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Supplementary Texts 23 
Text S1. Indicators of nitrogen saturation status 24 

In the 1980s, European researchers firstly came up with the concept of “nitrogen saturation” 1,2. It 25 
refers to a status when forest ecosystems cannot retain more nitrogen (N), so that additional N input are 26 
almost entirely lost via leaching or gaseous emission. Since then, researchers identified different variables 27 
to indicate N limitation or saturation status of forests (Fig. S10).  28 

Atmospheric N deposition is a driving force of change from N-limited to N-saturated status. 29 
Therefore, forests under higher N deposition are more likely to become N-saturated 3. After N enters 30 
forest soils, the relative enrichment of N tend to lower the soil C:N ratio 4. Also, the different effects of N 31 
deposition on acid anion and base cation contents may lower soil pH 5, leading to soil acidification. 32 
Lowered soil pH will, on one hand, decrease the dissolved organic carbon content in soil. On the other 33 
hand, input N stimulates the mineralization of soil organic carbon (SOC) by microbes and decreases SOC 34 
content. Both of the processes result in lowered SOC content in soils 6. Meanwhile, soil properties 35 
influence the retainment of N and the preferential pathway of environmental N loss, i.e., either 36 
hydrological or gaseous. For example, soils with higher clay content are less permeable. Because less N 37 
would be leached out, such soils are more likely to become N-saturated and show higher rates of gaseous 38 
N losses. Some researchers also proposed that multiple soil properties could be integrated to form a new 39 
indicator, which may better reveal forests in N limitation or N saturation status 7. The relationship 40 
between such an integrative indicator and forest N saturation status, however, comes from observations 41 
used to derive the indicator, rather than from underlying mechanisms. Therefore, the parameters used to 42 
derive the indicator and their weights may change when different observational data were used.  43 

By definition, N loss from forests can indicate forests reaching N saturation. From the 1990s to the 44 
2000s, leaching loss of N was a widely used indicator of forests shifting from N-limited to N-saturated 45 
status 8,9. Progressively, the interpretation of the indicator changes from “the occurrence of N leaching 46 
indicates N saturation” to “high N leaching rate indicates N saturation”, and then to “high N leaching 47 
relative to N input indicates N saturation” 10. The different interpretation of the indicator leads to different 48 
sampling approaches applied. In some studies, samples were taken from nearby water bodies, whereas in 49 
some other studies, deep soil solutions were sampled. The former has an advantage of reducing the 50 
random errors when sampling spatially heterogenous soils, whereas the latter is more advantageous in 51 
connecting N leaching with N input occurring in the same place. However, the differences in sampling 52 
approaches prohibit the site-level N leaching data from being combined to reveal N saturation status of 53 
forests on regional scale.  54 

Besides, the structure and function of plants can also indicate N saturation status in forests. For 55 
instance, the presence or absence of some signal species (which are sensitive to changes in soil nutrients) 56 
can reflect the change in forest N saturation status to some extent 11. When forests become N-saturated, 57 
the growth of plants become limited by other resources than N. Additional N input can no longer enhance 58 
plant productivity, which may even suppress plat growth and decrease productivity by changing soil 59 
properties. Also, the resorption rate of N may decrease relative to that of other nutrients, because plants 60 
in N-saturated forests need other nutrients more than N 12. However, due to the difficulty in investigating 61 
plant functional traits, there is a lack of regional dataset derived from a universal sampling method. 62 
Therefore, plant functional traits could barely be used to indicate N saturation status on regional scale. 63 

N isotope ratio (δ15N) measured from terrestrial samples (foliar, tree ring, sediment) has been a 64 
good, integrated indicator of N cycling processes, because of the isotope fractionation effect (heavier 65 
isotope gradually accumulate and enrich in organisms and soils, in the processes of N transformation and 66 
transport). In ecosystems where N availability is low, organisms tend to use N more conservatively, 67 
bypassing or suppressing N transformation processes where N could potentially be lost; whereas in 68 
ecosystems with high N availability, more N transformation processes could be involved, therefore the 69 
fractionation effect would be more prominent in high-N than in low-N-availability ecosystems. This is the 70 
reason why researchers could use N isotope ratio to indicate the temporal trend of N availability in 71 
terrestrial ecosystems over a large scale 13,14.  72 
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But restrictions may apply when using N isotope ratio to indicate the spatial variation in N 73 
availability (N limitation/saturation status in our study). Because N sources differ among forests – some 74 
rely on local N, while some use deposited exogenous N as the major source. In the latter case, measured 75 
foliar and soil N isotope ratio may be influenced by the N isotope signature of the deposited N 15, not 76 
necessarily reflective of the N transformation processes and availability of N in the local ecosystem. 77 
Forests, especially those close to human settlements, are heavily influenced by N deposition. It is 78 
therefore problematic to rely on N isotope ratio to indicate the spatially varying N availability in forests, 79 
where the different N sources may be confounding 16,17.  80 
 81 
  82 
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Text S2. Estimating the change point of the relationship between N input and soil N2O emission, so 83 
that threshold between low and high N input levels was determined 84 

Soil N2O emission rate (RN2O) responds almost linearly to low N input (including N deposition and 85 
low N addition). High N input, however, may change the ecosystem properties and induce a non-linear 86 
response 18. To estimate the point at which the relationship between N input rate and RN2O changes, we 87 
conducted a segmented regression analysis with compiled data from N addition experiments (N2O_exp 88 
dataset; Data S1). 89 

Only a few observations have N input rates above 400 kgN ha–1 yr–1, the RN2O values of which show 90 
a high variation. Referring to previous research 19-23(Table S3), the change point of the relationship 91 
between N input rate and RN2O is unlikely to exceed 400 kgN ha–1 yr–1. Therefore, we filtered out 92 
observations with N input rates above 400 kgN ha–1 yr–1, and conducted a segmented regression (model: 93 
RN2O ~ N input rate) in R 24 using the “segmented” package 25. The algorithm can detect a change point (or 94 
change points), and apply different linear models to the data below or above the change point(s). We 95 
firstly assumed there was one change point, which was estimated to be 174.70 ± 19.73 kgN ha–1 yr–1 (n = 96 
532, R2 = 0.20, p <0.001). 97 

Considering the possibility of having multiple change points, we also constructed segmented 98 
regression models when assuming 2–4 change points exist. Then we calculated Bayes factors (BF) based 99 
on Akaike's An Information Criterion (BIC) of each model, so we can evaluate which model is better 26. 100 
The BFs indicate that there are >95% probabilities that the model with one change point is better than 101 
models with multiple change points (Table S4). 102 

To sum up, our data showed that there is one change point in the linear relationship between N input 103 
rate and RN2O, which is 174.70 ± 19.73 kgN ha–1 yr–1 (Fig. S11). We also referred to the change points 104 
used or estimated in previous research (Table S3), and conservatively determined the N addition rates 105 
below 150 kgN ha–1 yr–1 to be “low” N input in this study.  106 
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Text S3. Calculating the sensitivity of soil N2O emission to N deposition (sN) using N cycle 107 
parameters 108 

Using data from N addition experiments (Table S1), we built a generalized linear model to simulate 109 
the sensitivity (sN) of soil N2O emission (RN2O) to N deposition (Ndepo) of global forests. Due to the limited 110 
N addition experiment data available, we could not reserve part of the data for model validation. Instead, 111 
we calculated sN from other N cycle parameters to validate the model-estimated sN. 112 

In a determined ecosystem, we define c1 to be the sensitivity of total N loss (N leaching and gaseous 113 
N emission combined) to N deposition (𝑐𝑐1 = ∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
; unit: kgN kgN–1), c2 to be sensitivity of N leaching 114 

to N deposition (𝑐𝑐2 = ∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

; unit: kgN kgN–1), c3 to be the nitrification and denitrification end-product 115 

ratio (𝑐𝑐3 = 𝑅𝑅𝑁𝑁2𝑂𝑂
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔

= 𝑅𝑅𝑁𝑁2𝑂𝑂
𝑅𝑅𝑁𝑁2+𝑅𝑅𝑁𝑁𝑁𝑁+𝑅𝑅𝑁𝑁2𝑂𝑂

; unit: kgN2O-N kgN–1).  116 
First of all, gaseous N loss can be calculated as the nitrogen lost in other pathways than leaching.  117 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − ∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 118 
 119 
Thus, the change in soil N2O emission rate caused by N deposition change can be calculated from 120 

the change in N loss rate and N leaching loss rate.  121 
∆𝑅𝑅𝑁𝑁2𝑂𝑂 = 𝑐𝑐3 × ∆𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑐𝑐3 × (∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − ∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ) = 𝑐𝑐3 × (𝑐𝑐1 − 𝑐𝑐2) × ∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 122 

 123 
By definition, sN is the change in soil N2O emission rate per unit of N deposition change. It can be 124 

inferred that 125 
𝑠𝑠𝑁𝑁 = ∆𝑅𝑅𝑁𝑁2𝑂𝑂

∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
= 𝑐𝑐3 × (𝑐𝑐1 − 𝑐𝑐2)    (Eq. T1) 126 

 127 
To quantify c1 and c2, we collected data on the total N loss rate (Nloss) and N leaching rate (Nleach) 128 

data measured in N addition experiments (Data S3; Fig. S12). For literature where the change rate of N 129 
pool was provided instead of Nloss, c1 was calculated using Eq. T2. 130 

𝑐𝑐1 = ∆𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= ∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−∆(∆𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
∆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 1 − ∆𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑁𝑁1−∆𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐶𝐶𝐶𝐶
�𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝑁𝑁1�−𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

   (Eq. T2) 131 
where N1 is the rate of artificial N addition in the experiment (kgN ha–1 yr–1) ; Ndepo is the background N 132 
deposition rate at the site (kgN ha–1 yr–1); ∆Npool-N1 is the change rate of N pool in the N addition plot (kgN 133 
ha–1 yr–1; ∆Npool-CK is the change rate of N pool in the control plot (kgN ha–1 yr–1). For N addition 134 
experiments with multiple N addition levels, we built linear models (model: ∆Npool ~ N input rate) to infer 135 
the change of ∆Npool per unit of N input (i.e., 1 – c1).  136 

 137 
Based on the calculated c1 and c2, together with the c3 from previous research 27, we calculated the 138 

biome-mean sN using Eq. T1. Comparing the model-estimated sN and the calculated sN (Table S5), we 139 
found their correlation coefficient (Pearson’s r) to be 0.998.  140 
  141 
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Text S4. Sensitivity of soil N2O emission to N deposition (sN) in deciduous broadleaf and needleleaf 142 
forests 143 

Previous research found that the gaseous N product ratio (N2O:NO) was higher in beech forest than 144 
in spruce forests 28, which implies that forest type may have a significant effect on the sensitivity of soil 145 
N2O emission to N deposition (sN).  146 

To test the hypothesis, we compared the sN of deciduous broadleaf and needleleaf forests worldwide. 147 
sN values of global forests were from our constructed model. Forest type information was from a global 148 
product 29. Specifically, for each spatial grid which has a sN value, forest type was determined based on 149 
the coordinates of the grid. For grids having multiple types of forests (evergreen broadleaf / deciduous 150 
broadleaf / needleleaf / mixed), only grids where deciduous broadleaf / needleleaf forests make up more 151 
than 50% the grid area was considered to be a deciduous broadleaf / needleleaf forest grid, whereas the 152 
other forest girds were considered to be “mixed”. Mixed forest grids were not considered in the following 153 
analysis. 154 

On global scale, we found sN of deciduous broadleaf forests to be significantly higher than that of 155 
needleleaf forests (p <0.001; Fig. S13). On biome scale, however, sN of broadleaf forests was significantly 156 
higher than that of needleleaf forests in temperate biome only (p <0.001). This is probably because forest 157 
type indirectly influences sN through the different capabilities of broadleaf and needleleaf forests to retain 158 
and utilize deposited N. In temperate biome where atmospheric N deposition rate is particularly high in 159 
broadleaf forests, differences in N deposition caused significantly higher sN in broadleaf forest than in 160 
needleleaf forests.  161 
  162 
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Text S5. Using two datasets separately to detect thresholds for the classification of N limitation and 163 
saturation status 164 

We have two independent datasets on the field-observed N-limited or N-saturated status of global 165 
forests, which were indicated by N leaching rate (Nleach dataset) and plant growth response to N input 166 
(NuLi dataset), respectively. Because the two indicators may point to different stages of N saturation 30, 167 
we firstly used the two datasets separately in the detection of threshold for determining forest N saturation 168 
status.   169 

To begin with, we checked whether sN could distinguish between the N-limited and N-saturated 170 
forests. For the forests in Nleach dataset, the mean sN of N-saturated forests were significantly higher than 171 
that of N-limited forests, both on global and biome scales (Fig. S14; p <0.001). Also, the mean sN of N-172 
saturated forests were significantly higher than that of N-limited forests in NuLi dataset (Fig. S14; p 173 
<0.001). 174 

Then, the two datasets were used separately to detect the optimal cutoff value of sN between N-175 
limited and N-saturated forests. For forest sites in Nleach dataset, we randomly sampled (with 176 
replacement) 10 N-limited forests and 10 N-saturated forests. The 20 sites constitute a sample dataset 177 
where N-limited and N-saturated sites were equally represented. For each possible cutoff value of sN 178 
(within the range of the sN values of all samples), forests having higher sN than the cutoff value were 179 
classified as N-saturated forests, and those having sN no higher than the cutoff value were classified as N-180 
limited forests. The classified N limitation or saturation status were compared with the observed status of 181 
the sampled forests, and the proportion of successfully classified forests (i.e., to the same category as 182 
observed) was the accuracy of the classification. All possible cutoff values of sN were tried out (at a 183 
precision of 0.0001 kgN2O-N kgN–1), and the corresponding accuracies of classification were recorded. 184 
The cutoff value(s) that shows the highest accuracy of classification is the optimal cutoff value for the 185 
sampled forests. The resampling and detection-of-optimal-cutoff-value processes were repeated for 5000 186 
times. Subsequently, we switched to NuLi dataset and repeated the abovementioned processes for another 187 
5000 times.  188 

By comparing the statistical distribution of the detected optimal cutoff values for the two datasets, 189 
we observed a considerable overlap (Fig. S15). That means, the two datasets may point to a similar 190 
threshold of sN for the classification of N-limited and N-saturated forests. Therefore, we combined the 191 
two datasets to enlarge the sample size and detect a universal threshold for classification.  192 
 193 
  194 
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Supplementary Figures 195 

 196 
Fig. S1. A simplified illustration of the differences in nitrogen (N) flow in N-limited and N-saturated 197 
forests. NHx: reduced nitrogen; NOy: oxidized nitrogen; RN2O: soil N2O emission rate; Ndepo: atmospheric 198 
N deposition rate; sN: sensitivity of soil N2O emission to N deposition; DNRA: dissimilatory nitrate 199 
reduction to ammonium. 200 
  201 
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  202 
Fig. S2. Comparing estimated and observed soil N2O emission rates (RN2O). Observations were 203 
aggregated to 0.5°×0.5° grids to match with the spatial resolution of the environmental factors. Each point 204 
represents a grid-year. Points of different colors represent grid-years in different biomes. Because 205 
observed and estimated RN2O do not follow normal distribution, Spearman’s rho was used as the 206 
coefficient of correlation between them. For the same reason, observed and estimated RN2O were log-207 
transformed before fitting a linear model. The red line and fonts show the fitted linear regression model. 208 
Gray shading denotes the standard error. Dashed black line is the 1:1 line.  209 
  210 
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 211 
Fig. S3. Correlation test between sensitivity of soil N2O emission to N deposition (sN; log-transformed) 212 
and annual variation of N deposition (Ndepo.cv; log-transformed). sN values were calculated using low N 213 
input data from global forest experiment sites (Table S1). Temporal data of N deposition were from a 214 
published dataset by Ackerman et al.31.  215 
 216 
  217 
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218 

219 
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 220 
Fig. S4. Comparing the performance of different indicators in distinguishing between N-limited and N-221 
saturated forests. Most of the indicators showed reliable performance (significant difference between 222 
groups) on global scale, but none of the indicators could have successfully and consistently distinguished 223 
between forests in N-limited or N-saturated status across biomes. It is to be noted that these indicators 224 
were selected based on the availability of data (from literature or spatial datasets). 225 
  226 
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 227 
Fig. S5. Density curve showing the statistical distribution of optimal cutoff values of sN, which were 228 
calculated using bootstrap method for 5000 times. The most frequently detected optimal cutoff value 229 
(0.0143 kgN2O-N kg–1), as indicated by the peak of the curve, was used as the optimal threshold.  230 
  231 
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 232 
Fig. S6. Varying relationships between forest N saturation status and economic development of different 233 
countries. (A) Schematic illustration of the stronger negative effect of deforestation (i.e., replacement of 234 
mature forests by young forests during economic development) on the N saturation ratio at lower latitudes 235 
and the stronger positive effect of N deposition change on the N saturation ratio at higher latitudes. (B-D) 236 
Correlations between log-transformed GDP per capita (unit: USD) and N saturation ratio of forests (%) in 237 
different countries. Each point represents a country. Solid lines show the fitted linear models, and 238 
shadings represent the standard errors of the fitted models.  239 
  240 
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 241 
Fig. S7. A framework for explaining the observed declining N availability in natural ecosystems (due to 242 
increased CO2 level and extended growing season) and also high N saturation ratios in forests near human 243 
settlements (which are receiving high N deposition).  244 
  245 
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 246 
Fig. S8. Temporal change of N availability in different geographic regions, indicated by sensitivity of soil 247 
N2O emission to N deposition (sN) and foliar N isotope ratio (δ15N). Panels (A-E) Temporal change of sN. 248 
sN was calculated using global N addition experiment data (Data S1). Each gray point represents a grid-249 
year where N addition experiment data were available and sN could be calculated. Black points are the 250 
annual mean values of sN. Panels (F-J) Temporal change of foliar δ15N. Foliar δ15N data were from a 251 
published global dataset by Craine et al. 13( https://doi.org/10.5061/dryad.v2k2607). Only data after 1985 252 
were used, so as to match the time frame of sN data. Blue lines were fitted linear models, and gray 253 
shadings represent the standard errors.  254 
The two datasets used different geographic region classifications, so we reclassified data from several 255 
regions to facilitate comparison of the two metrics. In sN dataset: data from “East Asia” and “Southeast 256 
Asia and Pacific” were reclassified to “Asia Pacific” region; data from “Western Europe” were 257 
reclassified to “Europe” region; data from “Sub-Saharan Africa” were reclassified to “Africa” region; 258 
data from “Latin America and Caribbean” were reclassified to “South America” region; no data were 259 
available for other regions. In foliar δ15N dataset: data from “Asia” and “Australia” were reclassified to 260 
“Asia Pacific” region. Data and code used for producing this figure (and all other figures) could be found 261 
in supplementary materials. 262 
  263 
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 264 
Fig. S9. Uncertainty of modeled sensitivity of soil N2O emission to N deposition (sN). 265 
  266 
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 267 
Fig. S10. Simplified illustration of the nitrogen (N) flows in forest ecosystems, and indicators of N 268 
saturation status. NHx: reduced nitrogen; NOy: oxidized nitrogen. 269 
  270 
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 271 
Fig. S11. Locally weighed regression model (a) and segmented linear regression model (b) on soil N2O 272 
emission rate (RN2O) and N input rate. The blue vertical line shows the estimated change point (174.70 273 
kgN ha–1 yr–1). The blue shading represents the standard error of the estimated change point. The red lines 274 
and fonts represent the fitted models (model: RN2O ~ N input rate). 275 
  276 
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 277 
Fig. S12. The spatial map of N addition experiment sites for calculating c1 and c2. c1: sensitivity of total N 278 
loss to N deposition (kgN kgN–1); c2: sensitivity of N leaching to N deposition (kgN kgN–1). 279 
  280 
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 281 
Fig. S13. Comparing the sensitivity of soil N2O emission to N deposition (sN) of broadleaf and needleleaf 282 
forests. Of the 4330 spatial grids where more than 50% of the area were covered by deciduous broadleaf 283 
or needleleaf forests, 3713 were needleleaf forest grids, and 617 were deciduous broadleaf forest grids.  284 
  285 
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 286 
Fig. S14. Comparing the sensitivity of soil N2O emission to N deposition (sN) of N-saturated and N-287 
limited forests in Nleach dataset (Data S4) and NuLi dataset (Data S5). The N limitation or saturation 288 
status of forests were determined by researchers in field observations, which we compiled from published 289 
literature. 290 
  291 
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 292 
Fig. S15. Statistical distribution of the optimal cutoff values of sN determined from field-observed N 293 
saturation status using Nleach and NuLi datasets (Data S4 and Data S5), separately. The curves represent 294 
the density of distribution of the cutoff values. The points and error bars above the curves of the 295 
corresponding color are the mean values and standard deviation of the optimal cutoff values.  296 
  297 
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Supplementary Tables 298 
Table S1. Linear models on soil N2O emission rate (RN2O) and N input rate (model: RN2O ~ N input rate) built with low N input data (N addition 299 
rate ≤ 150 kgN ha–1 yr–1) from global forest experiment sites, and the derived sensitivity (sN) of soil N2O emission to N deposition and background 300 
N2O emission rate (R0). 301 
No. Longitude range Latitude range Biome sN R0 n adj.R2 p value References 
1 (19,19.5) (64,64.5) Boreal 0.002 0.045 2 NA NA 32 
2 (30.5,31) (62.5,63) Boreal 0.025 5.132 4 0.14 0.347 33 
3 (22.5,23) (62,62.5) Boreal 0.013 0.538 2 NA NA 34 
4 (8,8.5) (58.5,59) Boreal 0.026 0.343 6 0.57 0.052 35,36 
5 (-3.5,-3) (55.5,56) Temperate 0.02 0.258 6 0.18 0.224 37 
6 (-3,-2.5) (55.5,56) Temperate 0.006* -0.009 6 0.73 0.019 37,38 
7 (1.5,2) (52.5,53) Temperate 0.004 0.233 2 NA NA 37 
8 (9.5,10) (51.5,52) Temperate 0.042* 0.51 10 0.48 0.015 39-41 
9 (128.5,129) (47,47.5) Boreal 0.015 0.777 11 0.02 0.300 42-44 
10 (8.5,9) (47,47.5) Temperate 0.003 -0.062 4 0.63 0.134 45 
11 (-80.5,-80) (43.5,44) Temperate 0.009 1.374* 4 0.79 0.073 46 
12 (-72.5,-72) (43,43.5) Temperate 0.012 -0.216 2 NA NA 47 
13 (141,141.5) (43,43.5) Temperate 0.025 1.647 2 NA NA 48 
14 (-72.5,-72) (42.5,43) Temperate 0.001 0.074 6 0.05 0.323 49 
15 (128,128.5) (42,42.5) Temperate 0.01 0.67 2 NA NA 50 
16 (127.5,128) (41.5,42) Temperate 0.029 2.287 13 0.11 0.141 51-53 
17 (-80.5,-80) (41.5,42) Temperate 0.003 0.217 2 NA NA 54 
18 (-4,-3.5) (40,40.5) Temperate 0.001* 0.026* 4 0.95 0.017 55 
19 (112,112.5) (36.5,37) Temperate 0.056 2.754 3 0.98 0.068 56 
20 (111,111.5) (31.5,32) Temperate 0.013** 0.483 27 0.28 0.003 57-60 
21 (110,110.5) (31.5,32) Temperate 0.023 -0.31 4 0.54 0.166 61 
22 (120.5,121) (30.5,31) Temperate 0.017 1.135 4 0.51 0.181 62 
23 (119.5,120) (30,30.5) Temperate 0.003 1.238*** 16 0.01 0.308 63-67 
24 (120,120.5) (30,30.5) Temperate 0.012** 0.834* 12 0.64 0.001 68,69 
25 (106.5,107) (29.5,30) Temperate 0.025* 0.875* 3 1 0.018 70 
26 (115.5,116) (29.5,30) Temperate 0.012 2.025 6 0.14 0.248 71 
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27 (116.5,117) (28,28.5) Temperate 0.013 0.16 2 NA NA 72 
28 (118,118.5) (27,27.5) Tropical 0.015 1.948 9 0.12 0.190 73 
29 (115,115.5) (26.5,27) Tropical 0.026*** -0.092 54 0.47 <0.001 74-83 
30 (117,117.5) (26,26.5) Tropical 0.007 0.5 3 0.55 0.313 84 
31 (118,118.5) (25.5,26) Tropical 0.012 0.601 4 0.33 0.257 85 
32 (113,113.5) (23.5,24) Tropical 0.014 -0.226 3 0.77 0.220 86 
33 (112.5,113) (23,23.5) Tropical 0.027* 0.19 22 0.15 0.041 87-89 
34 (112.5,113) (22.5,23) Tropical 0.004 1.919*** 14 0.11 0.129 90 
35 (106.5,107) (22,22.5) Tropical 0.012*** -0.038 8 0.84 0.001 91 
36 (107,107.5) (22,22.5) Tropical 0.043* -0.089 10 0.51 0.013 92-95 
37 (107.5,108) (22,22.5) Tropical 0.007** 0.589** 4 0.98 0.007 96 
38 (101,101.5) (21.5,22) Tropical 0.037 2.101* 9 0.18 0.144 97,98 
39 (110.5,111) (21,21.5) Tropical 0.018 3.195 3 0.69 0.256 99 
40 (-80,-79.5) (9,9.5) Tropical 0.021** 0.674 8 0.71 0.005 100,101 
41 (-82.5,-82) (8.5,9) Tropical 0.019 1.063 8 0.32 0.083 100,101 
42 (116.5,117) (6,6.5) Tropical 0.007** 0.517** 10 0.61 0.005 102 
43 (31.5,32) (1.5,2) Tropical 0.018*** 1.756*** 4 1 0.001 103 
44 (102,102.5) (-1.5,-1) Tropical 0.022** 0.919* 7 0.84 0.002 104 
45 (-79.5,-79) (-4,-3.5) Tropical 0.005 0.135 3 0.44 0.356 105 
46 (-79,-78.5) (-4.5,-4) Tropical 0.006 0.471 3 0.5 0.333 105 
47 (-79.5,-79) (-4.5,-4) Tropical 0.006 -0.11 3 0.95 0.106 105 

* p <0.05; ** p <0.01; *** p <0.001; NA, not applicable 302 
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Table S2. Generalized linear models on environmental factors and the sensitivity (sN) of soil N2O 303 
emission to N deposition and the background N2O emission rate (R0). Models were refined from 304 
full models using environmental factors (MAT, MAP, Ndepo, MAT.cv, MAP.cv, Ndepo.cv, Clay, 305 
Sand) and their interactions as predictors†. 306 
 Estimate SE t p 

Refined model on sN
‡

 (family = “gaussian”, deviance explained = 91.1%, n=46) 

Clay 4.77E-03 1.83E-03 2.605 0.013* 

Sand 3.15E-03 9.20E-04 3.419 0.001** 

log(Ndepo) 2.01E-02 1.14E-02 1.769 0.085 

Clay × log(Ndepo.cv) 2.13E-03 9.35E-04 2.282 0.028* 

Sand × log(Ndepo.cv) 1.17E-03 3.82E-04 3.056 0.004** 

Clay × Sand -1.90E-04 6.94E-05 -2.735 0.009** 

Clay × Sand × log(Ndepo.cv) -1.14E-04 3.66E-05 -3.112 0.003** 

Refined model on R0
§

 (family = “quasipoisson”, deviance explained = 43.2%, n = 45) 

log(Ndepo.cv) 1.99E-01 9.56E-02 2.084 0.043* 

MAT × Sand × Clay 3.04E-06 5.99E-07 5.072 0.000*** 

MAP × MAP.cv × log(Ndepo) -8.31E-04 2.91E-04 -2.854 0.007** 
† These variables were selected based on availability of global datasets (for extrapolation), and 307 
mechanistic relevance. Climate is an important state factor that shapes ecosystem properties; N 308 
deposition is an important driving force of ecosystem N dynamics; soil texture is indicative of 309 
soil structure and aeration status, which is critical for nitrification and denitrification processes. 310 
MAT: mean annual temperature; MAP: mean annual precipitation; Ndepo: mean annual N 311 
deposition; Sand: soil sand content; Clay: soil clay content.  312 
‡ sN ~ (Clay + Sand + log(Ndepo) + Clay × log(Ndepo.cv) + Sand × log(Ndepo.cv) + Clay × Sand + 313 
Clay × Sand × log(Ndepo.cv))2 314 
§

 R0 ~ EXP(log(Ndepo.cv) + MAT × Sand × Clay + MAP × MAP.cv × log(Ndepo)) – 0.5 315 
* p <0.05; ** p <0.01; *** p <0.001 316 
  317 
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Table S3. Change points of the relationship between N input rate and soil N2O emission rate used 318 
or estimated in previous research 319 
Change point estimated/used (kgN ha–1 yr–1) Reference 
101 19 
135 20 
140 21 
100–150 22 
150–200 23 

  320 
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Table S4. Comparing segmented regression models based on Bayes factor (BF) 321 

Models (Mx) 
Number of 
change points 
estimated 

BIC BFx0
* Pr(M0 is 

better) 

M0 1 2915.87 / / 
M1 2 2928.20 474.90 > 0.99 
M2 3 2925.06 98.94 > 0.95 
M3 4 2951.56 56122954 > 0.99 

*BFx0 = exp((BIC(Mx)-BIC(M0))/2) 322 
  323 
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Table S5. Comparing the biome-mean sensitivity (sN) of soil N2O emission to N deposition from 324 
calculation and the sN estimated with generalized linear model.  325 
Biome c1 c2 c3* Calculated sN Modeled sN  
Tropical 0.42 (0.04) 0.29 (0.01) 0.20 0.026 (0.011) 0.015 (0.005) 
Temperate 0.46 (0.05) 0.36 (0.05) 0.19 0.019 (0.018) 0.014 (0.004) 
Boreal 0.41 (0.08) 0.37 (0.08) 0.19 0.008 (0.030) 0.010 (0.005) 
All 0.44 (0.05) 0.35 (0.05) 0.19 0.017 (0.019) 0.013 (0.005) 
Values in the parentheses are the standard errors of the estimates. 326 
* Biome mean values of c3 were calculated from modeled nitrification and denitrification end-327 
product ratios by Bai, et al. 27.  328 
  329 
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Data S1. (separate file) 330 
Compiled dataset on soil N2O emission rate from N addition experiments in global forests 331 
(N2O_exp dataset in main text).   332 
 333 
Data S2. (separate file) 334 
Compiled data on soil N2O emission rate under natural conditions in global forests (N2O_obs 335 
dataset in main text).   336 
 337 
Data S3. (separate file) 338 
Compiled dataset on total N loss rate, N leaching rate and change rate of soil N pool from N 339 
addition experiments in global forests (Ncycle_exp dataset in main text).   340 
 341 
Data S4. (separate file) 342 
Compiled dataset on global forest N saturation status (limited or saturated) indicated by N 343 
leaching rate (Nleach dataset in main text).   344 
 345 
Data S5. (separate file) 346 
An existing dataset from Du, et al. 12 on global forest N saturation status (limited or saturated) 347 
indicated by plant growth response to N input (NuLi dataset in main text).   348 
 349 
Data S6. (separate file) 350 
GDP per capita data of global countries, downloaded from World Bank Open Data portal 351 
(https://data.worldbank.org/).   352 
 353 
Data S7. (separate file) 354 
Data on environmental factors (MAT, MAP, N deposition rate, etc.) in global forests, extracted 355 
from spatial datasets mentioned in Methods section.   356 
 357 
Code S1. (separate file) 358 
R code script used to carry out the data analysis processes, and produce the figures. 359 
 360 
  361 

https://data.worldbank.org/
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