS in-vehicle camera are utilized as the input signal for the system 
in the form of analog voltage signals. The visual information between two frames undergoes linear 
changes at a fixed time interval. Subsequently, the changes in visual information are extracted using 
filters. The extracted information is then differential into various voltage stimuli through the analog 
operation circuit. Finally, the differential voltage is applied to the memristor using the read and write 
control circuit. 
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Fig S14. Noise Testing of Vision Circuits. 

 
Fig S14. Noise Testing of Vision Circuits. To assess the noise levels in the vision circuits, we 
conducted a noise test. Assuming the external analog visual signal input is noise-free, we calculated 
the total noise that accumulates in the input voltage applied to the memristor read-write circuit. 
Through our calculations, we determined that the circuit noise level is approximately 200 pV. 
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Fig S15. The Influence of threshold selection on differentiation processing. 

 
Fig S15. The influence of threshold selection in differentiation processing. In visual differentiation 
processing, the choice of threshold is pivotal in defining the properties of visual information. A 
positive voltage modulation scheme is generated only when the change frequency surpasses the 
threshold, leading the memristor into a low-resistance state. This signifies the presence of crucial 
object information during driving scenarios. As depicted in the accompanying figure, a higher 
selected threshold results in a smaller extracted area. However, the extracted information becomes 
more critical and pertinent. Concurrently, the duration of neural excitation is reduced with a high 
selected threshold. This is because a larger recovery negative voltage is more readily generated in 
this context. 
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Fig S16. The Impact of object distance on system detection performance. 

 
Fig S16. The impact of object distance on detection performance. The distance of objects within a 
compressed image influences their apparent size. Specifically, objects that are closer to the driver 
occupy a larger area in the image. As a result, nearby objects yield a larger extracted area than those 
that are distant, as demonstrated in Scene 1 and Scene 2. Moreover, an object moving at a constant 
speed becomes more detectable when it is closer, as illustrated by the comparison between Scene 3 
and Scene 4. 
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Fig S17. Detection of road markings. 

 
Fig S17. Detection of road markings. (a) Actual driving scenarios in the detection of road markings. 
While the road marking line itself remains stationary, the motion of a car induces relative movement, 
leading to variations in light intensity. This phenomenon enables the detection of the road marking 
line. (b) The detection results. (c) The light intensity change and its corresponding differential 
voltage and memristor state. 
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Fig S18. Detection of light sources. 

 
Fig S18. Detection of light sources. (a) Example scenario in the detection of light sources. When 
the tail lights of a car in the foreground abruptly illuminate or extinguish, a high-frequency change 
in light intensity ensues. This induces modulation of the memristor into a low-resistance state. (b) 
The detection results. (c) The light intensity change and its corresponding differential voltage and 
memristor state. 
  



 35 

Fig S19. Analysis of detection performance for moving individuals. 

 

Fig S19. Analysis of detection performance for moving individuals. In the detection of a moving 
pedestrian, the performance is mainly affected by the position and speed of the pedestrian. 
Pedestrians are more likely to be detected when they are in close proximity and moving fast. 
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Fig S20. Detection for extremely hazardous scenarios. 

 
Fig S20. Detection for extremely hazardous scenarios. In certain driving scenarios characterized by 
abrupt fluctuations in ambient light intensity, depicted in (a) through (i), a significant majority of 
memristors in the detection results exhibit a low-resistance state. This phenomenon of pervasive 
low-resistance states can be utilized to characterize challenging driving environments. 
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Fig S21. The detailed detection results in unstructured environments. 

 
Fig S21. The extended results of Figure 5. In these extended results, more moments are used to 
reflect the changes in the scene as well as the detection results. 
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Fig S22. Processing of temperature sensing information. 

 

Fig S22. Processing of temperature sensing information. When the environmental temperature 
increases to exceed the set threshold, the memristor enters the set state with decreasing resistance, 
producing enhanced perception. 
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Fig S23. Processing of humidity sensing information. 

 
Fig S23. Processing of humidity sensing information. During this experiment, humidity experienced 
gradual increments and decrements, leading to modulation schemes of nociception, recovery, 
adaptation, and recovery. Consequently, the memristor states transition sequentially from low-
resistance to middle-resistance, then to high-resistance, and back to middle-resistance states. Thus, 
a single memristor can embody enhanced, adaptation, and normal perception functions through 
differential computing methods.  
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Fig S24. The differential processing and learning model. 

 

Fig S24. The differential processing and learning model. From perceiving the stimulus to encoding 
it into neural impulses, the model can be classified into two stages. The first stage can be considered 
a filter stage where the sensory stimulus is filtered by the feature selectivity of neurons. The second 
stage can be described as an input-output stage that transforms the filtered stimulus input into a 
firing rate output. Ultimately, the neural pathways will process these spikes differentially. 
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Supplementary Tables 

Supplementary Table 1 The modulation scheme 
Stimulus Strength Memristor state Feature pattern Encoding scheme 

Rp < 60 kΩ Rm > 100 kΩ Noxious stimulus 13.3% 0.30 V 

Rp < 60 kΩ Rm < 100 kΩ Noxious stimulus 20.0% 0.45 V 

60 kΩ < Rp < 100 kΩ Rm > 250 kΩ Normal stimulus 26.7% 0.35 V 

60 kΩ < Rp < 100 kΩ Rm < 100 kΩ Normal stimulus 20.0% -0.40 V 

60 kΩ < Rp < 100 kΩ 180 kΩ < Rm < 250 kΩ Normal stimulus 6.7% 0.42 V 

60 kΩ < Rp < 100 kΩ 100 kΩ < Rm < 160 kΩ Normal stimulus 6.7% -0.50 V 

100 kΩ < Rp < 300 kΩ Rm > 100 kΩ Mild stimulus 46.7% -0.25 V 

100 kΩ < Rp < 300 kΩ Rm < 100 kΩ Mild stimulus 6.7% -0.50 V 

Rp > 300 Ko Rm > 250 kΩ No stimulus 26.7% 0.35 V 

Rp > 300 kΩ Rm < 100 kΩ No stimulus 20.0% -0.40 V 

Rp > 300 kΩ 180 kΩ < Rm < 250 kΩ No stimulus 6.7% 0.42 V 

Rp > 300 kΩ 100 kΩ < Rm < 160 kΩ No stimulus 6.7% -0.50 V 

 
 

Supplementary Table 2 Comparative Analysis of Visual Information Extraction 
Algorithm Complexities 

Algorithms Time Complexity Space Complexity 
Gaussian Blur O(nmk2) O(nm) 

Canny Edge Detection O(nm) O(nm) 
Histogram Equalization O(nmk2) O(nm) 

SIFT O(nm) O(nm) 
SURF O(nm) O(nm) 

Our Work O(1) O(1) 
Note: m and n are the width and height of the image, respectively, and k is the width of the filter 
kernel. 
Compared to other algorithms, our visual information extraction operates at high speeds in an analog 
manner and eliminates the need for extra storage space. 
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List of Supplementary Videos 

 
Supplementary Video SV1 Grasping experiment 1: Sharp object 
Supplementary Video SV2 Grasping experiment 2: Slippery object 
Supplementary Video SV3 Visual information processing at night  
Supplementary Video SV4 Visual information processing in daytime 
Supplementary Video SV5 Visual information processing in various driving scenarios 
Supplementary Video SV6 Introduction to differential neuromorphic computing 
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