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ONLINE METHODS

Fluorescence reporter constructs

Our fluorescence reporter construct places the disordered protein sequences from our library
(Table S1) between an N-terminal mTurquoise2 FRET donor and a C-terminal mNeonGreen
acceptor. Genes for each IDR were obtained from GenScript and ligated between the two
fluorescent proteins using 5’ Sacl and 3’ Hindlll restriction sites in a pcDNA3.1(+) backbone, as
described previously’.

Mammalian Cell culture

U2-OS cells were cultured in Corning-treated flasks with Dulbecco’s modified Eagle medium
(Gibco Advanced DMEM:F12 1X) supplemented with 10% FBS (Gibco) and 1%
penicillin/streptomycin (Gibco). For live-cell microscopy experiments, 8,000 cells were plated in a
p-Plate 96 Well Black treated imaging plate (Ibidi) and allowed to adhere overnight (~16 hours)
before transfection. Cells were incubated at 37°C and 5% CO.. Before transfection, the media
was switched out with new warmed media. XtremeGene HP (Sigma) was used to transfect FRET
construct plasmids into U2-OS cells per the manufacturer’s protocol. Cells were incubated at 37°C
and 5% CO, for 48 hours. NaCl stock solution of 5 M was prepared by dissolving the
corresponding amount of NaCl (Fisher Bioreagents) in 1X PBS (Gibco) and filtering using a 0.2
pm filter. The solutions used for perturbations were obtained by diluting 1X PBS with autoclaved
DI water to achieve hypoosmotic conditions or by adding NaCl stock solution to achieve
hyperosmotic conditions.



Live-cell Microscopy

Imaging was done on a Zeiss epifluorescent microscope using a 10X 0.3 NA dry objective.
Excitation was done with a Colibri LED excitation module, and data was collected on a duocam
setup with two linked Hamamatsu flash v3 sCMOS cameras. The cells were imaged at room
temperature before and after perturbation with 150 ms exposure times. Imaging was done by
exciting mTurquoise2 at 430 nm (donor and acceptor channels) or mNeonGreen at 511 nm (direct
acceptor channel). Emitted light was passed on to the camera using a triple bandpass dichroic
(467/24, 555/25, 687/145). When measuring FRET, emitted light was split into two channels using
a downstream beamsplitter with a 520 nm cutoff. For each perturbation, the cells were focused
using the acceptor channel and imaged before manually adding water (hypoosmotic conditions),
PBS (isosmotic condition), or NaCl solution (hyperosmotic conditions) with a pipette and pipetting
up and down 10 times to ensure mixing. The final osmolarities that were used for the perturbations
were: 100 mOsm (hypo-osomotic), 300 mOsm (iso-osmotic), and 750 mOsm (hyper-osmotic),
with NaCl as the osmotic agent. Imaging was typically completed within ~30 seconds of osmotic
change. Cells used for localization measurements were imaged using a 20X 0.8 dry objective.

Image Analysis

Images were analyzed using ImageJ?. Images collected before and after osmotic challenge,
containing three channels each, were stacked and aligned using the StackReg plugin with rigid
transformation. The aligned image was segmented based on the donor channel before
perturbation. Segmentation was done using a fixed threshold that selected only pixels with an
intensity of 1,500 - 40,000. The resulting mask was corrected using the Open and Watershed
binary algorithms. Cells were selected using the Analyze Particles option of Imaged, selecting
only those that were 100-2,000 ym? in size and with a circularity of 0.1 to 0.8. The resulting ROIs
were averaged in each channel at each time point. Bleedthrough and cross-excitation corrections
were the same as described previously'. All constructs displayed similar average cell properties
(Fig. $15). Cell FRET efficiency before and after perturbation (Ef5- (.. and Ef5 .., respectively)
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fluorescence of the acceptor following bleedthrough and cross-excitation corrections. Localization
measurements were obtained as described previously'. The acceptor emission under acceptor
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As an internal standard, we also used a glycine-serine repeat linker, (GS)s. (red line in Fig. S3A).
Previous work by us and by others have shown that GS in vitro behaves as a Gaussian chain?.
All (GS)s2 measurements used for comparisons are shown in Fig. S16.



Statistical Analysis

The statistical analysis for all of the experimental data was performed using the SciPy library in
Python*. Experiments were done on 96-well plates, across multiple cell passage numbers and
multiple days, and each well was plated and transfected individually. We therefore considered
each well a biological repeat of the experiment. Therefore, the median E; and AE; values for all
of the cells measured per well were used to generate a single violin plot (Fig. 1F, $17). We
excluded wells that contained under 60 cells. The standard deviation and average values were
calculated from the medians of all wells from each experimental condition (Fig. 1F, S$17). To
assess significance of the differences between two constructs, a double-sided Student’s t-test
was performed between all medians of the two constructs.

Correlation analysis for live cell imaging

Correlation between sequence parameters and AErrer on hyperosmotic shock and hyperosmotic
shock (Fig. S85) involves sequences where sufficient statistics exist to assess changes in FRET
efficiency. Specifically for changes upon hyperosmotic shock (Fig. 4G, Fig. $S10), this means 6/32
sequences were excluded (6, 7, 10, 19, 23, 24). For changes upon hypo-osmotic shock (Fig.
$10), this means 4/32 (10,19,23,24) were excluded. For correlations with radii of gyration (Rg)
and end-to-end distances (Re) from coarse-grained simulations (Fig. 4G, Fig. S$10), six highly
charged sequences [9,10, 17, 18, 24, 32] were excluded.

Limitations, drawbacks, and caveats of live cell imaging experiments
As with any study, our work is not without limitations, drawbacks, and caveats.

A potential critique of our work is the size of our library. At 32 sequences, the number of unique
sequences we have compared here is much smaller than alternative approaches that leverage
fluorescence-activated cell sorting (FACS) and/or sequencing-based readouts for assay
sequence-function relationships. While this is true, a major confounding factor in screen-based
experimental setups such as ours is sequence-dependent changes in expression, mRNA stability,
protein degradation, and subcellular localization. Our live-cell approach, while medium
throughput, allows us to systematically and rigorously assess all these factors and ensure our
conclusions are based on protein-dependent effects corrected for abundance and subcellular
localization.

While we interpret our positively charged sequences as interacting with intracellular polyanions,
we are unable at this stage to identify the specific identities of what these anions may be. Based
on prior work, we anticipate these anions to be RNA®. Future work — likely mass spectrometry-
based — will be required to elucidate the specific components that engage with synthetic IDRs.
This is an area of active interest and ongoing work.

One alternative explanation for why positively charged IDRs are more compact may lie in the
experimental setup. Although the use of FPs in our FRET assay allows for rapid characterization
of ensemble dimensions in live cells, the presence of N- and C-terminal folded domains could
perturb IDR dimensions in comparison to IDRs without adjacent FPs. We reason that, at least for



some sequences, the FP:IDR interaction could overrule the intra-IDR interactions in terms of
determining ensemble dimensions. To minimize the probability of this impacting our overall
results, we designed our experiments and analysis to focus on pairs or triplets of sequences with
similar features. That said, the majority (~95%) of IDRs are found directly adjacent to folded
domains, such that even if FP-mediated interactions influence our trends, that perturbation is
biologically relevant®’.

Another alternative explanation is that the residual secondary structure in our IDRs underlies
some of the behavior observed. However, our computational analysis provides no strong
evidence this is the case (Fig. $12) for either the overall basal FRET efficiencies or distinct
response profiles to hyper or hypo-osmotic shock.

Finally, whether or not our conclusions here hold true across all cell types remains an open
question. Our focus here on U20S cells reflects their convenience for imaging and broad use in
biomedical research. While we anticipate the general conclusions drawn here to hold true in
different cell types, this is something that should be explicitly tested.

GOOSE: a software package for the design of disordered sequences

The sequences used in this manuscript were designed using the Python (version 3.7+) package
GOOQOSE (https://github.com/idptools/goose). GOOSE (Generate disOrdered prQOtiens Specifying
propErties) continues our goal of pushing the frontiers of acronym technology, but also
implements a novel software package developed as part of this manuscript for the rational design
of intrinsically disordered protein regions with bespoke sequence properties.

GOOSE uses sparrow (https://github.com/idptools/sparrow/) to calculate sequence properties.
Ensemble predictions used for the design of IDRs with a desired radius of gyration or end-to-end
distance uses ALBATROSS, as implemented in sparrow®. ALBATROSS is a deep-learning tool
for predicting ensemble-average IDR dimensions directly from sequence and was parameterized
based on coarse-grained simulations performed with a modified variant of the Mpipi model®.

GOOSE enables the design of fully synthetic sequences based on requested design constraints,
as well as systematic perturbations to existing sequence variants. In this way, GOOSE is poised
to facilitate the rational design of small numbers of sequences but can also be used to create
libraries of thousands of sequences for systematic investigation of sequence-ensemble and
sequence-function properties. A key feature of GOOSE is that it takes advantage of the
metapredict (V2-FF) backend to ensure rapid and accurate assessment of disorder propensity for
designed sequences. The development of a fast and accurate disorder predictor (1000s
seconds/sequence with state-of-the-art accuracy'®) was essential to enable high-throughput
library design.

GOOSE is open source and can be used as a Python library or within a Google Colab notebook
(https://colab.research.google.com/drive/1U9B-
TfoNEZbbjhPUGSIrMPS0JLONDB30?usp=sharing). We provided extensive documentation




(https://goose.readthedocs.io/en/latest/index.html), which is not reproduced in this supplementary
information due to length but can be readily accessed through the web.

Functionally, GOOSE relies on a stochastic design algorithm, which enables GOOSE to generate
unique sequences, even if numerous sequence properties are specified. Sequence generation
starts with the creation of a ‘base sequence’ that comes close to satisfying user-specified input
parameters. From here, various functions are used to fine-tune the sequence such that the
sequence parameters match the input parameters. Then, optimization functions are employed to
optimize for sequence disorder while maintaining any sequence parameter constraints. Finally,
the sequence is checked for predicted disorder using Metapredict V2-FF®'". GOOSE includes
functionality to generate sequences by specifying sequence properties, fractions of amino acids,
radius of gyration, or end-to-end distance, and GOOSE can generate various types of sequence
variants from a starting IDR sequence of interest. Table $S2 summarizes the types of sequence
designs that can be enabled via GOOSE.

GOOSE documentation is provided through ReadTheDocs (https://about.readthedocs.com/) and
Sphinx  (https://www.sphinx-doc.org/en/master/), with unit testing provided by PyTest
(https://docs.pytest.org/). Version control is done via Git (https://git-scm.com/) and GitHub
(https://github.com/). GOOSE uses metapredict’’ (V2-FF) for disorder prediction, as well as
Numpy, SciPy, and PyTorch (https://pytorch.org/) for various internal functions*'?. GOOSE
continues to be in active development, and new features will be added regularly. The version
associated with this manuscript is version 0.1.2 at the time of submission.

Sequence designs in this paper

For this paper, sequence generation by specifying sequence properties functionality was used for
sequence design. In particular, sequences were designed with the following quantized sequence
properties: NCPR of -0.6, —-0.3, 0.0, +0.3, +0.6, FRC of 0.0, 0.3, or 0.6, Kyte-Doolittle
hydrophobicity of 1.0 or 3.0 (on a 0-to-9 scale), and kappa [K] (a measure of charge patterning,
see Fig. S4) was set to be between 0.05 and 0.22 (low-to-average, depending on sequence
composition) and then above 0.5 for highly clustered sequences. The quantization of charged
residues was selected to match specific regions on the Das-Pappu diagram of states, enabling
the exploration of IDRs with distinct charge properties (Fig. S18)'*'*. The quantization of
hydrophobicity (and 1.0 or 3.0) was selected for two reasons. Firstly, keeping hydrophobicity low
minimizes the risk of our synthetic IDRs triggering the unfolded protein response. Secondly,
because hydrophobicity is intrinsically coupled with FRC, enabling the FCR and hydrophobicity
to be independently varied required lower hydrophobicity scores to accommodate highly charged
sequences. Finally (and expected), all designed sequences are strongly predicted to be
disordered (Fig. S19).

Given the scope of sequence space for 60-residue disordered proteins (a conservative lower
bound of 60'°) and the relatively low-throughput experimental characterization employed here to
ensure high-quality data is reported, we opted to approach our design problem in terms of
designing sets of pairs of sequences (Table S3). Each pair enables the specific comparison of
one sequence parameter by holding others fixed while varying one specific parameter (e.g., net
charge, hydrophobicity, etc). By designing our library to multiplex distinct hypotheses, the same



sequences could be members of multiple pairs, enabling us to systematically test a collection of
hypotheses with a relatively low number of sequences.

Applications of GOOSE

While the backend of GOOSE is a relatively large software package, the user-facing functionality
was designed to provide a minimalist interface that makes systematic titration of specific
sequence properties straightforward, abstracting the complexities of sequence design entirely
from the user.

We have previously used GOOSE to design libraries of thousands of sequences which, when
used in conjunction with molecular dynamics simulations, provided input data for deep learning
models. While it is common to use natural sequences when performing high-throughput
computational or experimental studies, natural sequences only explore small slithers of the
potential sequence space available to polypeptides. As such, we have found that combining
natural sequences (which effectively biases a library towards biologically relevant sequences)
with fully synthetic sequences enables a much wider exploration of sequence space.

Helicity prediction
Helicity prediction (Fig. S12) was performed using JPred4 in batch mode™.
Bioinformatic analysis

Bioinformatic sequence analysis was performed using localCIDER"™ and sparrow
(https://github.com/idptools/sparrow/). Disorder prediction shown in Fig. 1 and in Fig. S18 was
performed using metapredict (V2-FF)®''. Protein sequences were obtained from UniProt'® and
download September 2023, and reflect the following proteomes: UP000000589 (Mus musculus,
TaxonlID: 10090), UP000000803 (Drosophila melanogaster, TaxonlD:7227), UP000001805
(Neurospora crassa ORT74A, TaxonlID: 367110), UP000001940 (Caenorhabditis elegans,
TaxonlD:6239), UP000002311 (Saccharomyces cerevisiae S288C, TaxonlD:559292),
UP000005640 (Homo sapiens, TaxonlD:9606), and UP000006548 (Arabidopsis thaliana,
TaxonlD:3702). All IDRs for all organisms are precomputed and provided in the shared GitHub
directory.

Coarse-grained simulations

Coarse-grained molecular dynamics simulations were performed using the LAMMPS simulation
engine'” using a modified version of the Mpipi® parameters, Mpipi-GG8. Starting positions for IDRs
were generated by assembling beads as a random coil in the excluded volume limit (i.e., where
beads do not overlap). From this position, an energy minimization protocol was carried out with a
maximum of 1,000 iterations. Simulations were then carried out with an implicit salt concentration
of 150 mM and a temperature of 300 K. Simulation analysis was performed using MDTraj'® and
SOURSOP™,



For simulations of each of the 32 main sequences (60 residues, Fig. $11), all sequences were
run in triplicate for 50,000,000 steps with a 10 femtosecond timestep for a total of 1.5 ys per
sequence. The first 1,000,000 steps for each simulation were discarded as equilibration. After
equilibration, output coordinate positions for each trajectory were recorded at intervals of 10,000
steps, for a total of 4,900 recorded steps per individual simulation. This simulation length was
chosen based on prior work to benchmark appropriate simulation lengths to obtain robust
conformational sampling®. Error bars (shown in Fig. S11) show that the variability between
independent replicas is very small (on the order of the marker size in the figure), confirming that
simulations sufficiently sample the conformational landscape. The simulation used a 500 A3 box
with periodic boundary conditions.

For simulations of IDR designed to match specific radii of gyration or end-to-end distances (200
residues, Fig. $14), all sequences were run in triplicate for 200,000,000 steps with a 20
femtoseconds timestep for a total of 12 ys per sequence. The first 1,000,000 steps for each
simulation were discarded as equilibration. After equilibration, output coordinate positions for each
trajectory were recorded at intervals of 100,000 steps, for a total of 1,990 recorded steps per
simulation. This simulation length was chosen based on prior work to benchmark appropriate
simulation lengths to obtain robust conformational sampling®. Error bars (shown in Fig. $14) show
that the variability between independent replicas is very small (on the order of the marker size in
the figure), again confirming that simulations sufficiently sample the conformational landscape.
The simulation used a 500 A2 box with periodic boundary conditions.

Limitations, drawbacks, and caveats of GOOSE

GOOSE was designed to generate fully synthetic IDR sequences. In the current version of
GOOSE (0.1.2), we do not constrain for predicted secondary structure, operating under the
assumption that sequences with a strong tendency towards disorder prediction will — in isolation
— be largely disordered. That said, GOOSE does offer the ability to check for predicted helicity if
this is a possible confounding factor of concern.

Secondly, rationally designed sequences may possess motifs or sequence features that make
them good targets for phosphorylation, degradation, or unexpected interaction with cellular
components. This is not a “limitation” in as much as our goal in GOOSE is to generate fully
synthetic sequences and variants, but it is a factor that should be considered when designing
libraries.

Sequences designed to match specific ensemble properties (i.e., the radius of gyration or end-to-
end distance) make use of ALBATROSS, our deep-learning tool for sequence-ensemble
prediction. ALBATROSS enables the rapid prediction of ensemble dimensions from sequence®.
While ALBATROSS is reasonably accurate, it is certainly not perfect. For sequences with
substantial secondary structure or that are extreme in terms of composition or sequence
patterning, ALBATROSS may be less accurate. With this in mind, we encourage scrutiny and
skepticism when designing sequences with extreme values in terms of both sequence properties
and predicted dimensions.



GOOSE does not currently offer the ability to optimize nucleotide sequences to minimize repetitive
sequences at the DNA level and/or codon optimization for a specific organism. Given the
repetitive nature of some IDRs, we plan to introduce this feature going forward, but for now,
nucleotide sequence optimization must be done independently of protein sequence design.

Finally, recent complementary work by Strome et al. offers the ability to design IDRs to match
bulk sequence properties against IDRs of a specific biological class or group®. This approach is
conceptually distinct from ours and enables a different set of questions to be asked (i.e., designing
synthetic IDRs to ‘mimic’ a large set of sequence features). We see this as highly complementary
to our own work. In parallel, work by Pesce et al. has recently shown the ability to design IDRs
with specific ensemble properties?’. GOOSE does enable a similar feature but unlike the work by
Pesce et al. GOOSE is limited to designing sequences with specified ensemble-average
properties only, whereas, in principle, the Pesce et al. approach could be used to design
sequences with specific local and global conformational biases. Again, this work is highly
complementary to ours, highlighting the growing importance of IDR design as an approach for
synthetic biology and basic science.

Data availability

GOOSE source code is available at https://github.com/idptools/goose/

GOOSE documentation is available at https://goose.readthedocs.io/

Data and analysis scripts used for figures and analysis in this paper are available at
https://github.com/holehouse-lab/supportingdata/tree/master/2023/emenecker guadalupe 2023
and also at https://github.com/sukeniklab/emenecker gquadalupe 2023.




SUPPLEMENTARY TABLES

Table S1: Sequences and parameters. Columns reported here include the Fraction of Charged
Residues (FCR), Net Charge Per Residue (NCPR), charge-distribution metric kappa (k), Kyte-
Doolittle hydrophobicity (H), and average disorder prediction (Disorder). Note that a sequence
must have both positive and negative residues for k to be calculated, otherwise is reported as -1.
Disorder here is calculated as the average disorder score as predicted by metapredict'".

# Sequence FCR | NCPR |k H Disorder
ONNNQOONQONONNONNNONNNNONONNOQOONOQON
1 | NNQOONNQONNNNQOONNNONNN 0 0 -1 1 0.88
THNHHSTPGTPGHHHPGS PHS PHPTHTTPSHHGTGGG
2 | HGGSTTQSHSNGSATGOHGSSGP 0 0 -1 3 0.89
THNHHSTGTGHHHGSHSHTHTTSHHGTGGGHGGSTTO
3 | sHsnGsTGOHGSSGPPPPPPPAP 0 0 -1 3 0.91
THNHHGPSTGTGPHHHGS PHSHTHPTTSHHPGTGGGP
4 | HGGSTPTQSHSANGSTGPQHGSS 0 0 -1 3 0.9
HNNOQOQONNONNONQONNONNNNNQQQOONQQEDEQQ
5 | DDENQDDDQQDEDQONEDEQQDDE 0.3 -0.3 -1 1 0.94
EDDEHNNQDQOQQENNONDNONQDONNQODNNNNNQQQ
6 EQONQQDQONQODQQQONDQQEEDED 0.3 -0.3 -1 1 0.92
KKKRSGONRNONNROQOOKNONORONQONKNNQONQNN
7 | ENNNNDNNQOENNQQENQDDDDD 0.3 0 053 | 1 0.92
REKRSGONKNONNROQOQODNONQOEQONQONDNNQONQONN
8 | DNNNNKNNQODNNQORNQEKDKD 0.3 0 013 | 1 0.95
KKRSGKRRHHKKRHOKRROHRKKQORKKONONNNNNQ
9 | NOOQOHHNQONNONNPNNNNHHP 0.3 +0.3 -1 1 0.85
KRKKSGHHKHOQHROQONKONNNRNNONKQOQQHHNQ
10 | KONNORNNPNRNNNHRHPKKRKR 0.3 +0.3 -1 1 0.9
GQSTSTSIGGHGTSGSGGGTSSGGNSSTTSGGEDDGT
11 | DDEGTDDETADDDSTDEEGSDED 0.3 -0.3 -1 3 0.94
EDDDGQSTESTSIWDGGNGDTSGSDGGGTDSSGGHSST
12 | pTSGGEGTGTDTASTDGSEEDED 0.3 -0.3 -1 3 0.94




KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSS

13 | ESGSSDSSSAETASSDSSDEEEE 0.3 0 0.53 0.95
KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSS

14 | ESGSSRSSSAKTASSESSERRED 0.3 0 0.13 0.95
GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSS

15 | SDKEKDREAKERDAREREKEAAR 0.3 0 0.01 0.89
GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDS

16 | SASGRSSESSRSTESSKSSEAAR 0.3 0 0.06 0.95
KRRNOKRRGTRKRSGKRKGSRKRGARRKSTATATGST

17 | 7SSATASASSSSSSSGAGATGGS 0.3 +0.3 -1 0.94
KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASAS

18 | RSSSSRSSGARGATGKGSRRKRR 0.3 +0.3 -1 0.94
KKRKAHHNKNNONRONNNRNONORNONOKNQQQODDEE

19 | EDDDDDDDEEDDDDDDDDDDDEE 0.6 -0.3 |0.84 0.95
DKDAHDKRHNKE DNNKDDQNE DEQNDDDNNNQDEKNQ

20 | RPDDNQERENQDEDNQDDDQQRDD 0.6 -0.3 | 0.19 0.97
KRKSNRRRPPRRKNNKKRPNRRRQORKRNNPQDDENP

21 | EDDNNDDEQQDEEQHEDEPQEEFE 0.6 0 0.64 0.96
DDRSNERRPPERENNEKK PNEREQQDKKNNPOKRRNP

22 | pPRNNDRKQQEREQHRDEPQDRE 0.6 0 0.06 0.96
RRRKKKKTKRRKMRKRR PRKKRNKRKR PRRRK POONN

23 | EQONNDNONNENQONSDQSEDDDD 0.6 +0.3 | 0.72 0.94
DDRTMRRKPNKKE PPRRRQOKKDNNRRKQQONNRRENQ

24 | RRDNNRKKNQKKRNSKKDQSRDE 0.6 +0.3 | 0.22 0.91
KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDE

25 | EEEEDDDEDDDDDEEDEDDDDDD 0.6 -0.3 |0.84 0.86
DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDA

26 | SVDEVAPREVSGERDRDKDEDED 0.6 -0.3 | 0.16 0.92
KRRAVKKKVAKRKS SRKKVVKKRGARKKSVSVDEDVP

27 | EpDVVDDDGSDDDVSDDEAVDEE 0.6 0 0.64 0.88
EKDAVDEKVADKKS SKDKVVDDRGAKRDSVSVDRDVP

28 0.6 0 0.06 0.9

DEKVVRDKGSDREVSEKKAVKRD




SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDR

29 | pVPDEKVVRDKDREVEKKAVKRD 0.6 0 005| 3 0.84
SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDR

30 | pVPDEKVVRDKDREVEKKAVKRD 0.6 0 005| 3 0.86
KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVG

31 EAVAADSAVADAVVVDSADDDDD 0.6 0.3 0.72 3 0.76
KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSA

32 | RKDVADEKAVRDRVVKRKSADRK 0.6 03 018 3 0.61

Table S2: Summary of GOOSE design options

Goose function

Description

sequence()

De novo sequence generation. Function that allows
disordered sequence generation by specifying length,
hydropathy (optional), FCR (optional), NCPR (optional),
and kappa (optional). Any properties not specified will be
unconstrained during sequence generation and will
change from sequence to sequence if multiple sequences
are generated.

seq_fractions()

De novo sequence generation. Function that allows
disordered sequence generation by specifying the
fractions of amino acids. Multiple fractions can be
specified. Any amino acids not specified will be
unconstrained during sequence generation and will
change from sequence to sequence if multiple sequences
are generated.

De novo sequence generation. Function that allows

seq_re() disordered sequence generation by specifying sequence
length and end-to-end distance.
De novo sequence generation. Function that allows
seq_rg() disordered sequence generation by specifying sequence

length and the radius of gyration.

constant_class_var()

Variant generator. Function that allows the creation of
variants with the same overall bulk properties (FCR,
NCPR, hydropathy, kappa) as the input variant as well as
the same order and number of amino acids, as grouped
by class (see Table S4). Variants will have different amino
acid identities while keeping everything else constant.




new_seq_constant_class_var()

Variant generator. Function that allows the creation of
variants where the sequence composition is new, but the
numbers of each residue from each class and the overall
properties (FCR, NCPR, hydrophobicity) are the same.
Unlike variants generated by the constant_class_var()
function, the order of the amino acids (in terms of class) is
not preserved.

constant_properties_var()

Variant generator. Function that allows the creation of
variants where only the sequence properties (FCR,
NCPR, hydrophobicity, kappa) are constrained. There are
no constraints on classes of amino acids.

constant_residue_var()

Variant generator. Function that allows the creation of
variants where specific (user-specified) residues are held
constant by position and number. The variant will have the
same overall bulk properties (FCR, NCPR, hydrophobicity)
as the original sequence.

shuffle_var()

Variant generator. Function that allows the creation of
variants where specific regions of an IDR are shuffled.
Multiple regions can be specified simultaneously.

excluded_shuffle_var()

Variant generator. Function that allows the creation of
variants where an entire sequence is shuffled except for
user-specific residues. Note this is not the reciprocal of
shuffle_var(), which operates in terms of regions instead
of residues.

targeted_shuffle_var()

Variant generator. Function that allows the creation of
variants where only user-specified residues are shuffled.
Any residues not specified will not be shuffled.

asymmetry_var()

Variant generator. Function that allows the creation of
variants where a class of residues (or a user-specified list
of residue identities) is changed to become more
asymmetrically or less asymmetrically distributed
throughout the sequence. Does NOT change sequence
composition.

hydro_class_var()

Variant generator. Function that allows the creation of
variants where, like the constant_class_var() function, the
overall sequence properties (FCR, NCPR, kappa), the
order, and the number of amino acids according to each
class is held constant, however, the hydropathy can be
increased or decreased (within the inherent constraints
imposed by the class constraint).

fcr_class_var()

Variant generator. Function that allows the creation of
variants where variants adjust the FCR while minimizing
changes to the position and number of amino acids by




class.

ncpr_class_var()

Variant generator. Function that allows the creation of
variants where variants adjust the NCPR while minimizing
changes to the position and number of amino acids by
class.

kappa_var()

Variant generator. Function that allows the creation of
variants where the charge asymmetry is altered by
changing the sequence’s kappa value. Requires that both
positively charged and negatively charged residues are
found in the original sequence.

all_props_class_var()

Variant generator. Function that allows the creation of
sequence variants that adjust the FCR, NCPR,
hydropathy, and kappa values while minimizing changes
to the position and number of amino acids by class.

Variant generator. Function that allows the creation of

re_var() sequence variants that adjust the sequence radius of
gyration (Rg).
Variant generator. Function that allows the creation of
rg_var() sequence variants that adjust the sequence end-to-end

distance (Re).

seq_property_library()

Library generator. Function that generates a library of
sequences that span a range of user-specified properties
including length, FCR, NCPR, hydropathy, and kappa.

seq_fractions_library()

Library generator. Function that generates a library of
sequences that span a range of user-specified fractions of
amino acids. Multiple fractions can be specified
simultaneously.

Table S3: All sequence pairs compared in Fig. 2 and Fig. 3

2C 6 EDDEHNNQDQQQQENNQNDNQNQDONNQDNNNNNQQQOEQNQODQONQDQQONDQQEEDED

20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD

12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED

10 KRKKSGHHKHQQHRQQONKQNNNRNNONKQQQQHHNQKQONNQRNNPNRNNNHRHPKKRKR
24 DDRTMRRKPNKKEPPRRRQQOKKDNNRRKQONNRRENQRRDNNRKKNQKKRNSKKDQSRDE

18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK




2D

HNNQOOOONNONNONQONNONNNNNQOOONQQEDEQODDENQDDDQODEDONEDEQQDDE
KKRKAHHNKNNONRONNNRNONQRNONQKNQQODDEEEDDDDDDDEEDDDDDDDDDDDEE

GOSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED
KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD

KKRSGKRRHHKKRHOKRROHRKKOORKKONONNNNNONOQQOOHHNQONNONNPNNNNHHP
RRRKKKKTKRRKMRKRRPRKKRNKRKRPRRRKPOONNEQONNDNONNENQNSDQSEDDDD

KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS
KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD

2E

REKRSGONKNONNROOOQODNONQEQNONDNNQONQONNDNNNNKNNQODNNQORNQEKDKD
DDRSNERRPPERENNEKKPNEREQQDKKNNPOKRRNPDDRNNDRKQOQEREQHRDEPQDRE

KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED
EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD

KKKRSGONRNONNROOOQOKNONQRONONKNNQONONNENNNNDNNQOQENNQQENQDDDDD
KRKSNRRRPPRRKNNKKRPNRRROORKRNNPOQDDENPEDDNNDDEQQDEEQHEDEPQEEE

KKRSGKRRHHKKRHOKRROHRKKOORKKONONNNNNONOQOOHHNQONNONNPNNNNHHP
RRRKKKKTKRRKMRKRRPRKKRNKRKRPRRRKPOONNEQONNDNONNENQNSDQSEDDDD

2F

12
14
18

~J

EDDEHNNQDQOOQOENNONDNONQDONNQDNNNNNQOQOEQONQODQONQDQOQONDOQEEDED
REKRSGONKNONNROOOQODNONQEQNONDNNQONQONNDNNNNKNNQQODNNQORNQEKDKD
KRKKSGHHKHQOHRQOQONKONNNRNNONKOOQOHHNOQKONNORNNPNRNNNHRHPKKRKR

EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED
KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED
KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR

HNNQOOOONNONNONQONNONNNNNQOQOONQQEDEQODDENQDDDQODEDONEDEQQDDE
KKKRSGONRNONNROOOOKNONQRONONKNNQONONNENNNNDNNQOQENNQQENQDDDDD
KKRSGKRRHHKKRHOKRROHRKKOORKKONQONNNNNONOQQOOHHNQONNONNPNNNNHHP

2G

20
22
24

26
28
32

DKDAHDKRHNKEDNNKDDONEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD
DDRSNERRPPERENNEKKPNEREQQDKKNNPOKRRNPDDRNNDRKQOQEREQHRDEPQDRE
DDRTMRRKPNKKEPPRRROOKKDNNRRKOONNRRENQRRDNNRKKNQKKRNSKKDQSRDE

DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED
EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD
KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK

3B

EDDEHNNQDQOQOQOENNONDNONQDONNQODNNNNNQOQOEQONQODQONQDQOQONDOQEEDED
EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED




20
26

19
25

DKDAHDKRHNKEDNNKDDONEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD
DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED

KKRKAHHNKNNONRONNNRNONQRNONQKNQQODDEEEDDDDDDDEEDDDDDDDDDDDEE
KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD

ONNNQOONQONONNONNNONNNNONONNOOOONQQONNNOOONNQONNNNQOONNNONNN
THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGQHGSSGP

KKKRSGONRNONNROOOOKNONQRONONKNNQONONNENNNNDNNQOQENNQQENQDDDDD
KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE

KRKKSGHHKHQOHRQOQONKONNNRNNONKOOQOHHNOQKONNORNNPNRNNNHRHPKKRKR
KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR

REKRSGONKNONNRQOOOQODNONQEQNONDNNQONQONNDNNNNKNNQODNNQORNQEKDKD
KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS

DDRTMRRKPNKKEPPRRROOKKDNNRRKOONNRRENQRRDNNRKKNQKKRNSKKDQSRDE
KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK

3C

21
27

14

22
28

HNNQOOOONNONNONQONNONNNNNQOQOONQQEDEQODDENQDDDQODEDQONEDEQQDDE
GOSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED

KRKSNRRRPPRRKNNKKRPNRRROORKRNNPOQDDENPEDDNNDDEQQDEEQHEDEPQEEE
KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE

REKRSGONKNONNRQOOOQODNONQEQNONDNNQONQONNDNNNNKNNQODNNQORNQEKDKD
KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED

DDRSNERRPPERENNEKKPNEREQQDKKNNPOKRRNPDDRNNDRKQOQEREQHRDEPQDRE
EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD

Table S3
Default amino acid classes used in GOOSE

Class name Amino acids
Aromatic F,W,Y
Polar QN,S, T
Positive K, R
Negative D, E
Hydrophobic ILV,L,A,M
Polar C,P,GH




Note that in other contexts, G and H might be considered polar, and H may also be considered positive

under depressed pH regimes.

Table S4
Default GOOSE parameters

Parameter Default Value
Minimum Length 10
Maximum Length 10,000
Maximum Hydropathy (Kyte-Doolittle Scale 6.1
shifted scale of 0 to 9)
Disorder Threshold (metapredict V2) 0.5
Max deviation from user-input hydropathy 0.07
Max deviation from user-input kappa 0.03
Number of attempts to make sequence 100
Max Fraction A 0.95
Max Fraction C 1.0
Max Fraction D 1.0
Max Fraction E 1.0
Max Fraction F 1.0
Max Fraction G 1.0
Max Fraction H 1.0
Max Fraction | 0.53
Max Fraction K 1.0
Max Fraction L 0.42
Max Fraction M 0.62
Max Fraction N 1.0
Max Fraction P 1.0
Max Fraction Q 1.0
Max Fraction R 1.0




Max Fraction S 1.0
Max Fraction T 1.0
Max Fraction V 0.71
Max Fraction W 0.55
Max Fraction Y 0.99

Note: Maximum fractions were determined by attempting to generate a sequence of 100 amino acids in
length at each fraction for every amino acid between the decimal fraction values of 0.01 to 1.00. For each
fraction value, the sequence was populated with the necessary number of the amino acids of interest, and
then the rest of the sequence was generated by populating the sequence with any amino acid other than
the amino acid that had its maximum fraction determined. 500,000 sequences were attempted at each
fractional value and then checked to be disordered using metapredict V2 with a cutoff of 0.5.

Table S5 Sequences that show naive response (expand) under hypo-osmotic shock (100 mOsm)

Sequence ID | Sequence

4 THNHHGPSTGTGPHHHGSPHSHTHPTTSHHPGTGGGPHGGSTPTQSHSANGSTGPQHGSS
15 GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSSSDKEKDREAKERDAREREKEAAR
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED
29 SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD

30 SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD




Table S6 Sequences that show insensitive response under hypo-osmotic shock (100 mOsm)

Sequence ID | Sequence
1 QNNNQQONQONONNQONNNONNNNONONNQOQQONQQONNNQQONNQONNNNQQONNNQNNN
2 THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGQHGSSGP
3 THNHHSTGTGHHHGSHSHTHT TSHHGTGGGHGGSTTQSHSNGSTGQHGSSGPPPPPPPAP
5 HNNQQQQONNQONNONQONNONNNNNQQQONQQEDEQQDDENQDDDQQDEDQNEDEQQDDE
6 EDDEHNNQDQQQQENNQNDNQNQDONNQDNNNNNQQQEQNQQDQONQDQQONDQQEEDED
7 KKKRSGONRNONNRQQQOKNONORONONKNNQONQNNENNNNDNNQQENNQQENQDDDDD
8 REKRSGONKNQNNRQQQQDNQONOEQNQONDNNQONQNNDNNNNKNNQQODNNQQRNQEKDKD
11 GQSTSTSWGGHGTSGSGGGTSSGGNSSTTSGGEDDGTDDEGTDDETADDDS TDEEGSDED
12 EDDDGQSTESTSWDGGNGDTSGSDGGGTDSSGGSSTDTSGGEGTGTDTASTDGSEEDED
13 KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE
14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED
16 GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDSSASGRSSESSRSTESSKSSEAA
20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD
21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDE PQEEE
22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDE PQDRE
27 KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE
28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD
31 KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK




Table S7 Sequences that show inverse response (compact) under hypo-osmotic shock (100
mOsm)

Sequence ID | Sequence
9 KKRSGKRRHHKKRHOKRRQHRKKQQRKKQONONNNNNONQOQQHHNQONNONNPNNNNHHP
17 KRRNOQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS
18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR
25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD

Table S8 Sequences that show naive response (compact) under hyper-osmotic shock (750
mOsm)

Sequence ID | Sequence
1 QNNNQQONQONONNQONNNONNNNONONNQOQQONQQONNNQQONNQONNNNQQONNNQNNN
2 THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGOHGSSGP
3 THNHHSTGTGHHHGSHSHTHT TSHHGTGGGHGGSTTQSHSNGSTGQHGSSGPPPPPPPAP
4 THNHHGPSTGTGPHHHGS PHSHTHPTTSHHPGTGGGPHGGSTPTQSHSANGSTGPQHGSS
11 GQSTSTSWGGHGTSGSGGGTSSGGISSTTSGGEDDGTDDEGTDDETADDDS TDEEGSDED
14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED
15 GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSSSDKEKDREAKERDAREREKEAAR
16 GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDSSASGRSSESSRSTESSKSSEAAR
20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD
29 SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD




Table S9 Sequences that show insensitive response under hyper-osmotic shock (750 mOsm)

Sequence ID | Sequence
5 HNNQQQQONNQONNONQONNONNNNNQQQONQQEDEQQDDENQDDDQQDEDQNEDEQQDDE
8 REKRSGONKNQNNRQQQQDNQONOEQNQONDNNQONQNNDNNNNKNNQQODNNQQRNQEKDKD
12 EDDDGQSTESTSWDGGGDTSGSDGGGTDSSGGISSTDTSGGEGTGTDTASTDGSEEDED
13 KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE
21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDE PQEEE
22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDE PQDRE
25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED
27 KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE
28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD
30 SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD
31 KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK

Table S10 Sequences that show inverse response (expand) under hyper-osmotic shock (750
mOsm)

Sequence ID | Sequence

9 KKRSGKRRHHKKRHOKRROHRKKQORKKONQONNNNNONQOOQOHHNQONNONNPNNNNHHP

17 KRRNOQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS

18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR




SUPPLEMENTARY FIGURES

A. Average R/ (A) vs. Mutations B. Change in R (%) vs. Mutations
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Figure S1. Global dimensions for disordered regions are relatively insensitive to individual
point mutations. To assess IDR sensitivity to point mutations, we compared changes in the
predicted radius of gyration (Rgq) for 2000 randomly generated 200-residue disordered sequences
in response to specific numbers of mutations. Specifically, for each sequence, we determine how
the radius of gyration changes in response to 1, 10, 20, ..., 200 individual point mutations. Radii
of gyration are predicted using ALBATROSS®. In general, 1-10 mutations lead to relatively small
changes in the overall dimensions. (A) The average change in Ry as compared to the starting
sequence. Error bars show the standard deviation of the change in A. (B) Percentage change in
Ry from the starting sequence. Error bars show the standard deviation of the change by %
difference.
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Figure S2. Overview of designed IDR library. The amino acid composition of all sequences is
shown in terms of per-residue local chemistry. Red (negative) and Blue (positive) lines track local
smoothed charge profiles for negatively charged (E/D) and positively charged (R/K) residues
using a window size of 15 residues. Purple bars report on the location of proline residues, orange
bars on the location of aromatic (Y/F/W) residues, and back bars on the location of aliphatic
(VL/VIM/A) residues These sequences are also provided in Table S1.
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Figure S3. Summarized in-cell FRET data for the GOOSE library. (A) FRET efficiencies (Ef)
of all constructs used in this work measured in U2-OS cells. Each violin outline represents the
data distribution of one repeat, containing at least 60 cells. Circles represent the average of the
medians of all violins, and the error bars represent the standard deviation of all the medians. The
red line and shaded region represent the median and the median 50% of E; for a glycine-serine
repeat (GS)s2. (B) Sequence features obtained from localcider'. FCR is the fraction of charged
residues. NCPR is the net charge per residue. Hydropathy describes the mean hydropathy
calculated from the Kyte-Doolittle hydrophobicity scale®?. Kappa describes the charge
distribution™. SCD is the sequence charge decoration®. Fraction disorder promoting describes
the sequence’s fraction of residues which are considered disorder promoting®*. Omega describes
the patterning between charged/proline residues and all other residues?.
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Fig. S4. Charge patterning is important for IDRs. Charge patterning can be quantified by kappa
(), a parameter that quantifies the difference in local charge polarity compared to the overall
average of the sequence, normalized by the most segregated possible sequence. (A)
Schematized reproduction of the original dependence of the radius of gyration (Ry) on k as
described by Das & Pappu, as shown for a set of thirty strong polyampholytic sequences with the
same composition but different charge patterning™. (B) Sequences examined in panel A are
shown in order of k value, illustrating how increasing K relates to the patterning of oppositely
charged residues.
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Figure S5. Sequences show variable responses to changes in cell volume. Change in FRET
efficiencies following osmotic challenge (4E; = Efaft” - Efaft”) measured in U2-0OS cells. The
x-axis reports the final osmotic pressure following the challenge, reported in mOsm. Each violin
outline represents the data distribution of one repeat for hypo (blue), iso (grey), and hyper (red)
conditions and contains at least 60 cells. The circle represents the average of all medians for that
construct, and the error bars represent the standard deviation of the medians. P-values were
determined by Student’s t-test where N’s were sufficiently high (**** = P < 0.00001, *** = P <
0.0001, ** = P < 0.001, * = P < 0.01, ns = not significant). Sequences 10,19, 23, and 24 are
excluded from the analysis in which change in FRET upon the change in cell volume is assessed.
Furthermore, for sequences at 750 mOsm, we also excluded sequences 6 and 7 due to
insufficient statistics.
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Figure S6. Pie charts summarizing Figure S5. Sequences were sorted into the following
categories: naive, insensitive, and inverse in response to hypo-osmotic (cell volume increase)
and hyper-osmotic (cell volume decrease). The total number of sequences categorized under
hypo-osmotic conditions as naive, insensitive, and inverse were 5, 19, and 4 total sequences,
respectively. The total number of sequences categorized under hyper-osmotic conditions as
naive, insensitive, and inverse were 10, 13, and 3, respectively. Specific sequence details for the
categorized sequences are shown in Tables S5 - S10.
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Figure S7. IDRs show sequence-specific subcellular localization preferences. Log fold
change of the acceptor's fluorescence intensities between nucleus and cytoplasm

(lng ( nucleus

each cell were segmented and measured. Individual cells are shown as points, each box
represents the 25th and 75th percentiles of the data, the whiskers show the minimum and
maximum for each construct, and the median is shown as a black line. Box plots contain N > 20.
Statistical significance is determined by a double-sided t-test against the subcellular localization
ratio of (GS)s2 shown as the red dashed line. The median 50 for (GS)s2 is shown by the red shaded
region. (**** = P < 0.00001, *** = P < 0.0001, ** = P < 0.001, * = P < 0.01, ns = not significant)
(see also Fig. S16).

)). U2-0OS cells were imaged at 20x, and regions in the nucleus and cytoplasm for
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(right) conditions. The Pearson’s R? value is shown on the bottom right of each panel.
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Figure $10. (A) Heatmap summarizing all sequence composition, sequence chemistry,
conformational properties, functional properties, and cell properties for the complete library. (B)
Ensemble dimension and sequence parameter correlations. The background of each plot
corresponds to the correlation strength determined by Pearson’s R2.
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Figure S11. Linear fit of live cell FRET efficiencies (E¢) vs. the simulated end-to-end distance
(Ree) obtained from coarse-grained molecular dynamics simulations performed with the Mpipi
forcefield®. Each scatter point is labeled with the sequence number used throughout the text.
Simulation error bars are calculated as the standard error of the mean across three independent
replicas. Experimental error bars are calculated as the standard deviation of the medians (see
Fig. $17). The six major outliers (sequences #9, #10, #17, #18, #24, #32) are all highly positively
charged (blue points) and show a higher basal FRET value, indicating they are more compact in
cells than predicted by simulations. Outliers were not included in calculating the correlation
coefficient.
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Figure S12. Predicted helicity potential for each sequence. We predicted per-residue helicity
for each position using JPred4'®. Despite several sequences possessing local helicity, all
sequences are strongly predicted to be disordered (Fig. S19). Bar colors reflect sequence net
charge (blue = positive, red = negative, grey = neutral), and the background color on each panel
reflects the basal FRET efficiency. Sequences are rank-ordered by basal FRET efficiency (top-
left to right, snaking around), such that the top left is the most compact and the bottom right is the
most expanded. Predicted transient helicity does not explain compaction in positively charged
proteins. In the top twelve most compact sequences, 50% possess none or minimal predicted
helicity, while several are predicted to be more helical. Moreover, in many specific pair
comparisons, a change in predicted helicity has no impact on dimensions (e.g., Fig. 3B: #10 vs.
#18 and #9 vs. #17) or loss of helicity leads to compaction instead of expansion (e.g., Fig. 2C:
#18 vs. #32). Taken together, while conclusive evidence would require systematic biophysical
characterization of each IDR in the context of our fluorescence proteins, we see no evidence to
support a model in which secondary structure is a major determinant of IDR global dimensions.
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each window was calculated. The resulting histogram is plotted in blue. Designed sequences fall
within the shaded region.
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Figure S14. GOOSE can make sequences with specified length and radius of gyration (Rg)
or end-to-end distance (R¢). All sequences generated were 200 amino acids in length. For Rq
(A, C), two sequences with dimensions between 16 A and 52 A at intervals of 4A (20 sequences
total) were generated. A similar approach was used for specifying Re, except a range of between
30A and 66A was used. After sequence generation, coarse-grain molecular dynamics simulations
were run as described in the Methods. For bar plots (A, C), bars are equal to the mean of the
average Ry or R¢ of the triplicate for each sequence, error bars are the standard deviation between
the means for each triplicate, and the x-axis labels denote the Ry or Re specified for each sequence
(two sequences per specified dimension). Red lines show the specified Ry or Re for the sequence
during sequence generation. Each point on the scatter plots (B, D) shows the average dimension
for each simulation triplicate for both sequences for the desired Ry or Re value (y-axis) with the
specified dimension during sequence generation on the x-axis. The R? values were calculated
using the mean value of the triplicate for each sequence vs. the specified Ry or Re during
sequence generation for each sequence.
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Figure S15. Histograms of the cell properties analyzed for this work for each of the 32
library constructs. (A) Cell area, measured following segmentation. (B) Cell circularity,
measured from the area of each cell. A circularity value of 1 is a perfect circle. (C) Relative
expression levels of the FRET construct in each cell, as assessed by mNeonGreen emission
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Figure S16. Localization and ensemble features for (GS);. reference in U2-OS cells. Glycine-
serine repeat ((GS)s2) used for comparison. Boxplot features are as in Fig. S7. Points correspond
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Figure S17. Visual explanation reporting how each violin plot was generated before
performing statistical tests. Experiments were done on 96-well plates, and each well was
considered one separate transfection (each colored violin here represents one well). Wells
containing less than 60 cells were not included in the analysis. For each synthetic IDR sequence,
the average and standard deviation of the medians from each well were used to obtain the
average Er and standard deviation of that specific IDR sequence. Student’s t-test was performed
between the calculated medians of the IDR sequences being compared (red points for both
groups).
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