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Chemicals
Cupric chloride (CuCl2·H2O, purity>99%), Sodium borohydride (NaBH4, >99%), Methanol (CH3OH), ethanol, potassium bicarbonate (KHCO3, ≥99.5%), Nickel acetate tetrahydrate (Ni(OAc)2·4H2O, ≥99.5%), triethylamine, sodium citrate (>99%), Hydrochloric acid (HCl, vol%>37%) were purchased from China National Medicines Corporation Ltd. 1,2,4,5-benzenetetramine hydrochloride, 1,3,5-trimethylbenzene were purchased from Shanghai Aladdin Bio-Chem Technology Co., LTD. All chemicals were used without further purification.
All materials were used directly with no further purification. Milli-Q (DI) water (>18.0 MΩ) was purified with a Sartorius arium mini ultrapure water system.
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Figure S1 . a) SEM , b)TEM and c) HADDF-TEM images of Ni-SAC. d) Magnified HADDF-TEM images of Ni atomic dispersion.

[image: ]
Figure S2 . a) SEM images and Mapping of b) O c) B d) Cu elemental surface distributionsof CuB2. e) TEM and HRTEM image of CuB2. 
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[bookmark: OLE_LINK6]Figure S3 . a) SEM images and Mapping of b) O c) B d) Cu elemental surface distributionsof CuB5. e) TEM and HRTEM image of CuB5.
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Figure S4 a) Survey , b) Cu 2p c) Cu LMM d) Ni 2p XPS spectra of the CuBx-NiySAC.
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Figure S5 a) The near-edge first-order derivative diagram of Cu K-edge Survey of CuBX, b) Cu K-edge EXAFS curvefit  for CuB2, CuB5 and standard sample shown in R-space The data are k3-weighted and not phase-corrected.
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Figure S6. a) Cu K-edge EXAFS (points) and the curvefit (line) for CuB2 shown in k3weighted k-space. b) Cu K-edge EXAFS (points) and curvefit (line) for CuB2 shown in R-space (FT magnitude and imaginary component). The data are k3-weighted and not phase-corrected.
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Figure S7. a) Cu K-edge EXAFS (points) and the curvefit (line) for CuB5 shown in k3weighted k-space. b) Cu K-edge EXAFS (points) and curvefit (line) for CuB5 shown in R-space (FT magnitude and imaginary component). The data are k3-weighted and not phase-corrected.
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Figure S8. a) Adsorption and desorption isotherm and specific surface area measurements of CuB2 sample. b,c ) Pore size distribution of CuB2 micropores and whole pores, respectively.
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Figure S9. Diagram of the control experimental group with a photograph of the catalyst ink and the corresponding catalyst spray. 
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Figure S10. CO2RR performance of Ni-SAC in a flow cell with 0.5 M KHCO3 electrolyte.
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Figure S11. The CO2RR performance of unhybridized Ni-SAC with different contents of CuBx at -0.8 to -1.3 V vs. RHE.
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Figure S12.The mass ratio of Ni-SAC hybridized with different contents of CuBx is 0.05, which corresponds to the CO2RR performance at -0.8 to -1.3 V vs. RHE.
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Figure S13.The mass ratio of Ni-SAC hybridized with different contents of CuBx is 0.1, which corresponds to the CO2RR performance at -0.8 to -1.3 V vs. RHE.
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Figure S14.The mass ratio of Ni-SAC hybridized with different contents of CuBx is 0.2, which corresponds to the CO2RR performance at -0.8 to -1.3 V vs. RHE.
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[bookmark: OLE_LINK9]Figure S15. Linear voltammetric curves of hybrid catalysts with different B contents of CuBx as well as partially doped Ni-SAC under different atmospheres. The CO2RR performance of the synthesized catalysts was tested in a flow cell in 0.5 M KHCO3 electrolyte.

[image: ]
Figure S16. Electrochemical AC impedance Nyquist curves of hybrid catalysts with different B contents of CuBx as well as partially doped Ni-SAC. Additionally, the EIS experiments for CO2RR were conducted at the open voltage and an amplitude of the sinusoidal voltage of 5 mV (in a frequency range of 1-106 Hz)
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[bookmark: OLE_LINK1]Figure S17. Electrochemically active surface area curves of hybrid catalysts with different B contents of CuBx as well as partially doped Ni-SAC by cyclic voltammetry.
[image: ]Figure S18. TEM images of CuB2-Ni0.05SAC (a) and CuB5-Ni0.2SAC (b) after electrolysis.
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Figure S19. Solid-state Raman spectra of the Cu and CuB2.


[image: ] Figure S20. Conformations of 1 B atom and 2 B atoms in different layers of the Cu crystalline phase.

[bookmark: OLE_LINK2][image: ]Figure S21. Configurations of 8 B atom and 16 B atoms in different layers of the Cu crystalline phase.
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Figure S22. Catalytic configuration for calculating the adsorption energy of *CO.


Table S1 B contents in samples synthesized using different amount of CuCl2.
	Samples
	CuB1
	CuB2
	CuB3
	CuB4
	CuB5

	CuCl2
	400
	300
	200
	100
	50

	B/Cu (wt %)
	1.07
	1.20
	2.03
	2.30
	3.12



Table S2 Curvefit Parametesa for Cu K-edge EXAFS for CuB2 standards.
	Path
	db/Å
	N
	R (ΔR) / Å
	σ2/ Å2

	[Cu]Cu-Cu1
	 2.556
	8.0(±1)
	 2.58(0.02)
	0.017

	[Cu2O]Cu-O1
	1.841
	4c
	 1.90(0.06)
	0.00618

	[CuO]Cu-O2
	1.947
	4c
	 2.00(0.05)
	0.00618

	[CuO]Cu-O3
	 2.766
	2c
	 2.83(0.07)
	0.00662

	[CuO]Cu-Cu2
	2.884
	4c
	2.87(-0.01)
	0.00662

	[CuO]Cu-Cu3
	3.158
	2c
	3.10(-0.06)
	0.00618


a S02 was fixed as 0.92 (From the same experimental group of Cu standard sample). ΔE0 was refined as a segregate fit parameter, returning a value of (-2 ± 1) eV for Cu2O, (6 ± 1) eV for CuO. Data ranges: 2 ≤ k ≤ 12 Å-1, 1.0 < R < 3.0 Å. The number of variable parameters is 12, out of a total of 12.43 independent data points. R factor for this fit is 3.0%. b The distances for Cu-O and Cu-Cu are from the crystal structure of Cu, Cu2O and CuO. c These coordination numbers were constrained as N(Cu – O) and N(Cu – Cu) based on the crystal structure. d The Debye-Waller factors were constrained as σ2(Cu-O1) = σ2(Cu-O2) = σ2(Cu-Cu3) and σ2(Cu-O3) = σ2(Cu-Cu2) for decreasing the correlation (or reducing the number of variables)

Table S3. Curvefit Parametersa for Cu K-edge EXAFS for CuB5 standards
	Path
	db/Å
	N
	R (ΔR) / Å
	σ2/ Å2

	[Cu2O]Cu-O
	1.841
	4c
	1.93(0.09)
	0.009

	[CuO]Cu-O1
	1.947
	4c
	2.04(0.09)
	0.006

	[CuO]Cu-Cu1
	 2.884
	3.2(±0.6)
	2.82(-0.06)
	0.005


a S02 was fixed as 0.92 (From the same experimental group of Cu standard sample). ΔE0 was refined as a segregate fit parameter, returning a value of (9 ± 1) eV for Cu2O, (7 ± 1) eV for CuO. Data ranges: 3 ≤ k ≤ 12 Å-1, 1.0 < R < 3.0 Å. The number of variable parameters is 9, out of a total of 11.25 independent data points. R factor for this fit is 4.7%. b The distances for Cu-O and Cu-Cu1 are from the crystal structure of Cu2O and CuO. c These coordination numbers were constrained as N(Cu – O1) = 4 and N(Cu – O2) = 4 based on the crystal structure.
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