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ONLINE METHODS 

Fluorescence reporter constructs 

Our fluorescence reporter construct places the disordered protein sequences from our library 
(Table S1) between an N-terminal mTurquoise2 FRET donor and a C-terminal mNeonGreen 
acceptor. Genes for each IDR were obtained from GenScript and ligated between the two 
fluorescent proteins using 5’ SacI and 3’ HindIII restriction sites in a pcDNA3.1(+) backbone, as 
described previously1.  

Mammalian Cell culture  

U2-OS cells were cultured in Corning-treated flasks with Dulbecco’s modified Eagle medium 
(Gibco Advanced DMEM:F12 1X) supplemented with 10% FBS (Gibco) and 1% 
penicillin/streptomycin (Gibco). For live-cell microscopy experiments, 8,000 cells were plated in a 
µ-Plate 96 Well Black treated imaging plate (Ibidi) and allowed to adhere overnight (~16 hours) 
before transfection. Cells were incubated at 37°C and 5% CO2. Before transfection, the media 
was switched out with new warmed media. XtremeGene HP (Sigma) was used to transfect FRET 
construct plasmids into U2-OS cells per the manufacturer’s protocol. Cells were incubated at 37°C 
and 5% CO2 for 48 hours. NaCl stock solution of 5 M was prepared by dissolving the 
corresponding amount of NaCl (Fisher Bioreagents) in 1X PBS (Gibco) and filtering using a 0.2 
µm filter. The solutions used for perturbations were obtained by diluting 1X PBS with autoclaved 
DI water to achieve hypoosmotic conditions or by adding NaCl stock solution to achieve 
hyperosmotic conditions. 



 

 

Live-cell Microscopy  

Imaging was done on a Zeiss epifluorescent microscope using a 10X 0.3 NA dry objective. 
Excitation was done with a Colibri LED excitation module, and data was collected on a  duocam 
setup with two linked Hamamatsu flash v3 sCMOS cameras. The cells were imaged at room 
temperature before and after perturbation with 150 ms exposure times. Imaging was done by 
exciting mTurquoise2 at 430 nm (donor and acceptor channels) or mNeonGreen at 511 nm (direct 
acceptor channel). Emitted light was passed on to the camera using a triple bandpass dichroic 
(467/24, 555/25, 687/145). When measuring FRET, emitted light was split into two channels using 
a downstream beamsplitter with a 520 nm cutoff. For each perturbation, the cells were focused 
using the acceptor channel and imaged before manually adding water (hypoosmotic conditions), 
PBS (isosmotic condition), or NaCl solution (hyperosmotic conditions) with a pipette and pipetting 
up and down 10 times to ensure mixing. The final osmolarities that were used for the perturbations 
were: 100 mOsm (hypo-osomotic), 300 mOsm (iso-osmotic), and 750 mOsm (hyper-osmotic), 
with NaCl as the osmotic agent. Imaging was typically completed within ~30 seconds of osmotic 
change. Cells used for localization measurements were imaged using a 20X 0.8 dry objective.  

Image Analysis 

Images were analyzed using ImageJ2. Images collected before and after osmotic challenge, 
containing three channels each, were stacked and aligned using the StackReg plugin with rigid 
transformation. The aligned image was segmented based on the donor channel before 
perturbation. Segmentation was done using a fixed threshold that selected only pixels with an 
intensity of 1,500 - 40,000. The resulting mask was corrected using the Open and Watershed 
binary algorithms. Cells were selected using the Analyze Particles option of ImageJ, selecting 
only those that were 100-2,000 μm² in size and with a circularity of 0.1 to 0.8. The resulting ROIs 
were averaged in each channel at each time point. Bleedthrough and cross-excitation corrections 
were the same as described previously1. All constructs displayed similar average cell properties 
(Fig. S15). Cell FRET efficiency before and after perturbation (𝐸!,#$!%&$'$((  and 𝐸!,)!*$&'$((  respectively) 
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fluorescence of the acceptor following bleedthrough and cross-excitation corrections. Localization 
measurements were obtained as described previously1. The acceptor emission under acceptor 
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GS-linker reference 

As an internal standard, we also used a glycine-serine repeat linker, (GS)32 (red line in Fig. S3A). 
Previous work by us and by others have shown that GS in vitro behaves as a Gaussian chain1,3. 
All (GS)32 measurements used for comparisons are shown in Fig. S16. 



Statistical Analysis  

The statistical analysis for all of the experimental data was performed using the SciPy library in 
Python4. Experiments were done on 96-well plates, across multiple cell passage numbers and 
multiple days, and each well was plated and transfected individually. We therefore considered 
each well a biological repeat of the experiment. Therefore, the median 𝐸! and 𝛥𝐸!	values for all 
of the cells measured per well were used to generate a single violin plot (Fig. 1F, S17). We 
excluded wells that contained under 60 cells. The standard deviation and average values were 
calculated from the medians of all wells from each experimental condition (Fig. 1F, S17). To 
assess significance of the differences between two constructs, a double-sided Student’s t-test 
was performed between all medians of the two constructs.  

Correlation analysis for live cell imaging 

Correlation between sequence parameters and ΔEFRET on hyperosmotic shock and hyperosmotic 
shock (Fig. S5) involves sequences where sufficient statistics exist to assess changes in FRET 
efficiency. Specifically for changes upon hyperosmotic shock (Fig. 4G, Fig. S10), this means 6/32 
sequences were excluded (6, 7, 10, 19, 23, 24). For changes upon hypo-osmotic shock (Fig. 
S10), this means 4/32 (10,19,23,24) were excluded. For correlations with radii of gyration (Rg) 
and end-to-end distances (Re) from coarse-grained simulations (Fig. 4G, Fig. S10), six highly 
charged sequences [9,10, 17, 18, 24, 32] were excluded. 

Limitations, drawbacks, and caveats of live cell imaging experiments 

As with any study, our work is not without limitations, drawbacks, and caveats.  

A potential critique of our work is the size of our library. At 32 sequences, the number of unique 
sequences we have compared here is much smaller than alternative approaches that leverage 
fluorescence-activated cell sorting (FACS) and/or sequencing-based readouts for assay 
sequence-function relationships. While this is true, a major confounding factor in screen-based 
experimental setups such as ours is sequence-dependent changes in expression, mRNA stability, 
protein degradation, and subcellular localization. Our live-cell approach, while medium 
throughput, allows us to systematically and rigorously assess all these factors and ensure our 
conclusions are based on protein-dependent effects corrected for abundance and subcellular 
localization.  

While we interpret our positively charged sequences as interacting with intracellular polyanions, 
we are unable at this stage to identify the specific identities of what these anions may be. Based 
on prior work, we anticipate these anions to be RNA5. Future work  – likely mass spectrometry-
based – will be required to elucidate the specific components that engage with synthetic IDRs. 
This is an area of active interest and ongoing work. 

One alternative explanation for why positively charged IDRs are more compact may lie in the 
experimental setup. Although the use of FPs in our FRET assay allows for rapid characterization 
of ensemble dimensions in live cells, the presence of N- and C-terminal folded domains could 
perturb IDR dimensions in comparison to IDRs without adjacent FPs. We reason that, at least for 



some sequences, the FP:IDR interaction could overrule the intra-IDR interactions in terms of 
determining ensemble dimensions. To minimize the probability of this impacting our overall 
results, we designed our experiments and analysis to focus on pairs or triplets of sequences with 
similar features. That said, the majority (~95%) of IDRs are found directly adjacent to folded 
domains, such that even if FP-mediated interactions influence our trends, that perturbation is 
biologically relevant6,7. 
 
Another alternative explanation is that the residual secondary structure in our IDRs underlies 
some of the behavior observed. However, our computational analysis provides no strong 
evidence this is the case (Fig. S12) for either the overall basal FRET efficiencies or distinct 
response profiles to hyper or hypo-osmotic shock. 
 
Finally, whether or not our conclusions here hold true across all cell types remains an open 
question. Our focus here on U2OS cells reflects their convenience for imaging and broad use in 
biomedical research. While we anticipate the general conclusions drawn here to hold true in 
different cell types, this is something that should be explicitly tested.  
 
GOOSE: a software package for the design of disordered sequences 

The sequences used in this manuscript were designed using the Python (version 3.7+) package 
GOOSE (https://github.com/idptools/goose). GOOSE (Generate disOrdered prOtiens Specifying 
propErties) continues our goal of pushing the frontiers of acronym technology, but also 
implements a novel software package developed as part of this manuscript for the rational design 
of intrinsically disordered protein regions with bespoke sequence properties.  

GOOSE uses sparrow (https://github.com/idptools/sparrow/) to calculate sequence properties. 
Ensemble predictions used for the design of IDRs with a desired radius of gyration or end-to-end 
distance uses ALBATROSS, as implemented in sparrow8. ALBATROSS is a deep-learning tool 
for predicting ensemble-average IDR dimensions directly from sequence and was parameterized 
based on coarse-grained simulations performed with a modified variant of the Mpipi model9. 

GOOSE enables the design of fully synthetic sequences based on requested design constraints, 
as well as systematic perturbations to existing sequence variants. In this way, GOOSE is poised 
to facilitate the rational design of small numbers of sequences but can also be used to create 
libraries of thousands of sequences for systematic investigation of sequence-ensemble and 
sequence-function properties. A key feature of GOOSE is that it takes advantage of the 
metapredict (V2-FF) backend to ensure rapid and accurate assessment of disorder propensity for 
designed sequences. The development of a fast and accurate disorder predictor (1000s 
seconds/sequence with state-of-the-art accuracy10) was essential to enable high-throughput 
library design. 

GOOSE is open source and can be used as a Python library or within a Google Colab notebook 
(https://colab.research.google.com/drive/1U9B-
TfoNEZbbjhPUG5lrMPS0JL0nDB3o?usp=sharing). We provided extensive documentation 



(https://goose.readthedocs.io/en/latest/index.html), which is not reproduced in this supplementary 
information due to length but can be readily accessed through the web.  

Functionally, GOOSE relies on a stochastic design algorithm, which enables GOOSE to generate 
unique sequences, even if numerous sequence properties are specified. Sequence generation 
starts with the creation of a ‘base sequence’ that comes close to satisfying user-specified input 
parameters. From here, various functions are used to fine-tune the sequence such that the 
sequence parameters match the input parameters. Then, optimization functions are employed to 
optimize for sequence disorder while maintaining any sequence parameter constraints. Finally, 
the sequence is checked for predicted disorder using Metapredict V2-FF8,11. GOOSE includes 
functionality to generate sequences by specifying sequence properties, fractions of amino acids, 
radius of gyration, or end-to-end distance, and GOOSE can generate various types of sequence 
variants from a starting IDR sequence of interest. Table S2 summarizes the types of sequence 
designs that can be enabled via GOOSE. 

GOOSE documentation is provided through ReadTheDocs (https://about.readthedocs.com/) and 
Sphinx (https://www.sphinx-doc.org/en/master/), with unit testing provided by PyTest 
(https://docs.pytest.org/). Version control is done via Git (https://git-scm.com/) and GitHub 
(https://github.com/). GOOSE uses metapredict11 (V2-FF) for disorder prediction, as well as 
Numpy, SciPy, and PyTorch (https://pytorch.org/) for various internal functions4,12. GOOSE 
continues to be in active development, and new features will be added regularly. The version 
associated with this manuscript is version 0.1.2 at the time of submission. 

Sequence designs in this paper 

For this paper, sequence generation by specifying sequence properties functionality was used for 
sequence design. In particular, sequences were designed with the following quantized sequence 
properties: NCPR of –0.6, –0.3, 0.0, +0.3, +0.6, FRC of 0.0, 0.3, or 0.6, Kyte-Doolittle 
hydrophobicity of 1.0 or 3.0 (on a 0-to-9 scale), and kappa [κ] (a measure of charge patterning, 
see Fig. S4) was set to be between 0.05 and 0.22 (low-to-average, depending on sequence 
composition) and then above 0.5 for highly clustered sequences. The quantization of charged 
residues was selected to match specific regions on the Das-Pappu diagram of states, enabling 
the exploration of IDRs with distinct charge properties (Fig. S18)13,14. The quantization of 
hydrophobicity (and 1.0 or 3.0) was selected for two reasons. Firstly, keeping hydrophobicity low 
minimizes the risk of our synthetic IDRs triggering the unfolded protein response. Secondly, 
because hydrophobicity is intrinsically coupled with FRC, enabling the FCR and hydrophobicity 
to be independently varied required lower hydrophobicity scores to accommodate highly charged 
sequences. Finally (and expected), all designed sequences are strongly predicted to be 
disordered (Fig. S19).  

Given the scope of sequence space for 60-residue disordered proteins (a conservative lower 
bound of 6010) and the relatively low-throughput experimental characterization employed here to 
ensure high-quality data is reported, we opted to approach our design problem in terms of 
designing sets of pairs of sequences (Table S3). Each pair enables the specific comparison of 
one sequence parameter by holding others fixed while varying one specific parameter (e.g., net 
charge, hydrophobicity, etc). By designing our library to multiplex distinct hypotheses, the same 



sequences could be members of multiple pairs, enabling us to systematically test a collection of 
hypotheses with a relatively low number of sequences.  

Applications of GOOSE 

While the backend of GOOSE is a relatively large software package, the user-facing functionality 
was designed to provide a minimalist interface that makes systematic titration of specific 
sequence properties straightforward, abstracting the complexities of sequence design entirely 
from the user. 

We have previously used GOOSE to design libraries of thousands of sequences which, when 
used in conjunction with molecular dynamics simulations, provided input data for deep learning 
models. While it is common to use natural sequences when performing high-throughput 
computational or experimental studies, natural sequences only explore small slithers of the 
potential sequence space available to polypeptides. As such, we have found that combining 
natural sequences (which effectively biases a library towards biologically relevant sequences) 
with fully synthetic sequences enables a much wider exploration of sequence space. 

Helicity prediction 

Helicity prediction (Fig. S12) was performed using JPred4 in batch mode15.  

Bioinformatic analysis 

Bioinformatic sequence analysis was performed using localCIDER13 and sparrow 
(https://github.com/idptools/sparrow/). Disorder prediction shown in Fig. 1 and in Fig. S18 was 
performed using metapredict (V2-FF)8,11. Protein sequences were obtained from UniProt16 and 
download September 2023, and reflect the following proteomes: UP000000589 (Mus musculus, 
TaxonID: 10090), UP000000803 (Drosophila melanogaster, TaxonID:7227), UP000001805 
(Neurospora crassa OR74A, TaxonID: 367110), UP000001940 (Caenorhabditis elegans, 
TaxonID:6239), UP000002311 (Saccharomyces cerevisiae S288C, TaxonID:559292), 
UP000005640 (Homo sapiens, TaxonID:9606), and UP000006548 (Arabidopsis thaliana, 
TaxonID:3702). All IDRs for all organisms are precomputed and provided in the shared GitHub 
directory. 

Coarse-grained simulations  

Coarse-grained molecular dynamics simulations were performed using the LAMMPS simulation 
engine17 using a modified version of the Mpipi9 parameters, Mpipi-GG8. Starting positions for IDRs 
were generated by assembling beads as a random coil in the excluded volume limit (i.e., where 
beads do not overlap). From this position, an energy minimization protocol was carried out with a 
maximum of 1,000 iterations. Simulations were then carried out with an implicit salt concentration 
of 150 mM and a temperature of 300 K. Simulation analysis was performed using MDTraj18 and 
SOURSOP19.  

 



For simulations of each of the 32 main sequences (60 residues, Fig. S11), all sequences were 
run in triplicate for 50,000,000 steps with a 10 femtosecond timestep for a total of 1.5 µs per 
sequence. The first 1,000,000 steps for each simulation were discarded as equilibration. After 
equilibration, output coordinate positions for each trajectory were recorded at intervals of 10,000 
steps, for a total of 4,900 recorded steps per individual simulation. This simulation length was 
chosen based on prior work to benchmark appropriate simulation lengths to obtain robust 
conformational sampling8. Error bars (shown in Fig. S11) show that the variability between 
independent replicas is very small (on the order of the marker size in the figure), confirming that 
simulations sufficiently sample the conformational landscape. The simulation used a 500 Å3 box 
with periodic boundary conditions. 

For simulations of IDR designed to match specific radii of gyration or end-to-end distances (200 
residues, Fig. S14), all sequences were run in triplicate for 200,000,000 steps with a 20 
femtoseconds timestep for a total of 12 µs per sequence. The first 1,000,000 steps for each 
simulation were discarded as equilibration. After equilibration, output coordinate positions for each 
trajectory were recorded at intervals of 100,000 steps, for a total of 1,990 recorded steps per 
simulation. This simulation length was chosen based on prior work to benchmark appropriate 
simulation lengths to obtain robust conformational sampling8. Error bars (shown in Fig. S14) show 
that the variability between independent replicas is very small (on the order of the marker size in 
the figure), again confirming that simulations sufficiently sample the conformational landscape. 
The simulation used a 500 Å3 box with periodic boundary conditions. 

Limitations, drawbacks, and caveats of GOOSE 

GOOSE was designed to generate fully synthetic IDR sequences. In the current version of  
GOOSE (0.1.2), we do not constrain for predicted secondary structure, operating under the 
assumption that sequences with a strong tendency towards disorder prediction will – in isolation 
– be largely disordered. That said, GOOSE does offer the ability to check for predicted helicity if 
this is a possible confounding factor of concern.  

Secondly, rationally designed sequences may possess motifs or sequence features that make 
them good targets for phosphorylation, degradation, or unexpected interaction with cellular 
components. This is not a “limitation” in as much as our goal in GOOSE is to generate fully 
synthetic sequences and variants, but it is a factor that should be considered when designing 
libraries.  

Sequences designed to match specific ensemble properties (i.e., the radius of gyration or end-to-
end distance) make use of ALBATROSS, our deep-learning tool for sequence-ensemble 
prediction. ALBATROSS enables the rapid prediction of ensemble dimensions from sequence8. 
While ALBATROSS is reasonably accurate, it is certainly not perfect. For sequences with 
substantial secondary structure or that are extreme in terms of composition or sequence 
patterning, ALBATROSS may be less accurate. With this in mind, we encourage scrutiny and 
skepticism when designing sequences with extreme values in terms of both sequence properties 
and predicted dimensions.  



GOOSE does not currently offer the ability to optimize nucleotide sequences to minimize repetitive 
sequences at the DNA level and/or codon optimization for a specific organism. Given the 
repetitive nature of some IDRs, we plan to introduce this feature going forward, but for now, 
nucleotide sequence optimization must be done independently of protein sequence design.  

Finally, recent complementary work by Strome et al. offers the ability to design IDRs to match 
bulk sequence properties against IDRs of a specific biological class or group20. This approach is 
conceptually distinct from ours and enables a different set of questions to be asked (i.e., designing 
synthetic IDRs to ‘mimic’ a large set of sequence features). We see this as highly complementary 
to our own work. In parallel, work by Pesce et al. has recently shown the ability to design IDRs 
with specific ensemble properties21. GOOSE does enable a similar feature but unlike the work by 
Pesce et al. GOOSE is limited to designing sequences with specified ensemble-average 
properties only, whereas, in principle, the Pesce et al. approach could be used to design 
sequences with specific local and global conformational biases. Again, this work is highly 
complementary to ours, highlighting the growing importance of IDR design as an approach for 
synthetic biology and basic science.  

Data availability  

GOOSE source code is available at https://github.com/idptools/goose/  

GOOSE documentation is available at https://goose.readthedocs.io/  

Data and analysis scripts used for figures and analysis in this paper are available at 
https://github.com/holehouse-lab/supportingdata/tree/master/2023/emenecker_guadalupe_2023 
and also at https://github.com/sukeniklab/emenecker_guadalupe_2023.  

 

 

 

 

 
 
 
  



SUPPLEMENTARY TABLES 
 
Table S1: Sequences and parameters. Columns reported here include the Fraction of Charged 
Residues (FCR), Net Charge Per Residue (NCPR), charge-distribution metric kappa (κ), Kyte-
Doolittle hydrophobicity (H), and average disorder prediction (Disorder). Note that a sequence 
must have both positive and negative residues for κ to be calculated, otherwise is reported as -1. 
Disorder here is calculated as the average disorder score as predicted by metapredict11. 
 

# Sequence FCR NCPR κ H Disorder 

1 
QNNNQQQNQQNQNNQNNNQNNNNQNQNNQQQQNQQQN
NNQQQNNQQNNNNQQQNNNQNNN 0 0 -1 1 0.88 

2 
THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGG
HGGSTTQSHSNGSATGQHGSSGP 0 0 -1 3 0.89 

3 
THNHHSTGTGHHHGSHSHTHTTSHHGTGGGHGGSTTQ
SHSNGSTGQHGSSGPPPPPPPAP 0 0 -1 3 0.91 

4 
THNHHGPSTGTGPHHHGSPHSHTHPTTSHHPGTGGGP
HGGSTPTQSHSANGSTGPQHGSS 0 0 -1 3 0.9 

5 
HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQ
DDENQDDDQQDEDQNEDEQQDDE 0.3 -0.3 -1 1 0.94 

6 
EDDEHNNQDQQQQENNQNDNQNQDQNNQDNNNNNQQQ
EQNQQDQQNQDQQQNDQQEEDED 0.3 -0.3 -1 1 0.92 

7 
KKKRSGQNRNQNNRQQQQKNQNQRQNQNKNNQQNQNN
ENNNNDNNQQENNQQENQDDDDD 0.3 0 0.53 1 0.92 

8 
REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNN
DNNNNKNNQQDNNQQRNQEKDKD 0.3 0 0.13 1 0.95 

9 
KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQ
NQQQQHHNQQNNQNNPNNNNHHP 0.3 +0.3 -1 1 0.85 

10 
KRKKSGHHKHQQHRQQQNKQNNNRNNQNKQQQQHHNQ
KQNNQRNNPNRNNNHRHPKKRKR 0.3 +0.3 -1 1 0.9 

11 
GQSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGT
DDEGTDDETADDDSTDEEGSDED 0.3 -0.3 -1 3 0.94 

12 
EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSST
DTSGGEGTGTDTASTDGSEEDED 0.3 -0.3 -1 3 0.94 



13 
KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSS
ESGSSDSSSAETASSDSSDEEEE 0.3 0 0.53 3 0.95 

14 
KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSS
ESGSSRSSSAKTASSESSERRED 0.3 0 0.13 3 0.95 

15 
GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSS
SDKEKDREAKERDAREREKEAAR 0.3 0 0.01 3 0.89 

16 
GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDS
SASGRSSESSRSTESSKSSEAAR 0.3 0 0.06 3 0.95 

17 
KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGST
TSSATASASSSSSSSGAGATGGS 0.3 +0.3 -1 3 0.94 

18 
KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASAS
RSSSSRSSGARGATGKGSRRKRR 0.3 +0.3 -1 3 0.94 

19 
KKRKAHHNKNNQNRQNNNRNQNQRNQNQKNQQQDDEE
EDDDDDDDEEDDDDDDDDDDDEE 0.6 -0.3 0.84 1 0.95 

20 
DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQ
RDDNQERENQDEDNQDDDQQRDD 0.6 -0.3 0.19 1 0.97 

21 
KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENP
EDDNNDDEQQDEEQHEDEPQEEE 0.6 0 0.64 1 0.96 

22 
DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNP
DDRNNDRKQQEREQHRDEPQDRE 0.6 0 0.06 1 0.96 

23 
RRRKKKKTKRRKMRKRRPRKKRNKRKRPRRRKPQQNN
EQQNNDNQNNENQNSDQSEDDDD 0.6 +0.3 0.72 1 0.94 

24 
DDRTMRRKPNKKEPPRRRQQKKDNNRRKQQNNRRENQ
RRDNNRKKNQKKRNSKKDQSRDE 0.6 +0.3 0.22 1 0.91 

25 
KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDE
EEEEDDDEDDDDDEEDEDDDDDD 0.6 -0.3 0.84 3 0.86 

26 
DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDA
SVDEVAPREVSGERDRDKDEDED 0.6 -0.3 0.16 3 0.92 

27 
KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVP
EDDVVDDDGSDDDVSDDEAVDEE 0.6 0 0.64 3 0.88 

28 
EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVP
DEKVVRDKGSDREVSEKKAVKRD 0.6 0 0.06 3 0.9 



29 
SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDR
DVPDEKVVRDKDREVEKKAVKRD 0.6 0 0.05 3 0.84 

30 
SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDR
DVPDEKVVRDKDREVEKKAVKRD 0.6 0 0.05 3 0.86 

31 
KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVG
EAVAADSAVADAVVVDSADDDDD 0.6 0.3 0.72 3 0.76 

32 
KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSA
RKDVADEKAVRDRVVKRKSADRK 0.6 0.3 0.18 3 0.61 

 
 
Table S2: Summary of GOOSE design options 
 

Goose function Description 

sequence() 

De novo sequence generation. Function that allows 
disordered sequence generation by specifying length, 
hydropathy (optional), FCR (optional), NCPR (optional), 
and kappa (optional). Any properties not specified will be 
unconstrained during sequence generation and will 
change from sequence to sequence if multiple sequences 
are generated. 

seq_fractions() 

De novo sequence generation. Function that allows 
disordered sequence generation by specifying the 
fractions of amino acids. Multiple fractions can be 
specified. Any amino acids not specified will be   
unconstrained during sequence generation and will 
change from sequence to sequence if multiple sequences 
are generated. 

seq_re() 
De novo sequence generation. Function that allows 
disordered sequence generation by specifying sequence 
length and end-to-end distance.  

seq_rg() 
De novo sequence generation. Function that allows 
disordered sequence generation by specifying sequence 
length and the radius of gyration. 

constant_class_var() 

Variant generator. Function that allows the creation of 
variants with the same overall bulk properties (FCR, 
NCPR, hydropathy, kappa) as the input variant as well as 
the same order and number of amino acids, as grouped 
by class (see Table S4). Variants will have different amino 
acid identities while keeping everything else constant. 



new_seq_constant_class_var() 

Variant generator. Function that allows the creation of 
variants where the sequence composition is new, but the 
numbers of each residue from each class and the overall 
properties (FCR, NCPR, hydrophobicity) are the same. 
Unlike variants generated by the constant_class_var() 
function, the order of the amino acids (in terms of class) is 
not preserved. 

constant_properties_var() 
Variant generator. Function that allows the creation of 
variants where only the sequence properties (FCR, 
NCPR, hydrophobicity, kappa) are constrained. There are 
no constraints on classes of amino acids. 

constant_residue_var() 

Variant generator. Function that allows the creation of 
variants where specific (user-specified) residues are held 
constant by position and number. The variant will have the 
same overall bulk properties (FCR, NCPR, hydrophobicity) 
as the original sequence. 

shuffle_var() 
Variant generator. Function that allows the creation of 
variants where specific regions of an IDR are shuffled. 
Multiple regions can be specified simultaneously. 

excluded_shuffle_var() 

Variant generator. Function that allows the creation of 
variants where an entire sequence is shuffled except for 
user-specific residues. Note this is not the reciprocal of 
shuffle_var(), which operates in terms of regions instead 
of residues. 

targeted_shuffle_var() 
Variant generator. Function that allows the creation of 
variants where only user-specified residues are shuffled. 
Any residues not specified will not be shuffled. 

asymmetry_var() 

Variant generator. Function that allows the creation of 
variants where a class of residues (or a user-specified list 
of residue identities) is changed to become more 
asymmetrically or less asymmetrically distributed 
throughout the sequence. Does NOT change sequence 
composition. 

hydro_class_var() 

Variant generator. Function that allows the creation of 
variants where, like the constant_class_var() function, the 
overall sequence properties (FCR, NCPR, kappa), the 
order, and the number of amino acids according to each 
class is held constant, however, the hydropathy can be 
increased or decreased (within the inherent constraints 
imposed by the class constraint). 

fcr_class_var() 
Variant generator. Function that allows the creation of 
variants where variants adjust the FCR while minimizing 
changes to the position and number of amino acids by 



class. 

ncpr_class_var() 
Variant generator. Function that allows the creation of 
variants where variants adjust the NCPR while minimizing 
changes to the position and number of amino acids by 
class. 

kappa_var() 

Variant generator. Function that allows the creation of 
variants where the charge asymmetry is altered by 
changing the sequence’s kappa value. Requires that both 
positively charged and negatively charged residues are 
found in the original sequence.  

all_props_class_var() 
Variant generator. Function that allows the creation of 
sequence variants that adjust the FCR, NCPR, 
hydropathy, and kappa values while minimizing changes 
to the position and number of amino acids by class. 

re_var() 
Variant generator. Function that allows the creation of 
sequence variants that adjust the sequence radius of 
gyration (Rg). 

rg_var() 
Variant generator. Function that allows the creation of 
sequence variants that adjust the sequence end-to-end 
distance (Re). 

seq_property_library() 
Library generator. Function that generates a library of 
sequences that span a range of user-specified properties 
including length, FCR, NCPR, hydropathy, and kappa.  

seq_fractions_library() 
Library generator. Function that generates a library of 
sequences that span a range of user-specified fractions of 
amino acids. Multiple fractions can be specified 
simultaneously.  

 
 
 
Table S3: All sequence pairs compared in Fig. 2 and Fig. 3 
 

2C 6  EDDEHNNQDQQQQENNQNDNQNQDQNNQDNNNNNQQQEQNQQDQQNQDQQQNDQQEEDED 
20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD 
  
12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED 
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED 
  
10 KRKKSGHHKHQQHRQQQNKQNNNRNNQNKQQQQHHNQKQNNQRNNPNRNNNHRHPKKRKR 
24 DDRTMRRKPNKKEPPRRRQQKKDNNRRKQQNNRRENQRRDNNRKKNQKKRNSKKDQSRDE 
  
18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR 
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK 



 

2D 5  HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQDDENQDDDQQDEDQNEDEQQDDE 
19 KKRKAHHNKNNQNRQNNNRNQNQRNQNQKNQQQDDEEEDDDDDDDEEDDDDDDDDDDDEE 
  
11 GQSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED 
25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD 
  
9  KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQNQQQQHHNQQNNQNNPNNNNHHP 
23 RRRKKKKTKRRKMRKRRPRKKRNKRKRPRRRKPQQNNEQQNNDNQNNENQNSDQSEDDDD 
  
17 KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS 
31 KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD 
 

2E 8  REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 
22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDEPQDRE 
  
14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED 
28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD 
  
7  KKKRSGQNRNQNNRQQQQKNQNQRQNQNKNNQQNQNNENNNNDNNQQENNQQENQDDDDD 
21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDEPQEEE 
  
9  KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQNQQQQHHNQQNNQNNPNNNNHHP 
23 RRRKKKKTKRRKMRKRRPRKKRNKRKRPRRRKPQQNNEQQNNDNQNNENQNSDQSEDDDD 
 

2F 6  EDDEHNNQDQQQQENNQNDNQNQDQNNQDNNNNNQQQEQNQQDQQNQDQQQNDQQEEDED 
8  REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 
10 KRKKSGHHKHQQHRQQQNKQNNNRNNQNKQQQQHHNQKQNNQRNNPNRNNNHRHPKKRKR 
  
12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED 
14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED 
18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR 
  
5  HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQDDENQDDDQQDEDQNEDEQQDDE 
7  KKKRSGQNRNQNNRQQQQKNQNQRQNQNKNNQQNQNNENNNNDNNQQENNQQENQDDDDD 
9  KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQNQQQQHHNQQNNQNNPNNNNHHP 
 

2G 20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD 
22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDEPQDRE 
24 DDRTMRRKPNKKEPPRRRQQKKDNNRRKQQNNRRENQRRDNNRKKNQKKRNSKKDQSRDE 
  
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED 
28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD 
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK 
 

3B 6  EDDEHNNQDQQQQENNQNDNQNQDQNNQDNNNNNQQQEQNQQDQQNQDQQQNDQQEEDED 
12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED 
  



20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD 
26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED 
  
19 KKRKAHHNKNNQNRQNNNRNQNQRNQNQKNQQQDDEEEDDDDDDDEEDDDDDDDDDDDEE 
25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD 
  
1  QNNNQQQNQQNQNNQNNNQNNNNQNQNNQQQQNQQQNNNQQQNNQQNNNNQQQNNNQNNN 
2  THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGQHGSSGP 
  
7  KKKRSGQNRNQNNRQQQQKNQNQRQNQNKNNQQNQNNENNNNDNNQQENNQQENQDDDDD 
13 KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE 
  
10 KRKKSGHHKHQQHRQQQNKQNNNRNNQNKQQQQHHNQKQNNQRNNPNRNNNHRHPKKRKR 
18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR 
  
9  REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 
17 KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS 
  
24 DDRTMRRKPNKKEPPRRRQQKKDNNRRKQQNNRRENQRRDNNRKKNQKKRNSKKDQSRDE 
32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK 
 

3C 5  HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQDDENQDDDQQDEDQNEDEQQDDE 
11 GQSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED 
  
21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDEPQEEE 
27 KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE 
  
8  REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 
14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED 

22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDEPQDRE 
28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD 

 
 
Table S3 
Default amino acid classes used in GOOSE 
 

Class name Amino acids 

Aromatic F, W, Y 

Polar Q, N, S, T 

Positive K, R 

Negative D, E 

Hydrophobic I, V, L, A, M 

Polar C, P, G, H 



Note that in other contexts, G and H might be considered polar, and H may also be considered positive 
under depressed pH regimes. 
 
Table S4 
Default GOOSE parameters 
 

Parameter Default Value 

Minimum Length 10 

Maximum Length 10,000 

Maximum Hydropathy (Kyte-Doolittle Scale 
shifted scale of 0 to 9) 

6.1 

Disorder Threshold (metapredict V2) 0.5 

Max deviation from user-input hydropathy 0.07 

Max deviation from user-input kappa 0.03 

Number of attempts to make sequence 100 

Max Fraction A 0.95 

Max Fraction C 1.0 

Max Fraction D 1.0 

Max Fraction E 1.0 

Max Fraction F 1.0 

Max Fraction G 1.0 

Max Fraction H 1.0 

Max Fraction I 0.53 

Max Fraction K 1.0 

Max Fraction L 0.42 

Max Fraction M 0.62 

Max Fraction N 1.0 

Max Fraction P 1.0 

Max Fraction Q 1.0 

Max Fraction R 1.0 



Max Fraction S 1.0 

Max Fraction T 1.0 

Max Fraction V  0.71 

Max Fraction W 0.55 

Max Fraction Y 0.99 
Note: Maximum fractions were determined by attempting to generate a sequence of 100 amino acids in 
length at each fraction for every amino acid between the decimal fraction values of 0.01 to 1.00. For each 
fraction value, the sequence was populated with the necessary number of the amino acids of interest, and 
then the rest of the sequence was generated by populating the sequence with any amino acid other than 
the amino acid that had its maximum fraction determined. 500,000 sequences were attempted at each 
fractional value and then checked to be disordered using metapredict V2 with a cutoff of 0.5.  
 
Table S5 Sequences that show naive response (expand) under hypo-osmotic shock (100 mOsm) 
 

Sequence ID Sequence 

4 THNHHGPSTGTGPHHHGSPHSHTHPTTSHHPGTGGGPHGGSTPTQSHSANGSTGPQHGSS 

15 GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSSSDKEKDREAKERDAREREKEAAR 

26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED 

29 SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD 

30 SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD 

 
  



Table S6 Sequences that show insensitive response under hypo-osmotic shock (100 mOsm) 
 

Sequence ID Sequence 

1 QNNNQQQNQQNQNNQNNNQNNNNQNQNNQQQQNQQQNNNQQQNNQQNNNNQQQNNNQNNN 

2 THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGQHGSSGP 

3 THNHHSTGTGHHHGSHSHTHTTSHHGTGGGHGGSTTQSHSNGSTGQHGSSGPPPPPPPAP 

5 HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQDDENQDDDQQDEDQNEDEQQDDE 

6 EDDEHNNQDQQQQENNQNDNQNQDQNNQDNNNNNQQQEQNQQDQQNQDQQQNDQQEEDED 

7 KKKRSGQNRNQNNRQQQQKNQNQRQNQNKNNQQNQNNENNNNDNNQQENNQQENQDDDDD 

8 REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 

11 GQSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED 

12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED 

13 KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE 

14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED 

16 GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDSSASGRSSESSRSTESSKSSEAA 

20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD 

21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDEPQEEE 

22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDEPQDRE 

27 KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE 

28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD 

31 KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD 

32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK 

 
  



Table S7 Sequences that show inverse response (compact) under hypo-osmotic shock (100 
mOsm) 
 

Sequence ID Sequence 

9 KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQNQQQQHHNQQNNQNNPNNNNHHP 

17 KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS 

18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR 

25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD 

 
Table S8 Sequences that show naive response (compact) under hyper-osmotic shock (750 
mOsm) 
 

Sequence ID Sequence 

1 QNNNQQQNQQNQNNQNNNQNNNNQNQNNQQQQNQQQNNNQQQNNQQNNNNQQQNNNQNNN 

2 THNHHSTPGTPGHHHPGSPHSPHPTHTTPSHHGTGGGHGGSTTQSHSNGSATGQHGSSGP 

3 THNHHSTGTGHHHGSHSHTHTTSHHGTGGGHGGSTTQSHSNGSTGQHGSSGPPPPPPPAP 

4 THNHHGPSTGTGPHHHGSPHSHTHPTTSHHPGTGGGPHGGSTPTQSHSANGSTGPQHGSS 

11 GQSTSTSWGGWGTSGSGGGTSSGGWSSTTSGGEDDGTDDEGTDDETADDDSTDEEGSDED 

14 KEDKGHTGDTGTGRGTTGRSSGAKGGSAETTTTSSSSESGSSRSSSAKTASSESSERRED 

15 GHTGTGTGGTTGSSGGGSTTTTSSSSSGSSSSSTSSSSDKEKDREAKERDAREREKEAAR 

16 GHDTGKTGETGKGTDTGRSSEGGAGSKTTETTRSSDSSASGRSSESSRSTESSKSSEAAR 

20 DKDAHDKRHNKEDNNKDDQNEDEQNDDDNNNQDEKNQRDDNQERENQDEDNQDDDQQRDD 

29 SSGSSGSSEKDAVDEKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD 

 
  



Table S9 Sequences that show insensitive response under hyper-osmotic shock (750 mOsm) 
 

Sequence ID Sequence 

5 HNNQQQQQNNQNNQNQQNNQNNNNNQQQQNQQEDEQQDDENQDDDQQDEDQNEDEQQDDE 

8 REKRSGQNKNQNNRQQQQDNQNQEQNQNDNNQQNQNNDNNNNKNNQQDNNQQRNQEKDKD 

12 EDDDGQSTESTSWDGGWGDTSGSDGGGTDSSGGWSSTDTSGGEGTGTDTASTDGSEEDED 

13 KKKKGHTGRTGTGRGTTGRSSGARGGSARTTTTSSSSESGSSDSSSAETASSDSSDEEEE 

21 KRKSNRRRPPRRKNNKKRPNRRRQQRKRNNPQDDENPEDDNNDDEQQDEEQHEDEPQEEE 

22 DDRSNERRPPERENNEKKPNEREQQDKKNNPQKRRNPDDRNNDRKQQEREQHRDEPQDRE 

25 KKKKMVVSRSVVGRAGMARSVVAKSVVARPVSGDDDEEEEEDDDEDDDDDEEDEDDDDDD 

26 DDKEMVDKDVSEEKSVDEDVGKRDAGDDDMASVVDDASVDEVAPREVSGERDRDKDEDED 

27 KRRAVKKKVAKRKSSRKKVVKKRGARKKSVSVDEDVPEDDVVDDDGSDDDVSDDEAVDEE 

28 EKDAVDEKVADKKSSKDKVVDDRGAKRDSVSVDRDVPDEKVVRDKGSDREVSEKKAVKRD 

30 SESKGDSASVGDSESKVADKKKDKVVDDRAKRDVVDRDVPDEKVVRDKDREVEKKAVKRD 

31 KRRKRKRVRKRRVKRKKAKRRRAKRRKVKKKRSAAVGEAVAADSAVADAVVVDSADDDDD 

32 KRKVVDRDAARRRVSDRKAAKDRVGKRKAVAARKKSARKDVADEKAVRDRVVKRKSADRK 

 
Table S10 Sequences that show inverse response (expand) under hyper-osmotic shock (750 
mOsm) 
 

Sequence ID Sequence 

9 KKRSGKRRHHKKRHQKRRQHRKKQQRKKQNQNNNNNQNQQQQHHNQQNNQNNPNNNNHHP 

17 KRRNQKRRGTRKRSGKRKGSRKRGARRKSTATATGSTTSSATASASSSSSSSGAGATGGS 

18 KRRKNQGTKSGGSKGASTRATATRGSTTKSSATASASRSSSSRSSGARGATGKGSRRKRR 

 
  



SUPPLEMENTARY FIGURES 
 

 
Figure S1. Global dimensions for disordered regions are relatively insensitive to individual 
point mutations. To assess IDR sensitivity to point mutations, we compared changes in the 
predicted radius of gyration (Rg) for 2000 randomly generated 200-residue disordered sequences 
in response to specific numbers of mutations. Specifically, for each sequence, we determine how 
the radius of gyration changes in response to 1, 10, 20, ..., 200 individual point mutations. Radii 
of gyration are predicted using ALBATROSS8.  In general, 1-10 mutations lead to relatively small 
changes in the overall dimensions. (A) The average change in Rg as compared to the starting 
sequence. Error bars show the standard deviation of the change in Å. (B) Percentage change in 
Rg from the starting sequence. Error bars show the standard deviation of the change by % 
difference. 
 
  



 
Figure S2. Overview of designed IDR library. The amino acid composition of all sequences is 
shown in terms of per-residue local chemistry. Red (negative) and Blue (positive) lines track local 
smoothed charge profiles for negatively charged (E/D) and positively charged (R/K) residues 
using a window size of 15 residues. Purple bars report on the location of proline residues, orange 
bars on the location of aromatic (Y/F/W) residues, and back bars on the location of aliphatic 
(I/L/V/M/A) residues These sequences are also provided in Table S1. 
 
 



 
Figure S3. Summarized in-cell FRET data for the GOOSE library. (A) FRET efficiencies (𝐸!) 
of all constructs used in this work measured in U2-OS cells. Each violin outline represents the 
data distribution of one repeat, containing at least 60 cells. Circles represent the average of the 
medians of all violins, and the error bars represent the standard deviation of all the medians. The 
red line and shaded region represent the median and the median 50% of 𝐸! for a glycine-serine 
repeat (GS)32. (B) Sequence features obtained from localcider13. FCR is the fraction of charged 
residues. NCPR is the net charge per residue. Hydropathy describes the mean hydropathy 
calculated from the Kyte-Doolittle hydrophobicity scale22. Kappa describes the charge 
distribution14. SCD is the sequence charge decoration23. Fraction disorder promoting describes 
the sequence’s fraction of residues which are considered disorder promoting24. Omega describes 
the patterning between charged/proline residues and all other residues25.  



 
Fig. S4. Charge patterning is important for IDRs. Charge patterning can be quantified by kappa 
(κ), a parameter that quantifies the difference in local charge polarity compared to the overall 
average of the sequence, normalized by the most segregated possible sequence. (A) 
Schematized reproduction of the original dependence of the radius of gyration (Rg) on κ as 
described by Das & Pappu, as shown for a set of thirty strong polyampholytic sequences with the 
same composition but different charge patterning14. (B) Sequences examined in panel A are 
shown in order of κ value, illustrating how increasing κ relates to the patterning of oppositely 
charged residues. 
 



 
 
Figure S5. Sequences show variable responses to changes in cell volume. Change in FRET 
efficiencies following osmotic challenge (𝛥𝐸! = 𝐸!)!*$& − 𝐸!)!*$&) measured in U2-OS cells. The 
x-axis reports the final osmotic pressure following the challenge, reported in mOsm. Each violin 
outline represents the data distribution of one repeat for hypo (blue), iso (grey), and hyper (red) 
conditions and contains at least 60 cells. The circle represents the average of all medians for that 
construct, and the error bars represent the standard deviation of the medians. P-values were 
determined by Student’s t-test where N’s were sufficiently high (**** = P < 0.00001, *** = P < 
0.0001, ** = P < 0.001, * = P < 0.01, ns = not significant). Sequences 10,19, 23, and 24 are 
excluded from the analysis in which change in FRET upon the change in cell volume is assessed. 
Furthermore, for sequences at 750 mOsm, we also excluded sequences 6 and 7 due to 
insufficient statistics. 
 



 
 
Figure S6. Pie charts summarizing Figure S5. Sequences were sorted into the following 
categories: naïve, insensitive, and inverse in response to hypo-osmotic (cell volume increase) 
and hyper-osmotic (cell volume decrease). The total number of sequences categorized under 
hypo-osmotic conditions as naïve, insensitive, and inverse were 5, 19, and 4 total sequences, 
respectively. The total number of sequences categorized under hyper-osmotic conditions as 
naïve, insensitive, and inverse were 10, 13, and 3, respectively. Specific sequence details for the 
categorized sequences are shown in Tables S5 - S10.    



 

 
Figure S7. IDRs show sequence-specific subcellular localization preferences. Log fold 
change of the acceptor’s fluorescence intensities between nucleus and cytoplasm 
(𝑙𝑜𝑔. &

/0'($01
'2*%3()14

'). U2-OS cells were imaged at 20x, and regions in the nucleus and cytoplasm for 

each cell were segmented and measured. Individual cells are shown as points, each box 
represents the 25th and 75th percentiles of the data, the whiskers show the minimum and 
maximum for each construct, and the median is shown as a black line. Box plots contain N > 20. 
Statistical significance is determined by a double-sided t-test against the subcellular localization 
ratio of (GS)32 shown as the red dashed line. The median 50 for (GS)32 is shown by the red shaded 
region. (**** = P < 0.00001, *** = P < 0.0001, ** = P < 0.001, * = P < 0.01, ns = not significant) 
(see also Fig. S16).    



 
 
Figure S8. The ratio between nuclear and cytoplasmic 𝐸! measurements. Figure features 
are as in Fig. S7, except the red line represents the corresponding 𝐸! value of (GS)32 shown as 
the red dashed line with the median 50 shown as the shaded region.  



 
 
Figure S9. The nucleo-cytoplasmic FRET ratio shows no strong correlation with the 
change in FRET upon hypo- or hyper-osmotic conditions. Correlations between changes in 
cell volume (𝛥𝐸! ) with subcellular FRET measurements for hypo-osmotic (left) and hyper-osmotic 
(right) conditions. The Pearson’s R2 value is shown on the bottom right of each panel. 
 
 



 

 
Figure S10. (A) Heatmap summarizing all sequence composition, sequence chemistry, 
conformational properties, functional properties, and cell properties for the complete library. (B) 
Ensemble dimension and sequence parameter correlations. The background of each plot 
corresponds to the correlation strength determined by Pearson’s R².  



 
Figure S11. Linear fit of live cell FRET efficiencies (𝐸!) vs. the simulated end-to-end distance 
(Ree) obtained from coarse-grained molecular dynamics simulations performed with the Mpipi 
forcefield9. Each scatter point is labeled with the sequence number used throughout the text. 
Simulation error bars are calculated as the standard error of the mean across three independent 
replicas. Experimental error bars are calculated as the standard deviation of the medians (see 
Fig. S17). The six major outliers (sequences #9, #10, #17, #18, #24, #32) are all highly positively 
charged (blue points) and show a higher basal FRET value, indicating they are more compact in 
cells than predicted by simulations. Outliers were not included in calculating the correlation 
coefficient. 
 
 
 
  



 
Figure S12. Predicted helicity potential for each sequence. We predicted per-residue helicity 
for each position using JPred415. Despite several sequences possessing local helicity, all 
sequences are strongly predicted to be disordered (Fig. S19).  Bar colors reflect sequence net 
charge (blue = positive, red = negative, grey = neutral), and the background color on each panel 
reflects the basal FRET efficiency. Sequences are rank-ordered by basal FRET efficiency (top-
left to right, snaking around), such that the top left is the most compact and the bottom right is the 
most expanded. Predicted transient helicity does not explain compaction in positively charged 
proteins. In the top twelve most compact sequences, 50% possess none or minimal predicted 
helicity, while several are predicted to be more helical. Moreover, in many specific pair 
comparisons, a change in predicted helicity has no impact on dimensions (e.g., Fig. 3B: #10 vs. 
#18 and #9 vs. #17) or loss of helicity leads to compaction instead of expansion (e.g., Fig. 2C: 
#18 vs. #32). Taken together, while conclusive evidence would require systematic biophysical 
characterization of each IDR in the context of our fluorescence proteins, we see no evidence to 
support a model in which secondary structure is a major determinant of IDR global dimensions.  



 
 

 
Figure S13. Proteome-wide hydrophobicity analysis. All IDRs longer than 60 amino acids 
were segmented into overlapping windows with a stepsize of 1, and the hydrophobicity within 
each window was calculated. The resulting histogram is plotted in blue. Designed sequences fall 
within the shaded region.  



 
Figure S14. GOOSE can make sequences with specified length and radius of gyration (Rg) 
or end-to-end distance (Re). All sequences generated were 200 amino acids in length. For Rg 

(A, C), two sequences with dimensions between 16 Å and 52 Å at intervals of 4Å (20 sequences 
total) were generated. A similar approach was used for specifying Re, except a range of between 
30Å and 66Å was used. After sequence generation, coarse-grain molecular dynamics simulations 
were run as described in the Methods. For bar plots (A, C), bars are equal to the mean of the 
average Rg or Re of the triplicate for each sequence, error bars are the standard deviation between 
the means for each triplicate, and the x-axis labels denote the Rg or Re specified for each sequence 
(two sequences per specified dimension). Red lines show the specified Rg or Re for the sequence 
during sequence generation. Each point on the scatter plots (B, D) shows the average dimension 
for each simulation triplicate for both sequences for the desired Rg or Re value (y-axis) with the 
specified dimension during sequence generation on the x-axis. The R2 values were calculated 
using the mean value of the triplicate for each sequence vs. the specified Rg or Re during 
sequence generation for each sequence.   
 



 

 
 
Figure S15. Histograms of the cell properties analyzed for this work for each of the 32 
library constructs. (A) Cell area, measured following segmentation. (B) Cell circularity, 
measured from the area of each cell. A circularity value of 1 is a perfect circle. (C) Relative 
expression levels of the FRET construct in each cell, as assessed by mNeonGreen emission 
under mNeonGreen excitation. 
 



 
 
Figure S16. Localization and ensemble features for (GS)32 reference in U2-OS cells. Glycine-
serine repeat ((GS)32) used for comparison. Boxplot features are as in Fig. S7. Points correspond 
to individual cells. Box plots contain N = 132 for the first and second box plots and N=26 for the 
last box plot.  



 
 
 

 
 
Figure S17. Visual explanation reporting how each violin plot was generated before 
performing statistical tests. Experiments were done on 96-well plates, and each well was 
considered one separate transfection (each colored violin here represents one well). Wells 
containing less than 60 cells were not included in the analysis. For each synthetic IDR sequence, 
the average and standard deviation of the medians from each well were used to obtain the 
average 𝐸! and standard deviation of that specific IDR sequence. Student’s t-test was performed 
between the calculated medians of the IDR sequences being compared (red points for both 
groups).   



 
 
 

 
Figure S18. Sequences explore a broad set of sequence space. All sequences are placed on 
a Das-Pappu diagram of states.  
 
  



 
Figure S19. Predicted per-residue disorder scores using metapredict. Bar colors reflect sequence 
net charge (blue = positive, red = negative, grey = neutral), and the background color on each 
panel reflects the basal FRET efficiency. Sequences are rank-ordered by basal EFRET (top-left 
to right, snaking around). All sequences are strongly predicted to be fully disordered.  
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