Supplementary Methods

Driver mutation identification
We previously adapted an approach described by Papaemmanuil et al. to identify high-

confidence driver mutations in the bone marrow samples without matched germline control.!-?
First, only variants that would introduce a protein-coding change were kept for further analysis.
Mutations with ANNOVAR annotation of nonsynonymous, stop-gain, stop-loss, splicing,
frameshift insertion, frameshift deletion, nonframeshift insertion, or non-frameshift deletion were
considered able to introduce a protein-coding change. Second, common polymorphisms were
removed to reduce the load of possible germline contamination due to the absence of matched
normal control. Specifically, a series of public variant databases including the 1000 Genome
Database (http://www.1000genomes.org/), ESP6500 Database
(http://evs.gs.washington.edu/EVS/), dbSNP ver.132 (http://www.ncbi.nlm.nih.gov/SNP/), and
Exome Aggregation Consortium database (http://exac.broadinstitute.org/), were used. Variants
with a population frequency of 0.14% or more in any of those databases were considered
possible germline polymorphisms and were therefore removed from further analysis.

Finally, a hierarchical classification system was used to assign a confidence level for each
remaining variant to facilitate the identification of putative somatic driver mutations. Variants
were considered drivers if they were confirmed somatic mutations based on annotation in the
COSMIC database (version 81); were loss-of-function mutations such as splicing, stopgain, stop-
loss, and frameshift mutation in well-characterized tumor suppressor genes; or were recurrent
variants that reside within three amino acids of a confirmed somatic mutation. Confirmed
variants were also divided into whether they were previously associated with hematologic or
non-hematologic malignancies. All other variants were considered variants of unknown
significance (VUS). Any VUS that was either likely FLT3-ITD variants or had experimental
evidence supporting is pathogenicity was subsequently included (Supplementary Figure 2). To
ensure inclusion of all potential “ITD” variants, insertions were considered possible ITD
sequences if the insertion sequence was at least 3 nucleotides long, based on prior reports of the

range of FLT3-ITD sequence length?.



Excluding variants
Variants were excluded if they were not known to be associated with AML but appeared

in most patients in a dataset, suggesting that the variant was an artifact. Several low-level
variants were also excluded because they were consistently mutated in a mean of 1-5% of cells
per sample, were not called in available bulk sequencing samples, and were not known to be
drivers associated with hematologic malignancies based on COSMIC annotation. These were
excluded because of the uncertain clinical relevance of novel and consistently low-level variants,
and it was possible that these low-level variants could be related to technical artifacts, such as
errors in polymerase chain reaction (PCR) during library preparation. For one specific variant in
ASXLI that was highly recurrent in the MD Anderson dataset* and which is known both to be a
driver but also subject to technical artifact from PCR slippage®, the variant was excluded even
though its mean percent of cells mutated was greater than 5%. Supplementary Figure 3 shows the
total number of mutation events and the number of specific variants that were blacklisted due to

each of these criteria.

Creating mutation trees
For each sample, a mutation matrix was created using loom files from the Tapestri

Pipeline output. In these matrices, rows were individual variants and columns were individual
cells. The presence (mutant), absence (wildtype), and missingness (no call) of a mutation event
was noted for each cell, and zygosity was not considered for modeling clonal evolution. When a
single patient had multiple samples, mutation matrices were merged so that samples lacking a
mutation present in another sample were considered to have wildtype for that mutation in all
cells.

Single Cell Inference of Tumor Evolution (SCITE)® was then applied to all mutation
matrices, with the following parameters: false positive rate 1%, false negative rate inferred with
prior probability set to the mean Tapestri Pipeline allele dropout estimate for samples from that
patient, doublet rate (rate of multiple cells sequenced as a single cell) inferred by SCITE, and
Monte Carlo Markov Chain length of 30,000. Allele dropout estimates were from Tapestri
Pipeline v2 using the updated allele dropout calculation compared to v1. In the few cases this
allele dropout estimate was unavailable, either a Tapestri Pipeline v1 allele dropout estimate (if
available) or mean imputation was used as the prior allele dropout (false negative) estimate.

Trees were inferred using only single-cell data rather than also using bulk data in part because of



the limited benefit of bulk data when the number of cells per sample is high’. Due to the
computational complexity of accounting for mutation loss and the challenges distinguishing
mutation loss from allele dropout, mutations were assumed to be gained exactly once and never

lost (infinite sites assumption).

Creating high-confidence trees
Although SCITE efficiently finds optimal trees under a variety of conditions?, it is

possible that some links in the tree are not well-supported by the data from the mutation matrix.
For example, the optimal tree architecture may include a path such that a later mutation occurs in
the same clone as an earlier mutation, despite few of the cells with later mutation also having the
earlier mutation. This can be due to violations of model assumptions, such as mutations
occurring multiple times in a tree or reverting to wildtype, or due to challenges reconciling false
positives, allele dropout, and doublets. An example tree from the Stanford cohort containing a
connection that was not well-supported by the data is depicted in Supplementary Figure 5C.

To address this, we defined a “low-support” directed connection between two mutations
as one where <50% of cells with a later mutation also contained an inferred earlier mutation
(among cells that had calls for both mutations). To ensure that all connections in the trees were
well-supported during mutation order inference while also minimizing post-hoc edits of the trees,
variants were iteratively removed from the trees if they contributed to the greatest number of
low-support connections, and greater distance to the root node of the tree used as a tiebreaker.
Removed variants (Supplementary Table 3) were disproportionately low-level signaling

mutations (Supplementary Figure SA-B).

Tree stability
Although the SCITE algorithm involves randomization, the trees were nearly always

stable. The posterior distributions of the trees consisted of mostly the same tree in 94% of cases,
and even when sampling >20,000 trees from the posterior, 75% of posterior distributions
consisted of only one tree (Supplementary Figure 14). For a concrete interpretation, we ran
SCITE a second time on all trees considered for analysis using the same SCITE parameters, and
only 5% of trees changed architecture, with only 1% changing architecture after excluding

variants of unknown significance and low-support variants.



Merging FLT3-ITD variants
Several samples had multiple different insertion sequences in FLT3 exons 14 or 15, the

characteristic exons for FL73 internal tandem duplication (FLT3-ITD) mutations. However, even
when the sets of cells containing different sequences were disjoint, we suspected that many cases
of multiple insertion sequences per sample were part of the same ITD mutation event for several
reasons: 1) the number of distinct insertion sequences per sample varied significantly across
datasets, suggesting the number of “ITD” events was due to batch effects (Supplementary Figure
4B); 2) FLT3-ITD variants can be unstable and change over time®; 3) ITDs can be longer than
the sequencing reads’, which were 150 base pairs in all of the datasets; and 4) errors during
library prep, sequencing, or sequence mapping could also result in the appearance of rare but
distinct insertion sequences in different cells.

To capture the different evolutionary patterns that could appear because of these issues,
we created trees for each patient using three different FLT3-ITD merging strategies:

1. “Conservative” merging: only merge FLT3-ITD insertion sequences if one was a perfect
subsequence of another, and if they started at the same genomic locus. This strategy
allows for sequences to be shorter due to limitations in read length or clipping but
assumes that all insertion sequences that aren’t perfect matches represent different ITD
events.

2. “Liberal” merging: merge sequences that were at least 90% similar irrespective of
genomic locus. Similarity was determined using local sequence alignment, and in the
similarity assessment, alignment gaps had the same weight as a change in nucleotide.
This strategy assumes that sequences that have a highly similar subsequence are the same
ITD event. Mapping ITDs precisely to a genomic locus can be challenging, so this
strategy also allows for highly similar sequences to be merged irrespective of the precise
genomic position.

3. “All” merging: merge all potential FLT3-ITD sequences, irrespective of sequence
similarity and genomic locus. This assumes that any potential ITD sequences were part of

the same event and that the sequencing captured different sections of the same insertion.

At baseline, we assumed that all perfect sequence matches from the same locus should be

merged, so all trees had at least “Conservative” merging of potential FLT3-ITD variants. After



this merging, the number of ITDs dropped substantially, and this strategy had similar results as
the “Liberal” strategy (Supplementary Figure 4B). Otherwise, to choose between these three
different strategies, we leveraged the clonal architecture inferred from the single-cell data in two
ways:

1. FLT3-ITD events were merged if all potential ITDs were terminal events (leaves),
originated from the same parent event in the tree, and could be merged without changing
the rest of the tree architecture. This rule allows merging events that reflect the same
pattern of clonal evolution.

2. If there were still multiple ITDs, the merging scheme was chosen such that the fewest
assumptions were made about the number of ITD events (i.e. “Conservative” merging
was prioritized, followed by “Liberal”, followed by “All”) but only if the tree did not
acquire more low-support connections, as defined above. This strategy captures whether

merging variants improves the strength of tree’s connections overall.

In most cases, there was only one ITD remaining after “Conservative” merging, and
among cases with multiple ITDs, usually all ITDs were merged (Supplementary Figure 4C-D).

Despite exploration of different merging strategies, it remains unclear how many FLT3-
ITD events truly occurred for the reasons described above. To ensure that our merging strategy
did not substantially affect mutation order inference, we also explored whether NPM1 and FLT3
mutation ordering changed between “Conservative” merging and our resulting merging scheme.
Of the 44 patients with both NPM 1 and FLT3 mutations, only one (AML-88 from the MD
Anderson cohort, Supplementary Figure 15) had a change in the mutation order, although the
FLT-ITD variant in this graph was not used for subsequent order inference because of low
support connections with downstream FLT3 variants. Among cases that did not have
“Conservative” merging, the merging strategy described largely reduced the number of distal (far

from root node) FLT3-ITD mutations (Supplementary Figure 16).

Defining early signaling mutations
In select trees, a signaling mutation, such as in FL73 or NRAS, arose from the root node

without a preceding mutation, and sometimes, it was the only mutation in a clone. We considered
mutations that arose without a preceding mutation to be “early,” but given the limited coverage

of the targeted sequencing panels, we could not exclude the possibility that another mutation



arose before the signaling mutation but was missed by our panels. We leveraged available bulk
sequencing data either from published whole exome sequencing or extended targeted panels that
were used for routine clinical care to explore this possibility. Of the 39 cases with early signaling
mutations, 2 had corresponding whole exome sequencing'®, and an additional 15 had extended
targeted sequencing. Review of the mutations from these bulk sequencing data for DNA
methylation, transcription factors, and chromatin/cohesin mutations that may have met our
criteria as “driver” mutations are shown in Supplementary Table 7. Only 4 of the 17 patients had
potential early driver mutations that were unaccounted for. Furthermore, careful review of these
mutations suggests they are rare in AML and/or that their functional consequences are unclear
because their pathogenicity is computationally derived and/or the was rarely associated with
AML. Given the uncertainty in placing these mutations in the trees and their uncertain

pathogenicity, these mutations were not considered in cases with early signaling mutations.
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Supplementary Figures
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Supplementary Figure 1: Diagram showing studies included in the analysis, including number of
patients and samples from Stanford, MD Anderson, and Memorial Sloan Kettering (MSK).
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Additional drivers on manual review
Supplementary Figure 2: Number of additional driver mutations discovered on manual review of
variants that were initially of unknown significance, stratified by gene.
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Supplementary Figure 3: Plots showing statistics about variants. A) Number of unique driver
mutations, variants of unknown significance (VUS), and variants that were excluded
(blacklisted) because they were not known to be associated with AML and either 1. occurred in
most patients (Excluded — recurrent) or 2. occurred repeatedly in less than 5% of cells (Excluded
—low level). B) Source of different types of variants broken down by dataset. C) Distribution of
the number of events per driver mutation (where FLT3-ITD is considered a single type of driver

mutation), or D) per blacklisted variant.
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Supplementary Figure 4: A) Number of FLT3-ITDs per sample across each dataset. P-value was
calculated with a Kruskal-Wallis test. Total ITDs = 151, and total patients = 58. B) Number of
FLT3-ITD variants that result with different types of merging strategies (see Supplementary
Methods). C) The number of cases that underwent different merging strategies based on our
algorithm for choosing a merging strategy. D) The reasons for merging across all cases, where
“Max connection support” means that the tree minimized low-support connections, “Same clonal
evolution” means that all ITDs were terminal events in the tree and had the same parent event,
and “One ITD” means either there was only one ITD or that the sequence of all ITDs were
subsequences of another ITD.
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Supplementary Figure 5: After low-support connections were identified in a tree (<50% cells
with the later mutation also contained the earlier mutation), mutations were excluded either
because they contributed to the most low support connections or were more distal in the tree
(Supplementary Methods). A) Bar plot of the number of variants excluded per gene because of
low support, across the entire dataset. B) Distribution of proportion of cells mutated among those
excluded variants. C) An example tree with a low-support connection (NRAS > KRAS).
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Supplementary Figure 6: A) Allele dropout estimate and B) number of cells per sample stratified
by dataset and sequencing panel. Stanford and the “MDA 19-gene panel” are the same Mission
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created by collaborators at MD Anderson, and “MSK” refers to the 31-gene panel created by
collaborators at Memorial Sloan Kettering. P-values were calculated with the Kruskal-Wallis
test.
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Supplementary Figure 7: A) Distribution of mutations across different datasets. The top plot is
from the current study, second plot from the most recent BeatAML study ?/, and third plot from
The Cancer Genome Atlas /2 study. “Subclonal” means that the mutation was present in < 10%
of cells. B) Comparison of the difference in percentage of cells mutated in single-cell data and
the difference in variant allele frequency (VAF), which is a proxy for the number of cells
mutated, in bulk sequencing data. The line represents the predicted association between these
values if all variants were heterozygous. Plot B) was created using all available bulk sequencing
data from the samples and variants in the single cell data, a total of 577 pairwise comparisons,
377 variants, and 139 patients.
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Supplementary Figure 10: Considering all cases where a signaling mutation preceded another
mutation (n = 39), sub-trees were created using the signaling mutation as the starting node, and
all such sub-trees were merged. This figure shows what mutations tend to follow signaling
mutations, and they are predominantly NPM1 and DNA methylation mutations, although many
transcription factor mutations (primarily in WT1) also commonly followed different signaling
mutations.
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Supplementary Figure 11: Using the BeatAML data /, A) distribution of bone marrow blast
percentage compared to whether DNA methylation mutations were early, late, or absent. B-D)
Similar plots comparing signaling mutations to B) log peripheral white blood cell count, C) log
peripheral granulocyte counts, and D) log peripheral monocyte counts. Using these bulk
sequencing, early and late were defined as VAF (variant allele frequency) > 0.3 or < 0.3,

respectively.
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Supplementary Figure 13: Pairwise mutation orderings compared to different distributions of
clinical variables, specifically A) hazard ratio of overall survival, B) age, C) peripheral blood log
blasts), D) peripheral blood log neutrophils, and E) peripheral blood log monocytes compared to
all patients without that pairwise path.
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Supplementary Figure 14: Fraction of trees in the posterior distribution that are identical to the
final tree used in the analysis. Generally, the posterior distribution was dominated by one tree.
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Supplementary Figure 15: Extreme example of the consequences of merging FLT3-ITD variants
using case AML-88 from the MD Anderson dataset. In this case, A) merging all variants resulted
in the FLT-ITD variant to be higher in the tree than with B) conservative merging. However, the
FLT3-ITD variant ultimately could not be used because it contributed to too many low support-
connections, result in C) the final tree.
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Supplementary Figure 16: Distance of FLT3-ITD variants from root node to the variant when a
conservative ITD merging strategy is used (light red) or all ITD variants are merged (blue,
becomes purple when mixed with light red in figure). This shows that when merging ITD
variants, the more distal ITD variants in the tree are most affected.

22



