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Supplementary figure 1. (a) Boxplots summarize the mF1 scores for each method, which are
defined by minima=25th percentile—1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range
(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=14 biologically independent paired intra-datasets. (b) Boxplots summarize the
macro F1 scores for each method, which are defined by minima=25th percentile —1.5 X
interquartile range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges),
and 1.5 times the interquartile range (whiskers), center = median and bounds of box = 25th and
75th percentile. This analysis includes n=14 biologically independent paired intra-datasets. (c)
Boxplots summarize the Cohen's kappa scores for each method, which are defined by
minima = 25th percentile — 1.5 x interquartile range (IQR), maxima= 75th percentile + 1.5 X
IQR, interquartile range (hinges), and 1.5 times the interquartile range (whiskers),
center =median and bounds of box =25th and 75th percentile. This analysis includes n=14
biologically independent paired intra-datasets. For all subfigures, the x-axis represents the
various methods, while the y-axis denotes the measured values. The hollow red dot within the
boxplot represents the average values, while black dots denote outliers.
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Supplementary figure 2. (a) Boxplots summarize the mF1 scores for each method, which are
defined by minima=25th percentile—1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range
(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=19 biologically independent paired cross-platform datasets. (b) Boxplots summarize
the macro F1 scores for each method, which are defined by minima = 25th percentile — 1.5
interquartile range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges),
and 1.5 times the interquartile range (whiskers), center = median and bounds of box = 25th and
75th percentile. This analysis includes n=19 biologically independent paired cross-platform
datasets. (c) Boxplots summarize the Cohen's kappa scores for each method, which are defined
by minima = 25th percentile — 1.5 x interquartile range (IQR), maxima = 75th percentile + 1.5 x
IQR, interquartile range (hinges), and 1.5 times the interquartile range (whiskers),
center = median and bounds of box =25th and 75th percentile. This analysis includes n=19
biologically independent paired cross-platform datasets. For all subfigures, the x-axis
represents the various methods, while the y-axis denotes the measured values. The hollow red
dot within the boxplot represents the average values, while black dots denote outliers.
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Supplementary figure 3. (a) Boxplots summarize the mF1 scores for each method, which are
defined by minima=25th percentile—1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range



(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=22 biologically independent paired cross-tissue datasets. (b) Boxplots summarize
the macro F1 scores for each method, which are defined by minima = 25th percentile — 1.5 x
interquartile range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges),
and 1.5 times the interquartile range (whiskers), center = median and bounds of box = 25th and
75th percentile. This analysis includes n=22 biologically independent paired cross-tissue
datasets. (c) Boxplots summarize the Cohen's kappa scores for each method, which are defined
by minima = 25th percentile — 1.5 x interquartile range (IQR), maxima = 75th percentile + 1.5 x
IQR, interquartile range (hinges), and 1.5 times the interquartile range (whiskers),
center =median and bounds of box =25th and 75th percentile. This analysis includes n=22
biologically independent paired cross-tissue datasets. For all subfigures, the x-axis represents
the various methods, while the y-axis denotes the measured values. The hollow red dot within
the boxplot represents the average values, while black dots denote outliers.
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Supplementary figure 4. Quantitative evaluation of all methods with batch-effect correction is
conducted using three assessment metrics: ARI, NMI, and ASW. (a) Boxplots summarize the
ARI scores for each method, which are defined by minima = 25th percentile — 1.5 x interquartile
range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges), and 1.5 times
the interquartile range (whiskers), center=median and bounds of box=25th and 75th
percentile. This analysis includes n=19 biologically independent paired cross-platform datasets.
(b) Boxplots summarize the ARI scores for each method, which are defined by minima = 25th
percentile — 1.5 X interquartile range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile
range (hinges), and 1.5 times the interquartile range (whiskers), center = median and bounds of
box =25th and 75th percentile. This analysis includes n=22 biologically independent paired
cross-tissue datasets. (c) Boxplots summarize the NMI scores for each method, which are
defined by minima=25th percentile—1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges), and 1.5 times the interquartile range
(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=19 biologically independent paired cross-platform datasets. (d) Boxplots summarize
the NMI scores for each method, which are defined by minima=25th percentile—1.5 x
interquartile range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges),
and 1.5 times the interquartile range (whiskers), center = median and bounds of box = 25th and
75th percentile. This analysis includes n=22 biologically independent paired cross-tissue
datasets. (e¢) Boxplots summarize the ASW scores for each method, which are defined by
minima = 25th percentile — 1.5 x interquartile range (IQR), maxima= 75th percentile + 1.5 X
IQR, interquartile range (hinges), and 1.5 times the interquartile range (whiskers),
center = median and bounds of box =25th and 75th percentile. This analysis includes n=19
biologically independent paired cross-platform datasets. (f) Boxplots summarize the ASW
scores for each method, which are defined by minima =25th percentile — 1.5 x interquartile
range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges), and 1.5 times
the interquartile range (whiskers), center =median and bounds of box=25th and 75th
percentile. This analysis includes n=22 biologically independent paired cross-tissue datasets.
For all subfigures, the x-axis represents the various methods, while the y-axis denotes the
measured values. The hollow red dot within the boxplot represents the average values, while
black dots denote outliers.
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Supplementary figure 5. Quantitative evaluation of each method with batch effect method
Harmony. (a) Boxplots summarize the ACC scores for each method with Harmony, which are
defined by minima=25th percentile—1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range
(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=19 biologically independent paired cross-platform datasets. (b) Boxplots summarize
the ACC scores for each method with Harmony, which are defined by minima=25th
percentile — 1.5 X interquartile range (IQR), maxima = 75th percentile + 1.5 X IQR, interquartile
range (hinges) and 1.5 times the interquartile range (whiskers), center = median and bounds of
box =25th and 75th percentile. This analysis includes n=22 biologically independent paired
cross-tissue datasets. For all subfigures, the x-axis represents the various methods, while the y-
axis denotes the measured values. The hollow red dot within the boxplot represents the average
values, while black dots denote outliers. Visualization on batch effect removal showing one of
the paired datasets MosA1 MouseBrain(10x). (c) shows the visualization before batch effect
removal along with visualizations after batch effect removal conducted with (d) Harmony.
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Supplementary figure 6. Quantitative evaluation of each method with batch effect method
LIGER. (a) Boxplots summarize the ACC scores for each method with LIGER, which are
defined by minima=25th percentile— 1.5 x interquartile range (IQR), maxima=75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range
(whiskers), center =median and bounds of box=25th and 75th percentile. This analysis
includes n=19 biologically independent paired cross-platform datasets. (b) Boxplots summarize
the ACC scores for each method with LIGER, which are defined by minima = 25th percentile —
1.5 x interquartile range (IQR), maxima=75th percentile + 1.5 x IQR, interquartile range
(hinges) and 1.5 times the interquartile range (whiskers), center =median and bounds of
box =25th and 75th percentile. This analysis includes n=22 biologically independent paired
cross-tissue datasets. For all subfigures, the x-axis represents the various methods, while the y-
axis denotes the measured values. The hollow red dot within the boxplot represents the average
values, while black dots denote outliers. Visualization on batch effect removal showing one of
the paired datasets MosA1 MouseBrain(10x). (c) shows the visualization before batch effect
removal along with visualizations after batch effect removal conducted with (d) LIGER.



(a)

0.8

0.6

ACC

0.4

0.2

0.0

1.0

0.8

0.6

ACC

0.4
0.2

0.0

(b)

0.6

ACC

0.4

0.2

0.0

1.0

0.8

0.6

ACC

0.4

0.2

0.0

1.0 1.0
'\0\ —_— e .
o \/_./ 0.8 o> 0.8 °
v 0-6 v 0-6
g 2
0.4 0.4
0.2 0.2
. 0.0
(1] 1 2 3 0.0 272 271 2° 2! 25 26 27 28
e o Batch size
1.0
— 3
o 0.8 ° —&— BoneMarrowB_LungA
LungA_Heart
g 06 —o— Kidney_Heart
]
<04
0.2
103 102 1 0.0 24 25 26 27
Learning rate Z dimension
1.0 1.0
’/\O’A -
o 0.8 [ D S—— 0.8 : °© \\
o 0-6 0 06
< 2
0.4 0.4
0.2 0.2
0.0
100 200 300 400 4 0.0 24 25 26 27 10~ 10°3 1
Epochs Dimension of the layer Learning rate
1.0
B — e e ——
\——*"’
o 0.8 < —8— BoneMarrowB_LungA
LungA_Heart
Y 0.6 —0— Kidney_Heart
< 0.4
0.2
0.0
2° 21 2?2 23 1 2 3 4
Heads Layers

Supplementary figure 7 illustrates the robust evaluation of SANGO. (a) shows how the

accuracy of SANGO changes when adjusting the hyperparameters of CACNN. (b) displays the

accuracy variations of SANGO when modifying the hyperparameters of the graph transformer.

Hollow circles represent the default parameter values used in SANGO.



(a)

1.0
" ———
0.8
0.7 1
9
o
<
0.6
0.5 .
] -\.\
0.3 —
- ‘S‘ANGO
utoE
ncod:
er+
Bot\e\l\a«ovlh go™ ﬁo GraphTr
ral
Bo™ e\i\ama B V\a(mvll\ “Sf‘qrme
r
aM \Aospu
(b \'\OEN- v\osm
) \Aos\l\'x v\osv\‘l-
Mosv\’l. }‘\os\M.
1.0 \J\csﬂ. \l\osv
\AoSP‘L /\'\05?1
Latge\n‘estmek )—a(ge\ntesh e®
0.8 1 \mge\ntest'\nea o x0° \mest\n
Dataset: onoP )—ung
s
0.6 \—\mge /\—\mgl\
Y ‘N\\o\eera'\n :Nho\eB(a'mﬁ
< \N“o\esra‘m :NY\o\eﬁ\'a‘(\h
0.4
0.2
-
S,
0.0 DA ANGO
+
ﬂosl\l!-eteh Graph
\'\osn/\’reﬂon’ca Corte
( MosM W \ee\'a\n . mer
c) wosh :Nho\eﬁram ‘
\l\osm Wo v e \w
\l\os\'\\, ehe\\u«\
oS Pteﬂo Corte
\'\ostl\x /‘N \eera\n
Wo? M \N\\ eamma
Wo®! m \'\o\xs mam\m
1.0 Mos?‘&}e(ehe\\un\ .
oS! <P A ¥ Coﬁ-e .
0sP* /‘N B\‘a\n
0.8 Mos?l, atam
Datas vx/ ouS tam\m
ets mammm, e\\um
0.6 Btam\'my. j’\'ef ot Corte .
) \l\ousema 0\10%\/ Na\n .
2 e ra\num, o o™
0.4
0.2
-
S,
0.0 —— A::'G o
-0Enc:
oder-
"
cer® P o\e® ok GraphTr
\N\\o eara Ca(ebe\\ \;“Sfo
\Co ex. W \ee\'a\ rmer
\Nho\ee(am Py o¥°! a\Cort
ge\mes’m\eﬁ Sma \\mest\
ot \ne, 0°' test ‘\ea
ao e\‘\ \—Ne
Lve( Bon e \‘(o
one’ \l\anow \_\m
ooe\“a«wl
aney )-01\9
m\gh}\dﬂe‘q
\L\d\'\eq )«Ne
wet- \k\dne\;
we?' L\de
\‘\eart
\-\eaﬂ t d‘\e\l R
aney- o't
\.\mgh AW
e’ )-uﬂg
\_\mgh ‘\:ea:
\m\gh

D
atasets

Su
pple
QGra menta
phT ry fi
data ransof 1gure
sets ome 8. T
, an d r) an he
(c)cross- d(AE n perform,
tissue dat Grap hTr: ance co
aset anso mpari
v fomer) onnilorl betw
the e
(a)in en S
tra-d ANG
ataset O (C
s, (b) ACNN
Cross +
-platft
orm



(2)

1.00
0.75
® Cerebellum
@ LargelntestineA
- © LargelntestineB
EO.SO ® PreFrontalCortex
©® Smallintestine
© WholeBrainA
© WholeBrainB
0.25
0.00
o
0.8
o
© o
(]
@
(J
0.6 5 @ Cerebellum
E : ® ® e LargelntestineA
° ® @ LargelntestineB
b @ ° ° ® PreFrontalCortex
© Q@ ® Smallintestine
£ © WholeBrainA
0.4 ° © WholeBrainB
®
®
@
0.2 @
< o o X X o
NG ¢ & & ¢
RO A I
2% K [e:4 () ) ) )
(c)
1.00
[ ] %0)
L 4
0.75 o
o
© Cerebellum
) ® LargelntestineA
g Q @ LargelntestineB
%0_50 @ PreFrontalCortex
X hd ® Smallintestine
© WholeBrainA
© WholeBrainB
4% Q.
0.25
@
@
< o o4 X o
A\® & & O S ©
O F & S ¥ & F
o K (4.2 9 9 9 L)



Supplementary figure 9. Performance on the single query data when using the multi-source data
as the reference. The evaluation of each method on the two tissues including the mouse brain
(consisting of four datasets) and Intestine (consisting of three datasets) by mF1, macro F1, and
Cohen's kappa metrics, respectively. For each tissue, we iteratively left one as the query data
and the rest as the multi-source reference data, resulting in 7 paired datasets. Each dataset in
the legend represents the query data. (a) Boxplots summarize the mF1 scores for each method,
which are defined by minima = 25th percentile — 1.5 x interquartile range (IQR), maxima = 75th
percentile + 1.5 x IQR, interquartile range (hinges) and 1.5 times the interquartile range
(whiskers), center=median and bounds of box=25th and 75th percentile. This analysis
includes n=7 biologically independent paired datasets. (b) Boxplots summarize the macro F1
scores for each method, which are defined by minima =25th percentile — 1.5 x interquartile
range (IQR), maxima = 75th percentile + 1.5 x IQR, interquartile range (hinges), and 1.5 times
the interquartile range (whiskers), center=median and bounds of box=25th and 75th
percentile. This analysis includes n=7 biologically independent paired datasets. (c) Boxplots
summarize the Cohen's kappa scores for each method, which are defined by minima = 25th
percentile — 1.5 X interquartile range (IQR), maxima = 75th percentile + 1.5 % IQR, interquartile
range (hinges), and 1.5 times the interquartile range (whiskers), center = median and bounds of
box =25th and 75th percentile. This analysis includes n=7 biologically independent paired
datasets. For all subfigures, the x-axis represents the various methods, while the y-axis denotes
the measured values. The hollow red dot within the boxplot represents the average values, while
black dots denote outliers.
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Supplementary figure 10. Performance on the combined query data when using the single
reference data. The evaluation of each method on the two tissues including the mouse brain
(consisting of four datasets) and Intestine (consisting of three datasets) by mF1, macro F1, and
Cohen's kappa metrics, respectively. For each tissue, we iteratively left one as the reference
data and the rest as the combined query data, resulting in 7 paired datasets. (a) Boxplots
summarize the mF1 scores for each method, which are defined by minima = 25th percentile —
1.5 x interquartile range (IQR), maxima=75th percentile + 1.5 x IQR, interquartile range
(hinges) and 1.5 times the interquartile range (whiskers), center =median and bounds of
box =25th and 75th percentile. This analysis includes n=7 biologically independent paired
datasets. (b) Boxplots summarize the macro F1 scores for each method, which are defined by
minima = 25th percentile — 1.5 x interquartile range (IQR), maxima= 75th percentile + 1.5 X
IQR, interquartile range (hinges), and 1.5 times the interquartile range (whiskers),
center = median and bounds of box=25th and 75th percentile. This analysis includes n=7
biologically independent paired datasets. (c) Boxplots summarize the Cohen's kappa scores for



each method, which are defined by minima = 25th percentile — 1.5 x interquartile range (IQR),
maxima = 75th percentile+ 1.5 x IQR, interquartile range (hinges), and 1.5 times the
interquartile range (whiskers), center = median and bounds of box =25th and 75th percentile.
This analysis includes n=7 biologically independent paired datasets. For all subfigures, the x-
axis represents the various methods, while the y-axis denotes the measured values. The hollow
red dot within the boxplot represents the average values, while black dots denote outliers.
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Supplementary figure 11. The performance of each method when using reference atlas data
consisting of multiple anatomical entities. We selected the WholeBrain tissue as the query data
and other tissues as the reference. The WholeBrain tissue has 9 cell types overlapped with the
Cerebellum tissue. (a) In the first scenario, we kept 9 cell types only in the Cerebellum, and
removed the cell types from other tissues. (b) In the 2" scenario, we removed cell types so that
five cell types appeared only in the Cerebellum, and the other four cell types appeared only in

other tissues.
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Supplementary figure 13. Coverage plots of chromatin accessibility in normal cortex data from
the mouse brain over signature genes across predicted all cells: (a) Ndrg2 for Astrocytes, (b)
Itm2a for Endothelial II cells, (¢c) Gad?2 for Inhibitory neurons, (d) Sst for SOM+ interneurons.
The term “Region” in each subgraph represents a genomic region of the chromosome.
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Supplementary figure 14. The motifs associated with each cell type as determined by our
predictive method. (a) The UpSet diagram displays cell-specific motifs and the common motifs
shared among different cell types. The horizontal bars represent the top 50 significant motifs
for each cell type, while the vertical bars indicate cell type-specific and shared motifs. (b) The
heatmap plot showcases the top 10 significant motifs for each cell type.
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Supplementary figure 15. Overrepresented DNA motifs are identified through cell type-specific
accessibility peaks in (a) Astrocytes, (b) Endothelial II cells, (c) Inhibitory neurons, (d) SOM+

interneurons.
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Supplementary figure 16. Cis-regulatory chromatin interactions predicted by Cicero with
scATAC-seq data from Astrocytes. The cell type-specific peaks identified by SANGO are
marked in cyan.
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scATAC-seq data from Excitatory neurons. The cell type-specific peaks identified by SANGO

Supplementary figure 18. Cis-regulatory chromatin interactions predicted by Cicero with

are marked in cyan.
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Supplementary figure 19. Cis-regulatory chromatin interactions predicted by Cicero with

scATAC-seq data from Inhibitory neurons. The cell type-specific peaks identified by SANGO

are marked in cyan.
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Supplementary figure 20. Cis-regulatory chromatin interactions predicted by Cicero with

SscATAC

seq data from Microglia. The cell type-specific peaks identified by SANGO are

marked in cyan.
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Supplementary figure 21. Cis-regulatory chromatin interactions predicted by Cicero with

scATAC-seq data from Oligodendrocytes. The cell type-specific peaks identified by SANGO

are marked in cyan.
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Supplementary figure 22. Cis-regulatory chromatin interactions predicted by Cicero with

scATAC-seq data from SOM+ interneurons. The cell type-specific peaks identified by SANGO

are marked in cyan.
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Supplementary figure 23. Visualization of the results of identifying multi-level cell types in
basal cell carcinoma data through re-clustering labels. (a) The cells within query data are
colored by re-clustering labels, and the cells with higher probability scores are recognized as
unknown cell types. (b) River plot mapping the re-clustering coarse-grained cell types (left) to
actual cell types (right). (c) The cells within query data are colored by re-clustering fine-grained
immune cells. (d) River plot mapping the re-clustering immune cells (left) to actual cell labels

(right).
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Supplementary figure 24. The performance of SANGO on the query data consisting of one pre-
treatment SUOO8_Immune Pre and one post-treatment sampleSU006_Total Post in the BCC
atlas. UMAP visualized cells of the query data colored by (a) truth cell types and (b) predicted
cell types. (c) River plot mapping cell types annotated by SANGO (left) to actual cell labels
(right). (d) River plot mapping re-clustering cell types (left) to actual cell labels (right).
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Supplementary figure 25. The data distribution in the tissue dataset BoneMarrow. The x-axis
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Supplementary Note 1

For instance, excitatory neurons cells (Ex.neurons) were found to be enriched with the binding
motifs of TBX20, NEUROG2, and NEURODI[1-3]. The forced expression of NEUROG2 and
NEUROG]! in human embryonic stem cells leads to the formation of a complex network
comprising excitatory neurons [1]. Microglia were found to be enriched with the binding motifs
of ETV6, ELF3, and SPIB [4-6]. Primary microglia overexpressing ELF3, tagged with GFP,
ingest fluorescently labeled synaptosomes. Oligodendrocytes were found to be enriched with
the binding motifs of Sox6, Sox3, and SOXI3 [7-9]. SOXI3 plays a functional role in
complementing Sox5 and Sox6, serving as crucial developmental modulators in mouse spinal
cord oligodendrocytes. We also found that astrocytes were enriched with the binding motifs of
Zfx [10], NFIB[11], and GSXI [12]. Endothelial II cells were enriched with the binding motifs
of KLF4, KLF5, and MAZ [13-15]. Inhibitory neurons were enriched with the binding motifs
of MEIS1, MEIS2, and MEIS3 [16-18]. SOM+ Interneurons were enriched with the binding
motifs of BHLHE22, ASCL1, and MEF2C [19-21].
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