Methods
Human lung tissue, peripheral blood and bone marrow
Human tissues were obtained from deceased organ donors after either brain death (DBD) or circulatory death (DCD) (Extended Data Table 1). Peripheral blood was collected in sodium heparin tubes. Lungs (perfused) and vertebral bodies were immediately placed on ice after recovery processed within 8 hours of collection. 

Isolation of cells from human lungs 
Human lung tissue (~5-8g/donor) was rinsed in ice-cold PBS, minced, and placed in digestion medium [300 μg ml−1 LiberaseTM (Roche) and 10 μg ml−1 DNaseI (Roche)] in HBSS (#J67763-AP, Thermo Fisher). Samples were incubated at 37°C for 45 min in a shaker (800 rpm). After the enzymatic digest, the reaction was stopped by adding stop buffer (HBSS, 10% FBS) and the homogenate was filtered through a 100 μm cell strainer (431752, Corning) to obtain a single cell suspension. Cells were pelleted (300 g, 5 min) and incubated in red blood cells lysis (RBC) buffer (0.15M NH4Cl, 10mM KHCO3, 0.1mM EDTA in dH2O) for 10 min at room temperature. Cells were washed in stop buffer, pelleted again (300 g, 5 min, 4°C) and kept at 4°C for the remainder of the protocol. 

Isolation of cells from human bone marrow
Vertebral columns of organ donors were split through the intervertebral discs into vertebral bodies (VBs). VBs were crushed along the sagittal axis into small pieces, the vertebral disks were discarded, and the VBs were cleaned from soft tissues. The resulting bone chips were further rendered into smaller pieces using a bone grinder and placed into Processing medium (phenol-red free RPMI-1640, 25 mM HEPES, 2.5% BSA and 2.5 μg ml-1 DNAseI (Roche)) in a 500 ml Nalgene jar. Samples were vortexed for 45 min to allow for passive release of BM cells from the trabecular framework of the VBs. The resulting suspension was filtered through a 180 µm sieve and 100 μm cell strainer to obtain a single cell suspension. Cells were pelleted (300 g, 5 min) and incubated in RBC lysis buffer for 10 min at room temperature. Cells were washed in stop buffer, pelleted again (300 g, 5 min, 4°C) and kept at 4°C for the remainder of the protocol. 

Dead-cell removal and Magnetic Enrichment
Dead-cell removal was performed by gradient centrifugation (800 g, 25 min, 4°C) using 12% Iodixanol solution (OptiprepTM, Sigma-Aldrich). Live cells were then depleted for lineage-committed cells with biotin antibodies against CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD66b, CD235, CD31, CD326 and Streptavidin-coupled magnetic beads (130-048-101, Miltenyi) passed through an LS MACS column (Miltenyi, 130-042-401) on a MidiMACS Separator magnet (Miltenyi, 130-042-302). The flow through cells were then designated as lineage-depleted cells. Lineage depleted cells were used in colony formation unit assays or frozen as aliquots of up to 1x107 cells per vial in IMDM, 40% FBS, 15% DMSO and stored at -150°C until use. 

MethoCult™ colony forming unit (CFU) assays
[bookmark: _Hlk146460090]Lin-depleted BM (5x103) or lung (15x103) cells were plated in duplicate in semi-solid methylcellulose-based MethoCult™ medium (H4434, Stem Cell Technologies) according to the manufacturer’s instructions. After incubation for 12-14 days at 37°C in 5% CO2, haematopoietic colonies were scored based on morphological and phenotypic criteria and quantified by manual counting using brightfield microscopy (Echo, Revolve Microscope). After manual counting, methylcellulose was dissolved, cells were pelleted and stained with antibodies against GlyA/PB, CD45/APC-Cy7, CD15/APC, CD14/PE, CD41/AF488 (1:400) and LIVE/DEAD Fixable Yellow stain (1:1000) to validate colony composition by flow cytometry.

MegaCult™ CFU assays
Lineage-depleted BM (5x103) or lung (15x103) cells were plated in duplicate in collagen-based MegaCult™-C medium (#04960, Stem Cell Technologies) with TPO (50 ng ml−1), IL-3 (10 ng ml−1) and IL-6 (20 ng ml−1). After incubation for 10-12 days at 37°C in 5% CO2, the colonies were fixed with ice-cold methanol/acetone and stained against CD41 according to the manufacturer’s instructions. Thereafter, the colonies were identified based on CD41-immunopositivity and quantified by manual counting using brightfield microscopy (Echo, Revolve Microscope).

Flow Cytometry
Clone, supplier and catalogue number for each antibody can be found in Extended Data Table 4. After dead-cell removal human lung, blood and BM cells were incubated with FcR block (Biolegend, #422301) to block non-specific binding of antibodies and biotin antibodies against CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD66b, CD235, CD31, CD326 (1:200) to label lineage-committed cells in MACS buffer (PBS, 0.5% BSA, 2 mM EDTA) for 45 minutes at 4°C. Cells were then pelleted (300 g, 5 min, 4°C), washed with MACS buffer and stained for 30 min at 4°C in the dark with antibody panels to phenotype subsets of haematopoietic stem and progenitor cells in MACS buffer. Panel A: Streptavidin/BV605, CD34/FITC, CD38/APC, CD45RA/APC-Cy7, CD41/61/PerCP-Cy5.5, CD90/PE, Flt3/BV711, CD49f/Pacific Blue (1:400) and LIVE/DEAD Fixable Yellow stain (1:1000, ThermoFisher #L34959). Panel B: Streptavidin/AF647, CD34/FITC (1:400) and LIVE/DEAD Fixable Yellow stain (1:1000). Panel (C): For cell cycle analysis, cell surface markers were stained with Streptavidin/BV605, CD34/FITC, CD38/APC, CD45RA/APC-Cy7, CD90/PE, Flt3/BV711 (1:400) and LIVE/DEAD Fixable Yellow stain, followed by fixation in Cytofix/Cytoperm (BD) for 15 min on ice. Cells were washed in Perm/Wash (BD) and intranuclear staining of Ki-67/PerCP-Cy5.5 (1:400) was performed at 4°C overnight in the dark. DNA content was stained the next day using 1 μg/ml DAPI for 20 min in Perm/Wash at RT. Panel D: CD45/AF647, CD45/APC-780, CD33/PerCP, CD19/PB, CD41/FITC, mouse-CD45/PE-Cy7 (1:400) and LIVE/DEAD Fixable Yellow stain (1:1000), Panel E: CD45/APC-780, GlyA/PE, GlyA/PB, CD71/PerCP-Cy7, CD41/FITC, mouse-CD45/APC (1:400) and LIVE/DEAD Fixable Yellow stain (1:1000). Prior to flow cytometry, samples were washed and resuspended in 300 μl MACS buffer and filtered through a 100 μm cell strainer. Unstained cells and compensation beads (BD Biosciences) were used for compensation and as controls to set appropriate gates. For flow cytometry analysis, BD LSRII and LSRFortessa cytometers were used and data were analyzed using FlowJo software v9.9 or v10 (Tree Star). 
Xenotransplantation
For xenotransplantation experiments, 6 week-old triple transgenic female NSG-SGM3 mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3, CSF2, KITLG)1Eav/MloySzJ, Stock No: 013062) were purchased at the Jackson Laboratory and housed in a Specific-Pathogen-Free (SPF) animal facility1. Mice were allowed to acclimate for 1 week and were 7 weeks old at the time of xenotransplantation. One day before reconstitution, mice were pre-conditioned by sublethal irradiation (2.4 Gy)2. On the day of transplantation, Lin- lung and BM cells were thawed and 1.5 x106 viable cells were resuspended in 250 µl PBS + 0.1% Pen/Strep (Life Technologies) and intravenously injected into the tail vein of recipient mice2. Mice were monitored for signs of GVHD (weight loss ≥5% of maximum body weight) by weekly weighing. 10 weeks post-transplantation, the BM, lung, and blood were investigated for engraftment of human cells. BM cells were isolated from hind limb long bones by centrifugation as previously described3, lung cells by enzymatic digestion as described above, and 100 l blood were lysed for 10 min at room temperature in 1ml RBC buffer. Cells were washed in MACS buffer and stained with antibody panel D and E.

[bookmark: _Hlk143874294]To ensure the detection of low levels of human leukocyte engraftment, samples were stained with two antibodies against different epitopes of hCD45 (cl.30-F11 and cl. HI30). Cells were only considered human leukocytes if they were positive for both CD45 antibodies (CD45++) as previously described2. Threshold for positive engraftment was set to ≥ 0.01 % CD45++ cells of all CD45+ (mouse and human) with at least 30 cells recorded in the CD45++ gate for BM, lung and spleen, and ≥ 15 cells for PB. Cells were determined as myeloid lineage if CD45++CD33+ ≥ 20 cells; lymphoid lineage if CD45++CD19+ ≥ 20 cells; megakaryocytic lineage if CD45++CD41+ ≥ 20 and erythroid lineage if CD45- GlyA+ or CD71+ ≥ 20 cells. To determine background staining, organs of mice that were irradiated but not transplanted were characterized using the same antibody panel. 
Cell Sorting
Lineage-depleted cells from the lung and BM were quickly thawed at 37°C and 10 ml of pre-warmed resuspension medium (IMDM, 40% FBS) was drop-wise added. Cells were pelleted at 300 g for 5 min, washed with resuspension medium and spun down again. The cell pellet was resuspended in 100 µg ml−1 DNaseI (StemCell Technologies) in HBSS (Gibco) and incubated for 15 min at room temperature. Following DNA digest, cells were pelleted, washed in MACS buffer and stained with Antibody Panel B.  Stained cells were resuspended in FACS Buffer (1% BSA, 25 mM HEPES, 2 mM EDTA in PBS) at a concentration of 5x106 cells/ml, filtered through a 100 µm cell strainer and loaded onto BD FACSAria II cell sorters. Live, Lin- CD34+ cells were sorted into 1.5 ml tubes for subsequent 10x Genomics single-cell RNA-seq. Live, Lin+ cells were collected for demultiplexing the samples from different individuals based on single nucleotide polymorphisms (SNPs)4. 

RNA-sequencing using 10x Genomics platform
For each tissue and donor, Live/Lin-/CD34+ HSPCs (Extended Data Table 1) were sorted into 300 l Sorting Buffer (PBS, 1% BSA, 2 mM EDTA, 25 mM HEPES) and kept on ice until library preparation. Cells were spun down for 5 min at 300 g and equal numbers of lung or BM cells from 4 donors were pooled into 2 wells prior to library preparation (Extended Data Figure 6a) and further processed for single-cell sequencing using the ChromiumTM Single Cell 3’ Library & Gel Bead Kit v2 (10x Genomics) according to the manufacturer’s protocol. Libraries from all donors and tissues were combined prior to sequencing and sequenced on a NovaSeq6000 Sequencing system (SP100). 



Data pre-processing, quality control and normalization 
The resulting scRNA-seq reads were aligned to the human reference genome and Ensembl annotation (GRCh38 genome build, Ensembl annotation version 95) using STAR v2.7.5c 5 with the following parameters: --outFilterType BySJout –outFilterMismatchNoverLmax 0.04 – outFilterMismatchNmax 999 –alignSJDBoverhangMin 1 –outFilterMultimapNmax 1 – alignIntronMin 20 –alignIntronMax 1000000 –alignMatesGapMax 1000000. ) and quantified using the CellRanger 3.0.2 suite of tools (https://support.10xgenomics.com). Quality control filters were applied rejecting cells with less than 200 UMI and more than 15% of mithocondrial genes or 50% or ribosomal genes. 
The filtered count matrices were normalized, and variance stabilized using negative binomial regression via the scTransform method offered by Seurat6. To control for confounding variables, we regressed out the effect of cell cycle status, mitochondrial and ribosomal genes. The normalized matrices were reduced to a lower dimension using Principal Component Analyses (PCA) and the first 30 principal coordinates per sample were subjected to a non-linear dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP). Clusters of cells sharing similar transcriptomic signals were initially identified using the Louvain algorithm, and clustering resolutions varied between 0.6 and 1.2 based on the number and variety of cells obtained in the datasets. Multiplets were estimated using the DoubletFinder package in processed the Seurat objects and subsequently removed7. The raw and log-normalized counts per library were then pruned to retain only genes shared by all libraries. Pruned counts matrices were merged into a single Seurat object and the batch (or library) of origin was stored in the metadata of the object. The log-normalized counts were reduced to a lower dimension using PCA and the individual libraries were aligned in the shared PCA space in a batch-aware manner (Each individual library was considered a batch) using the Harmony algorithm8. The resulting Harmony components were used to generate batch corrected UMAP visualizations and cell clustering. 



Donor genotyping and demultiplexing
To identify SNPs (single nucleotide polymorphisms) that are specific to each donor, Live/Lin+ cells were collected for genotyping. To generate cDNA, the SMART-Seq v4 Ultra Low Input RNA Kit (Takara) was used according to the manufacturer’s instructions. Libraries for bulkRNA sequencing then were prepared using Illumina DNA Prep (Illumina) and sequenced on a HiSeqSE50 sequencer. Nucleotide variants were identified from the resulting bam files using the Genome Analysis Tool Kit (GATK, v4.0.11.0) following the best practices for RNA-seq variant calling9,10 Libraries containing samples pooled prior to loading were processed using Freemuxlet (https://github.com/statgen/popscle), the genotype-free version of Demuxlet4 to identify clusters of cells belonging to the same patient via SNP concordance. Briefly, the aligned reads from Cellranger were filtered to retain reads overlapping a high-quality list of SNPs obtained from the 1000 Genomes Consortium (1KG) 10. Freemuxlet was run on this filtered bam using the 1KG vcf file as a reference, the input amount of samples/pool as a guideline for clustering groups of cells by SNP concordance, and all other default parameters. Cells are classified as singlets arising from a single library, doublets arising from two or more libraries, or as ambiguous cells that cannot be accurately assigned to any existing cluster (due to a lack of sufficient genetic information). Clusters of cells belonging to a unique sample were mapped to patients using their individual Freemuxlet-generated genotype, and ground truth genotypes per patient identified via bulk RNASeq. The pairwise discordance between inferred and ground-truth genotypes was assessed using the bcftools gtcheck command11.  Ambiguous, and doublet events were filtered from the major analysis. 

Cell clustering and annotation
Clusters of cells sharing similar transcriptomic signal were identified using the Louvain algorithm and loosely grouped into major cell compartments based on cluster signature genes (e.g., haematopoietic progenitor: AVP, SELL, SPINK2, KLF1, SRGN, GATA1, CA1, HBB, LMO2, stromal: PDGFRA, CFD, DCN, APOC, FBLN1, GPC3, COL1A2, COL6A3, mesothelial: PRG4, HP, KRT18). Using the ‘SubsetData’ command, we generated a new Seurat object including only progenitor cells. Following dimension reduction as described above, clusters of progenitor subsets were detected using the Louvain community analysis to construct the shared nearest neighbor map (‘FindClusters’). We identified genes that were consistently expressed across BM and lung-derived cells with the function ‘FindConservedMarkers’ and assigned cluster identities by comparing cluster-specific marker genes to reference gene expression datasets (12,13, Extended Data Figure 6). To validate our annotation, we used the command ‘find_gene_modules’ in Monocle 3 14 to identify modules of co-regulated differentially expressed genes. Gene sets that were specific to certain progenitor subsets were considered signature modules (Extended Data Figure 6) and were compared to the cell type signature gene sets (C8, Human MsigDB Collections) to confirm cluster identity. Pseudotime analysis was performed using the ‘orderCells’ function in Monocle3 with the cluster ‘HSC/MPP’ selected as a root for the trajectory14. 

Differential gene expression 
To test differential expression between cells in the HSC/MPP cluster from the lung and BM, the ‘FindAllMarkers’ function in Seurat using the Wilcoxon rank-sum test was performed. We determined that at least 15% of the cells from each tissue should express the gene. To evalutate the robustness of differentially expressed genes between lung and BM hematopoietic progenitors, Seurat’s ‘FindMarkers’ function was additionally run using ‘Bimod’ (Likelihood-ratio test for single cell gene expression15) and ‘MAST’ (Model-based analysis of Single-cell Transcriptomics16) statistical tests.

Gene set enrichment analysis 
Single sample Gene set enrichment analysis (ssGSEA) was performed using the package ‘escape’17. A gene set score reflecting the degree to which the genes are coordinately up- or downregulated was calculated for each cell. Enrichment was tested for H hallmark, C2 curated, C5 ontology and C8 signature genesets of the MSigDB database 2023.1 18. The package ‘dittoSeq’ was used to visualize the results19.

UCell Scoring
To score gene signatures in the lung reference data sets we used the package ‘Ucell’20. The lung signature was defined as  Lin-, AVP, SELL, SPINK2, CD63, VIM, MLLT3, SOD2, PLCG2, CD74, MEG3, FTL, CD34, KLF2, the bone marrow signature as Lin-, AVP, SELL, SPINK2, CRHBP, HOPX, KLF2, MLLT3, HLA-DRB5, HLA-DRB1, CD34, CD74, SOCS2. Lin- genes: C1QB-, FABP4-, NKG7-, GZMB-, SFTPC-, NAPSA-, LAMP3-, MARCO-, S100A2-, KRT5-, KRT6A-, ACKR1-, VWF-, CD3D-, CLDN5-, DCN-, MGP-, LUM-, AGER-, EMP2-, CAV1-, CAPS-, JCHAIN-, CD79A-, ACTA2-, TAGLN-, SPARCL1-, S100A8-, LYZ-, CD68-, PRR4-, PRB3-, ACKR1-, SPARCL1-, CLU-, DCN-, MGP-, FBLN1-, CCL21-, TFF3-, MMRN1-, ACTA2-, CAPS-, LCN2-, MUC5B-, GRP-, CALCA-, CPVL-, S100B-, TPSAB1-, CPA3-, TPSB2-, CD163-, CD14-, BGN-, PDGFRB-, HIGD1B-, HP-, PLA2G2A-, ASCL3-, CD24-, ACTG2-, GPC3-, TEK-, MS4A1-, CD69-, MS4A6A-, APOE-, LAPTM5-, MRC1-, CORO1A-. A Ucell score >0.4 was considered a positive stem cell signature. 

Mapping and query annotation
The cells in the integrated lung reference dataset (Human Lung Cell Atlas V2, HLCA V2) with a UCell score >0.4 were projected onto the batch corrected, Harmony integrated UMAP of lung and BM hematopoietic progenitor cells (Fig. 3a) after finding transfer anchors using the ‘MapQuery’ function in Seurat. To classify the cells identified in the HLCA V2 based on our UMAP structure (Fig. 3a), IDs and prediction scores were calculated using ‘TransferData’ in Seurat.

Molecular Cartography
Tissue sections
Human lung tissue of 4 deceased organ donor samples was frozen in OCT on dry ice and tissue blocks were processed at the facility of Resolve Biosciences, San Jose. Briefly, 10 µm cryosections were prepared and placed within the capture areas of cold Resolve Biosciences slides. Tissue sections then were thawed and fixed according to Molecular Cartography protocol with MF1 for 30 min at 4°C. After fixation, sections were washed twice in 1x PBS for two min, followed by 1 min washes in 70% ethanol at room temperature. Fixed samples underwent an alcoholic series starting with an incubation in isopropanol for 1 min, followed by 95% and 70% ethanol. The samples were used for Molecular CartographyTM (100-plex combinatorial single molecule fluorescence in-situ hybridization) according to the manufacturer’s instructions Day 1: Molecular Preparation Protocol for human lung, starting with the aspiration of ethanol and the addition of buffer DST1 followed by tissue priming and hybridization. Briefly, tissues were primed for 30 minutes at 37°C followed by 38-48 h hybridization of all probes specific for the target genes (see below for probe design details and target list). Samples were washed the next day to remove excess probes, counterstained with DAPI and fluorescently tagged in a two-step color development process. Regions of interest from each tissue section were chosen and imaged as described below, fluorescent signals removed during decolorization. Color development, imaging and decolorization were repeated for multiple cycles to build a unique combinatorial code for every target gene that was derived from raw images as described below. 

Probe Design 
The probes for 100 genes were designed using Resolve’s proprietary design algorithm. Briefly, the probe-design was performed at the gene-level. For every targeted gene, all full-length protein coding transcript sequences from the ENSEMBL database were used as design targets if the isoform had the GENCODE annotation tag ‘basic’21,22 For efficiency, the selection of probe sequences was not performed randomly, but limited to sequences with high success rates. To filter highly repetitive regions, the abundance of k-mers was obtained from the background transcriptome using Jellyfish23. Every target sequence was scanned once for all k-mers, and those regions with rare k-mers were preferred as seeds for full probe design. A probe candidate was generated by extending a seed sequence until a certain target stability was reached. A set of simple rules was applied to discard sequences that were found experimentally to cause problems. After these fast screens, every kept probe candidate was mapped to the background transcriptome using ThermonucleotideBLAST24 and probes with stable off-target hits were discarded. Specific probes were then scored based on the number of on-target matches (isoforms), which were weighted by their associated APPRIS level25 favoring principal isoforms over others. A bonus was added if the binding-site was inside the protein-coding region. From the pool of accepted probes, the final set was composed by picking the highest scoring probes. Extended Data Table 4 summarizes the gene probes chosen for our study.

Imaging
Samples were imaged on a Zeiss Celldiscoverer 7, using the 50x Plan Apochromat water immersion objective with an NA of 1.2 and the 0.5x magnification changer, resulting in a 25x final magnification. Standard CD7 LED excitation light source, filters, and dichroic mirrors were used together with customized emission filters optimized for detecting specific signals. Excitation time per image was 1000 ms for each channel (DAPI was 10 ms). A z-stack was taken at each region with a distance per z-slice according to the Nyquist-Shannon sampling theorem. The custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 µm pixel size) was used. For each region, a z-stack per fluorescent color (two colors) was imaged per imaging round. A total of 8 imaging rounds were done for each position, resulting in 32 z-stacks per region. The completely automated imaging process per round (including water immersion generation and precise relocation of regions to image in all three dimensions) was realized by a custom python script using the scripting API of the Zeiss ZEN software (Open application development). 

Spot Segmentation
The algorithms for spot segmentation were written in Java and are based on the ImageJ library functionalities. Only the iterative closest point algorithm is written in C++ based on the libpointmatcher library (https://github.com/ethz-asl/libpointmatcher). 


Preprocessing
As a first step all images were corrected for background fluorescence. A target value for the allowed number of maxima was determined based upon the area of the slice in µm2 multiplied by the factor 0.5. This factor was empirically optimized. The brightest maxima per plane were determined, based upon an empirically optimized threshold. The number and location of the respective maxima was stored. This procedure was done for every image slice independently. Maxima that did not have a neighboring maximum in an adjacent slice (called z-group) were excluded. The resulting maxima list was further filtered in an iterative loop by adjusting the allowed thresholds for (Babs-Bback) and (Bperi-Bback) to reach a feature target value (Babs: absolute brightness, Bback: local background, Bperi: background of periphery within 1 pixel). This feature target values were based upon the volume of the 3D-image. Only maxima still in a z group of at least 2 after filtering were passing the filter step. Each z-group was counted as one hit. The members of the z-groups with the highest absolute brightness were used as features and written to a file. They resemble a 3D-point cloud. Final signal segmentation and decoding: To align the raw data images from different imaging rounds, images had to be corrected. To do so the extracted feature point clouds were used to find the transformation matrices. For this purpose, an iterative closest point cloud algorithm was used to minimize the error between two point-clouds. The point clouds of each round were aligned to the point cloud of round one (reference point cloud). The corresponding point clouds were stored for downstream processes. Based upon the transformation matrices the corresponding images were processed by a rigid transformation using trilinear interpolation. The aligned images were used to create a profile for each pixel consisting of 16 values (16 images from two color channels in 8 imaging rounds). The pixel profiles were filtered for variance from zero normalized by total brightness of all pixels in the profile. Matched pixel profiles with the highest score were assigned as an ID to the pixel. Pixels with neighbors having the same ID were grouped. The pixel groups were filtered by group size, number of direct adjacent pixels in group, number of dimensions with size of two pixels. The local 3D-maxima of the groups were determined as potential final transcript locations. Maxima were filtered by number of maxima in the raw data images where a maximum was expected. Remaining maxima were further evaluated by the fit to the corresponding code. The remaining maxima were written to the results file and considered to resemble transcripts of the corresponding gene. The ratio of signals matching to codes used in the experiment and signals matching to codes not used in the experiment were used as estimation for specificity (false positives). 

Cell Segmentation
Cell segmentation was performed using the StarDist algorithm26 in QuPath27 to outline individual cell boundaries. A probability threshold of 0.5 was used to determine detections and the cell expansion value used to estimate how far the boundary extends from the nucleus was set to 5µm. Region of interest (ROI) files from the segmentation output were saved and projected on ImageJ along with the detected transcripts.

Expression Matrix Generation
Image analysis was performed in ImageJ using the Polylux tool plugin provided by Resolve BioSciences to examine specific Molecular CartographyTM signals. The QuPath cell-segmentation ROIs representing individual cells were loaded alongside with the gene detection coordinates to generate a cell by gene matrix in which genes and their expression values are represented as columns and cells as rows. The gene CD79A was excluded for downstream analysis due to non-specific staining. 

Lung cell annotation
The cell-segmentation ROIs generated in QuPath were loaded into the Data Viewer on the browser-based Resolve Molecular Cartography Platform for visualization and to perform unsupervised clustering (Extended Data Fig. 9a-b) Cluster-defining marker genes were used to generate cell-type annotations for the cells present in the sample, a representative example for the analysis steps is provided in Extended Data Fig. 9. Samples with few cells and weak staining resulting in failure of clustering were excluded for analysis. 

Identification of candidate HSPCs
Due to the rarity of HSPCs in the lung, unsupervised clustering was not suitable to identify candidate cells. To identify putative HSPCs, we therefore used a manual, rule-based approach. We filtered for CD34+ cells and calculated a progenitor-gene enrichment score. Genes in our panel were partitioned into progenitor and non-progenitor genes (Extended Data Table 3). The progenitor-gene enrichment score was calculated on a per cell basis and is defined as:

Cells with a score greater than or equal to 1 were considered candidates. Each candidate cell was then visually validated to exclude false positives based on segmentation errors or transcript location in the cell periphery.  After scoring and manual verification, 150 putative HSPCs out of around 14,000 CD34+ cells remained and were each given an annotation corresponding to anatomical location in the lung (‘alveolar interstitium’, ‘peribronchial’, ‘perivascular’, ‘intravascular’, Fig. 4c).

Neighborhood Analysis
In identity cell-types that surround putative HSPCs, simple neighborhoods around each candidate were computed. We defined the neighborhoods as consisting of all cells found within a specified radius of the candidate cell. Distances between cells were calculated using the cell’s centroid positions. Neighborhoods of each putative HSPC were aggregated by anatomical locations to obtain anatomically specific neighborhood composition breakdowns.

Co-Occurrence Analysis
To help quantify spatial co-occurrence patterns between cell-types present in the lung and the identified HSPC candidates, we employed a Cluster Co-Occurrence method28 as described by Tosti et al. and implemented through the co-occurrence function implemented in the SquidPy software package29.
The Co-Occurrence score is defined as:


Using the spatial information, the score is calculated by creating a radius of a specified size around each cell present in the dataset and using the encompassed cells for calculation. Thus, given a specified radius, P(clust|cond) is the conditional probability that cluster “clust” is observed given cluster “cond” is observed, while P(clust) is simply the probability that cluster “clust” is observed. Thus, the Co-Occurrence score, in contrast to the simple neighborhood approach previously described, incorporates information from the entire dataset to more quantitatively capture cluster co-occurrence. Co-occurrence scores conditioned on the presence of HSPC candidate cells (cond = HSPC) were calculated for all lung cell types obtained via clustering (clust = endothelial, epithelial, fibroblasts, macrophages, smooth muscle cells, airway epithelium, lymphoid cells, pericytes, and lymphatic cells). Scores were calculated every 2 µm within an interval of 4 to 30 µm and were subsequently plotted using a rolling average with a window size of 2 to lessen noise while maintaining resolution and shape.

Data availability
Sequencing data have been deposited to Gene Expression Omnibus (GEO) (accession code/reviewer token available upon request). There are no restrictions on data availability or use. The Human Lung Cell Atlas is publicly available dataset that can be accessed under https://azimuth.hubmap consortium.org/references/human_lung_v2/.

Code availability
Codes used in this study have been uploaded to Github (link will be provided upon manuscript acceptance).


Extended Data Figure/Table legends

Extended Data Table 1:  Basic demographics and clinical profiles of deceased organ donors. 

Extended Data Table 2: Haematopoietic progenitor subsets and surface marker expression.

Extended Data Table 3: Molecular probes to characterize cell types in the human lung in spatial transcriptomics. * Probe excluded due to non-specific staining.

Extended Data Table 4: Flow cytometry and immunohistochemistry antibodies. 

Extended Data Figure 1: Measured and predicted numbers of haematopoietic progenitor cells in the lung, PB and BM. (a) Representative donor lung and matching vertebral bodies. Patients with no significant lung pathologies or haematological disorders of any age, gender and ethnicity were included in our study. Lungs were inspected for visible injury and tissue was only collected from normal-appearing regions (black circle). (b) The absolute numbers of immunophenotypic haematopoietic progenitors were quantified in 1 mL of peripheral blood (red) and 1 gram of lung tissue (grey) by flow cytometry. (c) To facilitate direct comparison, cell numbers per cm3 for each tissue were calculated based on published densities (https://www.aqua-calc.com/calculate/weight-to-volume) for blood (blue, Ref ID 362, 1.0565 g/cm3) and for lung (white, Ref ID 1762, 1.050 g/cm3). (d) Numbers of haematopoietic progenitor cell subsets in the BM (blue), PB (red) and lung (grey) per 103 Lin-CD34+ cells. n=8 donors. Student’s t-test *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001. 

Extended Data Figure 2: Association of HSPC frequency with age and gender. (a) Scatterplot illustrating the correlation between age and HSC/MPP frequency in the BM (blue) and lung (red). The regression line visualizes the association of the variable, Pearson’s correlation coefficient (r) and associated p-values (p) are indicated. (b) Correlation between age and HPC frequency in the BM and lung, respectively. (c, d) Box and whisker plot with individual values showing the HSC/MPP (c) and HPC (d) frequencies separated by donor sex (male, grey; female, green). ANOVA followed by Sidak’s multiple comparison test.  ns, not significant.  

Extended Data Figure 3:  Lineage panel modification to reduce fibroblast capture. (a) Published datasets13 as well as our own scRNA-seq data suggest that platelet-derived growth factor receptor alpha (PDGFRα) could mark most fibroblasts in the lung. To test this, an antibody against PDGFRα was added to the lineage panel (Panel II) and the results were compared to the lineage panel without PDGFRα (Panel I). (b) Representative flow cytometry plots of lung cells show the impact of the PDGFRα antibody on the Live/Lin-/CD34+ cell population. ‘Control’ cells were stained with the viability dye only to determine autofluorescence. (c) Frequencies of immunophenotypes as percentage of Live/Lin-/CD34+ cells with Panel I versus II; no significant differences were detected across 6 donors (ANOVA followed by Sidak’s multiple comparison test.)

Extended Data Figure 4: Confirmation of hematopoietic surface marker expression on colonies produced by BM or lung progenitor cells using flow cytometry. (a) Following visual colony identification at 14 days of culture (Figure 2e, MethoCult™ media was dissolved to generate a single cell suspension for flow cytometric analysis. (b) Representative flow plots of cellular lineage marker expression on BM- and lung-derived colonies (GlyA, erythroid; CD45, leukocytic; CD14, monocytic; CD15, neutrophilic; CD41, megakaryocytic). (c) Cellular composition of colonies across 8 matched donors, marker expression given as percentage of single, live cells (%). Student’s ttest * p<0.03; ns, not significant. 

Extended Data Figure 5.  Engraftment efficiency of human cells in the BM, lung and PB of recipient mice after xenotransplantation of HSPCs from BM or lung. (a) Bar graphs representing the percentage of hCD45++ cell engraftment in the BM, lung and PB of recipient mice after transplantation of HSPCs from human BM (black) or lung (white). Mean ± SD; individual data points for each animal are plotted as gray dots. Blue dotted line indicates threshold for positive engraftment. (b) Bar graphs representing the percentage of human erythroid engraftment (CD45-GlyA+CD71+) in BM, lung, and PB.  (c-e) Lineage expansion of human lymphoid (CD45++CD19+), human myeloid (hCD45++CD19+), human megakaryocytic (CD45++CD41+) and human erythroid (CD45-GlyA+CD71+) cells as percentage of all human cells in the BM (c), lung (d), and PB (e) of recipient mice. Mean ± SD; individual data points for each animal are plotted as gray dots. Student’s t-test. 

Extended Data Figure 6. Pipeline for multiplexed scRNA-seq of Lin-CD34+ cells from matched lung and BM and annotation of hematopoietic progenitor subsets. (a) Single-cell suspensions generated from lung and BM were lineage-depleted (Lin- cells) and cryopreserved. For each experimental batch (4 donors), Live/Lin+/CD34+ cells were flow sorted and encapsulated into 2 GEMs (Chip, GEM wells). 10x ChromiumTM Single Cell 3’ v2 libraries were prepared, pooled and sequenced. Live/Lin+ cells were collected for bulk RNA-sequencing and subsequent SNP calling for donor demultiplexing. The experiment was carried out in 3 batches (3x). (b) Batch corrected UMAP representation and Louvain clustering (resolution 0.5). (c) Overview of marker genes associated with each cluster based on Seurat’s ’FindConservedMarkers’ function. (d) Aggregate module scores generated with Monocle3’s ‘find_gene_modules’ function grouping similar patterns of gene expression within the HSC/MPP cluster. Genes co-regulated in the module highly specific for HSCs (Module 54) are noted below. (e) Expression values of selected HSC-associated genes. 

Extended Data Figure 7. Identification of HSC signatures in published scRNA-seq datasets of the human lung. Due to their rarity, HSCs might be masked by the noise of other highly abundant cell types in the lung. (a) UMAP representation with annotations of the lung reference data set (https://azimuth.hubmapconsortium.org/references/human_lung_v2/)representing 584,944 cells from 9 datasets13,30-37. (b) CD34 expression levels across all lung cell entities in the reference dataset. (c, d) Ucell gene signature scoring to identify putative HSCs based on their gene expression profile in the lung. (c) UMAP projection highlighting cells with a Ucell score for lung HSC signatures >0.4. (d) UMAP projection highlighting cells with a Ucell score for BM HSC signatures >0.4. (e) Using Ucell signature scoring, we identified 120 putative HSCs in the human cell lung atlas V2 (HCLA V2). These cells were projected on the UMAP structure of haematopoietic progenitors from the lung and BM generated in Fig. 3a. Predicted IDs of the putative HSCs are shown in the legend. (f) Pie graph showing the proportion of predicted cell identities across the 120 putative HSCs in the HLCA V2 categorized by UCell scoring. Cell counts are indicated in parentheses. (g) Representation of cells projecting on the HSC/MPP cluster (n= 43) in individual samples from datasets within the integrated lung reference atlas. Out of 584,944 cells in the HLCA V2, 43 HSC/MPPs were identified representing a frequency of 0.007%. 

Extended Data Figure 8. Gene expression of putative HSPCs across all lung tissue sections. (a) Heatmap displaying gene expression normalized per cell of putative HSPCs across all lung tissue sections. (b) Frequency of putative HSCs among all lung cells based on QuPath segmentation. (c) Number of marker transcripts within a radius of 20μm from putative HSPCs across all anatomic locations.

Extended Data Figure 9. Analytical pipeline to delineate neighboring cells of putative HSPCs. (a) Mapping of target transcripts at subcellular resolution using the Molecular Cartography platform by Resolve. Cell segmentation was performed using DAPI-based cell detection and adapting the QuPath algorithm for lung tissue. The generated cell segmentation ROI sets were used to compute cell type clustering. (b) Cells were clustered into distinct populations based on their marker gene expression and annotated through comparison with reference gene sets. UMAP visualization pseudo-colored by annotated lung cell types. (c) Heatmap representation of marker gene expression values normalized for each gene. Cell segmentation ROIs have been sorted by assigned cell type cluster, indicated by the color in the top row (see (b) for color legend). (d) Bar graph illustrating the distribution of annotated cell type clusters in the lung tissue shown in (a).
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