Solving the mystery of the walk-off soliton
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Supplementary information

Experimental evidence with spans of GRIN fiber ranging from 2 m to 850 m
(Supplementary Fig. 1), provided less stringent requirements for the optimal soliton
energy as the fiber length reduces. At 850 m distance, 1550 nm and 67 fs input
pulsewidth, a sharp input energy of 1.5 nJ is required to obtain a minimum pulsewidth
of 550 fs at output; at 120 m, a minimum pulsewidth of 260 fs is measured for energy
range between 2 nJ and 4 nJ; at 10 m and 2 m distance, pulsewidth remains mimimum
(110 fs and 60 fs respectively), for input energy larger than 2.5 njJ. Soliton pulsewidth
increases with distance, as a consequence of the wavelength red-shift due to Raman
SSFS, and the need to conserve the soliton energy condition E; = A|f,(1)|w2/n,T, ,
with Ty = Trywuu/1.763, n, (m?2/W) the nonlinear index coefficient, 8, (1) the chromatic
dispersion, and w, the effective beam waist.

Numerical simulations (empty dots) substantially confirmed the experimental

observations.
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Supplementary Fig. 1 - Measured soliton pulsewidth vs. input energy, at 1550 nm

wavelength, input pulsewidth 67 fs, input waist 15 pm, and for GRIN fiber spans of

length 2, 10, 120, 850 m.

In order to stress the generation of a monomodal soliton from several degenerate and
non-degenerate modes, Supplementary Fig. 2 provides a simulation example of a 67 fs
input pulse, 1550 nm, with input energy of 4 nJ]. 15 modes are launched at input; the
fraction of energy for the 3 axial modes is 24%, 13%, 8%; the remaining energy is
distributed uniformly between the non-axial modes. After 20 m propagation, a
spatiotemporal soliton has formed, with most of the energy transferred to the LPy,

mode.
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Supplementary Fig. 2 - Simulated ultra-short pulse mode evolution. Left: input pulse
launched with 67 fs pulsewidth, 1550 nm wavelength, energy 4 n] distributed on 15

modes. Right: Soliton propagated after 20 m of GRIN fiber.

What happens when larger pulses are launched? A spatiotemporal soliton is still
possible? The numerical example of Supplementary Fig. 3, considers a 10 ps input pulse,
1550 nm, with energy 0.63 nJ. 15 modes are launched at input, divided into 5 groups of
degenerate modes. Group energies were 0.05, 0.075, 0.1, 0.15, and 0.25 n] respectively;
energies within modes of each group are uniformly distributed. After 5 km of
propagation in GRIN fiber, each of the 5 groups forms an independent spatiotemporal

soliton. It could not be possible to produce a single spatiotemporal soliton.
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Supplementary Fig. 3 - Simulated long pulse mode evolution. Left: input pulse with 10
ps pulsewidth, 1550 nm wavelength, input energy 0.62 n] properly distributed on 15
modes. Right: Mode groups propagated after 5 km of GRIN fiber, each forming a

spatiotemporal soliton.

In order to determine the mode content of the input laser beam and thus obtain the
energy distribution over modes we performed the following mode decomposition
procedure. The considered LP;,,, modes are orthogonal and can be considered as a basis
for laser beams. In this case, an input laser beam A(x, y) can be expressed as

Ax,y) = Zim Xm U (x,Y), (sup. 1)
where U, (x,y) is the spatial distribution of the mode LP,,, and «, is the
decomposition coefficient, which determines the fraction of the laser beam energy
contained in the mode LP,,,. Then, multiplying this expression from both sides by the
conjugate spatial distribution of the considered mode and integrating over the x-y

plane, we can obtain the decomposition coefficient:

A = J[ Upn (6, )A(x, y)dxdy. (sup. 2)



