

1 **Supplementary materials for**

2
3 **Global patterns of nitrogen saturation in forests**

4
5 Xiaoyu Cen, Nianpeng He, Kevin Van Sundert, César Terrer, Kailiang Yu, Mingxu Li, Li Xu, Liyin He,
6 Klaus Butterbach-Bahl

7
8
9 Corresponding author: Nianpeng He, email: henp@igsnrr.ac.cn

10
11 **The PDF file includes:**

12
13
14 Supplementary Text S1 to S5

15 Figs. S1 to S15

16 Tables S1 to S5

17
18 **Other Supplementary Materials for this manuscript include the following:**

19
20 Data S1 to S7

21 Code S1

23 **Supplementary Texts**

24 **Text S1. Indicators of nitrogen saturation status**

25 In the 1980s, European researchers firstly came up with the concept of “nitrogen saturation”^{1,2}. It
26 refers to a status when forest ecosystems cannot retain more nitrogen (N), so that additional N input are
27 almost entirely lost via leaching or gaseous emission. Since then, researchers identified different variables
28 to indicate N limitation or saturation status of forests (Fig. S10).

29 Atmospheric N deposition is a driving force of change from N-limited to N-saturated status.
30 Therefore, forests under higher **N deposition** are more likely to become N-saturated³. After N enters
31 forest soils, the relative enrichment of N tends to lower the **soil C:N ratio**⁴. Also, the different effects of N
32 deposition on acid anion and base cation contents may lower **soil pH**⁵, leading to soil acidification.
33 Lowered soil pH will, on one hand, decrease the dissolved organic carbon content in soil. On the other
34 hand, input N stimulates the mineralization of soil organic carbon (SOC) by microbes and decreases SOC
35 content. Both of the processes result in lowered **SOC content** in soils⁶. Meanwhile, soil properties
36 influence the retainment of N and the preferential pathway of environmental N loss, i.e., either
37 hydrological or gaseous. For example, soils with higher **clay content** are less permeable. Because less N
38 would be leached out, such soils are more likely to become N-saturated and show higher rates of gaseous
39 N losses. Some researchers also proposed that multiple soil properties could be integrated to form a new
40 indicator, which may better reveal forests in N limitation or N saturation status⁷. The relationship
41 between such an integrative indicator and forest N saturation status, however, comes from observations
42 used to derive the indicator, rather than from underlying mechanisms. Therefore, the parameters used to
43 derive the indicator and their weights may change when different observational data were used.

44 By definition, N loss from forests can indicate forests reaching N saturation. From the 1990s to the
45 2000s, **leaching loss of N** was a widely used indicator of forests shifting from N-limited to N-saturated
46 status^{8,9}. Progressively, the interpretation of the indicator changes from “the occurrence of N leaching
47 indicates N saturation” to “high N leaching rate indicates N saturation”, and then to “high N leaching
48 relative to N input indicates N saturation”¹⁰. The different interpretation of the indicator leads to different
49 sampling approaches applied. In some studies, samples were taken from nearby water bodies, whereas in
50 some other studies, deep soil solutions were sampled. The former has an advantage of reducing the
51 random errors when sampling spatially heterogeneous soils, whereas the latter is more advantageous in
52 connecting N leaching with N input occurring in the same place. However, the differences in sampling
53 approaches prohibit the site-level N leaching data from being combined to reveal N saturation status of
54 forests on regional scale.

55 Besides, the structure and function of plants can also indicate N saturation status in forests. For
56 instance, the presence or absence of some **signal species** (which are sensitive to changes in soil nutrients)
57 can reflect the change in forest N saturation status to some extent¹¹. When forests become N-saturated,
58 the growth of plants become limited by other resources than N. Additional N input can no longer enhance
59 **plant productivity**, which may even suppress plant growth and decrease productivity by changing soil
60 properties. Also, the **resorption rate of N** may decrease relative to that of other nutrients, because plants
61 in N-saturated forests need other nutrients more than N¹². However, due to the difficulty in investigating
62 plant functional traits, there is a lack of regional dataset derived from a universal sampling method.
63 Therefore, plant functional traits could barely be used to indicate N saturation status on regional scale.

64 **N isotope ratio** ($\delta^{15}\text{N}$) measured from terrestrial samples (foliar, tree ring, sediment) has been a
65 good, integrated indicator of N cycling processes, because of the isotope fractionation effect (heavier
66 isotope gradually accumulate and enrich in organisms and soils, in the processes of N transformation and
67 transport). In ecosystems where N availability is low, organisms tend to use N more conservatively,
68 bypassing or suppressing N transformation processes where N could potentially be lost; whereas in
69 ecosystems with high N availability, more N transformation processes could be involved, therefore the
70 fractionation effect would be more prominent in high-N than in low-N-availability ecosystems. This is the
71 reason why researchers could use N isotope ratio to indicate the temporal trend of N availability in
72 terrestrial ecosystems over a large scale^{13,14}.

73 But restrictions may apply when using N isotope ratio to indicate the spatial variation in N
74 availability (N limitation/saturation status in our study). Because N sources differ among forests – some
75 rely on local N, while some use deposited exogenous N as the major source. In the latter case, measured
76 foliar and soil N isotope ratio may be influenced by the N isotope signature of the deposited N¹⁵, not
77 necessarily reflective of the N transformation processes and availability of N in the local ecosystem.
78 Forests, especially those close to human settlements, are heavily influenced by N deposition. It is
79 therefore problematic to rely on N isotope ratio to indicate the spatially varying N availability in forests,
80 where the different N sources may be confounding^{16,17}.

81
82

83 **Text S2. Estimating the change point of the relationship between N input and soil N₂O emission, so**
84 **that threshold between low and high N input levels was determined**

85 Soil N₂O emission rate (R_{N2O}) responds almost linearly to low N input (including N deposition and
86 low N addition). High N input, however, may change the ecosystem properties and induce a non-linear
87 response¹⁸. To estimate the point at which the relationship between N input rate and R_{N2O} changes, we
88 conducted a segmented regression analysis with compiled data from N addition experiments (N₂O_exp
89 dataset; Data S1).

90 Only a few observations have N input rates above 400 kgN ha⁻¹ yr⁻¹, the R_{N2O} values of which show
91 a high variation. Referring to previous research¹⁹⁻²³ (Table S3), the change point of the relationship
92 between N input rate and R_{N2O} is unlikely to exceed 400 kgN ha⁻¹ yr⁻¹. Therefore, we filtered out
93 observations with N input rates above 400 kgN ha⁻¹ yr⁻¹, and conducted a segmented regression (model:
94 $R_{N2O} \sim$ N input rate) in R²⁴ using the “segmented” package²⁵. The algorithm can detect a change point (or
95 change points), and apply different linear models to the data below or above the change point(s). We
96 firstly assumed there was one change point, which was estimated to be 174.70 ± 19.73 kgN ha⁻¹ yr⁻¹ (n =
97 532, $R^2 = 0.20$, $p < 0.001$).

98 Considering the possibility of having multiple change points, we also constructed segmented
99 regression models when assuming 2–4 change points exist. Then we calculated Bayes factors (BF) based
100 on Akaike's An Information Criterion (BIC) of each model, so we can evaluate which model is better²⁶.
101 The BFs indicate that there are >95% probabilities that the model with one change point is better than
102 models with multiple change points (Table S4).

103 To sum up, our data showed that there is one change point in the linear relationship between N input
104 rate and R_{N2O} , which is 174.70 ± 19.73 kgN ha⁻¹ yr⁻¹ (Fig. S11). We also referred to the change points
105 used or estimated in previous research (Table S3), and conservatively determined the N addition rates
106 below 150 kgN ha⁻¹ yr⁻¹ to be “low” N input in this study.

107 **Text S3. Calculating the sensitivity of soil N₂O emission to N deposition (s_N) using N cycle
108 parameters**

109 Using data from N addition experiments (Table S1), we built a generalized linear model to simulate
110 the sensitivity (s_N) of soil N₂O emission (R_{N2O}) to N deposition (N_{depo}) of global forests. Due to the limited
111 N addition experiment data available, we could not reserve part of the data for model validation. Instead,
112 we calculated s_N from other N cycle parameters to validate the model-estimated s_N .

113 In a determined ecosystem, we define c_1 to be the sensitivity of total N loss (N leaching and gaseous
114 N emission combined) to N deposition ($c_1 = \frac{\Delta N_{loss}}{\Delta N_{depo}}$; unit: kgN kgN⁻¹), c_2 to be sensitivity of N leaching
115 to N deposition ($c_2 = \frac{\Delta N_{leach}}{\Delta N_{depo}}$; unit: kgN kgN⁻¹), c_3 to be the nitrification and denitrification end-product
116 ratio ($c_3 = \frac{R_{N2O}}{N_{gas}} = \frac{R_{N2O}}{R_{N2} + R_{NO} + R_{N2O}}$; unit: kgN₂O-N kgN⁻¹).

117 First of all, gaseous N loss can be calculated as the nitrogen lost in other pathways than leaching.

$$118 \quad N_{gas} = N_{loss} - \Delta N_{leach}$$

120 Thus, the change in soil N₂O emission rate caused by N deposition change can be calculated from
121 the change in N loss rate and N leaching loss rate.

$$122 \quad \Delta R_{N2O} = c_3 \times \Delta N_{gas} = c_3 \times (\Delta N_{loss} - \Delta N_{leach}) = c_3 \times (c_1 - c_2) \times \Delta N_{depo}$$

124 By definition, s_N is the change in soil N₂O emission rate per unit of N deposition change. It can be
125 inferred that

$$126 \quad s_N = \frac{\Delta R_{N2O}}{\Delta N_{depo}} = c_3 \times (c_1 - c_2) \quad (\text{Eq. T1})$$

128 To quantify c_1 and c_2 , we collected data on the total N loss rate (N_{loss}) and N leaching rate (N_{leach})
129 data measured in N addition experiments (Data S3; Fig. S12). For literature where the change rate of N
130 pool was provided instead of N_{loss} , c_1 was calculated using Eq. T2.

$$131 \quad c_1 = \frac{\Delta N_{loss}}{\Delta N_{depo}} = \frac{\Delta N_{depo} - \Delta(\Delta N_{pool})}{\Delta N_{depo}} = 1 - \frac{\Delta N_{pool-N1} - \Delta N_{pool-CK}}{(N_{depo} + N_1) - N_{depo}} \quad (\text{Eq. T2})$$

132 where N_1 is the rate of artificial N addition in the experiment (kgN ha⁻¹ yr⁻¹); N_{depo} is the background N
133 deposition rate at the site (kgN ha⁻¹ yr⁻¹); $\Delta N_{pool-N1}$ is the change rate of N pool in the N addition plot (kgN
134 ha⁻¹ yr⁻¹; $\Delta N_{pool-CK}$ is the change rate of N pool in the control plot (kgN ha⁻¹ yr⁻¹). For N addition
135 experiments with multiple N addition levels, we built linear models (model: $\Delta N_{pool} \sim N$ input rate) to infer
136 the change of ΔN_{pool} per unit of N input (i.e., $1 - c_1$).

138 Based on the calculated c_1 and c_2 , together with the c_3 from previous research ²⁷, we calculated the
139 biome-mean s_N using Eq. T1. Comparing the model-estimated s_N and the calculated s_N (Table S5), we
140 found their correlation coefficient (Pearson's r) to be 0.998.

142 **Text S4. Sensitivity of soil N_2O emission to N deposition (s_{N}) in deciduous broadleaf and needleleaf
143 forests**

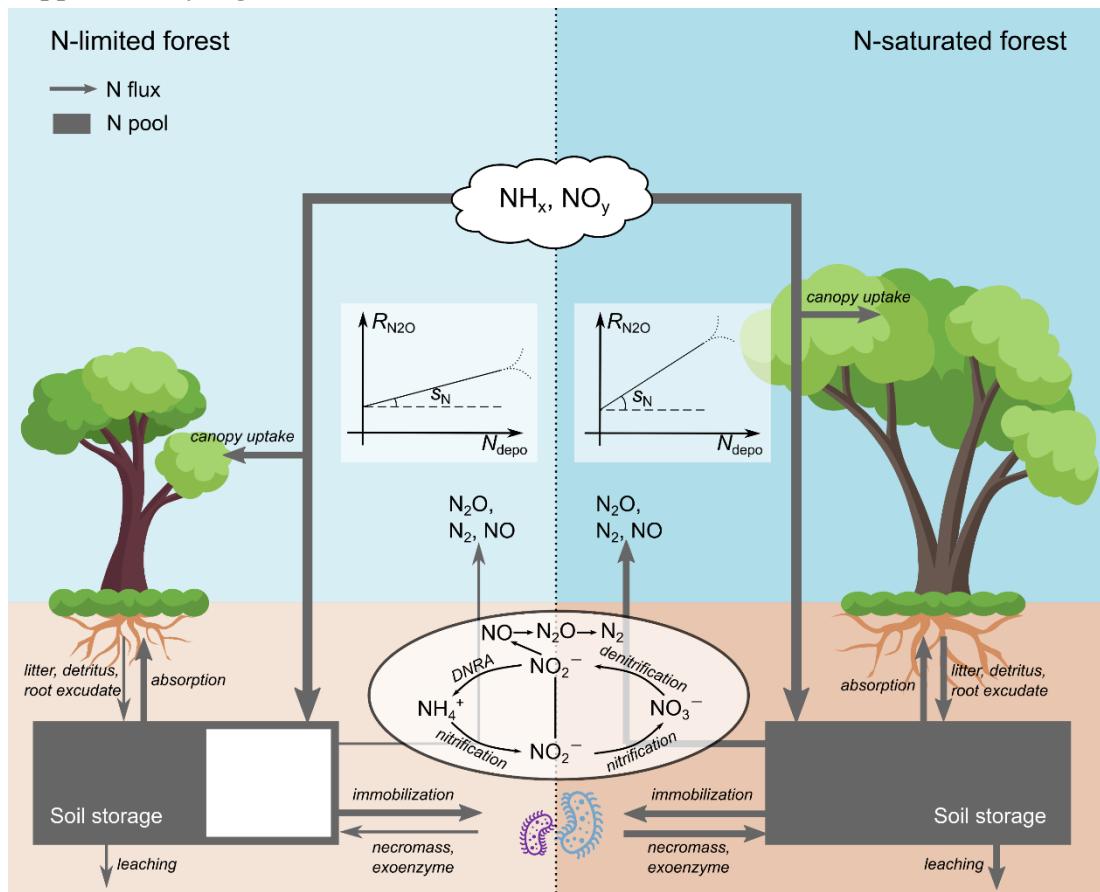
144 Previous research found that the gaseous N product ratio ($\text{N}_2\text{O}:\text{NO}$) was higher in beech forest than
145 in spruce forests²⁸, which implies that forest type may have a significant effect on the sensitivity of soil
146 N_2O emission to N deposition (s_{N}).

147 To test the hypothesis, we compared the s_{N} of deciduous broadleaf and needleleaf forests worldwide.
148 s_{N} values of global forests were from our constructed model. Forest type information was from a global
149 product²⁹. Specifically, for each spatial grid which has a s_{N} value, forest type was determined based on
150 the coordinates of the grid. For grids having multiple types of forests (evergreen broadleaf / deciduous
151 broadleaf / needleleaf / mixed), only grids where deciduous broadleaf / needleleaf forests make up more
152 than 50% the grid area was considered to be a deciduous broadleaf / needleleaf forest grid, whereas the
153 other forest grids were considered to be “mixed”. Mixed forest grids were not considered in the following
154 analysis.

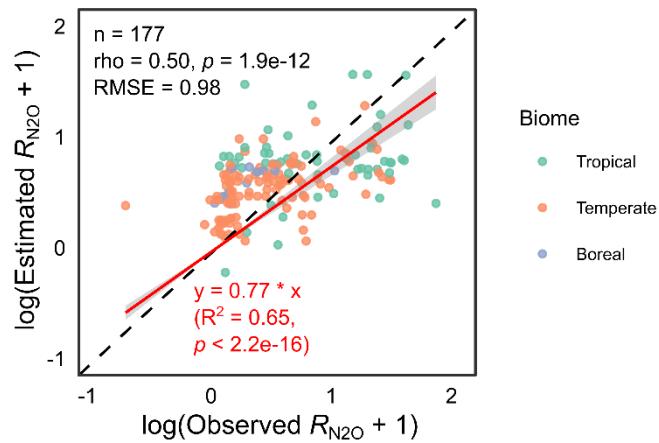
155 On global scale, we found s_{N} of deciduous broadleaf forests to be significantly higher than that of
156 needleleaf forests ($p < 0.001$; Fig. S13). On biome scale, however, s_{N} of broadleaf forests was significantly
157 higher than that of needleleaf forests in temperate biome only ($p < 0.001$). This is probably because forest
158 type indirectly influences s_{N} through the different capabilities of broadleaf and needleleaf forests to retain
159 and utilize deposited N. In temperate biome where atmospheric N deposition rate is particularly high in
160 broadleaf forests, differences in N deposition caused significantly higher s_{N} in broadleaf forest than in
161 needleleaf forests.

162

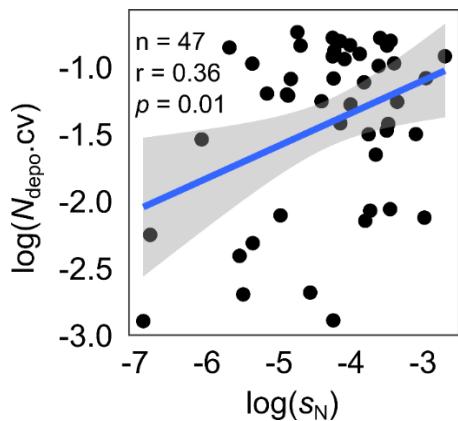
163 **Text S5. Using two datasets separately to detect thresholds for the classification of N limitation and**
164 **saturation status**


165 We have two independent datasets on the field-observed N-limited or N-saturated status of global
166 forests, which were indicated by N leaching rate (Nleach dataset) and plant growth response to N input
167 (NuLi dataset), respectively. Because the two indicators may point to different stages of N saturation³⁰,
168 we firstly used the two datasets separately in the detection of threshold for determining forest N saturation
169 status.

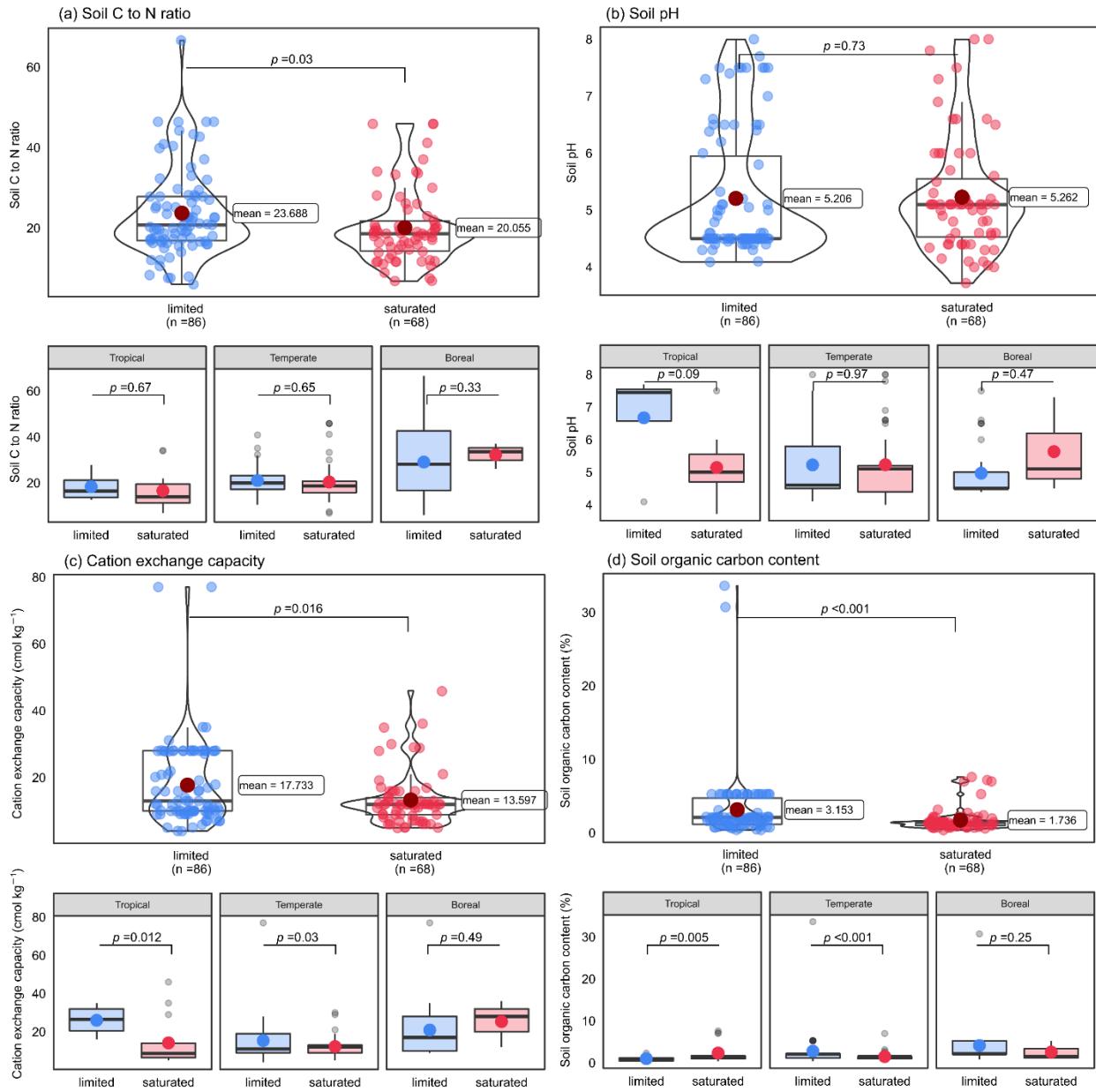
170 To begin with, we checked whether s_N could distinguish between the N-limited and N-saturated
171 forests. For the forests in Nleach dataset, the mean s_N of N-saturated forests were significantly higher than
172 that of N-limited forests, both on global and biome scales (Fig. S14; $p < 0.001$). Also, the mean s_N of N-
173 saturated forests were significantly higher than that of N-limited forests in NuLi dataset (Fig. S14; p
174 < 0.001).


175 Then, the two datasets were used separately to detect the optimal cutoff value of s_N between N-
176 limited and N-saturated forests. For forest sites in Nleach dataset, we randomly sampled (with
177 replacement) 10 N-limited forests and 10 N-saturated forests. The 20 sites constitute a sample dataset
178 where N-limited and N-saturated sites were equally represented. For each possible cutoff value of s_N
179 (within the range of the s_N values of all samples), forests having higher s_N than the cutoff value were
180 classified as N-saturated forests, and those having s_N no higher than the cutoff value were classified as N-
181 limited forests. The classified N limitation or saturation status were compared with the observed status of
182 the sampled forests, and the proportion of successfully classified forests (i.e., to the same category as
183 observed) was the accuracy of the classification. All possible cutoff values of s_N were tried out (at a
184 precision of 0.0001 kgN₂O-N kgN⁻¹), and the corresponding accuracies of classification were recorded.
185 The cutoff value(s) that shows the highest accuracy of classification is the optimal cutoff value for the
186 sampled forests. The resampling and detection-of-optimal-cutoff-value processes were repeated for 5000
187 times. Subsequently, we switched to NuLi dataset and repeated the abovementioned processes for another
188 5000 times.

189 By comparing the statistical distribution of the detected optimal cutoff values for the two datasets,
190 we observed a considerable overlap (Fig. S15). That means, the two datasets may point to a similar
191 threshold of s_N for the classification of N-limited and N-saturated forests. Therefore, we combined the
192 two datasets to enlarge the sample size and detect a universal threshold for classification.


195 **Supplementary Figures**

196
197 **Fig. S1.** A simplified illustration of the differences in nitrogen (N) flow in N-limited and N-saturated
198 forests. NH_x : reduced nitrogen; NO_y : oxidized nitrogen; $R_{\text{N}2\text{O}}$: soil N_2O emission rate; N_{depo} : atmospheric
199 N deposition rate; s_N : sensitivity of soil N_2O emission to N deposition; DNRA: dissimilatory nitrate
200 reduction to ammonium.
201



202
203 **Fig. S2.** Comparing estimated and observed soil N_2O emission rates (R_{N2O}). Observations were
204 aggregated to $0.5^\circ \times 0.5^\circ$ grids to match with the spatial resolution of the environmental factors. Each point
205 represents a grid-year. Points of different colors represent grid-years in different biomes. Because
206 observed and estimated R_{N2O} do not follow normal distribution, Spearman's rho was used as the
207 coefficient of correlation between them. For the same reason, observed and estimated R_{N2O} were log-
208 transformed before fitting a linear model. The red line and fonts show the fitted linear regression model.
209 Gray shading denotes the standard error. Dashed black line is the 1:1 line.
210

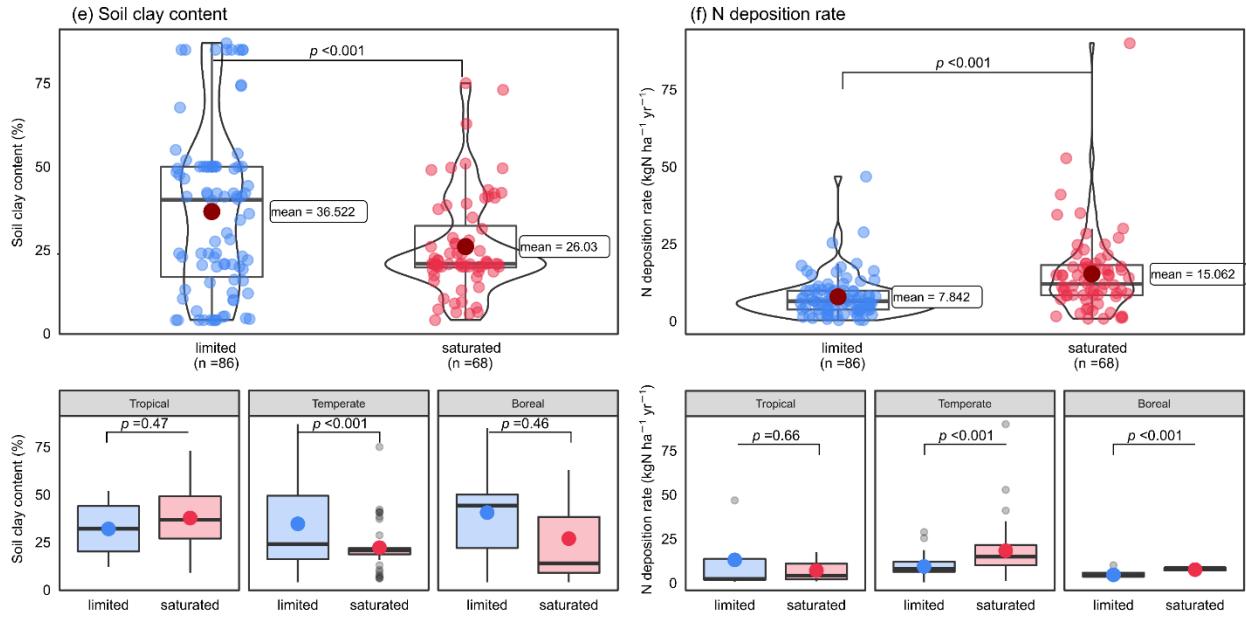
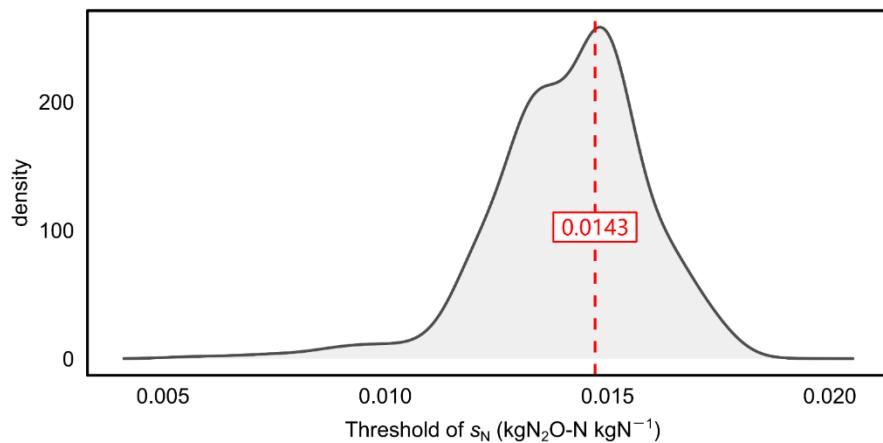
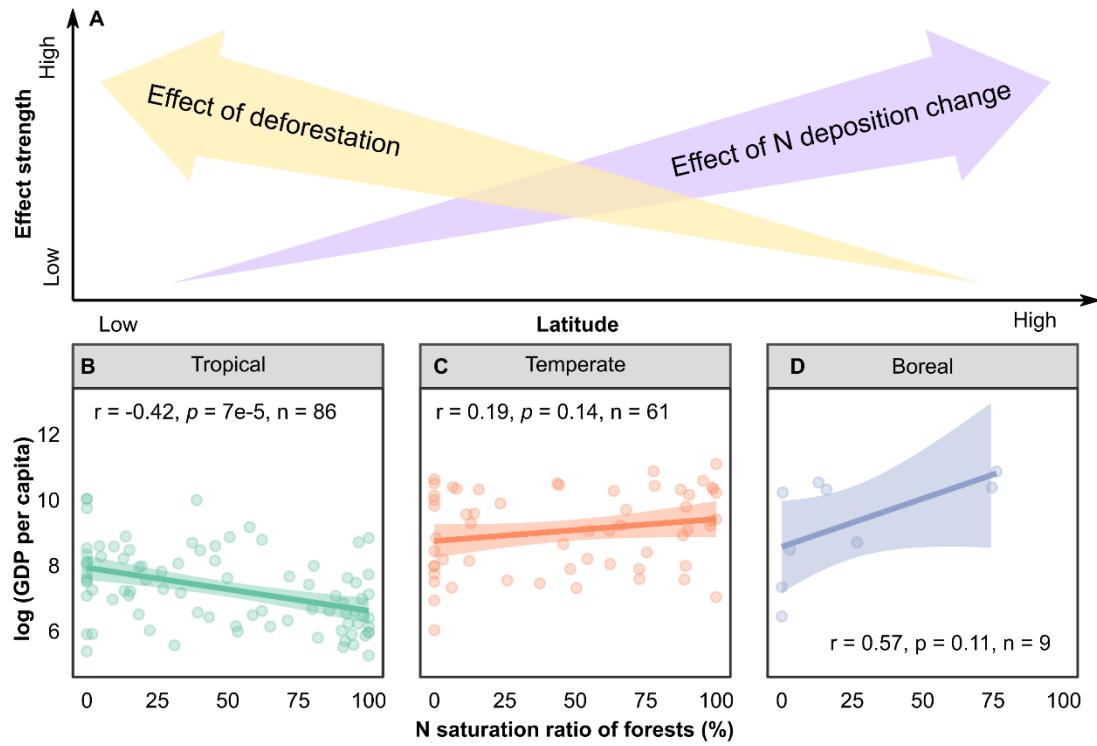

211
212
213
214
215
216
217

Fig. S3. Correlation test between sensitivity of soil N_2O emission to N deposition (s_N ; log-transformed) and annual variation of N deposition ($N_{\text{depo}}.\text{cv}$; log-transformed). s_N values were calculated using low N input data from global forest experiment sites (Table S1). Temporal data of N deposition were from a published dataset by Ackerman et al.³¹.


218

219


Fig. S4. Comparing the performance of different indicators in distinguishing between N-limited and N-saturated forests. Most of the indicators showed reliable performance (significant difference between groups) on global scale, but none of the indicators could have successfully and consistently distinguished between forests in N-limited or N-saturated status across biomes. It is to be noted that these indicators were selected based on the availability of data (from literature or spatial datasets).

220
221
222
223
224
225
226

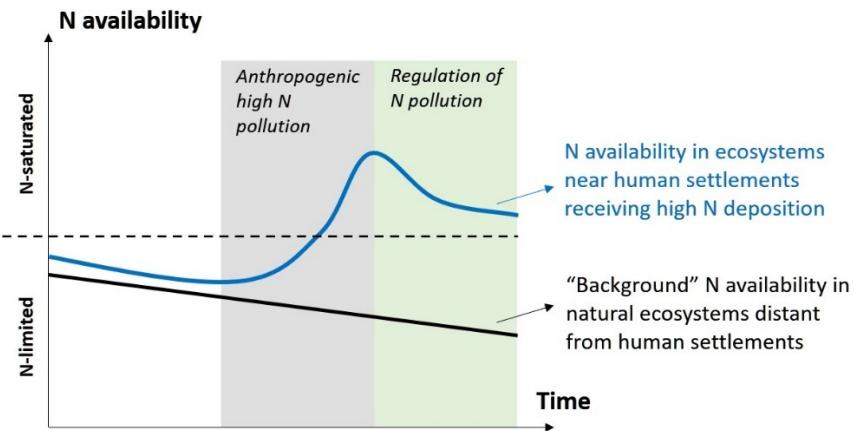

227
228
229
230
231

Fig. S5. Density curve showing the statistical distribution of optimal cutoff values of s_N , which were calculated using bootstrap method for 5000 times. The most frequently detected optimal cutoff value ($0.0143 \text{ kgN}_2\text{O-N kg}^{-1}$), as indicated by the peak of the curve, was used as the optimal threshold.

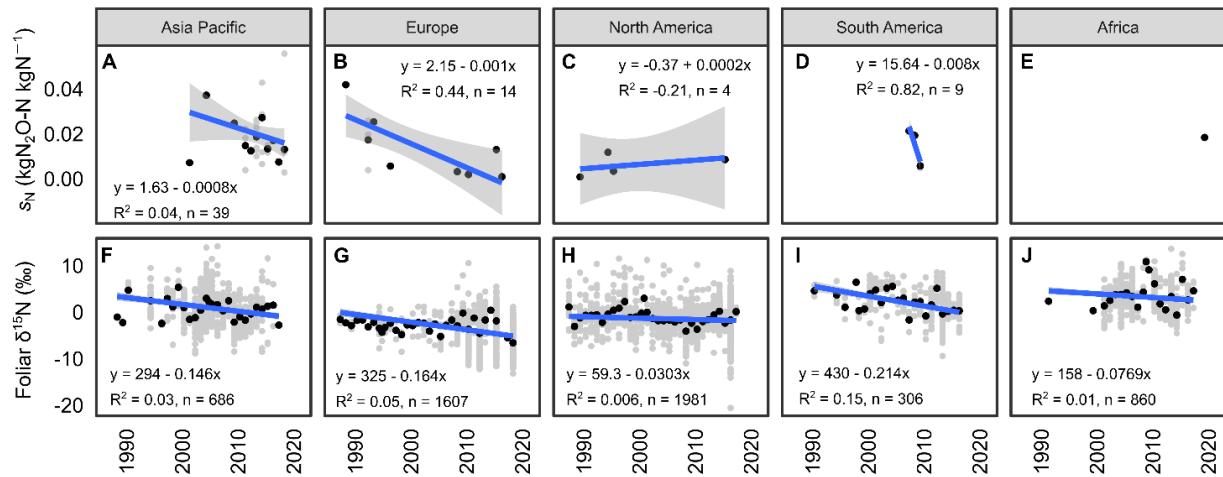

232
233
234
235
236
237
238
239
240

Fig. S6. Varying relationships between forest N saturation status and economic development of different countries. (A) Schematic illustration of the stronger negative effect of deforestation (i.e., replacement of mature forests by young forests during economic development) on the N saturation ratio at lower latitudes and the stronger positive effect of N deposition change on the N saturation ratio at higher latitudes. (B-D) Correlations between log-transformed GDP per capita (unit: USD) and N saturation ratio of forests (%) in different countries. Each point represents a country. Solid lines show the fitted linear models, and shadings represent the standard errors of the fitted models.

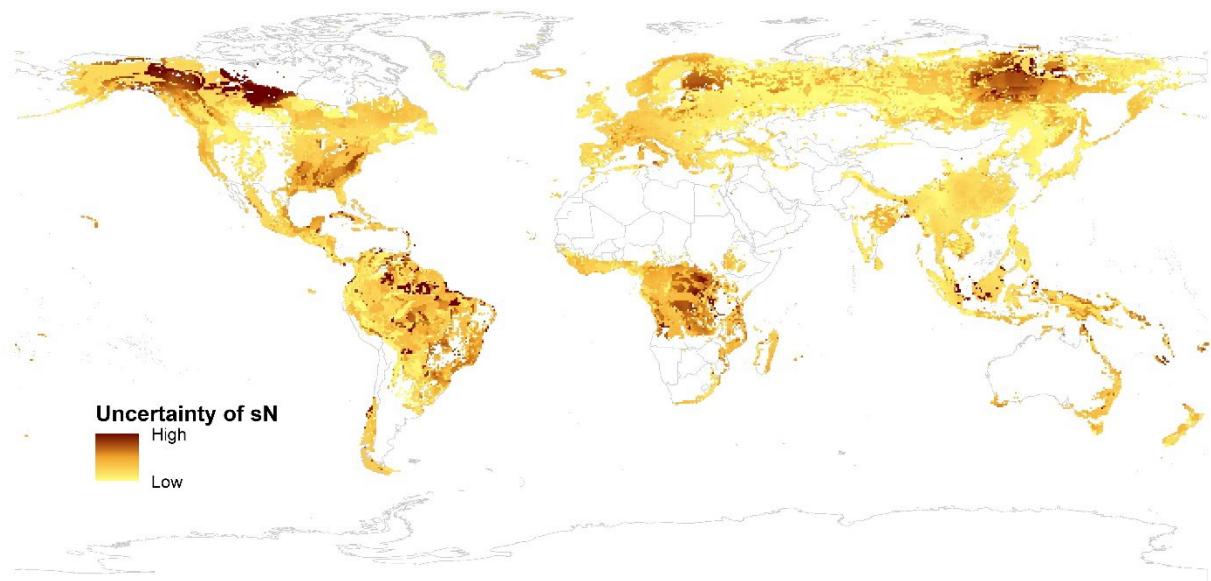
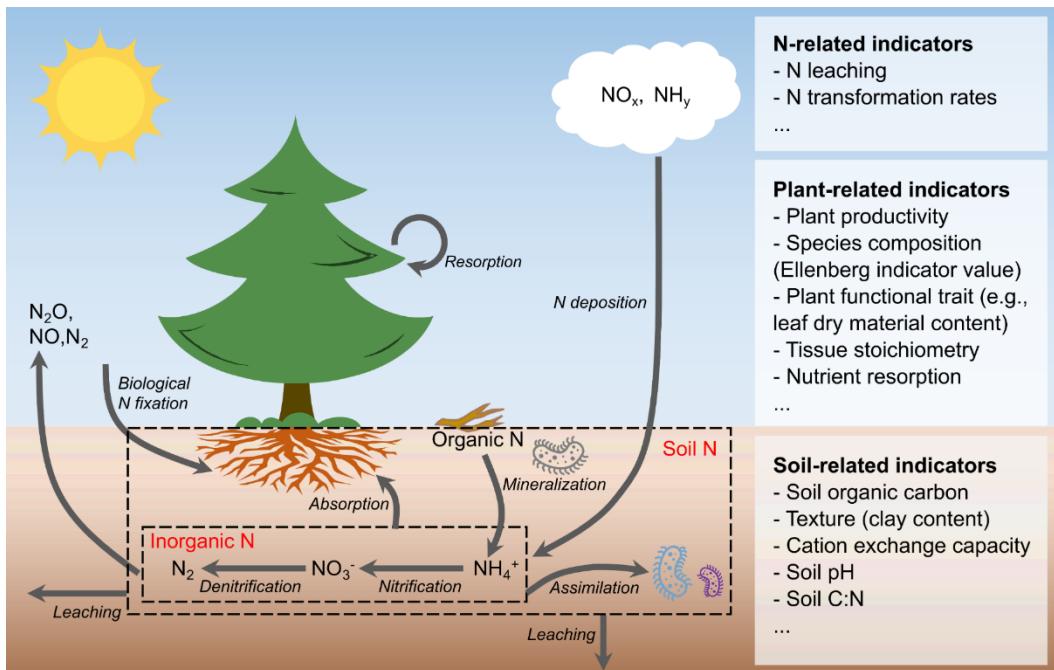

241
242
243
244
245

Fig. S7. A framework for explaining the observed declining N availability in natural ecosystems (due to increased CO₂ level and extended growing season) and also high N saturation ratios in forests near human settlements (which are receiving high N deposition).


246
247 **Fig. S8.** Temporal change of N availability in different geographic regions, indicated by sensitivity of soil
248 N₂O emission to N deposition (s_N) and foliar N isotope ratio ($\delta^{15}\text{N}$). Panels (A-E) Temporal change of s_N .
249 s_N was calculated using global N addition experiment data (Data S1). Each gray point represents a grid-
250 year where N addition experiment data were available and s_N could be calculated. Black points are the
251 annual mean values of s_N . Panels (F-J) Temporal change of foliar $\delta^{15}\text{N}$. Foliar $\delta^{15}\text{N}$ data were from a
252 published global dataset by Craine et al.¹³ (<https://doi.org/10.5061/dryad.v2k2607>). Only data after 1985
253 were used, so as to match the time frame of s_N data. Blue lines were fitted linear models, and gray
254 shadings represent the standard errors.

255 The two datasets used different geographic region classifications, so we reclassified data from several
256 regions to facilitate comparison of the two metrics. In s_N dataset: data from “East Asia” and “Southeast
257 Asia and Pacific” were reclassified to “Asia Pacific” region; data from “Western Europe” were
258 reclassified to “Europe” region; data from “Sub-Saharan Africa” were reclassified to “Africa” region;
259 data from “Latin America and Caribbean” were reclassified to “South America” region; no data were
260 available for other regions. In foliar $\delta^{15}\text{N}$ dataset: data from “Asia” and “Australia” were reclassified to
261 “Asia Pacific” region. Data and code used for producing this figure (and all other figures) could be found
262 in supplementary materials.

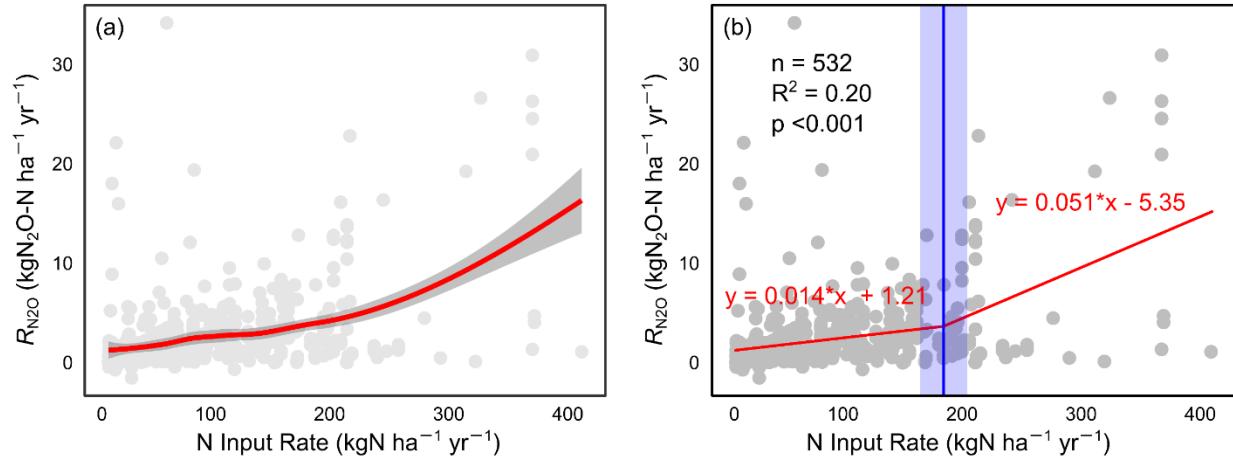

264
265
266

Fig. S9. Uncertainty of modeled sensitivity of soil N_2O emission to N deposition (s_N).

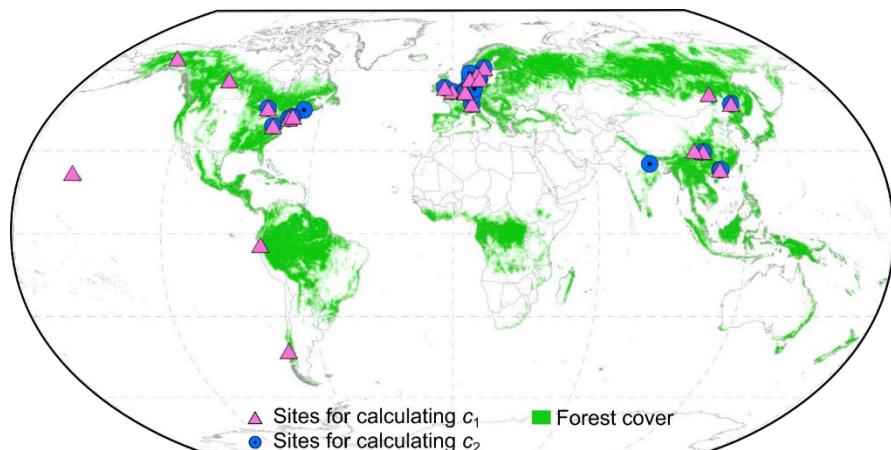

267
268
269
270

Fig. S10. Simplified illustration of the nitrogen (N) flows in forest ecosystems, and indicators of N saturation status. NH_x : reduced nitrogen; NO_y : oxidized nitrogen.

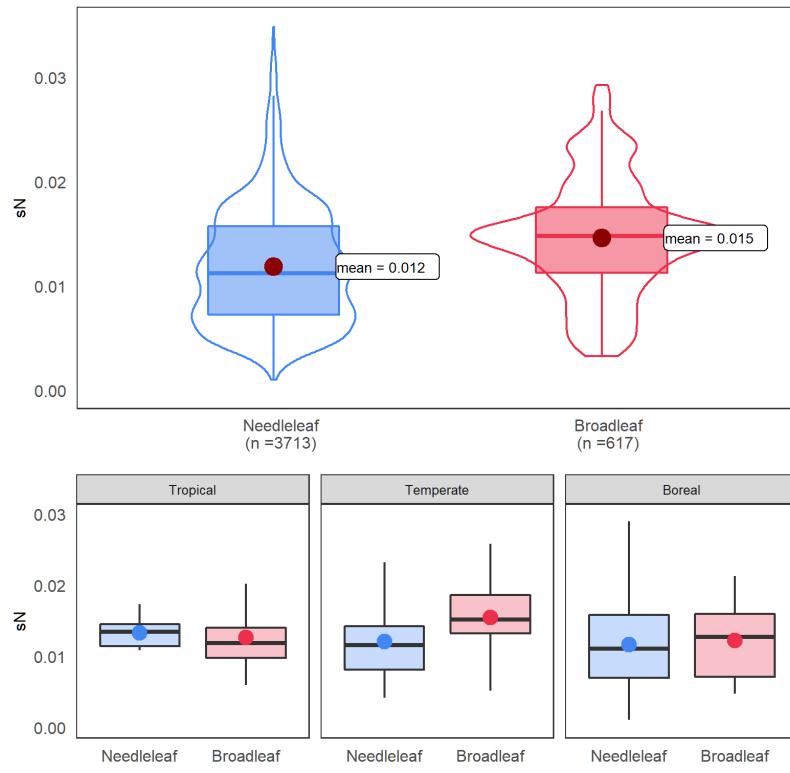

271
272
273
274
275
276

Fig. S11. Locally weighed regression model (a) and segmented linear regression model (b) on soil N_2O emission rate (R_{N2O}) and N input rate. The blue vertical line shows the estimated change point (174.70 $\text{kgN ha}^{-1} \text{yr}^{-1}$). The blue shading represents the standard error of the estimated change point. The red lines and fonts represent the fitted models (model: $R_{N2O} \sim \text{N input rate}$).

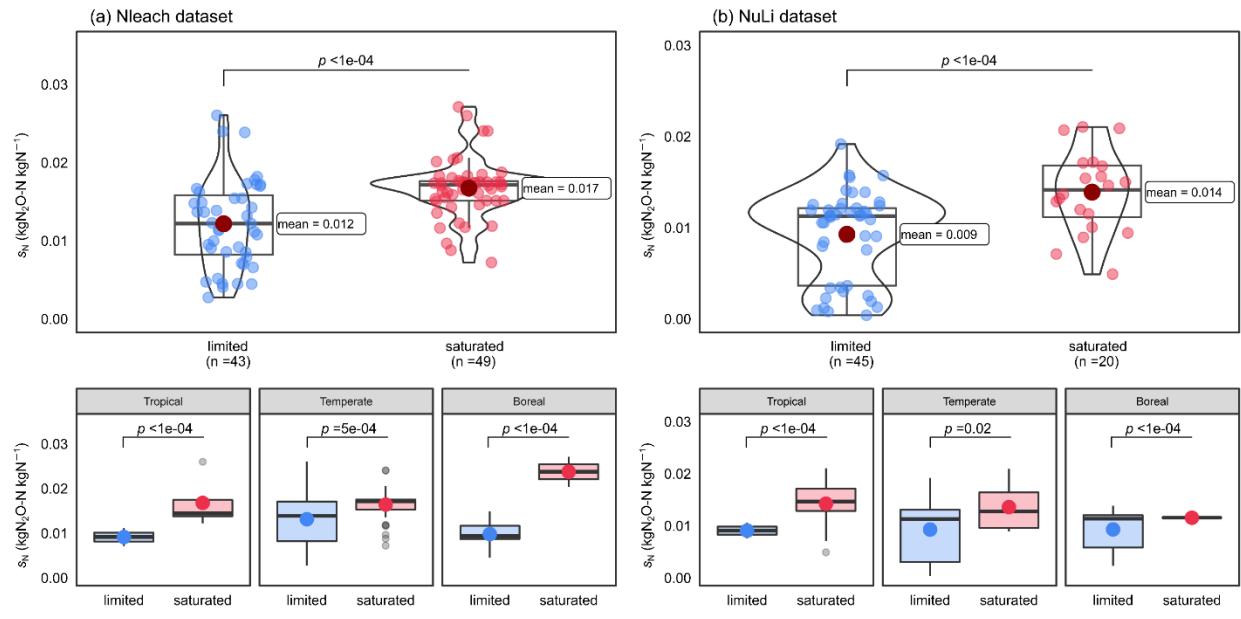
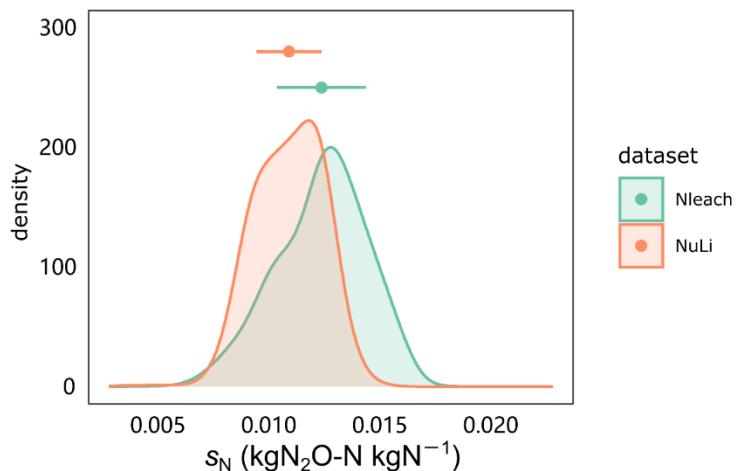

277
278
279
280

Fig. S12. The spatial map of N addition experiment sites for calculating c_1 and c_2 . c_1 : sensitivity of total N loss to N deposition (kgN kgN^{-1}); c_2 : sensitivity of N leaching to N deposition (kgN kgN^{-1}).



281
282
283
284
285

Fig. S13. Comparing the sensitivity of soil N_2O emission (s_{N}) of broadleaf and needleleaf forests. Of the 4330 spatial grids where more than 50% of the area were covered by deciduous broadleaf or needleleaf forests, 3713 were needleleaf forest grids, and 617 were deciduous broadleaf forest grids.

286
287 **Fig. S14.** Comparing the sensitivity of soil N_2O emission to N deposition (s_N) of N-saturated and N-
288 limited forests in Nleach dataset (Data S4) and NuLi dataset (Data S5). The N limitation or saturation
289 status of forests were determined by researchers in field observations, which we compiled from published
290 literature.
291

292
293 **Fig. S15.** Statistical distribution of the optimal cutoff values of s_N determined from field-observed N
294 saturation status using Nleach and NuLi datasets (Data S4 and Data S5), separately. The curves represent
295 the density of distribution of the cutoff values. The points and error bars above the curves of the
296 corresponding color are the mean values and standard deviation of the optimal cutoff values.
297

298

Supplementary Tables

299

Table S1. Linear models on soil N₂O emission rate (R_{N2O}) and N input rate (model: $R_{N2O} \sim N$ input rate) built with low N input data (N addition rate $\leq 150 \text{ kgN ha}^{-1} \text{ yr}^{-1}$) from global forest experiment sites, and the derived sensitivity (s_N) of soil N₂O emission to N deposition and background N₂O emission rate (R_0).

300

301

No.	Longitude range	Latitude range	Biome	s_N	R_0	n	adj.R ²	p value	References
1	(19,19.5)	(64,64.5)	Boreal	0.002	0.045	2	NA	NA	³²
2	(30.5,31)	(62.5,63)	Boreal	0.025	5.132	4	0.14	0.347	³³
3	(22.5,23)	(62,62.5)	Boreal	0.013	0.538	2	NA	NA	³⁴
4	(8,8.5)	(58.5,59)	Boreal	0.026	0.343	6	0.57	0.052	^{35,36}
5	(-3.5,-3)	(55.5,56)	Temperate	0.02	0.258	6	0.18	0.224	³⁷
6	(-3,-2.5)	(55.5,56)	Temperate	0.006*	-0.009	6	0.73	0.019	^{37,38}
7	(1.5,2)	(52.5,53)	Temperate	0.004	0.233	2	NA	NA	³⁷
8	(9.5,10)	(51.5,52)	Temperate	0.042*	0.51	10	0.48	0.015	³⁹⁻⁴¹
9	(128.5,129)	(47,47.5)	Boreal	0.015	0.777	11	0.02	0.300	⁴²⁻⁴⁴
10	(8.5,9)	(47,47.5)	Temperate	0.003	-0.062	4	0.63	0.134	⁴⁵
11	(-80.5,-80)	(43.5,44)	Temperate	0.009	1.374*	4	0.79	0.073	⁴⁶
12	(-72.5,-72)	(43,43.5)	Temperate	0.012	-0.216	2	NA	NA	⁴⁷
13	(141,141.5)	(43,43.5)	Temperate	0.025	1.647	2	NA	NA	⁴⁸
14	(-72.5,-72)	(42.5,43)	Temperate	0.001	0.074	6	0.05	0.323	⁴⁹
15	(128,128.5)	(42,42.5)	Temperate	0.01	0.67	2	NA	NA	⁵⁰
16	(127.5,128)	(41.5,42)	Temperate	0.029	2.287	13	0.11	0.141	⁵¹⁻⁵³
17	(-80.5,-80)	(41.5,42)	Temperate	0.003	0.217	2	NA	NA	⁵⁴
18	(-4,-3.5)	(40,40.5)	Temperate	0.001*	0.026*	4	0.95	0.017	⁵⁵
19	(112,112.5)	(36.5,37)	Temperate	0.056	2.754	3	0.98	0.068	⁵⁶
20	(111,111.5)	(31.5,32)	Temperate	0.013**	0.483	27	0.28	0.003	⁵⁷⁻⁶⁰
21	(110,110.5)	(31.5,32)	Temperate	0.023	-0.31	4	0.54	0.166	⁶¹
22	(120.5,121)	(30.5,31)	Temperate	0.017	1.135	4	0.51	0.181	⁶²
23	(119.5,120)	(30,30.5)	Temperate	0.003	1.238***	16	0.01	0.308	⁶³⁻⁶⁷
24	(120,120.5)	(30,30.5)	Temperate	0.012**	0.834*	12	0.64	0.001	^{68,69}
25	(106.5,107)	(29.5,30)	Temperate	0.025*	0.875*	3	1	0.018	⁷⁰
26	(115.5,116)	(29.5,30)	Temperate	0.012	2.025	6	0.14	0.248	⁷¹

27	(116.5,117)	(28,28.5)	Temperate	0.013	0.16	2	NA	NA	72
28	(118,118.5)	(27,27.5)	Tropical	0.015	1.948	9	0.12	0.190	73
29	(115,115.5)	(26.5,27)	Tropical	0.026***	-0.092	54	0.47	<0.001	74-83
30	(117,117.5)	(26,26.5)	Tropical	0.007	0.5	3	0.55	0.313	84
31	(118,118.5)	(25.5,26)	Tropical	0.012	0.601	4	0.33	0.257	85
32	(113,113.5)	(23.5,24)	Tropical	0.014	-0.226	3	0.77	0.220	86
33	(112.5,113)	(23,23.5)	Tropical	0.027*	0.19	22	0.15	0.041	87-89
34	(112.5,113)	(22.5,23)	Tropical	0.004	1.919***	14	0.11	0.129	90
35	(106.5,107)	(22,22.5)	Tropical	0.012***	-0.038	8	0.84	0.001	91
36	(107,107.5)	(22,22.5)	Tropical	0.043*	-0.089	10	0.51	0.013	92-95
37	(107.5,108)	(22,22.5)	Tropical	0.007**	0.589**	4	0.98	0.007	96
38	(101,101.5)	(21.5,22)	Tropical	0.037	2.101*	9	0.18	0.144	97,98
39	(110.5,111)	(21,21.5)	Tropical	0.018	3.195	3	0.69	0.256	99
40	(-80,-79.5)	(9,9.5)	Tropical	0.021**	0.674	8	0.71	0.005	100,101
41	(-82.5,-82)	(8.5,9)	Tropical	0.019	1.063	8	0.32	0.083	100,101
42	(116.5,117)	(6,6.5)	Tropical	0.007**	0.517**	10	0.61	0.005	102
43	(31.5,32)	(1.5,2)	Tropical	0.018***	1.756***	4	1	0.001	103
44	(102,102.5)	(-1.5,-1)	Tropical	0.022**	0.919*	7	0.84	0.002	104
45	(-79.5,-79)	(-4,-3.5)	Tropical	0.005	0.135	3	0.44	0.356	105
46	(-79,-78.5)	(-4.5,-4)	Tropical	0.006	0.471	3	0.5	0.333	105
47	(-79.5,-79)	(-4.5,-4)	Tropical	0.006	-0.11	3	0.95	0.106	105

302 * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; NA, not applicable

303 **Table S2.** Generalized linear models on environmental factors and the sensitivity (s_N) of soil N_2O
 304 emission to N deposition and the background N_2O emission rate (R_0). Models were refined from
 305 full models using environmental factors (MAT, MAP, N_{depo} , MAT.cv, MAP.cv, $N_{depo}.cv$, Clay,
 306 Sand) and their interactions as predictors[†].

	Estimate	SE	t	p
Refined model on s_N[‡] (family = “gaussian”, deviance explained = 91.1%, n=46)				
Clay	4.77E-03	1.83E-03	2.605	0.013*
Sand	3.15E-03	9.20E-04	3.419	0.001**
$\log(N_{depo})$	2.01E-02	1.14E-02	1.769	0.085
Clay \times $\log(N_{depo}.cv)$	2.13E-03	9.35E-04	2.282	0.028*
Sand \times $\log(N_{depo}.cv)$	1.17E-03	3.82E-04	3.056	0.004**
Clay \times Sand	-1.90E-04	6.94E-05	-2.735	0.009**
Clay \times Sand \times $\log(N_{depo}.cv)$	-1.14E-04	3.66E-05	-3.112	0.003**
Refined model on R_0[§] (family = “quasipoisson”, deviance explained = 43.2%, n = 45)				
$\log(N_{depo}.cv)$	1.99E-01	9.56E-02	2.084	0.043*
MAT \times Sand \times Clay	3.04E-06	5.99E-07	5.072	0.000***
MAP \times MAP.cv \times $\log(N_{depo})$	-8.31E-04	2.91E-04	-2.854	0.007**

307 [†] These variables were selected based on availability of global datasets (for extrapolation), and
 308 mechanistic relevance. Climate is an important state factor that shapes ecosystem properties; N
 309 deposition is an important driving force of ecosystem N dynamics; soil texture is indicative of
 310 soil structure and aeration status, which is critical for nitrification and denitrification processes.
 311 MAT: mean annual temperature; MAP: mean annual precipitation; N_{depo} : mean annual N
 312 deposition; Sand: soil sand content; Clay: soil clay content.

313 [‡] $s_N \sim (\text{Clay} + \text{Sand} + \log(N_{depo}) + \text{Clay} \times \log(N_{depo}.cv) + \text{Sand} \times \log(N_{depo}.cv) + \text{Clay} \times \text{Sand} +$
 314 $\text{Clay} \times \text{Sand} \times \log(N_{depo}.cv))^2$

315 [§] $R_0 \sim \text{EXP}(\log(N_{depo}.cv) + \text{MAT} \times \text{Sand} \times \text{Clay} + \text{MAP} \times \text{MAP.cv} \times \log(N_{depo})) - 0.5$

316 * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$

317

318 **Table S3.** Change points of the relationship between N input rate and soil N₂O emission rate used
319 or estimated in previous research

Change point estimated/used (kgN ha ⁻¹ yr ⁻¹)	Reference
101	19
135	20
140	21
100–150	22
150–200	23

320

321 **Table S4.** Comparing segmented regression models based on Bayes factor (BF)

Models (M_x)	Number of change points estimated	BIC	BF_{x0}^*	$Pr(M_0 \text{ isbetter})$
M_0	1	2915.87	/	/
M_1	2	2928.20	474.90	> 0.99
M_2	3	2925.06	98.94	> 0.95
M_3	4	2951.56	56122954	> 0.99

322 * $BF_{x0} = \exp((BIC(M_x) - BIC(M_0))/2)$

323

324 **Table S5.** Comparing the biome-mean sensitivity (s_N) of soil N_2O emission to N deposition from
 325 calculation and the s_N estimated with generalized linear model.

Biome	c_1	c_2	c_3^*	Calculated s_N	Modeled s_N
Tropical	0.42 (0.04)	0.29 (0.01)	0.20	0.026 (0.011)	0.015 (0.005)
Temperate	0.46 (0.05)	0.36 (0.05)	0.19	0.019 (0.018)	0.014 (0.004)
Boreal	0.41 (0.08)	0.37 (0.08)	0.19	0.008 (0.030)	0.010 (0.005)
All	0.44 (0.05)	0.35 (0.05)	0.19	0.017 (0.019)	0.013 (0.005)

326 Values in the parentheses are the standard errors of the estimates.

327 * Biome mean values of c_3 were calculated from modeled nitrification and denitrification end-
 328 product ratios by Bai, et al. ²⁷.

329

330 **Data S1. (separate file)**
331 Compiled dataset on soil N₂O emission rate from N addition experiments in global forests
332 (N₂O_exp dataset in main text).
333
334 **Data S2. (separate file)**
335 Compiled data on soil N₂O emission rate under natural conditions in global forests (N₂O_obs
336 dataset in main text).
337
338 **Data S3. (separate file)**
339 Compiled dataset on total N loss rate, N leaching rate and change rate of soil N pool from N
340 addition experiments in global forests (Ncycle_exp dataset in main text).
341
342 **Data S4. (separate file)**
343 Compiled dataset on global forest N saturation status (limited or saturated) indicated by N
344 leaching rate (Nleach dataset in main text).
345
346 **Data S5. (separate file)**
347 An existing dataset from Du, et al. ¹² on global forest N saturation status (limited or saturated)
348 indicated by plant growth response to N input (NuLi dataset in main text).
349
350 **Data S6. (separate file)**
351 GDP per capita data of global countries, downloaded from World Bank Open Data portal
352 (<https://data.worldbank.org/>).
353
354 **Data S7. (separate file)**
355 Data on environmental factors (MAT, MAP, N deposition rate, etc.) in global forests, extracted
356 from spatial datasets mentioned in Methods section.
357
358 **Code S1. (separate file)**
359 R code script used to carry out the data analysis processes, and produce the figures.
360
361

362 **References**

363 1 Ingestad, T., Aronsson, A. & Ågren, G. I. Nutrient flux density model of mineral
364 nutrition in conifer ecosystems. *Studia Forestalia Suecica* **160**, 61-71 (1981).

365 2 Ågren, G. I. & Bosatta, E. Nitrogen saturation of terrestrial ecosystems. *Environ Pollut*
366 **54**, 185-197, doi:10.1016/0269-7491(88)90111-X (1988).

367 3 Grennfelt, P. & Hultberg, H. Effects of nitrogen deposition on the acidification of
368 terrestrial and aquatic ecosystems. *Water, Air, and Soil Pollution* **30**, 945-963,
369 doi:10.1007/BF00303359 (1986).

370 4 Currie, W. S. The responsive C and N biogeochemistry of the temperate forest floor.
371 *Trends in Ecology & Evolution* **14**, 316-320, doi:10.1016/s0169-5347(99)01645-6
372 (1999).

373 5 Tomlinson, G. H. Acidic deposition, nutrient leaching and forest growth.
374 *Biogeochemistry* **65**, 51-81, doi:10.1023/A:1026069927380 (2003).

375 6 Kopacek, J. *et al.* Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems:
376 linking nitrogen saturation to carbon limitation of soil microbial processes.
377 *Biogeochemistry* **115**, 33-51, doi:10.1007/s10533-013-9892-7 (2013).

378 7 Van Sundert, K., Horemans, J. A., Stendahl, J. & Vicca, S. The influence of soil
379 properties and nutrients on conifer forest growth in Sweden, and the first steps in
380 developing a nutrient availability metric. *Biogeosciences* **15**, 3475-3496, doi:10.5194/bg-
381 15-3475-2018 (2018).

382 8 Dise, N. & Wright, R. Nitrogen leaching from European forests in relation to nitrogen
383 deposition. *Forest Ecol Manag* **71**, 153-161, doi:10.1016/0378-1127(94)06092-W
384 (1995).

385 9 Tietema, A. *et al.* Nitrate leaching in coniferous forest ecosystems: The European field-
386 scale manipulation experiments NITREX (nitrogen saturation experiments) and EXMAN
387 (experimental manipulation of forest ecosystems). *Global Biogeochem Cy* **11**, 617-626,
388 doi:10.1029/97gb01628 (1997).

389 10 Braakhekke, M. C. *et al.* Nitrogen leaching from natural ecosystems under global change:
390 a modelling study. *Earth System Dynamics* **8**, 1121-1139, doi:10.5194/esd-8-1121-2017
391 (2017).

392 11 Diekmann, M. Species indicator values as an important tool in applied plant ecology – a
393 review. *Basic and Applied Ecology* **4**, 493-506, doi:<https://doi.org/10.1078/1439-1791-00185> (2003).

395 12 Du, E. *et al.* Global patterns of terrestrial nitrogen and phosphorus limitation. *Nat Geosci*
396 **13**, 221-226, doi:10.1038/s41561-019-0530-4 (2020).

397 13 Craine, J. M. *et al.* Isotopic evidence for oligotrophication of terrestrial ecosystems.
398 *Nature Ecology & Evolution* **2**, 1735-1744, doi:10.1038/s41559-018-0694-0 (2018).

399 14 Mason, R. E. *et al.* Evidence, causes, and consequences of declining nitrogen availability
400 in terrestrial ecosystems. *Science* **376**, eabh3767, doi:10.1126/science.abb3767 (2022).

401 15 Craine, J. M. *et al.* Ecological interpretations of nitrogen isotope ratios of terrestrial
402 plants and soils. *Plant Soil* **396**, 1-26, doi:10.1007/s11104-015-2542-1 (2015).

403 16 Hiltbrunner, E., Körner, C., Meier, R., Braun, S. & Kahmen, A. Data do not support
404 large-scale oligotrophication of terrestrial ecosystems. *Nature Ecology & Evolution* **3**,
405 1285-1286, doi:10.1038/s41559-019-0948-5 (2019).

406 17 Olff, H. *et al.* Explanations for nitrogen decline. *Science* **376**, 1169-1170,
407 doi:10.1126/science.abq7575 (2022).

408 18 Kim, D.-G., Hernandez-Ramirez, G. & Giltrap, D. Linear and nonlinear dependency of
409 direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. *Agriculture,
410 Ecosystems & Environment* **168**, 53-65, doi:10.1016/j.agee.2012.02.021 (2013).

411 19 McSwiney, C. P. & Robertson, G. P. Nonlinear response of N₂O flux to incremental
 412 fertilizer addition in a continuous maize (*Zea mays* L.) cropping system. *Global Change
 413 Biol* **11**, 1712-1719, doi:10.1111/j.1365-2486.2005.01040.x (2005).

414 20 Hoben, J., Gehl, R., Millar, N., Grace, P. & Robertson, G. Nonlinear nitrous oxide (N₂O)
 415 response to nitrogen fertilizer in on - farm corn crops of the US Midwest. *Global Change
 416 Biol* **17**, 1140-1152, doi:10.1111/j.1365-2486.2010.02349.x (2011).

417 21 Lu, M. *et al.* Contrasting response of soil N₂O release to ammonium, nitrate, and urea
 418 addition rates is determined by substrate availability and microbial community abundance
 419 and composition. *Eur J Soil Biol* **109**, 103393, doi:10.1016/j.ejsobi.2022.103393 (2022).

420 22 Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Emissions of N₂O and NO from
 421 fertilized fields: Summary of available measurement data. *Global Biogeochem Cy* **16**, 6-
 422 1-6-13, doi:10.1029/2001GB001811 (2002).

423 23 Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear
 424 response of soil nitrous oxide (N₂O) emissions to fertilizer nitrogen. *Proceedings of the
 425 National Academy of Sciences* **111**, 9199-9204, doi:10.1073/pnas.1322434111 (2014).

426 24 R: A language and environment for statistical computing (R Foundation for Statistical
 427 Computing, Vienna, Austria, 2020).

428 25 Muggeo, V. M. Segmented: an R package to fit regression models with broken-line
 429 relationships. *R news* **8**, 20-25 (2008).

430 26 Wagenmakers, E.-J. A practical solution to the pervasive problems of p values.
 431 *Psychonomic Bulletin & Review* **14**, 779-804, doi:10.3758/BF03194105 (2007).

432 27 Bai, E., Houlton, B. Z. & Wang, Y. P. Isotopic identification of nitrogen hotspots across
 433 natural terrestrial ecosystems. *Biogeosciences* **9**, 3287-3304, doi:10.5194/bg-9-3287-2012
 434 (2012).

435 28 Butterbach-Bahl, K., Gasche, R., Breuer, L. & Papen, H. Fluxes of NO and N₂O from
 436 temperate forest soils: impact of forest type, N deposition and of liming on the NO and
 437 N₂O emissions. *Nutr Cycl Agroecosys* **48**, 79-90, doi:10.1023/a:1009785521107 (1997).

438 29 Tuanmu, M.-N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity
 439 and ecosystem modelling. *Global Ecol Biogeogr* **23**, 1031-1045,
 440 doi:<https://doi.org/10.1111/geb.12182> (2014).

441 30 Aber, J. D. *et al.* Nitrogen saturation in temperate forest ecosystems: hypotheses
 442 revisited. *BioScience* **48**, 921-934, doi:10.2307/1313296 (1998).

443 31 Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen
 444 deposition across four decades. *Global Biogeochem Cy* **33**, 100-107,
 445 doi:10.1029/2018GB005990 (2019).

446 32 Rutting, T., Bjorsne, A. K., Weslien, P., Kasimir, A. & Klemedtsson, L. Low Nitrous
 447 Oxide Emissions in a Boreal Spruce Forest Soil, Despite Long-Term Fertilization.
 448 *Frontiers in Forests and Global Change* **4**, 7, doi:10.3389/ffgc.2021.710574 (2021).

449 33 Regina, K., Nykanen, H., Maljanen, M., Silvola, J. & Martikainen, P. J. Emissions of
 450 N₂O and NO and net nitrogen mineralization in a boreal forested peatland treated with
 451 different nitrogen compounds. *Canadian Journal of Forest Research-Revue Canadienne
 452 De Recherche Forestiere* **28**, 132-140, doi:10.1139/cjfr-28-1-132 (1998).

453 34 Ojanen, P. *et al.* Long-term effect of fertilization on the greenhouse gas exchange of low-
 454 productive peatland forests. *Forest Ecol Manag* **432**, 786-798,
 455 doi:10.1016/j.foreco.2018.10.015 (2019).

456 35 Sitaula, B. K., Bakken, L. R. & Abrahamsen, G. N-FERTILIZATION AND SOIL
 457 ACIDIFICATION EFFECTS ON N₂O AND CO₂ EMISSION FROM TEMPERATE
 458 PINE FOREST SOIL. *Soil Biol Biochem* **27**, 1401-1408, doi:10.1016/0038-
 459 0717(95)00078-s (1995).

460 36 Sitaula, B. K., Bakken, L. R. & Abrahamsen, G. Nutrient balance in Scots pine (*Pinus*
 461 *sylvestris* L) forest .3. Fluxes of N2O from lysimeter as influenced by nitrogen input.
 462 *Water Air Soil Poll* **85**, 1155-1159, doi:10.1007/bf00477137 (1995).

463 37 Skiba, U. M., Sheppard, L. J., MacDonald, J. & Fowler, D. Some key environmental
 464 variables controlling nitrous oxide emissions from agricultural and semi-natural soils in
 465 Scotland. *Atmos Environ* **32**, 3311-3320, doi:10.1016/s1352-2310(97)00364-6 (1998).

466 38 Skiba, U., Sheppard, L. J., Pitcairn, C. E. R., Van Dijk, S. & Rossall, M. J. The effect of
 467 N deposition on nitrous oxide and nitric oxide emissions from temperate forest soils.
 468 *Water Air Soil Poll* **116**, 89-98, doi:10.1023/a:1005246625038 (1999).

469 39 Brumme, R. & Beese, F. Effects of liming and nitrogen fertilization on emissions of CO2
 470 and N2O from a temperate forest. *Journal of Geophysical Research: Atmospheres* **97**,
 471 12851-12858, doi:10.1029/92JD01217 (1992).

472 40 Borken, W., Beese, F., Brumme, R. & Lamersdorf, N. Long-term reduction in nitrogen
 473 and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission
 474 from a German spruce forest soil. *Soil Biol Biochem* **34**, 1815-1819, doi:10.1016/s0038-
 475 0717(02)00171-2 (2002).

476 41 Corre, M. D., Beese, F. O. & Brumme, R. Soil nitrogen cycle in high nitrogen deposition
 477 forest: changes under nitrogen saturation and liming. *Ecol Appl* **13**, 287-298,
 478 doi:10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2 (2003).

479 42 He, S. *Influence of simulated nitrogen deposition on greenhouse gas from mixed
 480 broadleaf and red pine forest*, Mudanjiang Normal University, (2015).

481 43 Tian, P., Zhang, J. B., Cai, Z. C. & Jin, G. Z. Different response of CO2 and N2O fluxes
 482 to N deposition with seasons in a temperate forest in northeastern China. *J Soil Sediment*
 483 **18**, 1821-1831, doi:10.1007/s11368-018-1919-1 (2018).

484 44 Song, L., Tian, P., Zhang, J. B. & Jin, G. Z. Effects of three years of simulated nitrogen
 485 deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine
 486 plantation of northeast China. *Sci Total Environ* **609**, 1303-1311,
 487 doi:10.1016/j.scitotenv.2017.08.017 (2017).

488 45 Krause, K., Niklaus, P. A. & Schleppi, P. Soil-atmosphere fluxes of the greenhouse gases
 489 CO2, CH4 and N2O in a mountain spruce forest subjected to long-term N addition and to
 490 tree girdling. *Agr Forest Meteorol* **181**, 61-68, doi:10.1016/j.agrformet.2013.07.007
 491 (2013).

492 46 Lutes, K., Oelbermann, M., Thevathasan, N. V. & Gordon, A. M. Effect of nitrogen
 493 fertilizer on greenhouse gas emissions in two willow clones (*Salix miyabeana* and *S-
 494 dasyclados*) in southern Ontario, Canada. *Agroforest Syst* **90**, 785-796,
 495 doi:10.1007/s10457-016-9897-z (2016).

496 47 Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D. & Millham, S. EXCHANGE OF
 497 N2O AND CH4 BETWEEN THE ATMOSPHERE AND SOILS IN SPRUCE-FIR
 498 FORESTS IN THE NORTHEASTERN UNITED-STATES. *Biogeochemistry* **18**, 119-
 499 135, doi:10.1007/bf0003273 (1992).

500 48 Kim, Y. S. *et al.* Simulated nitrogen inputs influence methane and nitrous oxide fluxes
 501 from a young larch plantation in northern Japan. *Atmos Environ* **46**, 36-44,
 502 doi:10.1016/j.atmosenv.2011.10.034 (2012).

503 49 Bowden, R. D., Melillo, J. M., Steudler, P. A. & Aber, J. D. Effects of nitrogen additions
 504 on annual nitrous oxide fluxes from temperate forest soils in the northeastern United
 505 States. *Journal of Geophysical Research: Atmospheres* **96**, 9321-9328,
 506 doi:10.1029/91JD00151 (1991).

507 50 Geng, S. C., Chen, Z. J., Han, S. J., Wang, F. & Zhang, J. H. Rainfall reduction amplifies
 508 the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil.
 509 *Sci Rep-Uk* **7**, 1-10, doi:10.1038/srep43329 (2017).

510 51 Cheng, S. L. *et al.* Nonlinear responses of soil nitrous oxide emission to multi-level
511 nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China.
512 *Catena* **147**, 556-563, doi:10.1016/j.catena.2016.08.010 (2016).

513 52 Bai, E. *et al.* Pulse Increase of Soil N₂O Emission in Response to N Addition in a
514 Temperate Forest on Mt Changbai, Northeast China. *Plos One* **9**,
515 doi:10.1371/journal.pone.0102765 (2014).

516 53 Peng, B., Sun, J. F., Liu, J., Xia, Z. W. & Dai, W. W. Relative contributions of different
517 substrates to soil N₂O emission and their responses to N addition in a temperate forest.
518 *Sci Total Environ* **767**, 8, doi:10.1016/j.scitotenv.2020.144126 (2021).

519 54 Bowden, R. D., Rullo, G., Stevens, G. R. & Steudler, P. A. Soil Fluxes of Carbon
520 Dioxide, Nitrous Oxide, and Methane at a Productive Temperate Deciduous Forest. *J
521 Environ Qual* **29**, 268-276, doi:10.2134/jeq2000.00472425002900010034x (2000).

522 55 Lafuente, A. *et al.* Simulated nitrogen deposition influences soil greenhouse gas fluxes in
523 a Mediterranean dryland. *Sci Total Environ* **737**, 8, doi:10.1016/j.scitotenv.2020.139610
524 (2020).

525 56 Yu, H. *Effects of soil acidity/alkalinity on soil nitrogen and greenhouse gas fluxes in a
526 Pinus tabulaeformis forest in Taiyue* Master's thesis, Beijing Forestry University, (2019).

527 57 Lin, Z. *Effects of simulated nitrogen deposition on the carbon sinks in the temperate
528 forest soil*, Beijing Forestry University, (2013).

529 58 Lin, Z., Wang, C. & Wang, R. Effects of simulated N deposition on N₂O emission from
530 temperate forest soil subject to freezing-thawing process. *Ecology and Environmental
531 Sciences* **21**, 1804-1809, doi:10.16258/j.cnki.1674-5906(2012)11-1804-06 (2012).

532 59 Wang, R. *Effects of simulated atmospheric nitrogen deposition on the exchange fluxes of
533 greenhouse gases in the temperate forest soil*, Beijing Forestry University, (2012).

534 60 Xu, K., Wang, C. M. & Yang, X. T. Five-year study of the effects of simulated nitrogen
535 deposition levels and forms on soil nitrous oxide emissions from a temperate forest in
536 northern China. *Plos One* **12**, doi:10.1371/journal.pone.0189831 (2017).

537 61 Pan, D. *Study on greenhouse gas emission for grassland soil below different forest soils
538 under precipitation reduction and nitrogen deposition in Shennongjia Mountain*, Gansu
539 Agricultural University, (2013).

540 62 Tu, J. & Zhang, C. The effect of different fertilizer use on soil greenhouse gases in a
541 *Prunus persica* stand. *Modern Horticulture*, 7-9 (2018).

542 63 Lin, Z. *Effects of biochar-based fertilizer and chemical fertilizer on soil N₂O emission in
543 moso bamboo (*Phyllostachys edulis*) forests*, Zhejiang A&F University, (2019).

544 64 Chen, X. *Effects of fertilization and understory vegetation management on soil
545 greenhouse gas emissions in Chinese pecan stands*, Zhejiang A&F University, (2014).

546 65 Chen, X. *et al.* Effects of fertilization on soil N₂O flux in Chinese *Carya cathayensis*
547 stands. *Journal of Plant Nutrition and Fertilizer* **20**, 1262-1270 (2014).

548 66 Wang, Z. *Effects of bamboo leaf and its biochar additions on soil greenhouse gas
549 emissions in Chinese chestnut stands* Master's thesis, Zhejiang A&F University, (2014).

550 67 Song, X. Z. *et al.* Nitrogen addition increased CO₂ uptake more than non-CO₂
551 greenhouse gases emissions in a Moso bamboo forest. *Sci Adv* **6**,
552 doi:10.1126/sciadv.aaw5790 (2020).

553 68 Zhang, J., Li, Y., Jiang, P., Zhou, G. & Liu, J. Effects of fertilization on labile carbon
554 pools and emissions of greenhouse gas in soils of Chinese chestnut stands. *Journal of
555 Plant Nutrition and Fertilizer* **19**, 745-752 (2013).

556 69 Zhang, J. *Effects of fertilization and understory vegetation management on soil labile
557 carbon pools and soil greenhouse gas emissions in Chinese chestnut stands*, Zhejiang
558 A&F University, (2013).

559 70 Xie, D. N., Si, G. Y., Zhang, T., Mulder, J. & Duan, L. Nitrogen deposition increases
560 N2O emission from an N-saturated subtropical forest in southwest China. *Environ Pollut*
561 **243**, 1818-1824, doi:10.1016/j.envpol.2018.09.113 (2018).

562 71 Li, C. *et al.* Effects of Moso Bamboo (*Phyllostachys edulis*) Expansion and simulated
563 nitrogen deposition on emission of soil N2O and CO2 in Lushan Mountain. *Acta
564 Pedologica Sinica* **56**, 148-157, doi:10.11766/trxb201804240215 (2019).

565 72 Fan, J. L., Luo, R. Y., McConkey, B. G. & Ziadi, N. Effects of nitrogen deposition and
566 litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine
567 forestland. *Sci Rep-Uk* **10**, 11, doi:10.1038/s41598-020-65952-8 (2020).

568 73 Chen, S. *Effects of simulated nitrogen deposition on N2O emission from midsubtropical
569 forest soils*, Fujian Normal University, (2012).

570 74 Zhang, L. *Response of greenhouse gas fluxes to the addition of nitrogen and phosphorus
571 in subtropical fir forest*, Southwest University, (2013).

572 75 Wang, L. *Influence of nitrogen and phosphorus fertilizers on soil N2O emissions in
573 Chinese fir plantation ecosystem*, Shandong Normal University, (2015).

574 76 Wang, Y. *The responses of soil carbon and nitrogen greenhouse gas to exogenous
575 nitrogen input and its coupling mechanism in subtropical plantation*, University of
576 Chinese Academy of Sciences, (2015).

577 77 Wang, J. *Effects of nitrogen and phosphorus addition on greenhouse gas fluxes in
578 Chinese fir plantations in south China*, University of Chinese Academy of Sciences,
579 (2016).

580 78 Wang, L. *et al.* Effects of inputs of exogenous NH4+ and NO3- on soil nitrous oxide
581 emission in subtropical plantation, south China. *Acta Pedologica Sinica*, 724-734,
582 doi:10.11766/trxb201507280291 (2016).

583 79 Wang, Y. S. *et al.* Relationships between ammonia-oxidizing communities, soil methane
584 uptake and nitrous oxide fluxes in a subtropical plantation soil with nitrogen enrichment.
585 *Eur J Soil Biol* **73**, 84-92, doi:10.1016/j.ejsobi.2016.01.008 (2016).

586 80 Dang, X. *Study on the responses of soil carbon and nitrogen contents and fluxes to
587 increased atmospheric nitrogen deposition in the subtropical plantation based on field
588 observation and modeling*, University of Chinese Academy of Sciences, (2015).

589 81 Li, X. *Contrasting responses of soil nitrous oxide emission and functional microbial
590 communities to NO3- and NH4+ enrichment in the subtropical slash pine plantation,
591 southern China*, University of Chinese Academy of Sciences, (2017).

592 82 Li, X. Y. *et al.* The contrasting effects of deposited NH4+ and NO3- on soil CO2, CH4
593 and N2O fluxes in a subtropical plantation, southern China. *Ecol Eng* **85**, 317-327,
594 doi:10.1016/j.ecoleng.2015.10.003 (2015).

595 83 Sun, F. & Zhang, L. Response of N2O fluxes to the addition of nitrogen and phosphorus
596 in a southern subtropical fir forest. *Journal of Southwest University (Natural Science
597 Edition)* **37**, 106-111 (2015).

598 84 Wu, D. *Effects of N deposition on soil microbial community structure and greenhouse
599 gas fluxes in a natural Castanopsis carlesii forest* Master's thesis, Fujian Normal
600 University, (2018).

601 85 Yuan, L. *Effects of simulated atmospheric nitrogen deposition on the exchange fluxes of
602 greenhouse gases in the subtropical forest soil*, Nanjing Normal University, (2016).

603 86 Cai, Y. *The effects of nitrogen deposition on nitrogen dynamics and emissions of
604 greenhouse gases in artificial young forest soil*, South China University of Technology,
605 (2013).

606 87 Mo, J., Fang, Y., Lin, E. & Li, Y.-E. Soil N2O emission and its response to simulated N
607 deposition in the main forests of Dinghushan in subtropical China. *Journal of Plant
608 Ecology* **30**, 901-910, doi:10.17521/cjpe.2006.0114 (2006).

609 88 Gao, W., Yang, H., Li, S. & Kou, L. Responses of Soil CO₂, CH₄ and N₂O Fluxes to N,
610 P, and Acid Additions in Mixed Forest in Subtropical China. *Journal of Resources and*
611 *Ecology* **8**, 154-164 (2017).

612 89 Chen, H. *et al.* Nitrogen saturation in humid tropical forests after 6 years of nitrogen and
613 phosphorus addition: hypothesis testing. *Funct Ecol* **30**, 305-313, doi:10.1111/1365-
614 2435.12475 (2016).

615 90 Zhang, W. *et al.* Responses of nitrous oxide emissions to nitrogen and phosphorus
616 additions in two tropical plantations with N-fixing vs. non-N-fixing tree species.
617 *Biogeosciences* **11**, 4941-4951, doi:10.5194/bg-11-4941-2014 (2014).

618 91 Hong, P. *Effects of nitrogen addition on soil greenhouse gas emissions and microbial*
619 *community structure in young plantations of different tree species in subtropical China*,
620 Chinese Academy of Forestry, (2015).

621 92 Zhang, K. *et al.* Influence of N addition on growth and non-growth season soil
622 greenhouse gas fluxes in a Eucalyptus plantation. *Chinese Journal of Ecology* **34**, 1779-
623 1784 (2015).

624 93 Li, R. *et al.* Effects of nitrogen application on soil greenhouse gas fluxes in a Eucalyptus
625 plantation during the growing season. *Acta Ecologica Sinica* **35**, 5931-5939 (2015).

626 94 Li, R. *et al.* Effects of nitrogen application on soil greenhouse gas fluxes in Eucalyptus
627 plantations with different soil organic carbon content. *Environmental Science* **35** (2014).

628 95 Yang, M. *Impacts of nitrogen fertilization on soil nutrient contents and greenhouse gas*
629 *fluxes in Eucalyptus plantations during growing season*, Henan Science and Technology
630 University, (2015).

631 96 Zhang, K. *et al.* Impact of nitrogen fertilization on soil-atmosphere greenhouse gas
632 exchanges in eucalypt plantations with different soil characteristics in southern China.
633 *Plos One* **12**, doi:10.1371/journal.pone.0172142 (2017).

634 97 Yan, Y. *Fluxes of CH₄ and N₂O from soil under tropical seasonal rain forest and rubber*
635 *plantation, and their stem respiration in Xishuangbanna, SW China*, Xishuangbanna
636 Tropical Botanical Garden, Chinese Academy of Sciences, (2006).

637 98 Zhou, W. J. *et al.* The effects of nitrogen fertilization on N₂O emissions from a rubber
638 plantation. *Sci Rep-Uk* **6**, doi:10.1038/srep28230 (2016).

639 99 Wang, F. M. *et al.* Nitrogen and phosphorus addition impact soil N₂O emission in a
640 secondary tropical forest of South China. *Sci Rep-Uk* **4**, doi:10.1038/srep05615 (2014).

641 100 Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H. & Wright, S. J. Immediate and
642 long-term nitrogen oxide emissions from tropical forest soils exposed to elevated
643 nitrogen input. *Global Change Biol* **15**, 2049-2066, doi:10.1111/j.1365-
644 2486.2008.01826.x (2009).

645 101 Corre, M. D., Sueta, J. P. & Veldkamp, E. Nitrogen-oxide emissions from tropical forest
646 soils exposed to elevated nitrogen input strongly interact with rainfall quantity and
647 seasonality. *Biogeochemistry* **118**, 103-120, doi:10.1007/s10533-013-9908-3 (2014).

648 102 Hall, S. J., Asner, G. P. & Kitayama, K. Substrate, climate, and land use controls over
649 soil N dynamics and N-oxide emissions in Borneo. *Biogeochemistry* **70**, 27-58,
650 doi:10.1023/B:BIOG.0000049335.68897.87 (2004).

651 103 Tamale, J. *et al.* Nutrient limitations regulate soil greenhouse gas fluxes from tropical
652 forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda.
653 *Soil-Germany* **7**, 433-451, doi:10.5194/soil-7-433-2021 (2021).

654 104 Aini, F. K., Hergoualc'h, K., Smith, J. U. & Verchot, L. Nitrous oxide emissions along a
655 gradient of tropical forest disturbance on mineral soils in Sumatra. *Agriculture,*
656 *Ecosystems & Environment* **214**, 107-117, doi:10.1016/j.agee.2015.08.022 (2015).

657 105 Muller, A. K., Matson, A. L., Corre, M. D. & Veldkamp, E. Soil N₂O fluxes along an
658 elevation gradient of tropical montane forests under experimental nitrogen and
659 phosphorus addition. *Frontiers in Earth Science* **3**, doi:10.3389/feart.7015.00066 (2015).