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List of equations in the publication which are cited in this Supplementary Material
The proposed formula for SAAP (eq. (14) in the paper) is:

DI+ qy 3" +ay
VLQ(V) ~ SAAP(r) = - [ fasr6

(1
We presented a model for Helium eq. (22) in paper with 6 ~ 2.64036 and r,,i, ~ 2.97924, with V| 2(rmin) = —11.01906 as:
Via(r)=6" (4521391 127" — 645460 87" — 3732) . 2)

A few more alternative models for Helium are presented in teh Paper. Such as in eq. (25) with ¢ ~ 2.6407 and r,,;,, = 2.9706,
with Vi 2 (rmin) &= —11.01307 as:

Via(r)=6"" (4021904 107" - 670763 6" — 3287) 3)

Another approximation in eq. (23) with o ~ 2.65168 and ry, ~ 2.9572, with V; 2(#nin) =~ —11.03116 as follows:

29173.2876433231

Via(r)=r° , “
(14.2052906553669 31" +0.348000451488318) + 0.000325394052656555
' ' 3177 —0.000114634476140062
and it’s simplified approximation in eq. (24) as follows:
Via(r) = 16 —11973656257 31" 500000 31" — 4503812769 5)
LA = 5000000 31" + 6807301800 100000 31" 44019217
We have presented a simple polynomial equation (eq. (6)) in # = r — 1 such as:
24+ 14u+ 11u? — 2u° + u*
fea(r) = 5 ©
which can be rewritten (in eq. (7) as:
r*—6r° +23r — 18r+24

for any integer r > 1.

Appendix 1 - Searching continued fractions using a symbolic regression software using
the Dirichlet representation. An illustration using Halpern’s Argon dataset.
Here we show how we can approximate an unknown potential employing a symbolic regression software and the Dirichlet

representation. We start first by defining a value of N and using the set {1,27",377,..., N~ "} as the N-variables which the
symbolic regression software will use to fit the data. This means that to model V) »(r) would then to select a relatively
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Figure 1. Error made for prediction (V) »(r)approx — 69470 (7" — 714) 347") of the experimental (V; 2(r)) Argon data by
eq. (8).

large integer number N, and, for each i for which we have a data in r; generate a set of values of dependent variables
{1,277,377 .. N~"i}.

We can then use a symbolic regression package to find formulas with good fit and low model complexity. It is, however,
entirely possible that the search would finally produce terms of the form knj n3, with k being a constant which could be either
chosen to be a real value or an integer. However, a symbolic computation package like Mathematica or Sage, can further reduce
the complexity of the formula by iteratively applying the rule n; "n," = (nyn2)™".

This is the approach we have taken here, using the TuringBot software, only allowing formulas that have integers as
coefficients, followed by the use of Mathematica to further optimise the result, we have found the following approximation for
Halpern’s Argon dataset:

Via(r) =~ —69470 (7" —714) 34" "

The Mean Squared Error (MSE) of eq. (8) is 10.24589375. This could potentially be a useful approximation, when r tends
to zero since it converges to a finite but large integer (49532110) and it converges to zero for r going to infinity and it has a
single minimum for 7, ~= 3.7892 with (Vi 2 (rmin) = —96.1081). We also have V) »(r) = 0 when

In(2)+n(3) +log(17)

r=1

The plot of error is shown in Fig. 1.
This is not the only simple approximation that we have found of this type, we also found two others worth mentioning:

Via(r) ~ 46598041 337" —79879 5" "

that has a root in r /= 3.37496... and i, ~ 3.78612..., with (Vi 2(#iin) = —97.3192369...). This approximation has MSE ~
9.017775887 in the whole dataset of 35 samples. The plot of error is shown in Fig. 2.
And we have also found one with three terms

Via(r) ~ 477586923377 — 1361076 " —3712" o

that has a root in r /= 3.37587... and ry,, =~ 3.79137..., with (Vi 2(Fmin) &= —95.896). This approximation has MSE ~ 8.5568262
so it is only slightly better than the two term approximation. The plot of error is shown in Fig. 3.

A continued fraction approach
We then look at a depth = 1 continued fraction of the form:

az35 " +as 337"

12
as5"+ag337 7+ 1 (12)

V172(F) ~a5 " +a)337"+

with {ay,...as} all integers and as,ag both positive. A good approximation with MSE = 6.45695718.. was found with a
single root in r & 3.3757056527... with Vi 2(riin) = —98.0147 for ry, ~ 3.79036397045101.... In this case, the values of the
coefficients are a; = —79105,a; = 46517936,a3 = —7424260317,a4 = —9999966733, as = 3238247794, and ac = 4545.
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Figure 2. Error made for prediction (V) »(r) ~ 46598041 337" — 79879 57") of the experimental (V; »(r)) Argon data by
eq. (10)
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Figure 3. Error made for prediction (V) »(r) ~ 4775869233 — 1361076 " —37127") of the experimental (V; »(r)) Argon
data by eq. (11).

Another Continued Fraction Model with 3 Dirichlet Terms
We found a continued fraction model of depth = 1 which is using three Dirichlet terms as follows:

(@430 +as7T "+ag2™")
(a730~"4+ag7"+ag27")

VLQ(}’) =~ (a1 307" +a, 7 " +as 27") + (13)
with {ay,...ag} all integers and a7,ag,aq are positive. A good approximation with MSE = 2.440429779.. was found with a
single root in r ~ 3.37422355254799...

In this case, the values of the coefficients are a; =40276481,a, = —270016,a3 = —381,a4 =499980631,as = 499999998 a¢ =
—409990730,a7 = 499939947, ag = 499999985 and a9 = 414268318. The plot of error is shown in Fig. 4.

We tabulated the approximation of V; »(r) by the models in eqs. (8), (10), (11), (13) in Table. S1 with highlighting the best
approximation in bold-face.

Appendix 2 - Comparison of error made for prediction of the experimental Argon data by
eq. (11) and our SAAP prediction by eq. (1) (eq. (14) in paper) with parameter optimisation
by min-based weighting
We used Mean Squared Error

(approx — exact)?

MSE = ,
n

Relative Error

RE — abs ( (approx — exact) )
exact
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Table S1. Approximations of the interatomic potential of the experimental Argon data of Halpern (') by three models
presented in this work. The best approximating value of the three equations is shown in boldface.

r(A)  Via() | eq.® eq.(10) eq.(I1)  eq.(13)
2.5 6018.01 [[ 6022.532 6019.821 6025.202 6019.471
2.7 2673.08 || 2660.961 2665.868 2657.992  2667.46
2.9 1083.88 || 1085.532 1088.785 1081.741 1087.747
3.1 363.94 || 369.3474  370.026 366.7986 368.2436
3.3 58.41 || 60.79563 59.92127 59.75802 58.97633
34 -14.92 || -14.242 -154878 -14.6985 -15.8226
3.5  -58.41 || -58.6524 -60.0644  -58.698 -59.8268
36  -81.69 || -82.7545 -84.1818 -82.5638 -83.4839

3.65  -8836 || -89.498  -90.892 -89.2512 -90.0193
37 9256 || -93.6227  -94.963 -93.3576  -93.956

375  -9473 || -95.6681 -96.9391 -95.4195 -95.8389
38 9539 | -96.0774 -97.2677  -95.877 -96.1151

385 9475 || 952145  -96.316 -95.0903 -95.1504
39  -93.16 || -93.3766 -94.3843 -93.3531  -93.2429

395  -90.89 || -90.806 -91.7173 -90.9042 -90.6349

4  -88.01 || -87.6994 -88.5137 -87.9369  -87.522
41  -81.19 || -80.4827 -81.1079 -81.0391 -80.3793
42  -73.63 || -72.6557 -73.1057 -73.5651 -72.7262
43  -65.98 || -64.8025 -65.0965  -66.079 -65.1256
4.4 -58.6 || -57.2747 -57.4344 -58.9161 -57.9071
45  -51.78 || -50.2692 -50.3168 -52.2603 -51.2466
4.6 -45.6 || -43.8815 -43.8381 -46.1976  -45.2212
47  -40.13 -38.142  -38.027 -40.7518  -39.8456
48  -3534 || -33.0408 -32.8716 -35.9089 -35.0974
49  -31.17 || -28.5443 -28.3357 -31.6329 -30.9332

5 2757 || -24.6059 -243706 -27.8769 -27.2996
51 2446 | -21.1736  -20.922 -24.5893  -24.1398
53 -19.37 || -15.6158 -153551 -19.2149 -19.0212
55  -1547 || -11.4729 -11.2241 -15.1313  -15.1759
57  -1243 || -8.40766 -8.18221 -12.0249  -12.2783
5.9 -10 || -6.15087 -5.95377 -9.65018  -10.0791
6.1 -8.13 || -4.49468 -4.32683  -7.8213  -8.39292
6.3 -6.63 32819 -3.1418  -6.3998  -7.08448
6.5 544 || 23951 -2.27999  -5.28353  -6.05585
6.7 449 || -1.74731 -1.65392 -4.39747  -5.2364

MSE 10.2459 9.0178 8.5568 2.4404
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Figure 4. Error made for prediction (Vi 2(r) = (1307 +a, 7"+ a327") + EZ: 28::122 ;::122 i::))) of the experimental

(V1 2(r)) Argon data by eq. (13).
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Figure 5. Comparison of error made for prediction of the experimental Argon data by eq. (11) and our SAAP prediction by
eq. (1) with parameter optimisation by min-based weighting.

and min

(approx — exact)?
(exact — | exacty;, | )?

min =

based weighting in the fitness function for optimising the parameters value. We found the value of parameters {ag,a1,a;,a3,a4,as}
ineq. (1) as: {1642849.852, -1.324763297, -21325.92292, -0.56953138, -2453.696838, 0.007041875} for MSE, {1518906.938,
-1.289763354, -19413.1251, -0.486655272, -2034.237159, 0.007105139} for RE and {1513858.734, -1.292491738, -17238.23531,
-0.419519278, -1545.992086, 0.00704256} for min based weighting. The approximations of the SAAP for these parameter
values are shown in Table. S2.

We presented the comparison of the error made by our best approximation for V; »(r) in eq. (11) and the SAAP approximation
by eq. (1) for the optimisation of parameter with min in Fig. 5.

Appendix 3 - Numerical and representational considerations

On the use of integer coefficients
While the definition of our base representations, starting from the use of the general Dirichlet series that motivated our study,
does not require coefficients to be integers, we nevertheless restricted our equations to have integers only. One reason is pretty
obvious, given in this way, all our approximations are “unambiguous” because they do not rely on truncating coefficients
derived from a floating-point representation. The other reason is perhaps not so obvious so it is proper to discuss it here.
Since n; "'n," = (ny nz)~", an application of the Dirichlet series is as a generating series for counting weighted sets of
objects with respect to a weight that is combined multiplicatively when taking Cartesian products. However, this equality has
importance for the development of data-driven symbolic regression models when the coefficients are restricted to be integers.
As we have said before, a symbolic regression method that allows the multiplication of variables, would allow the presence
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of a term proportional to n; "n, " in an equation. If another equation is generated during the run, using (n; ny)~" instead, all
other terms equal, this one might have lower complexity and the heuristic would probably prefer it (since many symbolic
regression algorithms are biased towards selecting lower complexity formulas). Consequently, this has also the desired effect
that the coefficients present in that equation will be further optimised during the run. In our experience, this is far from being
something of a negligible effect, and we have preferred to use integer coefficients when evolving formulas with TuringBot
instead of employing the floating-point arithmetic functionality (which tends to produce formulas that diverge a bit on their
fitting performance but are much more functionally similar between them).

Finally, having produced simple equations only defined by a few integers such as those for Helium ((2), (3)) which present
a great fit to the given data have a certain “beauty” associated with them. We can not say anything at this stage about why is
that the case, but it is obvious that further non-linear optimisation and replacement of these integers by rationals is the next
possible step. We thought at this stage that leaving these approximations with integers coefficients somehow highlights the
potential of exploring the Dirichlet series representation.

On the opportunities for parallelization

It may have not escaped to the reader that eq. (5) is composed of three-factor terms thus it presents itself as something that can
be concurrently computed. eq. (5) was obtained, thanks to a symbolic computation program (Mathematica,) followed by further
refining of the coefficients to obtain integer values. In this section, we illustrate that perhaps for other more complex potentials,
there is also a way to use parallelism to compute continued fractions of higher depth. This said, there is another way to prepare
a code for parallelism of these computations thanks to combining two results.

b
? —ay+ Zb (14)
n ar+ 3

by
as+
aq +

bn
+ 2
dn

Milne-Thomson introduced matrix representation of continued fractions? that gives an extra opportunity for parallelism?.

Let C, be a matrix that contains the numerators and the denominators of the convergents of order n and n — 1, i.e. (p,/¢,) and
(Pn—1/qu—1) respectively; then C, is defined as:

Cn — |:pn pn1:| (15)
dn  4n—1

C, can be written as:

Cr=A1 XAy XAz X - XAy (16)
with
Ar= {“k 1} a7
by 0
for 1 <k <n,and by =0. For k = 3 we have:
A B R P Y P s

Then, for eq. (4), we only need to compute r~% and 33" once for each pair and then we have, a;(r) =0, by = 1, by =
29173.2876433231, a, = 14.2052906553669 317"+ 0.348000451488318, b3 = 0.000325594052656555 and a3 = 317" —
0.000114634476140062.
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On the challenges for optimisation methods

Contrary to what the relatively small size of the instance of this problem may suggest, the optimisation problem associated to
fitting these functional forms is far from being trivial. It is timely to recall John von Neumann’s quote: “With four parameters I
can fit an elephant, and with five I can make him wiggle his trunk”* which has led to some interesting and imaginative, and
sometimes very clever tongue-in-cheek, contributions>®. This said, in a dataset such as that of Helium, and we are appealing to
the imagination of the reader here, if we see in Fig. 2 of the paper, the silhouette of a head and a raised trunk of an elephant,
and if we normalise these values such that the difference between the potential range (-12 and 4) would correspond to one
meter, then the raised up “trunk” of the elephant would be nearly 18 kilometres long (indeed, the highest ab initio value to fit
for Helium is 286570 for r = 0.529177).

We doubt von Neumann was thinking in such unusual elephants, but we take his word of warning that too many parameters
would likely produce a great approximation. Still, in this dataset the need to having a very good fit nearly the global minimum,
as well as having the right asymptotic behaviour, obliges us to find a way to deal with this range in values. This is essential
for all the important thermodynamical observables that are derived from simulations that use these approximations. SAAPx
requires seven rational numbers (i.e. 14 integers), one integer (1) and one transcendental (e), while egs. (2) and (3) are only
defined by six integers, and eq. (5) by nine integers. After having experimented with these datasets for a while, we think it will
be perhaps possible but really challenging to find good approximations which are only defined by six or five integers and that
have the expected asymptotic behaviour outside the interval range of distances on which ab initio experimental data exists. In
fact, we have been very close to obtain

On the integer sequence of Moser’s circle problem

For readers curious about the nature of the sequence used to illustrate the computation of solutions by symbolic and continued
fraction regression, we will explain its origin here. The first terms may induce a reader to think that we are in the presence of
the infinite sequence a, = 20=1) with {1,2,4,8,16,32,...}. Since the similarity soon breaks this subsequence can be seen as
an example of the problem of extrapolating in numerical regression beyond the range of values of the training set.

Assume that you have a circle and r points are located in the inscribing circumference. Let’s now draw all the segments that
connect all points. If we add the extra restriction that the r positions are such that no three lines intersect at the same point
then the value of f(r) corresponds to the number of sections that a circle is divided. The problem is also known as Moser’s
circle problem (https://mathworld.wolfram.com/CircleDivisionbyChords.html). A nice video on the
topic is available online thanks to 3BluelBrown (https://www.youtube.com/watch?v=K8P8uFahAgc). More
terms of the sequence, and other formulas, can be found at the Online Encyclopedia of Integer Sequences (A000127) (https:
//oeis.org/A000127). In fact, eq. (7) is indeed the true unknown function that represents the solutions of Moser’s circle
problem for an arbitrary number of r points. This means that the generalisation for values of r out of the domain is then correct
in this case.
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Table S2. Table for the exact (V; 2(r)) and the SAAP(r) approximations of V; »(r) provided by eq. (1) for r in the range

specified in the Halpern’s dataset for Argon. We investigated in this case the optimisation of the parameters using different

weighting: MSE, RE, min in the fitness function. The best prediction value by models is shown in boldface.

Vi2(r) ~ SAAP(r) approx. by eq. (1)

r4)  Via(r) (with MSE) _ (with RE) _ (with min)
25 6018.01 6017.089 5991.089  6008.293
27 2673.08 2676.574 2675.038  2683.877
29 1083.88 1081.479 1084.879  1088.053
3.1 363.94 361.543  364.2321  364.5062
33 5841 57.23909 5841  57.56429
34 -14.92 154947 -14.9266  -15.9483
35 5841 58.1417  -58.0227  -59.0723
36  -81.69 81.1416  -81.3281  -82.3129
365  -88.36 87.5739  -87.8661  -88.7968
37 9256 91.531  -91.9021 -92.769
375 9473 93.5363  -93.9628  -94.7596
38 -95.39 940162 -94.4778  -95.2006
385  -9475 933168 -93.7963  -94.443
39  93.16 917186  -92.2014  -92.7717
395 -90.89 89.4479  -89.9221  -90.4168
4 -88.01 86.6869 -87.1428  -87.5637
41  -81.19 80.2478  -80.6457  -80.9272
42 73.63 732445 735666 -73.7223
43 6598 -66.199  -66.4371 -66.482
44 586 -59.4211 -59.5737  -59.5233
45 5178 53.0822  -53.1524  -53.0216
46  -456 472647 472585  -47.0612
47  -40.13 41.995  -41.9203  -41.6687
48 3534 372653 -37.1305  -36.8359
49 3117 33.048 -32.8618  -32.5338
5 2757 29305 -29.0759  -28.7229
51 2446 259939 257296  -25.3589
53 -19.37 204946 -20.1812  -19.7921
55  -15.47 162266 -15.8871  -15.4967
57 -12.43 (129156 -12.5673  -12.187
59 -10 1103413 -9.99653  -9.63375
6.1 -8.13 833216 -7.99934  -7.6583
63  -6.63 -6.75647  -6.44095  -6.12381
6.5  -5.44 55139 521876  -4.92625
67  -4.49 -4.52825 425495  -3.98682
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