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Supplementary Texts

Text S1. Indicators of nitrogen saturation status

In the 1980s, European researchers firstly came up with the concept of “nitrogen saturation” 2. It
refers to a status when forest ecosystems cannot retain more nitrogen (N), so that additional N input are
almost entirely lost via leaching or gaseous emission. Since then, researchers identified different variables
to indicate N limitation or saturation status of forests (Fig. S10).

Atmospheric N deposition is a driving force of change from N-limited to N-saturated status.
Therefore, forests under higher N deposition are more likely to become N-saturated *. After N enters
forest soils, the relative enrichment of N tend to lower the soil C:N ratio *. Also, the different effects of N
deposition on acid anion and base cation contents may lower soil pH °, leading to soil acidification.
Lowered soil pH will, on one hand, decrease the dissolved organic carbon content in soil. On the other
hand, input N stimulates the mineralization of soil organic carbon (SOC) by microbes and decreases SOC
content. Both of the processes result in lowered SOC content in soils ®. Meanwhile, soil properties
influence the retainment of N and the preferential pathway of environmental N loss, i.e., either
hydrological or gaseous. For example, soils with higher clay content are less permeable. Because less N
would be leached out, such soils are more likely to become N-saturated and show higher rates of gaseous
N losses. Some researchers also proposed that multiple soil properties could be integrated to form a new
indicator, which may better reveal forests in N limitation or N saturation status ’. The relationship
between such an integrative indicator and forest N saturation status, however, comes from observations
used to derive the indicator, rather than from underlying mechanisms. Therefore, the parameters used to
derive the indicator and their weights may change when different observational data were used.

By definition, N loss from forests can indicate forests reaching N saturation. From the 1990s to the
2000s, leaching loss of N was a widely used indicator of forests shifting from N-limited to N-saturated
status ®°. Progressively, the interpretation of the indicator changes from “the occurrence of N leaching
indicates N saturation” to “high N leaching rate indicates N saturation”, and then to “high N leaching
relative to N input indicates N saturation” '°. The different interpretation of the indicator leads to different
sampling approaches applied. In some studies, samples were taken from nearby water bodies, whereas in
some other studies, deep soil solutions were sampled. The former has an advantage of reducing the
random errors when sampling spatially heterogenous soils, whereas the latter is more advantageous in
connecting N leaching with N input occurring in the same place. However, the differences in sampling
approaches prohibit the site-level N leaching data from being combined to reveal N saturation status of
forests on regional scale.

Besides, the structure and function of plants can also indicate N saturation status in forests. For
instance, the presence or absence of some signal species (which are sensitive to changes in soil nutrients)
can reflect the change in forest N saturation status to some extent ''. When forests become N-saturated,
the growth of plants become limited by other resources than N. Additional N input can no longer enhance
plant productivity, which may even suppress plat growth and decrease productivity by changing soil
properties. Also, the resorption rate of N may decrease relative to that of other nutrients, because plants
in N-saturated forests need other nutrients more than N '2. However, due to the difficulty in investigating
plant functional traits, there is a lack of regional dataset derived from a universal sampling method.
Therefore, plant functional traits could barely be used to indicate N saturation status on regional scale.

N isotope ratio (6'°N) measured from terrestrial samples (foliar, tree ring, sediment) has been a
good, integrated indicator of N cycling processes, because of the isotope fractionation effect (heavier
isotope gradually accumulate and enrich in organisms and soils, in the processes of N transformation and
transport). In ecosystems where N availability is low, organisms tend to use N more conservatively,
bypassing or suppressing N transformation processes where N could potentially be lost; whereas in
ecosystems with high N availability, more N transformation processes could be involved, therefore the
fractionation effect would be more prominent in high-N than in low-N-availability ecosystems. This is the
reason why researchers could use N isotope ratio to indicate the temporal trend of N availability in
terrestrial ecosystems over a large scale ">,
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But restrictions may apply when using N isotope ratio to indicate the spatial variation in N
availability (N limitation/saturation status in our study). Because N sources differ among forests — some
rely on local N, while some use deposited exogenous N as the major source. In the latter case, measured
foliar and soil N isotope ratio may be influenced by the N isotope signature of the deposited N '°, not
necessarily reflective of the N transformation processes and availability of N in the local ecosystem.
Forests, especially those close to human settlements, are heavily influenced by N deposition. It is
therefore problematic to rely on N isotope ratio to indicate the spatially varying N availability in forests,
where the different N sources may be confounding '*"”.
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Text S2. Estimating the change point of the relationship between N input and soil N>O emission, so
that threshold between low and high N input levels was determined

Soil N>O emission rate (Rn20) responds almost linearly to low N input (including N deposition and
low N addition). High N input, however, may change the ecosystem properties and induce a non-linear
response '*. To estimate the point at which the relationship between N input rate and Rx20 changes, we
conducted a segmented regression analysis with compiled data from N addition experiments (N.O_exp
dataset; Data S1).

Only a few observations have N input rates above 400 kgN ha™' yr', the Rnao values of which show
a high variation. Referring to previous research '**(Table S3), the change point of the relationship
between N input rate and Rzo is unlikely to exceed 400 kgN ha™' yr™'. Therefore, we filtered out
observations with N input rates above 400 kgN ha™' yr!, and conducted a segmented regression (model:
Rn2o ~ N input rate) in R ?* using the “segmented” package ». The algorithm can detect a change point (or
change points), and apply different linear models to the data below or above the change point(s). We
firstly assumed there was one change point, which was estimated to be 174.70 £ 19.73 kgN ha ' yr' (n =
532, R*=0.20, p <0.001).

Considering the possibility of having multiple change points, we also constructed segmented
regression models when assuming 2—4 change points exist. Then we calculated Bayes factors (BF) based
on Akaike's An Information Criterion (BIC) of each model, so we can evaluate which model is better *°.
The BFs indicate that there are >95% probabilities that the model with one change point is better than
models with multiple change points (Table S4).

To sum up, our data showed that there is one change point in the linear relationship between N input
rate and Rxyo0, which is 174.70 + 19.73 kgN ha' yr! (Fig. S11). We also referred to the change points
used or estimated in previous research (Table S3), and conservatively determined the N addition rates
below 150 kgN ha™' yr ' to be “low” N input in this study.
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Text S3. Calculating the sensitivity of soil N,O emission to N deposition (sn) using N cycle
parameters

Using data from N addition experiments (Table S1), we built a generalized linear model to simulate
the sensitivity (sx) of soil N2O emission (Rn20) to N deposition (Naepo) of global forests. Due to the limited
N addition experiment data available, we could not reserve part of the data for model validation. Instead,
we calculated sx from other N cycle parameters to validate the model-estimated sx.

In a determined ecosystem, we define ¢; to be the sensitivity of total N loss (N leaching and gaseous

. . .. A . e .
N emission combined) to N deposition (¢; = Nyﬂ; unit: kgN kgN ), ¢» to be sensitivity of N leaching
depo
o AN . . . . .
to N deposition (¢, = ﬁ; unit: kgN kgN™), ¢; to be the nitrification and denitrification end-product
depo
. R R .
ratio (c3 = =22 = N20 - ynit: kgN,O-N kgN™).

Ngas " Rn2+Rno+RN20
First of all, gaseous N loss can be calculated as the nitrogen lost in other pathways than leaching.
Ngas = Nioss = ANjeacen

Thus, the change in soil N>O emission rate caused by N deposition change can be calculated from
the change in N loss rate and N leaching loss rate.
ARpp = €3 X ANgas =3 X (ANloss - ANleach) =c3 X (€ —¢x) X ANdepo

By definition, s is the change in soil N>O emission rate per unit of N deposition change. It can be

inferred that
_ ARp2o0

- ANdepo = C3 X (Cl - Cz) (Eq Tl)

SN

To quantify ¢; and c¢,, we collected data on the total N loss rate (Niss) and N leaching rate (Nicach)
data measured in N addition experiments (Data S3; Fig. S12). For literature where the change rate of N

pool was provided instead of N, ¢1 Was calculated using Eq. T2.
_ ANjpss — ANdepo_A(ANpool) —1_ ANpooi-N1—ANpooi-ck (Eq T2)
ANdepo ANdezf)o (Ndepo+N1)_Ndepo
where N is the rate of artificial N addition in the experiment (kgN ha™ yr™") ; Nyepo is the background N
deposition rate at the site (kgN ha™ yr™); ANyoon1 is the change rate of N pool in the N addition plot (kgN
ha™ yr'; ANpeoi.ck is the change rate of N pool in the control plot (kgN ha™ yr™). For N addition
experiments with multiple N addition levels, we built linear models (model: AN;oo1~ N input rate) to infer

the change of ANyool per unit of N input (i.e., 1 — ¢1).

1

Based on the calculated c; and c», together with the ¢; from previous research %7, we calculated the
biome-mean sy using Eq. T1. Comparing the model-estimated sy and the calculated sy (Table S5), we
found their correlation coefficient (Pearson’s r) to be 0.998.
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Text S4. Sensitivity of soil N2O emission to N deposition (sx) in deciduous broadleaf and needleleaf
forests

Previous research found that the gaseous N product ratio (N2O:NO) was higher in beech forest than
in spruce forests 2, which implies that forest type may have a significant effect on the sensitivity of soil
N2O emission to N deposition (sn).

To test the hypothesis, we compared the sy of deciduous broadleaf and needleleaf forests worldwide.
sx values of global forests were from our constructed model. Forest type information was from a global
product *°. Specifically, for each spatial grid which has a sy value, forest type was determined based on
the coordinates of the grid. For grids having multiple types of forests (evergreen broadleaf / deciduous
broadleaf / needleleaf / mixed), only grids where deciduous broadleaf / needleleaf forests make up more
than 50% the grid area was considered to be a deciduous broadleaf / needleleaf forest grid, whereas the
other forest girds were considered to be “mixed”. Mixed forest grids were not considered in the following
analysis.

On global scale, we found sy of deciduous broadleaf forests to be significantly higher than that of
needleleaf forests (p <0.001; Fig. S13). On biome scale, however, sy of broadleaf forests was significantly
higher than that of needleleaf forests in temperate biome only (p <0.001). This is probably because forest
type indirectly influences sx through the different capabilities of broadleaf and needleleaf forests to retain
and utilize deposited N. In temperate biome where atmospheric N deposition rate is particularly high in
broadleaf forests, differences in N deposition caused significantly higher sy in broadleaf forest than in
needleleaf forests.
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Text SS. Using two datasets separately to detect thresholds for the classification of N limitation and
saturation status

We have two independent datasets on the field-observed N-limited or N-saturated status of global
forests, which were indicated by N leaching rate (Nleach dataset) and plant growth response to N input
(NuLi dataset), respectively. Because the two indicators may point to different stages of N saturation *,
we firstly used the two datasets separately in the detection of threshold for determining forest N saturation
status.

To begin with, we checked whether sy could distinguish between the N-limited and N-saturated
forests. For the forests in Nleach dataset, the mean sx of N-saturated forests were significantly higher than
that of N-limited forests, both on global and biome scales (Fig. S14; p <0.001). Also, the mean sy of N-
saturated forests were significantly higher than that of N-limited forests in NuLi dataset (Fig. S14; p
<0.001).

Then, the two datasets were used separately to detect the optimal cutoff value of sy between N-
limited and N-saturated forests. For forest sites in Nleach dataset, we randomly sampled (with
replacement) 10 N-limited forests and 10 N-saturated forests. The 20 sites constitute a sample dataset
where N-limited and N-saturated sites were equally represented. For each possible cutoff value of sx
(within the range of the sy values of all samples), forests having higher sy than the cutoff value were
classified as N-saturated forests, and those having sx no higher than the cutoff value were classified as N-
limited forests. The classified N limitation or saturation status were compared with the observed status of
the sampled forests, and the proportion of successfully classified forests (i.e., to the same category as
observed) was the accuracy of the classification. All possible cutoff values of sy were tried out (at a
precision of 0.0001 kgN,O-N kgN "), and the corresponding accuracies of classification were recorded.
The cutoff value(s) that shows the highest accuracy of classification is the optimal cutoff value for the
sampled forests. The resampling and detection-of-optimal-cutoff-value processes were repeated for 5000
times. Subsequently, we switched to NuLi dataset and repeated the abovementioned processes for another
5000 times.

By comparing the statistical distribution of the detected optimal cutoff values for the two datasets,
we observed a considerable overlap (Fig. S15). That means, the two datasets may point to a similar
threshold of sn for the classification of N-limited and N-saturated forests. Therefore, we combined the
two datasets to enlarge the sample size and detect a universal threshold for classification.
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197  Fig. S1. A simplified illustration of the differences in nitrogen (N) flow in N-limited and N-saturated

198  forests. NHy: reduced nitrogen; NOy: oxidized nitrogen; Rxzo0: soil N>O emission rate; Ngepo: atmospheric
199 N deposition rate; sx: sensitivity of soil N>O emission to N deposition; DNRA: dissimilatory nitrate
200  reduction to ammonium.
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Fig. S2. Comparing estimated and observed soil N,O emission rates (Rn2o0). Observations were
aggregated to 0.5°x0.5° grids to match with the spatial resolution of the environmental factors. Each point
represents a grid-year. Points of different colors represent grid-years in different biomes. Because
observed and estimated Rn2o do not follow normal distribution, Spearman’s rho was used as the
coefficient of correlation between them. For the same reason, observed and estimated Rnz2o were log-
transformed before fitting a linear model. The red line and fonts show the fitted linear regression model.
Gray shading denotes the standard error. Dashed black line is the 1:1 line.
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Fig. S4. Comparing the performance of different indicators in distinguishing between N-limited and N-
saturated forests. Most of the indicators showed reliable performance (significant difference between

groups) on global scale, but none of the indicators could have successfully and consistently distinguished
between forests in N-limited or N-saturated status across biomes. It is to be noted that these indicators
were selected based on the availability of data (from literature or spatial datasets).
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Fig. S6. Varying relationships between forest N saturation status and economic development of different
countries. (A) Schematic illustration of the stronger negative effect of deforestation (i.e., replacement of
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Fig. S8. Temporal change of N availability in different geographic regions, indicated by sensitivity of soil
N,O emission to N deposition (sx) and foliar N isotope ratio (5'°N). Panels (A-E) Temporal change of s.
s~ was calculated using global N addition experiment data (Data S1). Each gray point represents a grid-
year where N addition experiment data were available and sy could be calculated. Black points are the
annual mean values of sx. Panels (F-J) Temporal change of foliar §'°N. Foliar '°N data were from a
published global dataset by Craine et al. "*( https://doi.org/10.5061/dryad.v2k2607). Only data after 1985
were used, so as to match the time frame of sy data. Blue lines were fitted linear models, and gray
shadings represent the standard errors.

The two datasets used different geographic region classifications, so we reclassified data from several
regions to facilitate comparison of the two metrics. In sy dataset: data from “East Asia” and “Southeast
Asia and Pacific” were reclassified to “Asia Pacific” region; data from “Western Europe” were
reclassified to “Europe” region; data from “Sub-Saharan Africa” were reclassified to “Africa” region;
data from “Latin America and Caribbean” were reclassified to “South America” region; no data were
available for other regions. In foliar §'°N dataset: data from “Asia” and “Australia” were reclassified to
“Asia Pacific” region. Data and code used for producing this figure (and all other figures) could be found
in supplementary materials.
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Fig. S11. Locally weighed regression model (a) and segmented linear regression model (b) on soil N>O
emission rate (Rx2o0) and N input rate. The blue vertical line shows the estimated change point (174.70
kgN ha™' yr'). The blue shading represents the standard error of the estimated change point. The red lines
and fonts represent the fitted models (model: Rn2o ~ N input rate).
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Fig. S14. Comparing the sensitivity of soil N>O emission to N deposition (sn) of N-saturated and N-
limited forests in Nleach dataset (Data S4) and NuLi dataset (Data S5). The N limitation or saturation
status of forests were determined by researchers in field observations, which we compiled from published
literature.
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Fig. S15. Statistical distribution of the optimal cutoff values of sy determined from field-observed N

saturation status using Nleach and NuLi datasets (Data S4 and Data S5), separately. The curves represent

the density of distribution of the cutoff values. The points and error bars above the curves of the
corresponding color are the mean values and standard deviation of the optimal cutoff values.
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Supplementary Tables

Table S1. Linear models on soil N>O emission rate (Rn20) and N input rate (model: Rn20 ~ N input rate) built with low N input data (N addition
rate < 150 kgN ha™' yr') from global forest experiment sites, and the derived sensitivity (sx) of soil N>O emission to N deposition and background

N>O emission rate (Ro).

No. Longitude range Latitude range Biome SN Ry n adj.R? p value References
1 (19,19.5) (64,64.5) Boreal 0.002 0.045 2 NA NA 32

2 (30.531) (62.5,63) Boreal 0.025 5.132 4 0.14 0.347 33

3 (22.5,23) (62,62.5) Boreal 0.013 0.538 2 NA NA 34

4 (88.5) (58.5,59) Boreal 0.026 0.343 6 0.57 0.052 35.36
5 (35,3) (55.5,56) Temperate 0.02 0.258 6 0.18 0.224 37

6  (-3,-2.5) (55.5,56) Temperate 0.006* -0.009 6 0.73 0.019 37.38
7 (1.5,2) (52.5,53) Temperate 0.004 0.233 2 NA NA 37

8  (9.5,10) (51.5,52) Temperate 0.042%* 0.51 10 0.48 0.015 3941
9 (128.5,129) (47,47.5) Boreal 0.015 0.777 11 0.02 0.300 42-44
10 (8.5,9) (47,47.5) Temperate 0.003 -0.062 4 0.63 0.134 3
11 (-80.5,-80) (43.5,44) Temperate 0.009 1.374* 4 0.79 0.073 46
12 (-72.5,-72) (43,43.5) Temperate 0.012 -0.216 2 NA NA 47
13 (141,141.5) (43,43.5) Temperate 0.025 1.647 2 NA NA 48
14 (-72.5,-72) (42.5,43) Temperate 0.001 0.074 6 0.05 0.323 49
15 (128,128.5) (42,42.5) Temperate 0.01 0.67 2 NA NA %0
16 (127.5,128) (41.5,42) Temperate 0.029 2.287 13 0.11 0.141 3153
17  (-80.5,-80) (41.5,42) Temperate 0.003 0.217 2 NA NA 54
18 (-4,-3.5) (40,40.5) Temperate 0.001* 0.026* 4 0.95 0.017 =
19  (112,112.5) (36.5,37) Temperate 0.056 2.754 3 0.98 0.068 %6
20 (111,111.5) (31.5,32) Temperate 0.013%* 0.483 27 0.28 0.003 3760
21 (110,110.5) (31.5,32) Temperate 0.023 -0.31 4 0.54 0.166 ol
22 (120.5,121) (30.5,31) Temperate 0.017 1.135 4 0.51 0.181 62
23 (119.5,120) (30,30.5) Temperate 0.003 1.238%** 16 0.01 0.308 63-67
24 (120,120.5) (30,30.5) Temperate 0.012%* 0.834* 12 0.64 0.001 68.69
25 (106.5,107) (29.5,30) Temperate 0.025* 0.875* 3 1 0.018 70
26 (115.5,116) (29.5,30) Temperate 0.012 2.025 6 0.14 0.248 n
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302

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

(116.5,117)
(118,118.5)
(115,115.5)
(117,117.5)
(118,118.5)
(113,113.5)
(112.5,113)
(112.5,113)
(106.5,107)
(107,107.5)
(107.5,108)
(101,101.5)
(110.5,111)
(-80,-79.5)
(-82.5,-82)
(116.5,117)
(31.5,32)
(102,102.5)
(-79.5,-79)
(-79,-78.5)
(-79.5,-79)

(28,28.5)
(27,27.5)
(26.5,27)
(26,26.5)
(25.5,26)
(23.5,24)
(23,23.5)
(22.5,23)
(22,22.5)
(22,22.5)
(22,22.5)
(21.5,22)
(21,21.5)
(9,9.5)
(8.5,9)
(6,6.5)
(1.5,2)
(-1.5,-1)
(-4,-3.5)
(-4.5,-4)
(-4.5,-4)

Temperate
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical
Tropical

0.013
0.015
0.026***
0.007
0.012
0.014
0.027*
0.004
0.012%**
0.043*
0.007#*
0.037
0.018
0.021**
0.019
0.007#*
0.018***
0.022%*
0.005
0.006
0.006

0.16
1.948
-0.092
0.5
0.601
-0.226
0.19
1.919%**
-0.038
-0.089
0.589%#*
2.101%*
3.195
0.674
1.063
0.517%*
1.756%**
0.919*
0.135
0.471
-0.11

NA

0.12
0.47
0.55
0.33
0.77
0.15
0.11
0.84
0.51
0.98
0.18
0.69
0.71
0.32
0.61

0.84
0.44
0.5

0.95

NA
0.190
<0.001
0.313
0.257
0.220
0.041
0.129
0.001
0.013
0.007
0.144
0.256
0.005
0.083
0.005
0.001
0.002
0.356
0.333
0.106

72

74-83
84

85

86
87-89
90

91
92-95
96
97,98
99
100,101
100,101
102

103

104

105

105

105

* p <0.05; ** p <0.01; *** p <0.001; NA, not applicable
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Table S2. Generalized linear models on environmental factors and the sensitivity (sx) of soil N,O
emission to N deposition and the background N,O emission rate (Ro). Models were refined from
full models using environmental factors (MAT, MAP, Nyepo, MAT.cv, MAP.cv, Nyepo.cv, Clay,
Sand) and their interactions as predictors’.

Estimate SE t P

Refined model on sx* (family = “gaussian”, deviance explained = 91.1%, n=46)

Clay 4.77E-03 1.83E-03 2.605 0.013*
Sand 3.15E-03 9.20E-04 3.419 0.001%*
102(Naepo) 2.01E-02 1.14E-02 1.769 0.085
Clay % log(Naepo.cv) 2.13E-03 9.35E-04 2.282 0.028*
Sand x 1og(Naepo-CV) 1.17E-03 3.82E-04 3.056 0.004%*
Clay x Sand -1.90E-04  6.94E-05 -2.735 0.009%*
Clay * Sand ¥ 10g(Naepo.CV) -1.14E-04  3.66E-05 3.112 0.003%*

Refined model on RS (family = “quasipoisson”, deviance explained = 43.2%, n = 45)

10g(Naepo-CV) 1.99E-01 9.56E-02 2.084 0.043*
MAT x Sand x Clay 3.04E-06 5.99E-07 5.072 0.000%**
MAP x MAP.cv x log(Naep) ~ -8.31E-04  2.91E-04 -2.854 0.007%*

T These variables were selected based on availability of global datasets (for extrapolation), and
mechanistic relevance. Climate is an important state factor that shapes ecosystem properties; N
deposition is an important driving force of ecosystem N dynamics; soil texture is indicative of
soil structure and aeration status, which is critical for nitrification and denitrification processes.
MAT: mean annual temperature; MAP: mean annual precipitation; Ngepo: mean annual N
deposition; Sand: soil sand content; Clay: soil clay content.

*$5 ~ (Clay + Sand + 1og(Naepo) + Clay * log(Naepo-cv) + Sand x log(Naepo.cv) + Clay x Sand +
Clay x Sand * log(Ngepo-cV))*

S Ry ~ EXP(log(N4epo.cv) + MAT x Sand x Clay + MAP x MAP.cv X 10g(Naepo)) — 0.5

* p <0.05; ** p <0.01; *** p <0.001
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318  Table S3. Change points of the relationship between N input rate and soil N,O emission rate used
319  or estimated in previous research

Change point estimated/used (kgN ha' yr™) Reference
101 "
135 20
140 2!
100-150 2
150-200 >

320
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323

Table S4. Comparing segmented regression models based on Bayes factor (BF)

Number of Pr(M is

Models (My) change points BIC BFy 0
. better)

estimated
My 1 2915.87 / /
M, 2 2928.20 474.90 >0.99
M, 3 2925.06 98.94 >0.95
M; 4 2951.56 56122954 > (.99

*BFyo = exp((BIC(M,)-BIC(M0))/2)
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Table S5. Comparing the biome-mean sensitivity (sn) of soil N>O emission to N deposition from
calculation and the sy estimated with generalized linear model.

Biome Ci C2 c3* Calculated sn Modeled sn
Tropical  0.42 (0.04) 0.29 (0.01) 0.20 0.026 (0.011) 0.015 (0.005)
Temperate 0.46 (0.05) 0.36 (0.05) 0.19 0.019 (0.018) 0.014 (0.004)
Boreal 0.41 (0.08) 0.37 (0.08) 0.19 0.008 (0.030) 0.010 (0.005)

All 0.44 (0.05) 0.35 (0.05) 0.19 0.017 (0.019) 0.013 (0.005)

Values in the parentheses are the standard errors of the estimates.
* Biome mean values of ¢3 were calculated from modeled nitrification and denitrification end-
product ratios by Bai, et al. 7.
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Data S1. (separate file)
Compiled dataset on soil N,O emission rate from N addition experiments in global forests
(N2O_exp dataset in main text).

Data S2. (separate file)
Compiled data on soil N>O emission rate under natural conditions in global forests (N2O obs
dataset in main text).

Data S3. (separate file)
Compiled dataset on total N loss rate, N leaching rate and change rate of soil N pool from N
addition experiments in global forests (Ncycle exp dataset in main text).

Data S4. (separate file)
Compiled dataset on global forest N saturation status (limited or saturated) indicated by N
leaching rate (Nleach dataset in main text).

Data S5. (separate file)
An existing dataset from Du, et al. '? on global forest N saturation status (limited or saturated)
indicated by plant growth response to N input (NuLi dataset in main text).

Data S6. (separate file)
GDP per capita data of global countries, downloaded from World Bank Open Data portal
(https://data.worldbank.org/).

Data S7. (separate file)
Data on environmental factors (MAT, MAP, N deposition rate, etc.) in global forests, extracted
from spatial datasets mentioned in Methods section.

Code S1. (separate file)
R code script used to carry out the data analysis processes, and produce the figures.
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