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Supplementary Methods 
Driver mutation identification 

We previously adapted an approach described by Papaemmanuil et al. to identify high-

confidence driver mutations in the bone marrow samples without matched germline control.1,2 

First, only variants that would introduce a protein-coding change were kept for further analysis. 

Mutations with ANNOVAR annotation of nonsynonymous, stop-gain, stop-loss, splicing, 

frameshift insertion, frameshift deletion, nonframeshift insertion, or non-frameshift deletion were 

considered able to introduce a protein-coding change. Second, common polymorphisms were 

removed to reduce the load of possible germline contamination due to the absence of matched 

normal control. Specifically, a series of public variant databases including the 1000 Genome 

Database (http://www.1000genomes.org/), ESP6500 Database 

(http://evs.gs.washington.edu/EVS/), dbSNP ver.132 (http://www.ncbi.nlm.nih.gov/SNP/), and 

Exome Aggregation Consortium database (http://exac.broadinstitute.org/), were used. Variants 

with a population frequency of 0.14% or more in any of those databases were considered 

possible germline polymorphisms and were therefore removed from further analysis.  

Finally, a hierarchical classification system was used to assign a confidence level for each 

remaining variant to facilitate the identification of putative somatic driver mutations. Variants 

were considered drivers if they were confirmed somatic mutations based on annotation in the 

COSMIC database (version 81); were loss-of-function mutations such as splicing, stopgain, stop-

loss, and frameshift mutation in well-characterized tumor suppressor genes; or were recurrent 

variants that reside within three amino acids of a confirmed somatic mutation. Confirmed 

variants were also divided into whether they were previously associated with hematologic or 

non-hematologic malignancies. All other variants were considered variants of unknown 

significance (VUS). Any VUS that was either likely FLT3-ITD variants or had experimental 

evidence supporting is pathogenicity was subsequently included (Supplementary Figure 2). To 

ensure inclusion of all potential “ITD” variants, insertions were considered possible ITD 

sequences if the insertion sequence was at least 3 nucleotides long, based on prior reports of the 

range of FLT3-ITD sequence length3. 
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Excluding variants 
Variants were excluded if they were not known to be associated with AML but appeared 

in most patients in a dataset, suggesting that the variant was an artifact. Several low-level 

variants were also excluded because they were consistently mutated in a mean of 1-5% of cells 

per sample, were not called in available bulk sequencing samples, and were not known to be 

drivers associated with hematologic malignancies based on COSMIC annotation. These were 

excluded because of the uncertain clinical relevance of novel and consistently low-level variants, 

and it was possible that these low-level variants could be related to technical artifacts, such as 

errors in polymerase chain reaction (PCR) during library preparation. For one specific variant in 

ASXL1 that was highly recurrent in the MD Anderson dataset4 and which is known both to be a 

driver but also subject to technical artifact from PCR slippage5, the variant was excluded even 

though its mean percent of cells mutated was greater than 5%. Supplementary Figure 3 shows the 

total number of mutation events and the number of specific variants that were blacklisted due to 

each of these criteria. 

 
Creating mutation trees 

For each sample, a mutation matrix was created using loom files from the Tapestri 

Pipeline output. In these matrices, rows were individual variants and columns were individual 

cells. The presence (mutant), absence (wildtype), and missingness (no call) of a mutation event 

was noted for each cell, and zygosity was not considered for modeling clonal evolution. When a 

single patient had multiple samples, mutation matrices were merged so that samples lacking a 

mutation present in another sample were considered to have wildtype for that mutation in all 

cells.  

Single Cell Inference of Tumor Evolution (SCITE)6 was then applied to all mutation 

matrices, with the following parameters: false positive rate 1%, false negative rate inferred with 

prior probability set to the mean Tapestri Pipeline allele dropout estimate for samples from that 

patient, doublet rate (rate of multiple cells sequenced as a single cell) inferred by SCITE, and 

Monte Carlo Markov Chain length of 30,000. Allele dropout estimates were from Tapestri 

Pipeline v2 using the updated allele dropout calculation compared to v1. In the few cases this 

allele dropout estimate was unavailable, either a Tapestri Pipeline v1 allele dropout estimate (if 

available) or mean imputation was used as the prior allele dropout (false negative) estimate. 

Trees were inferred using only single-cell data rather than also using bulk data in part because of 
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the limited benefit of bulk data when the number of cells per sample is high7. Due to the 

computational complexity of accounting for mutation loss and the challenges distinguishing 

mutation loss from allele dropout, mutations were assumed to be gained exactly once and never 

lost (infinite sites assumption). 

 
Creating high-confidence trees 
 Although SCITE efficiently finds optimal trees under a variety of conditions6, it is 

possible that some links in the tree are not well-supported by the data from the mutation matrix. 

For example, the optimal tree architecture may include a path such that a later mutation occurs in 

the same clone as an earlier mutation, despite few of the cells with later mutation also having the 

earlier mutation. This can be due to violations of model assumptions, such as mutations 

occurring multiple times in a tree or reverting to wildtype, or due to challenges reconciling false 

positives, allele dropout, and doublets. An example tree from the Stanford cohort containing a 

connection that was not well-supported by the data is depicted in Supplementary Figure 5C.  

To address this, we defined a “low-support” directed connection between two mutations 

as one where <50% of cells with a later mutation also contained an inferred earlier mutation 

(among cells that had calls for both mutations). To ensure that all connections in the trees were 

well-supported during mutation order inference while also minimizing post-hoc edits of the trees, 

variants were iteratively removed from the trees if they contributed to the greatest number of 

low-support connections, and greater distance to the root node of the tree used as a tiebreaker. 

Removed variants (Supplementary Table 3) were disproportionately low-level signaling 

mutations (Supplementary Figure 5A-B). 

 
Tree stability 

Although the SCITE algorithm involves randomization, the trees were nearly always 

stable. The posterior distributions of the trees consisted of mostly the same tree in 94% of cases, 

and even when sampling >20,000 trees from the posterior, 75% of posterior distributions 

consisted of only one tree (Supplementary Figure 14). For a concrete interpretation, we ran 

SCITE a second time on all trees considered for analysis using the same SCITE parameters, and 

only 5% of trees changed architecture, with only 1% changing architecture after excluding 

variants of unknown significance and low-support variants. 
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Merging FLT3-ITD variants 
 Several samples had multiple different insertion sequences in FLT3 exons 14 or 15, the 

characteristic exons for FLT3 internal tandem duplication (FLT3-ITD) mutations. However, even 

when the sets of cells containing different sequences were disjoint, we suspected that many cases 

of multiple insertion sequences per sample were part of the same ITD mutation event for several 

reasons: 1) the number of distinct insertion sequences per sample varied significantly across 

datasets, suggesting the number of “ITD” events was due to batch effects (Supplementary Figure 

4B); 2) FLT3-ITD variants can be unstable and change over time8; 3) ITDs can be longer than 

the sequencing reads9, which were 150 base pairs in all of the datasets; and 4) errors during 

library prep, sequencing, or sequence mapping could also result in the appearance of rare but 

distinct insertion sequences in different cells.  

 To capture the different evolutionary patterns that could appear because of these issues, 

we created trees for each patient using three different FLT3-ITD merging strategies: 

1. “Conservative” merging: only merge FLT3-ITD insertion sequences if one was a perfect 

subsequence of another, and if they started at the same genomic locus. This strategy 

allows for sequences to be shorter due to limitations in read length or clipping but 

assumes that all insertion sequences that aren’t perfect matches represent different ITD 

events. 

2. “Liberal” merging: merge sequences that were at least 90% similar irrespective of 

genomic locus. Similarity was determined using local sequence alignment, and in the 

similarity assessment, alignment gaps had the same weight as a change in nucleotide. 

This strategy assumes that sequences that have a highly similar subsequence are the same 

ITD event. Mapping ITDs precisely to a genomic locus can be challenging, so this 

strategy also allows for highly similar sequences to be merged irrespective of the precise 

genomic position. 

3. “All” merging: merge all potential FLT3-ITD sequences, irrespective of sequence 

similarity and genomic locus. This assumes that any potential ITD sequences were part of 

the same event and that the sequencing captured different sections of the same insertion. 

 

 At baseline, we assumed that all perfect sequence matches from the same locus should be 

merged, so all trees had at least “Conservative” merging of potential FLT3-ITD variants. After 
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this merging, the number of ITDs dropped substantially, and this strategy had similar results as 

the “Liberal” strategy (Supplementary Figure 4B). Otherwise, to choose between these three 

different strategies, we leveraged the clonal architecture inferred from the single-cell data in two 

ways: 

1. FLT3-ITD events were merged if all potential ITDs were terminal events (leaves), 

originated from the same parent event in the tree, and could be merged without changing 

the rest of the tree architecture. This rule allows merging events that reflect the same 

pattern of clonal evolution. 

2. If there were still multiple ITDs, the merging scheme was chosen such that the fewest 

assumptions were made about the number of ITD events (i.e. “Conservative” merging 

was prioritized, followed by “Liberal”, followed by “All”) but only if the tree did not 

acquire more low-support connections, as defined above. This strategy captures whether 

merging variants improves the strength of tree’s connections overall. 

 

 In most cases, there was only one ITD remaining after “Conservative” merging, and 

among cases with multiple ITDs, usually all ITDs were merged (Supplementary Figure 4C-D). 

 Despite exploration of different merging strategies, it remains unclear how many FLT3-

ITD events truly occurred for the reasons described above. To ensure that our merging strategy 

did not substantially affect mutation order inference, we also explored whether NPM1 and FLT3 

mutation ordering changed between “Conservative” merging and our resulting merging scheme. 

Of the 44 patients with both NPM1 and FLT3 mutations, only one (AML-88 from the MD 

Anderson cohort, Supplementary Figure 15) had a change in the mutation order, although the 

FLT-ITD variant in this graph was not used for subsequent order inference because of low 

support connections with downstream FLT3 variants. Among cases that did not have 

“Conservative” merging, the merging strategy described largely reduced the number of distal (far 

from root node) FLT3-ITD mutations (Supplementary Figure 16). 

 
Defining early signaling mutations 
 In select trees, a signaling mutation, such as in FLT3 or NRAS, arose from the root node 

without a preceding mutation, and sometimes, it was the only mutation in a clone. We considered 

mutations that arose without a preceding mutation to be “early,” but given the limited coverage 

of the targeted sequencing panels, we could not exclude the possibility that another mutation 
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arose before the signaling mutation but was missed by our panels. We leveraged available bulk 

sequencing data either from published whole exome sequencing or extended targeted panels that 

were used for routine clinical care to explore this possibility. Of the 39 cases with early signaling 

mutations, 2 had corresponding whole exome sequencing10, and an additional 15 had extended 

targeted sequencing. Review of the mutations from these bulk sequencing data for DNA 

methylation, transcription factors, and chromatin/cohesin mutations that may have met our 

criteria as “driver” mutations are shown in Supplementary Table 7. Only 4 of the 17 patients had 

potential early driver mutations that were unaccounted for. Furthermore, careful review of these 

mutations suggests they are rare in AML and/or that their functional consequences are unclear 

because their pathogenicity is computationally derived and/or the was rarely associated with 

AML. Given the uncertainty in placing these mutations in the trees and their uncertain 

pathogenicity, these mutations were not considered in cases with early signaling mutations. 
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Supplementary Figures 

  

Supplementary Figure 1: Diagram showing studies included in the analysis, including number of 
patients and samples from Stanford, MD Anderson, and Memorial Sloan Kettering (MSK). 
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Supplementary Figure 2: Number of additional driver mutations discovered on manual review of 
variants that were initially of unknown significance, stratified by gene. 
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Supplementary Figure 3: Plots showing statistics about variants. A) Number of unique driver 
mutations, variants of unknown significance (VUS), and variants that were excluded 
(blacklisted) because they were not known to be associated with AML and either 1. occurred in 
most patients (Excluded – recurrent) or 2. occurred repeatedly in less than 5% of cells (Excluded 
– low level). B) Source of different types of variants broken down by dataset. C) Distribution of 
the number of events per driver mutation (where FLT3-ITD is considered a single type of driver 
mutation), or D) per blacklisted variant. 
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Supplementary Figure 4: A) Number of FLT3-ITDs per sample across each dataset. P-value was 
calculated with a Kruskal-Wallis test. Total ITDs = 151, and total patients = 58. B) Number of 
FLT3-ITD variants that result with different types of merging strategies (see Supplementary 
Methods). C) The number of cases that underwent different merging strategies based on our 
algorithm for choosing a merging strategy. D) The reasons for merging across all cases, where 
“Max connection support” means that the tree minimized low-support connections, “Same clonal 
evolution” means that all ITDs were terminal events in the tree and had the same parent event, 
and “One ITD” means either there was only one ITD or that the sequence of all ITDs were 
subsequences of another ITD. 
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Supplementary Figure 5: After low-support connections were identified in a tree (<50% cells 
with the later mutation also contained the earlier mutation), mutations were excluded either 
because they contributed to the most low support connections or were more distal in the tree 
(Supplementary Methods). A) Bar plot of the number of variants excluded per gene because of 
low support, across the entire dataset. B) Distribution of proportion of cells mutated among those 
excluded variants. C) An example tree with a low-support connection (NRAS à KRAS). 
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Supplementary Figure 6: A) Allele dropout estimate and B) number of cells per sample stratified 
by dataset and sequencing panel. Stanford and the “MDA 19-gene panel” are the same Mission 
Bio sequencing panels at different institutions. The “MDA custom panel” is a 37-gene panel 
created by collaborators at MD Anderson, and “MSK” refers to the 31-gene panel created by 
collaborators at Memorial Sloan Kettering. P-values were calculated with the Kruskal-Wallis 
test. 
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Supplementary Figure 7: A) Distribution of mutations across different datasets. The top plot is 
from the current study, second plot from the most recent BeatAML study 11, and third plot from 
The Cancer Genome Atlas 12 study. “Subclonal” means that the mutation was present in < 10% 
of cells. B) Comparison of the difference in percentage of cells mutated in single-cell data and 
the difference in variant allele frequency (VAF), which is a proxy for the number of cells 
mutated, in bulk sequencing data. The line represents the predicted association between these 
values if all variants were heterozygous. Plot B) was created using all available bulk sequencing 
data from the samples and variants in the single cell data, a total of 577 pairwise comparisons, 
377 variants, and 139 patients. 
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Supplementary Figure 8: A) Percent of mutation events for that gene that immediately follow a 
branch point, ordered by this percentage. Signaling mutations mostly follow branch points while 
others generally do not. B) Percentage of times a gene’s mutations serve as a branching point. 
NPM1 mutations most commonly serve as branching points in evolution, largely because they 
often immediately precede signaling mutations. 

 

 
Supplementary Figure 9: A) Percentage of mutations that immediately followed either DNMT3A 
R882 or IDH1/2 mutations. B) Percentage of mutations that immediately followed non-R882 
DNMT3A mutations vs. IDH1/2 mutations. P-values calculated with Fisher’s exact test. 
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Supplementary Figure 10: Considering all cases where a signaling mutation preceded another 
mutation (n = 39), sub-trees were created using the signaling mutation as the starting node, and 
all such sub-trees were merged. This figure shows what mutations tend to follow signaling 
mutations, and they are predominantly NPM1 and DNA methylation mutations, although many 
transcription factor mutations (primarily in WT1) also commonly followed different signaling 
mutations. 
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Supplementary Figure 11: Using the BeatAML data 11, A) distribution of bone marrow blast 
percentage compared to whether DNA methylation mutations were early, late, or absent. B-D) 
Similar plots comparing signaling mutations to B) log peripheral white blood cell count, C) log 
peripheral granulocyte counts, and D) log peripheral monocyte counts. Using these bulk 
sequencing, early and late were defined as VAF (variant allele frequency) ≥ 0.3 or < 0.3, 
respectively. 
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Supplementary Figure 12: A) Single-mutant proportions for WT1-first cases and NPM1-first 
cases. B) Similar comparison using variant allele frequency (VAF) differences between NPM1 
and WT1 from bulk sequencing using the same variants and samples. A) Early, late, or no WT1 
mutation at diagnosis compared to age. 
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Supplementary Figure 13: Pairwise mutation orderings compared to different distributions of 
clinical variables, specifically A) hazard ratio of overall survival, B) age, C) peripheral blood log 
blasts), D) peripheral blood log neutrophils, and E) peripheral blood log monocytes compared to 
all patients without that pairwise path. 
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Supplementary Figure 14: Fraction of trees in the posterior distribution that are identical to the 
final tree used in the analysis. Generally, the posterior distribution was dominated by one tree. 

 

 
Supplementary Figure 15: Extreme example of the consequences of merging FLT3-ITD variants 
using case AML-88 from the MD Anderson dataset. In this case, A) merging all variants resulted 
in the FLT-ITD variant to be higher in the tree than with B) conservative merging. However, the 
FLT3-ITD variant ultimately could not be used because it contributed to too many low support-
connections, result in C) the final tree. 
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Supplementary Figure 16: Distance of FLT3-ITD variants from root node to the variant when a 
conservative ITD merging strategy is used (light red) or all ITD variants are merged (blue, 
becomes purple when mixed with light red in figure). This shows that when merging ITD 
variants, the more distal ITD variants in the tree are most affected. 
 


