[bookmark: OLE_LINK65][bookmark: OLE_LINK112][bookmark: OLE_LINK113]Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures for asymptomatic and symptomatic Alzheimer’s disease.
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Extended Methods and Results 

Proteomics data cohorts
[bookmark: OLE_LINK131][bookmark: OLE_LINK132][bookmark: OLE_LINK133][bookmark: OLE_LINK134][bookmark: OLE_LINK222][bookmark: OLE_LINK223][bookmark: OLE_LINK135][bookmark: OLE_LINK136][bookmark: OLE_LINK137][bookmark: OLE_LINK138][bookmark: OLE_LINK216][bookmark: OLE_LINK217]In this study, we examined the cerebrospinal fluid (CSF) proteomics data from six different cohorts, including Knight Alzheimer's Disease Research Center (Knight ADRC), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Ace Alzheimer Center Barcelona (FACE), Barcelona-1, Stanford Alzheimer’s Disease Research Center (Stanford ADRC), and Parkinson’s Progression Markers Initiative (PPMI).
Knight ADRC
The Knight ADRC at Washington University School of Medicine has been recruiting and longitudinally assessing community-dwelling adults older than 45 years old since 1979. The Memory and Aging Project (MAP) at the Knight ADRC collects biofluids, conducts annual clinical assessments, neuropsychological testing, neuroimaging studies, and autopsies of brain samples. Eligible participants may be asymptomatic or have mild dementia at the time of enrollment. All participants are required to participate in core study procedures, including annual longitudinal clinical assessments, neuropsychological testing, neuroimaging, and biofluid biomarker studies. Annual cognitive assessments of the participants were conducted by experienced clinicians. These assessments involved a semi-structured interview with both a knowledgeable collateral source and the individual displaying symptoms. The assessments followed the Uniform Data Set protocol of the National Alzheimer’s Coordinating Center1 and included a comprehensive neurological examination.
[bookmark: OLE_LINK157][bookmark: OLE_LINK158][bookmark: OLE_LINK162][bookmark: OLE_LINK163][bookmark: OLE_LINK202][bookmark: OLE_LINK203]Participants recruited in the Knight ADRC study are predominantly Non-Hispanic White individuals from North America (82.5%) and African-Americans (13.3%). So far, samples have ben collected from a total of 5,510 participants, comprising 2,426 Alzheimer’s disease (AD) cases, 148  frontotemporal dementia (FTD) cases, 88 dementia Lewy body (DLB) cases, and 2,156 cognitively normal healthy individuals. Additionally, autopsy material is accessible for more than 1,182 participants, including 474 with fresh frozen parietal brain tissues (https://dss.niagads.org/datasets/ng00127/). Multi-tissue data from brain, CSF, and plasma has been utilized for generating multi-omics data encompassing genetics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics with the aim of identifying new risk and protective variants for dementia as well as novel potential drug targets. Participants in the Knight ADRC were enrolled only if they exhibited cognitive normalcy, with a global clinical dementia rating (CDR) score of 0 at the time of enrollment. Study clinicians evaluate and make clinical diagnoses of incident dementia at the conclusion of each annual assessment. These diagnoses are formed by integrating results from both the clinical assessment and bedside measures of cognitive function2. Dementia diagnoses followed the criteria established by the National Institute of Neurological Disorders and Stroke3 and the National Institute on Aging-Alzheimer's Association (NIA-AA) Work Group criteria for participants assessed after 2011.4 Diagnoses of AD dementia adhered to criteria developed by working groups from the NIA-AA.4 Additionally, diagnoses of vascular dementia conformed to the NINDS-AIREN criteria.5 Additional information about the Knight ADRC cohort is available at their website (knightadrc.wustl.edu).
ADNI
[bookmark: OLE_LINK198][bookmark: OLE_LINK199]CSF proteomics data used in the preparation of this manuscript was obtained from the ADNI database (https://adni.loni.usc.edu/). Launched in 2003, ADNI represents a public-private partnership led by Principal Investigator Michael W. Weiner, MD. The primary objective of ADNI study has been to investigate whether the combination of serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessments can effectively measure the progression of mild cognitive impairment (MCI) and early AD.
[bookmark: OLE_LINK292][bookmark: OLE_LINK293]FACE
[bookmark: OLE_LINK209][bookmark: OLE_LINK210][bookmark: OLE_LINK224]We also acquired CSF samples from FACE, a private non-profit organization dedicated to AD research. Established in 1995 and based in Barcelona, FACE has diagnosed over 30,000 patients, collected 20,000 blood samples, 1,831 cerebrospinal fluid samples, and analyzed nearly 13,000 genetic samples.6,7 Additionally, it has been involved in nearly 150 clinical trials during its existence. Additional information about the FACE cohort is available at their website (www.fundacioace.com/en).
Barcelona-1
For this study, CSF samples were also sourced from Barcelona-1, a study led by the University Hospital Mutua de Terrassa in Terrassa, Spain. Barcelona-1 is a longitudinal study comprising approximately 300 individuals. Only those individuals, diagnosed with MCI or more severe conditions, underwent PET scans and CSF collection and follow-up analyses were conducted to monitor disease progression. The study encompassed individuals with diagnoses of subjective memory complaints (SMC), MCI, AD dementia (ADD), and non-AD dementias (non-ADD).
Stanford ADRC
[bookmark: OLE_LINK215]CSF samples were obtained through the National Institute on Aging (NIA)-funded Stanford ADRC. This cohort is a longitudinal observational study comprising clinical dementia subjects and age-sex-matched non-demented subjects. The collection of CSF samples was approved by the Institutional Review Board of Stanford University, and written consent was obtained from all participating individuals. CSF sample collection and processing followed a rigorous standardized protocol to minimize variation associated with CSF draw and processing. Healthy control participants were assessed as cognitively unimpaired through a clinical consensus conference, which involved board-certified neurologists and neuropsychologists. For cognitively impaired individuals, CDR and standardized neurological and neuropsychological assessments were conducted to determine cognitive and diagnostic status. These assessments followed the procedures of the National Alzheimer’s Coordinating Center (https://naccdata.org/). All participants included in this study were free from acute infectious diseases and were in good physical condition.
PPMI
[bookmark: OLE_LINK225][bookmark: OLE_LINK226]PPMI is a large-scale study primarily focused on investigating biological markers of Parkinson’s disease (PD). Established in 2010 with backing from the Michael J. Fox Foundation, PPMI aims to enroll approximately 4,000 individuals for in-depth clinical and imaging assessments and an additional 50,000 individuals for genotyping and less complex PD-related tests. Participants undergo procedures such as cerebrospinal fluid draws, MRI scans, motor assessments, and various other tests to gain a comprehensive understanding of PD-related phenotypes. Additional information about the PPMI cohort is available at their website (https://www.ppmi-info.org/).
Proteomic data processing
CSF samples from Knight ADRC, ADNI, FACE, and Barcelona-1 cohort were subjected to protein measurement using the SOMAscan platform8 (Somascan 7k). This platform measures 7,584 unique aptamers corresponding to 6,179 unique human protein targets. Additionally, CSF samples from Stanford ADRC and PPMI underwent protein measurement on an earlier version of the SOMAscan platform (Somascan 5k), which measures 4,785 unique aptamers corresponding to 4,131 unique protein targets. Both platforms reported aptamer levels in relative fluorescent units (RFU). 
[bookmark: OLE_LINK266][bookmark: OLE_LINK267]Proteomics Quality Control of Somascan 7K data
The Somascan 7k data were subjected to an initial normalization process conducted by SomaLogic by applying the hybridization normalization at each sample level. All the aptamers were subsequently grouped into three normalization groups (S1, S2, and S3) based on their signal-to-noise ratios. Median normalization was performed to address potential biases arising from factors such as protein concentration, pipetting variation, fluctuations in reagent concentration, and assay timing, among others.9 For each sample, normalization to a reference was performed to address both technical and biological variance. This step involved an iterative process known as Adaptive Normalization by Maximum Likelihood (ANML), a modified version of median normalization, which continued until convergence was achieved. Further detailed information about these normalization procedures are provided in Somalogic’s technical note.8
Additional quality control (QC) procedures were applied to the normalized Somascan 7k data provided by SomaLogic, following an in-house protocol10,11 that is briefly described in the methods section of the main manuscript. In detail, QC was systematically conducted using a consistent protocol across all four cohorts. Initially, a scale factor was computed for each aptamer on a per-plate basis. These individual scale factor values were subsequently compared to the median scale factor for all aptamers on the same plate. Aptamers were removed if the maximum difference between the aptamer's scale factor and the median scale factor for any plate equaled or exceeded 0.5. Next, the aptamer coefficient of variation was computed for each plate. This was defined as the standard deviation of the aptamer level across the five calibrator samples on each plate, divided by the mean aptamer level in those same five calibrator samples per plate. Aptamers were excluded if either of the following conditions was met: 1) the maximum scale factor difference from any plate exceeded 0.5 or 2) the median coefficient of variation across all plates equaled or surpassed 0.15 for that aptamer. The filtering process aimed at ensuring consistency across plates led to the removal of 291 aptamers based on scale factor and 18 aptamers based on coefficient of variation.
Subsequently, aptamer values underwent a log10-transformation, and the interquartile range (IQR) was computed for each aptamer. For each aptamer, all samples with values exceeding the threshold of 1.5 times the IQR plus the third quartile, or falling below the first quartile minus 1.5 times the IQR, had their values replaced with "NA". This process effectively eliminated extreme aptamer values from each individual, which could have been indicative of measurement errors or inaccuracies. Although no aptamers or samples were removed during this step, approximately 2.66% of all individual measurements (n = 593,517) were substituted with "NA".
The next step involved conducting a call rate analysis, initially on the aptamers and subsequently on the samples, using a threshold of 65% with the log10-transformed aptamer levels. Every aptamer maintained a call rate of at least 65%, ensuring that all 7,275 aptamers were retained at this stage. At the sample level, 21 samples exhibited a call rate below 65% and were consequently excluded from the subsequent analyses. Following the recalibration of the call rate, a more rigorous threshold of 85% was employed at both the aptamer and sample levels. This led to the removal of seven aptamers and 62 samples. Furthermore, one extra sample was eliminated as it duplicated another sample. Following the completion of all QC filtering measures, 7,268 aptamers and 2,286 samples were retained. Subsequently, an additional 239 aptamers that measured proteins from non-human organisms were excluded. This resulted in a final dataset comprising 7,029 aptamers and 2,286 samples after all proteomics filtering steps.
Proteomics Quality Control of Somascan 5K data
[bookmark: OLE_LINK273][bookmark: OLE_LINK274]Samples acquired from Stanford ADRC and PPMI were measured utilizing the Somascan 5K panel12, and as a result, they underwent separate cleaning procedures from the other samples. Since scale factor and coefficient of variation data provided by Somalogic were unavailable for these samples, the filtering steps involving these parameters could not be executed. However, QC procedures based on the IQR and call rate were carried out in the same manner as described for the other cohort. Following the completion of QC measures, the final post-QC matrices encompassed 4,735 aptamers and 274 individuals in Stanford ARDC and 4,777 aptamers and 1,075 individuals in PPMI.
ATN Classification
[bookmark: OLE_LINK7][bookmark: OLE_LINK14]To ascertain amyloid/tau classification for each sample, we relied on AD-specific biomarkers, namely amyloid beta 42 (Aβ42) and phosphorylated tau-181 (pTau), both measured in the CSF13. For the classification of each sample based on amyloid and tau positivity, we conducted dichotomization utilizing the mclust R package14. The process of dichotomization was executed independently for each cohort (Knight ADRC, ADNI, FACE, and Barcelona-1). The levels of Aβ42 and pTau were log10-transformed to approximate a normal distribution. They were further normalized using a z-score transformation, which ensured they had a mean of 0 and a standard deviation (SD) of 1. Outliers were identified and subsequently removed based on a cutoff of 3 times the SD from the mean. Following the removal of outliers, the standardization by z-score was recalculated for the data. In case of Stanford ADRC cohort, we utilized the AT classification status provided by the study, which was also measured in the CSF. Since measurements for amyloid and tau were unavailable for PPMI cohort, only the clinical status (control or PD) was used for assessing the specificity of developed AD prediction model.
Knight ADRC
In the case of the Knight ADRC cohort, measurements for both Aβ42 and pTau were conducted using the LumiPulse G platform by Fujirebio US, Inc., based in Malvern, PA. However, for seventeen samples with missing LumiPulse values, we utilized Innotest (Fujirebio) values as an alternative. This decision was informed by the high correlation observed between the two platforms, with a correlation coefficient (r2) of 0.73 for Aβ42 and 0.86 for pTau. Dichotomization was carried out for a total of 948 subjects for CSF Aβ42 and 944 subjects for CSF pTau. A specific cutoff of z-score = -0.20 was determined for Aβ42, which corresponded to a raw value of 630 pg/mL. For Aβ42, samples with values below 630 were classified as Aβ42-positive (A+). As for pTau, a cutoff of z-score = 0.61 was determined, which corresponded to a raw value of 62.9. Samples with values above 62.9 were considered pTau-positive (T+).
ADNI
In the ADNI cohort, Aβ42 measurements were conducted using Innotest by Fujirebio, while pTau measurements were performed using Elecsys by F. Hoffmann-La Roche Ltd in Switzerland. Dichotomization was carried out for 749 subjects based on Aβ42 measurements and for 745 subjects based on pTau measurements. For Aβ42, a z-score cutoff of 0.616 was determined, corresponding to a raw value of 196 pg/mL. Samples with values below 196 were classified as Aβ42-positive (A+). For pTau, a z-score cutoff of 0.197 was identified, corresponding to a raw value of 27.8. Samples with values above 27.8 were considered pTau-positive (T+).
FACE
In the FACE cohort15, both Aβ42 and pTau measurements were conducted using Innotest (Fujirebio). This analysis included 632 samples. For Aβ42, a z-score cutoff of 0.468 was established, which corresponds to a raw Aβ42 value of 856 pg/mL. Samples with values below 856 were categorized as Aβ42-positive (A+). For pTau, a z-score cutoff of -0.018 was identified, corresponding to a raw value of 67. Samples with values greater than 67 were classified as pTau-positive (T+).
Barcelona-1
In the Barcelona-1 cohort, both Aβ42 and pTau measurements were performed using Innotest (Fujirebio). This analysis involved 231 samples. For Aβ42, a z-score cutoff of 1.04 was determined, which corresponds to a raw Aβ42 value of 1325 pg/mL. Samples with values below 1325 pg/mL were classified as Aβ42-positive (A+). For pTau, a z-score cutoff of -0.163 was identified, corresponding to a raw value of 58. Samples with values above 58 were categorized as pTau-positive (T+).
Clustering of AD CSF proteome
[bookmark: OLE_LINK302][bookmark: OLE_LINK303][bookmark: OLE_LINK313][bookmark: OLE_LINK312][bookmark: OLE_LINK314]In order to group proteins based on changes in their protein expression across different stages in the AD continuum (A-T-, A+T-, and A+T+), we performed proteomic differential abundance analysis between different AT groups (A-T- vs. A+T+, A-T- vs. A+T-, and A+T- vs. A+T+). For each pair-wise comparison, a linear regression model was used where age (at CSF draw), sex, plate id, and first two surrogate variables (SV) were used as covariates. After conducting three pair-wise differential abundance analyses, we obtained the unadjusted p-values (representing the significance of difference in protein levels between two groups) and estimates (representing direction of effect i.e. up- or down-regulation of protein between two groups), which were utilized for investigating the trajectory of protein abundance from A-T- group (proxy for control) to A+T- stage (proxy for asymptomatic) leading to A+T+ (proxy for AD). Based on the significance (p-value) of the differential abundance and direction of estimate (positive and negative) in each comparison, the protein from stage 3 meta-analysis (n=2,173) were clustered in four major groups (Fig. 4A). The group 1 (G1) contains 471 proteins that showed an overall increase in protein abundance from A-T- to A+T+ stage. The group 2 (G2) contains 482 proteins that showed an initial increase from A-T- to A+T- followed by decrease from A+T- to A+T+ stage. The group 3 (G3) contains 184 proteins that showed overall decrease in protein abundance from A-T- to A+T+ stage and group 4 (G4) contains 1,036 proteins that showed an initial decrease from A-T- to A+T- followed by a significant increase from A+T- to A+T+ stage. 
[bookmark: OLE_LINK481][bookmark: OLE_LINK482][bookmark: OLE_LINK315][bookmark: OLE_LINK316][bookmark: OLE_LINK317][bookmark: OLE_LINK318]The identified four major protein groups further contained 12 sub-clusters of proteins characterized based on whether the proteomic alterations are significant or not and estimates are lower or higher between the respective differential abundance analyses (Supplementary Table 6). For example, G1 contained five different sub-clusters (c1, c2, c4, c9, and c11). The c1 cluster contains 16 protein that showed significant (P < 0.05) increase from A-T- to A+T- followed by non-significant (P > 0.05) change from A+T- to A+T+. The second cluster (c2) contains 4 protein that show significant increase from A-T- to A+T- and a significant decrease from A+T- to A+T+ but observed estimate was positive in A-T- to A+T+, suggesting an overall increase in the protein between terminal stages (A-T- and A+T+). Another cluster (c4) contains 46 different proteins that showed consistent significant increase across all the comparisons. In case of cluster 9, we observed two proteins displaying non-significant changes from A-T- to A+T- but a significant increase of protein abundance in A+T+ individuals in comparison to A+T- and A-T-. Similarly, another cluster (c11) comprised of 10 proteins did not display significant alterations in either of the comparisons except for A-T- vs. A+T+ where a significant overall increase in abundance was observed. Collectively, all these five clusters depict an overall increase from A-T- to A+T+ stages, thereby, clustered into same group (G1).
In contrast to multiple clusters in the G1, we only identified one cluster (c3) for G2 and it contained 482 proteins that displayed significant increase from A-T- to A+T- followed by significant decrease from A+T- to A+T+ stage. All proteins in this group also showed decrease in protein abundance in the A+T+ individuals when compared against A-T-. Similar to G1, the G3 contained five different clusters (c5, c6, c8, c10, ad c12) and different trajectories displayed an overall decrease in protein abundance in the A+T+ individuals as compared to A-T-. Finally, the G4 contained 1,036 proteins and only one sub-cluster (c7). Proteins in this cluster displayed a significant decrease from A-T- to A+T- stage, followed by a significant increase from A+T- to A+T+ stage.
Pathway enrichment analysis
[bookmark: OLE_LINK410]We used ClusterProfiler R package16 (version 4.8.1) for performing functional pathway enrichment analysis individually for each protein group as well as for all the analytes (n = 2,173 corresponds to 2030 unique proteins) passing the Bonferroni correction (Bonf < 0.05) in the meta-analysis. 
KEGG and Reactome pathway enrichment analysis
[bookmark: OLE_LINK688][bookmark: OLE_LINK689][bookmark: OLE_LINK345][bookmark: OLE_LINK346][bookmark: OLE_LINK350][bookmark: OLE_LINK485][bookmark: OLE_LINK486][bookmark: OLE_LINK479][bookmark: OLE_LINK480][bookmark: OLE_LINK455][bookmark: OLE_LINK456][bookmark: OLE_LINK457][bookmark: OLE_LINK458][bookmark: OLE_LINK487][bookmark: OLE_LINK488][bookmark: OLE_LINK349][bookmark: OLE_LINK461][bookmark: OLE_LINK462][bookmark: OLE_LINK478]We utilized “enrichKEGG” function for performing the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis at the individual protein groups level (explained in the main manuscript, Fig. 4F-I) as well as for all the differentially abundant proteins (Supplementary Table 12 and Extended Data Fig. 7A and B). Most of the previously identified pathways, such as Pathways of neurodegeration (FDR = 6.2×10-03), glutamatergic synapse (FDR = 6.2×10-03), and Alzheimer disease (FDR = 0.01) were still significant even after including a greater set of proteins (n = 6,111) as background. A network of top 15 enriched pathways (Extended Data Fig. 7B) highlighted cluster of neurodegenerative diseases, including AD, PD, and pathways of neurodegeneration, suggesting multiple proteins shared across these pathways. Additionally, we performed the functional enrichment analysis for all of the differentially abundant proteins using “enrichPathway” that utilizes Reactome database17 (Supplementary Table 13 and Extended Data Fig. 7C and D). Most of the top enriched pathways in this case were also nervous- and immune-system related. For example, we identified neuronal system (FDR = 3.2×10-04), nervous system development (FDR = 4.3×10-04), axon guidance (FDR = 0.001), autophagy (FDR = 0.001), and infectious disease (FDR = 0.001) as most significant pathways, among others.
Gene ontology (GO) enrichment analysis
[bookmark: OLE_LINK472][bookmark: OLE_LINK473][bookmark: OLE_LINK489][bookmark: OLE_LINK490][bookmark: OLE_LINK459][bookmark: OLE_LINK460][bookmark: OLE_LINK463][bookmark: OLE_LINK464][bookmark: OLE_LINK469][bookmark: OLE_LINK465][bookmark: OLE_LINK466][bookmark: OLE_LINK467][bookmark: OLE_LINK468][bookmark: OLE_LINK470][bookmark: OLE_LINK471][bookmark: OLE_LINK474][bookmark: OLE_LINK475]To investigate the biological processes (BP), molecular functions (MF), and cellular components being compromised in AD, we performed gene set enrichment analyses using the Gene Ontology (GO) database18 at a global (all differentially abundant analytes; n = 2,173 associated with 2,030 unique proteins) and individual protein groups level. We used “enrichGO” function from the clusterProfiler R package for conducting this analysis. In case of enrichment analysis conducted at a global level (Supplementary Table 14 and Extended Data Fig. 6B-D), we observed different nervous system related BP, ubiquitin-related MF, and synapse and axon-related CC to be significantly (FDR < 0.05) enriched in the complete set of differentially abundant proteins. For instance, in the case of BP (Extended Data Fig. 6B), we identified neurogenesis (FDR = 0.003), neuron development (FDR = 0.003), neuron projection development (FDR = 0.006), and neuron projection guidance (FDR = 0.01) to be significantly enriched. In the case of MF (Extended Data Fig. 6C), ubiquitin protein ligase binding (FDR = 2.2×10-04), semaphorin receptor activity (FDR = 0.01), and axon guidance receptor activity (FDR = 0.03) were altered significantly. Lastly, we identified axon (FDR = 2.7×10-05), synapse (FDR = 1.7×10-03), postsynapse (FDR = 0.006), and distal axon (FDR = 0.03) as the most significantly enriched cellular components (Extended Data Fig. 6D), among others. A similar GO enrichment analysis, as described above, was conducted individually on each of the four identified protein groups and BP, MF, or CC that passed FDR significance are displayed as a group- and GO term-specific dotplot (Extended Data Fig. 9A-H). 
Disease ontology (DO) enrichment anlaysis
[bookmark: OLE_LINK483][bookmark: OLE_LINK484][bookmark: OLE_LINK477][bookmark: OLE_LINK476][bookmark: OLE_LINK32][bookmark: OLE_LINK33][bookmark: OLE_LINK493][bookmark: OLE_LINK494][bookmark: OLE_LINK491][bookmark: OLE_LINK492][bookmark: OLE_LINK495][bookmark: OLE_LINK496]In order to examine the association of altered CSF proteome with known human diseases, we performed disease ontology (DO) enrichment analysis using enrichDO function from DOSE19 R package (version 3.26.1). We conducted the DO enrichment level both at the level of all significantly altered CSF protein analytes (n = 2,173 associated with 2,030 unique proteins; Extended Data Fig. 6A) and individually on each of the protein groups classified based on the protein abundance trajectory across the AD continuum (Supplementary Table 15 and Extended Data Fig. 8A-D). Overall, we observed that significant proteomic alterations in the AD CSF proteome were significantly enriched in various neurodegenerative and immune system related disorders. Specifically, we identified tauopathy (FDR = 5.9×10-08), Alzheimer’s disease (FDR = 5.9×10-08), synucleinopathy (FDR = 0.01), and Parkinson’s disease (FDR = 0.02) among the top neurodegenerative disorders in the global as well as in either of the proteins group-specific enrichment analysis. Similarly, we also identified autoimmune disease of peripheral nervous system (FDR = 0.04), non-small cell lung carcinoma (FDR = 5.7×10-06), neuroblastoma (FDR = 7.5×10-04), and hepatitis (FDR = 0.002) as some of cancer related diseases suggesting the immune system dysregulation in AD.
Identified prediction model is a better predictor of symptomatic AD
[bookmark: OLE_LINK118][bookmark: OLE_LINK119][bookmark: OLE_LINK622][bookmark: OLE_LINK129][bookmark: OLE_LINK130][bookmark: OLE_LINK128][bookmark: OLE_LINK124][bookmark: OLE_LINK155][bookmark: OLE_LINK146][bookmark: OLE_LINK145][bookmark: OLE_LINK140][bookmark: OLE_LINK156][bookmark: OLE_LINK148][bookmark: OLE_LINK147][bookmark: OLE_LINK151][bookmark: OLE_LINK150][bookmark: OLE_LINK236][bookmark: OLE_LINK235][bookmark: OLE_LINK153][bookmark: OLE_LINK152][bookmark: OLE_LINK154][bookmark: OLE_LINK323][bookmark: OLE_LINK301]In order to evaluate the performance of identified prediction model in forecasting early or late stages of the AD continuum, we assessed its predictive power in differentiating asymptomatic (A+T-) and symptomatic (A+T+) individuals from healthy controls (A-T-). Interestingly, the model performed significantly better when comparing asymptomatic against the symptomatic individuals (AUC range: 0.88 – 0.96) as compared to asymptomatic against the controls (AUC range: 0.66 – 0.87; Fig. S3A-B). Specifically, in the case of predicting early stage (A+T- vs. A-T-), we obtained a minimum AUC of 0.66 in the stage 1 and a maximum AUC of 0.87 when applied to Stanford ADRC external validation data (Fig. 3). For this model, we observed a relatively low PPV (0.50 – 0.78) but high NPV (0.66 – 0.94), suggesting better performance in diagnosing non-diseased individuals. In the case of late-stage classification (A+T- vs. A+T+), we observed the lowest performance in stage 2 dataset (AUC = 0.88) and a maximum predictive accuracy for Stanford ADRC (AUC = 0.96). As expected, in this case the PPV and NPV were relatively high and consistent across both stages (1+2) and validation dataset (Stanford ADRC; Fig. S3D). We observed PPV and NPV to be ranging between 0.85 – 0.89 and 0.71 – 0.95, respectively, suggesting an overall better performance of the model in correctly classifying both asymptomatic and symptomatic individuals.
[bookmark: OLE_LINK623][bookmark: OLE_LINK174][bookmark: OLE_LINK173][bookmark: OLE_LINK91][bookmark: OLE_LINK176][bookmark: OLE_LINK175][bookmark: OLE_LINK178][bookmark: OLE_LINK177]Next, we divided our datasets into different groups of individuals based on their clinical dementia rating (CDR) scores and assessed the performance of 25 protein AD biomarker in differentiating individuals with CDR = 0 from CDR = 0.5 (CDR O vs. 0.5) and CDR > 0.5 (CDR 0 vs. >0.5), as well as the individuals with CDR 0.5 from CDR > 0.5 (CDR 0.5 vs. >0.5; Fig. S3C). Overall, we observed similar predictability across all three comparisons, with lowest performance in case of comparing CDR 0.5 and > 0.5 groups (AUC = 0.73) and highest power in the case of CDR 0 and > 0.5 groups (AUC = 0.80). Overall, these results indicate the robustness of predicted AD CSF proteomic biomarker in correctly identifying symptomatic individuals from asymptomatic or healthy controls, suggesting its promising diagnostic potential in clinical settings.
Protein co-expression networks and community detection
Co-expressed proteins tend to functionally coordinate their activities in response to external stimuli, indicating their potential involvement in common biological complexes, pathways, or underlying mechanisms that can either influence each other or be influenced in a synchronized manner. Therefore, identification of co-expressed proteins comprising different communities, a subnetwork of protein that show strong correlation among themselves in comparison to other proteins in the network, could be important to understand their co-regulation and biological importance. In order to identify communities of co-expressed proteins, we performed a protein co-expression network analysis for each of the identified protein groups separately and characterized different set of proteins that displayed high correlation with each other, performing a coordinated activity to regulate a particular biological process or molecular function. We used igraph20 R package (version 1.4.3) for this analysis. Initially, an adjacency graph was constructed by computing Pearson correlation coefficients via the “graph.adjacency” function. Proteins displaying positive and negative correlations were linked via red and blcak interactions, respectively. The obtained adjacency graph was simplified to remove self-loops and multiple edges using “simplify” function. Subsequently, edges between proteins with a Pearson correlation coefficient below the threshold (corr=0.7) were removed, and all nodes in the network that lacked connections to other nodes were pruned. The size of the nodes in the adjacency graph was scaled to be proportional to the level of abundance for each protein. The pruned adjacency graph was further converted into a minimum spanning tree based on the “Prim” algorithm21. Finally, the communities of highly correlated proteins in this graph were detected using “edge.betweeness.community” function followed by clustering and coloring the identified communities based on their membership. The obtained communities are visualized using fruchterman reingold layout22. The G1 group contained 21 distinct protein communities, with membership sizes ranging from 2 to 15 (Extended Data Fig. 10A). Notably, we identified NEFL and NEFH being part of the same community, suggesting both these proteins being highly correlated with each other and being involved in same biological process. Similarly, G2 group contained 17 different communities having 2 to 16 different protein members (Extended Data Fig. 10B). Due to a limited number of proteins in the G3 group, we detected only 10 different communities in this group with a maximum of 12 proteins in a single community (Extended Data Fig. 10C). The final protein group (G4), which constituted over half of the significantly altered AD CSF proteome, consisted of 38 distinct communities, each with a minimum of 2 and a maximum of 24 members (Extended Data Fig. 10D). In summary, our analysis reveals distinct subnetworks or communities within each protein group, consisting of subsets of proteins exhibiting strong correlations in their protein abundance. These communities may operate synergistically to perform various biological functions that are disrupted in AD. 
Predictive performance of individual proteins in the identified AD CSF proteomic signature
[bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK3][bookmark: OLE_LINK4]We also assessed the predictive performance of individual proteins in the identified AD CSF proteomic signature for predicting the AT status (Extended Data Fig. 3 A-C). As in case of the main analysis, we used a multi-stage approach (stage1, stage2, and validation) for assessing the predictive performance of individual proteins by evaluating their area under the curve (AUC). The stage 1 cohorts contained 680 A-T- and 490 A+T+ individuals whereas the stage comprised of 593 individuals of which 235 were A-T- and 358 were A+T+. The validation cohort (Stanford ADRC) consisted of 107 individuals (80 = A-T-, 27 = A+T+) for which protein quantification was performed using an older version (5K) of Somascan platform. We identified YWHAG as the most informative feature with a consistent AUC of 0.95 across all three different stages of assessment. Although with a relatively low predictive performance, TMOD2 also displayed consistent results across all stages (AUC = 0.85). A candidate from the protein phosphatase group, PPP1R1A (Protein Phosphatase 1 Regulatory Inhibitor Subunit 1A), displayed variable performance across different stage, with a best performance recoded in the stage 1 testing (AUC = 0.87) to a minimum (AUC = 0.78) in the Stanford validation. Genetic variations in different other genes encoding phosphatase proteins, such as PPP2R1A23 and PPP3R124 have already been associated with AD risk. In conclusion, this analysis highlight the robustness of the identified proteomic signature. While individual proteins may exhibit sufficient predictive power on their own, they collectively contribute to the development of a highly accurate proteomic signature for predicting AD conversion and rate of cognitive decline.
Validation of AD-specific proteomic signature
[bookmark: OLE_LINK8][bookmark: OLE_LINK9][bookmark: OLE_LINK12][bookmark: OLE_LINK13]After assessing the predictive power of the identified proteomic signature in discriminating AD individuals from healthy controls, we examined its specificity by applying it to the neurodegenerative disorders (DLB, FTD, and PD). The prediction model that was trained using the training set from the stage 1 was applied to the test set from stage 1, the stage 2 replication data, and the independent validation datasets from the Stanford ADRC and PPMI cohorts. The model was trained using protein abundance level of 11 protein analytes where age at CSF draw and sex were used as model covariates. The model weights were fixed to the identified thresholds for each protein biomarker and same weights were used for making prediction in each of the three testing datasets (stage 1+2, Stanford ADRC, and PPMI). Based on the clinical diagnosis, the stage 1 and 2 comprise of 724 healthy controls (CO), 882 AD, 25 DLB, and 42 FTD individuals. The Stanford ADRC cohort comprise of 62 healthy controls and 16 AD individuals. The PPMI cohorts contains 168 healthy controls and 507 PD patients. After applying the prediction model to all of the individuals belonging to various groups based on their clinical diagnosis (CO, AD, DLB, FTD, and PD), we obtained the probability score for each individual to be positive (maximum probability = 1) or negative (minimum probability = 0) for the identified AD CSF proteomic signature. Interestingly, we observed AD patients from stage 1 and 2 showing the highest probability of being proteomic signature positive with a mean value close to 1. In line with this observation, the lowest probability (mean = 0) was observed for healthy control individuals where population mean was close to 0. For DLB and FTD, we observed a wide range of probability scores with means close to 0.25 and 0.10, respectively. In case of Stanford ADRC, we observed similar trends for CO individuals (probability score mean = 0) whereas mean for AD population was close to 0.75, suggesting all healthy individuals are correctly classified as proteomic signature negative and most of the AD individuals are positive. Finally, in the PPMI cohort, the proteomic signature displayed no predictive power as mean probability score for both CO and PD patients was close to 0. Overall, this analysis highlights the specificity of the predicted proteomic signature to be tailored for AD. It effectively distinguishes individuals diagnosed with AD from healthy controls, as evidenced by the highest and lowest probability scores in the AD and CO groups, respectively. The relatively higher probability scores observed for DLB and FTD point to the shared pathophysiology between AD and other dementia-related disorders.25,26
Replication of CSF proteomic signature in plasma data
[bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK18][bookmark: OLE_LINK17][bookmark: OLE_LINK34][bookmark: OLE_LINK35][bookmark: OLE_LINK23][bookmark: OLE_LINK24]Blood plasma, as a readily obtainable bodily fluid that can be collected with minimal patient discomfort, greatly simplifies the process of sampling large groups and obtaining repeated samples. The plasma proteome, with its potential to interact and exchange molecules with all organs and tissues, including the brain, offers significant potential for uncovering biomarkers associated with various diseases. This is due to its ability to mirror a wide array of both normal physiological processes and pathological alterations.27 Due to the non-invasive nature of plasma tissue sample collection, which can be readily applied for rapid diagnostic purposes, we assessed if the proteomic signature identified from CSF could also be utilized in plasma proteomics to distinguish AD patients from healthy controls. To replicate our findings from CSF into plasma tissue, we considered the plasma proteomics data from 1,222 AD patients and 1,694 healthy controls, profiled using the 7K Somascan platform. The plasma proteomics data (unpublished data) was processed and quality control was performed using the same analytical pipeline as for the CSF proteomics data. In additional to the clinical diagnosis assessment performed at the time of blood draw, we also leveraged, if available, the Aβ42 and pTau immunoassay data for classifying individuals into A+T+ (n=104) and A-T- (n=252). For individuals lacking the pTau measurements, we utilized the amyloid positivity (A+, n=635) or negativity (A-, n=889) to assess the performance of CSF proteomic signature. Regardless of the clinical diagnosis or biomarker status as the outcome, the performance of the proteomic signature was slightly better or similar to the baseline model that only includes age and sex. Specifically, in the case of AT status as the outcome, we obtained an AUC of 0.61 for the baseline model and an AUC of 0.74 and 0.76 for the training (n=250) and testing (n=106) datasets, respectively. Similarly, while using the binarized amyloid levels as outcome, we obtained an AUC of 0.69 for baseline, 0.69 for the training (n=1,066), and 0.66 for the test (n=458) datasets. Finally, in the case of clinical diagnosis, we observed an AUC of 0.69 for the baseline model and an AUC of 0.68 and 0.65 for the training (n=2,041) and test (n=875) datasets, respectively. Overall, we observed a slightly better performance when using the AT status as the model outcome but the predictive power of the 11 analytes proteomic signature was significantly low in plasma as compared to CSF. Upon performing the differential protein abundance analysis in plasma for the AD and healthy control individuals, we observed that only two proteins (EZR and PPP1R1A) showed nominal significance (P < 0.05) but direction of effect was opposite for CSF (increased abundance) and plasma (decreased abundance) tissues (Supplementary Table 16). Surprisingly, we noted a consistent direction of effect size between CSF and plasma tissues for only 4 out of the total 11 proteins within the AD CSF proteomic signature. These results highlight notable differences in protein abundance levels between CSF and plasma tissues, which account for the relatively lower predictive performance of the AD CSF proteomic signature when applied to plasma. In essence, these findings emphasize that CSF and plasma represent distinct tissues with markedly different proteomic profiles. Consequently, this highlight the importance of developing tissue-specific AD prediction models to enhance the efficiency and robustness of diagnostic applications.
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