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Supplementary	information	

Experimental	 evidence	 with	 spans	 of	 GRIN	 fiber	 ranging	 from	 2	 m	 to	 850	 m	

(Supplementary	 Fig.	 1),	 provided	 less	 stringent	 requirements	 for	 the	 optimal	 soliton	

energy	 as	 the	 fiber	 length	 reduces.	 At	 850	 m	 distance,	 1550	 nm	 and	 67	 fs	 input	

pulsewidth,	a	sharp	input	energy	of	1.5	nJ	is	required	to	obtain	a	minimum	pulsewidth	

of	550	fs	at	output;	at	120	m,	a	minimum	pulsewidth	of	260	fs	is	measured	for	energy	

range	between	2	nJ	and	4	nJ;	at	10	m	and	2	m	distance,	pulsewidth	remains	mimimum	

(110	fs	and	60	fs	respectively),	 for	 input	energy	 larger	than	2.5	nJ.	Soliton	pulsewidth	

increases	 with	 distance,	 as	 a	 consequence	 of	 the	wavelength	 red-shift	 due	 to	 Raman	

SSFS,	 and	 the	 need	 to	 conserve	 the	 soliton	 energy	 condition	𝐸! = 𝜆|𝛽"(𝜆)|𝑤#" 𝑛"𝑇$⁄ 	 ,	

with	𝑇$ = 𝑇%&'( 1.763⁄ ,	𝑛"	(m2/W)	the	nonlinear	index	coefficient,	𝛽"(𝜆)	the	chromatic	

dispersion,	and	𝑤# 	the	effective	beam	waist.	

Numerical	 simulations	 (empty	 dots)	 substantially	 confirmed	 the	 experimental	

observations.	

	



	

Supplementary	 Fig.	 1	 –	 Measured	 soliton	 pulsewidth	 vs.	 input	 energy,	 at	 1550	 nm	

wavelength,	 input	pulsewidth	67	 fs,	 input	waist	15	µm,	and	 for	GRIN	 fiber	 spans	of	

length	2,	10,	120,	850	m.	

	

In	order	to	stress	the	generation	of	a	monomodal	soliton	from	several	degenerate	and	

non-degenerate	modes,	Supplementary	Fig.	2	provides	a	simulation	example	of	a	67	fs	

input	pulse,	1550	nm,	with	 input	energy	of	4	nJ.	15	modes	are	 launched	at	 input;	 the	

fraction	 of	 energy	 for	 the	 3	 axial	 modes	 is	 24%,	 13%,	 8%;	 the	 remaining	 energy	 is	

distributed	 uniformly	 between	 the	 non-axial	 modes.	 After	 20	 m	 propagation,	 a	

spatiotemporal	 soliton	 has	 formed,	 with	 most	 of	 the	 energy	 transferred	 to	 the	 𝐿𝑃$!	

mode.	

	



	

	

Supplementary	Fig.	2	–	Simulated	ultra-short	pulse	mode	evolution.	Left:	input	pulse	

launched	with	67	fs	pulsewidth,	1550	nm	wavelength,	energy	4	nJ	distributed	on	15	

modes.	Right:	Soliton	propagated	after	20	m	of	GRIN	fiber.	

	

What	 happens	 when	 larger	 pulses	 are	 launched?	 A	 spatiotemporal	 soliton	 is	 still	

possible?	The	numerical	example	of	Supplementary	Fig.	3,	considers	a	10	ps	input	pulse,	

1550	nm,	with	energy	0.63	nJ.	15	modes	are	launched	at	input,	divided	into	5	groups	of	

degenerate	modes.	Group	energies	were	0.05,	0.075,	0.1,	0.15,	and	0.25	nJ	respectively;	

energies	 within	 modes	 of	 each	 group	 are	 uniformly	 distributed.	 After	 5	 km	 of	

propagation	 in	GRIN	fiber,	each	of	 the	5	groups	 forms	an	 independent	spatiotemporal	

soliton.	It	could	not	be	possible	to	produce	a	single	spatiotemporal	soliton.	

	



	

	

Supplementary	Fig.	3	–	Simulated	long	pulse	mode	evolution.	Left:	input	pulse	with	10	

ps	pulsewidth,	1550	nm	wavelength,	input	energy	0.62	nJ	properly	distributed	on	15	

modes.	 Right:	 Mode	 groups	 propagated	 after	 5	 km	 of	 GRIN	 fiber,	 each	 forming	 a	

spatiotemporal	soliton.	

	

In	 order	 to	 determine	 the	mode	 content	 of	 the	 input	 laser	 beam	 and	 thus	 obtain	 the	

energy	 distribution	 over	 modes	 we	 performed	 the	 following	 mode	 decomposition	

procedure.	The	considered	𝐿𝑃)*	modes	are	orthogonal	and	can	be	considered	as	a	basis	

for	laser	beams.	In	this	case,	an	input	laser	beam	𝐴(𝑥, 𝑦)	can	be	expressed	as	

𝐴(𝑥, 𝑦) 	= 	∑ 𝛼)*𝑈)*(𝑥, 𝑦)),* ,																																			(sup.	1)	

where	 𝑈)*(𝑥, 𝑦)	 is	 the	 spatial	 distribution	 of	 the	 mode	 𝐿𝑃)*,	 and	 𝛼)*	 is	 the	

decomposition	 coefficient,	 which	 determines	 the	 fraction	 of	 the	 laser	 beam	 energy	

contained	 in	 the	mode	𝐿𝑃)*.	Then,	multiplying	 this	expression	 from	both	sides	by	 the	

conjugate	 spatial	 distribution	 of	 the	 considered	 mode	 and	 integrating	 over	 the	 x-y	

plane,	we	can	obtain	the	decomposition	coefficient:	

𝛼)* = ∬𝑈)*∗ (𝑥, 𝑦)𝐴(𝑥, 𝑦)𝑑𝑥𝑑𝑦.																																	(sup.	2)	


