Table S1. IC50 values, MeA and structural information for training and prediction compounds
	Training/ Prediction
	Compound
	Isomeric SMILES
	Abbreviation
(drug)
	MoA
	Abbreviation
(MOA)
	IC50 (MTT)
	Pathway

	TRAINING
	3-Nitropropionic acid
	C(C[N+](=O)[O-])C(=O)O
	3-NP
	Complex II
Inhibitor (1, 2) 
	CPLX II
	7.02 mM
	Mitochondrial respiration

	
	Malonic acid
	C(C(=O)O)C(=O)O
	MALO
	
	
	7.13 mM
	

	
	Metformin
	CN(C(=N)N=C(N)N)C
	METF
	Complex I
Inhibitor (3, 4) 
	CPLX I
	16.68 mM
	

	
	Rotenone
	CC(=C)[C@H]1CC2=C(O1)C=CC3=C2O[C@@H]4COC5=CC(=C(C=C5[C@@H]4C3=O)OC)OC
	ROTN
	
	
	1.0 µM
	

	
	Antimycin A
	CCCCCC[C@@H]1[C@H]([C@@H](OC(=O)[C@H]([C@H](OC1=O)C)NC(=O)C2=C(C(=CC=C2)NC=O)O)C)OC(=O)CC(C)C
	AMYC
	Complex III
Inhibitor (4, 5) 
	CPLX III
	35.6 µM
	

	
	Atovaquone
	OC1=C([C@H]2CC[C@@H](CC2)C2=CC=C(Cl)C=C2)C(=O)C2=CC=CC=C2C1=O
	ATOV
	
	
	8.9 µM
	

	
	Potassium cyanide
	[C-]#N.[K+]
	CYAN
	Complex IV
inhibitor (6)
	CPLX IV
	11.6 mM
	

	
	Sodium azide
	[N-]=[N+]=[N-].[Na+]
	AZID
	
	
	9.27 mM
	

	
	2,4-Dinitrophenol
	C1=CC(=C(C=C1[N+](=O)[O-])[N+](=O)[O-])O
	2DNP
	Uncoupler (7, 8) 
	Uncoupler
	0.46 mM
	

	
	Emodin
	CC1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=C(C=C3O)O
	EMOD
	
	
	37.0 µM
	

	
	Carbonyl cyanide m-chlorophenyl hydrazone
	C1=CC(=CC(=C1)Cl)NN=C(C#N)C#N
	CCCP
	
	
	4.7 µM
	

	
	Lovastatin
	CC[C@H](C)C(=O)O[C@H]1C[C@H](C=C2[C@H]1[C@H]([C@H](C=C2)C)CC[C@@H]3C[C@H](CC(=O)O3)O)C
	LOVA
	HMG-CoA
reductase
inhibitor (9)
	HMG-CoAr
	1.2 µM
	Mevalonate Pathway

	
	Atorvastatin
	CC(C)C1=C(C(=C(N1CC[C@H](C[C@H](CC(=O)O)O)O)C2=CC=C(C=C2)F)C3=CC=CC=C3)C(=O)NC4=CC=CC=C4
	ATOR
	
	
	3.5 µM
	

	
	Fluvastatin
	CC(C)N1C2=CC=CC=C2C(=C1/C=C/[C@H](C[C@H](CC(=O)O)O)O)C3=CC=C(C=C3)F
	FLUV
	
	
	1.0  µM
	

	
	Paclitaxel
	CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@H]3[C@@H]([C@@](C2(C)C)(C[C@@H]1OC(=O)[C@@H]([C@H](C5=CC=CC=C5)NC(=O)C6=CC=CC=C6)O)O)OC(=O)C7=CC=CC=C7)(CO4)OC(=O)C)O)C)OC(=O)C
	PTXL
	Antimicrotubule (10, 11) 
	Antimicrotubule
	1.6 nM
	Cytoskeleton

	
	Vincristin
	CC[C@@]1(C[C@@H]2C[C@@](C3=C(CCN(C2)C1)C4=CC=CC=C4N3)(C5=C(C=C6C(=C5)[C@]78CCN9[C@H]7[C@@](C=CC9)([C@H]([C@@]([C@@H]8N6C=O)(C(=O)OC)O)OC(=O)C)CC)OC)C(=O)OC)O
	VINC
	
	
	0.9 nM
	

	
	Doxorubicin
	C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O
	DOXO
	Topoisomerase II inhibitor (12)
	TopoII
	1.2 µM
	DNA
replication

	
	Mitoxantrone
	OCCNCCNC1=C2C(=O)C3=C(O)C=CC(O)=C3C(=O)C2=C(NCCNCCO)C=C1
	MITO
	
	
	1.6 µM
	

	
	Etoposide
	C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O
	ETOP
	
	
	48.5 µM
	

	
	Irinotecan
	CCC1=C2CN3C(=CC4=C(C3=O)COC(=O)[C@@]4(CC)O)C2=NC5=C1C=C(C=C5)OC(=O)N6CCC(CC6)N7CCCCC7
	IRIN
	Topoisomerase I inhibitor (13)
	TopoI
	67.4 µM
	

	
	Camptothecin
	CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=CC5=CC=CC=C5N=C4C3=C2)O
	CMPT
	
	
	0.8 µM
	

	
	Daporinad
	C1CN(CCC1CCCCNC(=O)/C=C/C2=CN=CC=C2)C(=O)C3=CC=CC=C3
	FK866
	NAMPT
Inhibitor (14)
	NAMPT
	0.3 nM *
	NAD+ salvage

	
	GMX1778
	C1=CC(=CC=C1OCCCCCCN=C(NC#N)NC2=CC=NC=C2)Cl
	GMX
	
	
	0.1 nM *
	

	
	GNE617
	C1=CC(=CC=C1CNC(=O)C2=CN3C=CN=C3C=C2)S(=O)(=O)C4=CC(=CC(=C4)F)F
	GNE
	
	
	20.0 µM *
	

	
	Hexachlorophene
	CLC1CC(CL)C(C(C1O)CC1C(O)C(CL)CC(C1CL)CL)CL
	HEXA
	GDH
Inhibitor (15)
	GDH
	10.0 µM
	Glutaminolysis

	
	Bithionol
	CLC1CC(SC2CC(CL)CC(C2O)CL)C(C(C1)CL)O
	BITN
	
	
	31.3 µM
	

	
	Rapamycin
	C[C@@H]1CC[C@H]2C[C@@H](/C(=C/C=C/C=C/[C@H](C[C@H](C(=O)[C@@H]([C@@H](/C(=C/[C@H](C(=O)C[C@H](OC(=O)[C@@H]3CCCCN3C(=O)C(=O)[C@@]1(O2)O)[C@H](C)C[C@@H]4CC[C@H]([C@@H](C4)OC)O)C)/C)O)OC)C)C)/C)OC
	RAPA
	PI3K/mTOR
Inhibitor (16, 17)
	mTOR

	0.05 µM
	Signaling/ Protein phosphorylation

	
	Wortmannin
	CC(=O)O[C@@H]1C[C@]2([C@@H](CCC2=O)C3=C1[C@]4([C@H](OC(=O)C5=COC(=C54)C3=O)COC)C)C
	WRTN
	
	
	4.1 µM
	

	
	Alpelisib
	CC1=C(SC(=N1)NC(=O)N2CCC[C@H]2C(=O)N)C3=CC(=NC=C3)C(C)(C)C(F)(F)F
	ALPL
	
	
	26.1 µM
	

	
	Perifosine
	CCCCCCCCCCCCCCCCCCOP(=O)(OC1CC[N+](CC1)(C)C)[O-]
	PRFN
	AKT
Inhibitor (18, 19)
	AKT
	2.6 µM
	

	
	Oridonin
	CC1(CC[C@@H]([C@]23[C@@H]1[C@@H]([C@]([C@]45[C@H]2CC[C@H]([C@H]4O)C(=C)C5=O)(OC3)O)O)O)C
	ORID
	
	
	15.7 µM
	

	
	6-Aminonicotinamide
	NC(=O)C1CCC(N)NC1
	6-AN
	Inhibitor of
oxidative PPP (20, 21)
	OPP
	180.0 µM*
	NADPH biosynthesis

	
	glucose-6-phosphate dehydrogenase (G6PD) inhibitor-1
	C1CCC(=O)C2=CN=C(N=C2C1)NC3=CSC(=C3)C#N
	GPDi
	
	
	59.0 µM
	

	
	Maslinic acid
	C[C@@]12CC[C@@H]3[C@@]([C@H]1CC=C4[C@]2(CC[C@@]5([C@H]4CC(CC5)(C)C)C(=O)O)C)(C[C@H]([C@@H](C3(C)C)O)O)C
	MASA
	Putative CEPT1
Inhibitor (22)
	PLB
	57.6 µM
	Induce apoptosis

	
	Betulinic acid
	CC(=C)[C@@H]1CC[C@]2([C@H]1[C@H]3CC[C@@H]4[C@]5(CC[C@@H](C([C@@H]5CC[C@]4([C@@]3(CC2)C)C)(C)C)O)C)C(=O)O
	BETA
	
	
	19.8 µM
	

	
	11-Keto-beta-boswellic acid
	C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC(=O)[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@H]([C@]5(C)C(=O)O)O)C)C)[C@@H]2[C@H]1C)C)C
	BOWA
	
	
	76.4 µM
	

	
	Epigallocatechin gallate
	C1[C@H]([C@H](OC2=CC(=CC(=C21)O)O)C3=CC(=C(C(=C3)O)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O
	EGCG
	FASN
Inhibitor (23, 24)
	FAB
	61.4 µM
	Lipid biosynthesis

	
	Apigenin
	OC1CCC(CC1)C1CC(=O)C2C(O1)CC(CC2O)O
	APIG
	
	
	22.8 µM
	

	PREDICTION
	Breastin
	
	BRST
	Unknown
	
	1.5 µM

	
	AAHR
	C[C@@]12CC[C@]([C@@](COC(C)=O)(C)[C@H]3OC(C)=O)([H])[C@@](C[C@H]3OC(C)=O)(C)[C@@]1([H])CC=C4[C@@]2(C)CC[C@](CC5)(C(N6CCCN(C(C7=CC=CC=C7C(C8=C(C=C(N(CC)CC)C=C8)O9)=C(C=C/%10)C9=CC%10=[N+](CC)\CC)=O)CC6)=O)[C@@]4([H])[C@@H](C)[C@@H]5C.[Cl-]
	AAHR
	
	
	285 nM

	
	Cucurbitacin B
	CC(=O)OC(C)(C)/C=C/C(=O)[C@@](C)([C@H]1[C@@H](C[C@@]2([C@@]1(CC(=O)[C@@]3([C@H]2CC=C4[C@H]3C[C@@H](C(=O)C4(C)C)O)C)C)C)O)O
	QQrB
	
	
	30 nM

	
	Glycyrrhetinic acid
	C[C@]12CC[C@](C[C@H]1C3=CC(=O)[C@@H]4[C@]5(CC[C@@H](C([C@@H]5CC[C@]4([C@@]3(CC2)C)C)(C)C)O)C)(C)C(=O)O
	GLYA
	
	
	73.1 µM


*: CV results
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