

¹ Supporting Information for

² **Viscosity-dependent swimming patterns assist *Aliivibrio fischeri* for symbiont partner finding**

³ **Xiang-Yu Zhuang, Chao-Kai Tseng, and Chien-Jung Lo**

⁴ **Chien-Jung Lo.**

⁵ **E-mail: cjlo@phy.ncu.edu.tw**

⁶ **This PDF file includes:**

⁷ Supporting text

⁸ Figs. S1 to S6

⁹ Legends for Movies S1 to S2

¹⁰ SI References

¹¹ **Other supporting materials for this manuscript include the following:**

¹² Movies S1 to S2

13 **Supporting Information Text**

14 **Reconstructing image reference libraries of phase-contrast imaging system with real bacterial cells.** We employ a high-
15 throughput three-dimensional (3D) bacterial tracking method as originally described by Taute et al. (1). This technique relies
16 on phase-contrast 3D tracking, which is based on the generation of an induced asymmetric point spread function (PSF) for
17 determining the z-axis position (see Fig.S1A).

18 The images captured using a standard phase-contrast microscope are influenced by the optical path and the properties of
19 the optical objective. Two crucial parameters to consider are the refractive index of the specimen (denoted as n_2) and that of
20 the surrounding medium (n_1). It is important to note that the phase shift (δ), defined as $\delta = 2\pi \cdot \Delta/\lambda$, is a result of the optical
21 path difference (Δ), where $\Delta = (n_2 - n_1) \cdot t$. Here, t represents the thickness of the specimen, and λ denotes the wavelength of
22 the light used. To enhance image contrast, the phase shift is converted into an amplitude difference.

23 In their work, Taute et al. established a depth reference library using 1 μm silica beads (PSi-1.0, Kisker Biotech, Germany)
24 (1). It is worth noting, however, that there is a significant difference in refractive index between bacteria ($n = 1.384$) (2, 3) and
25 silica beads ($n = 1.445$) (4), as well as polystyrene beads ($n = 1.591$). When using 589 nm illumination light and considering
26 that the width of *A. fischeri* is 0.83 μm , the phase shifts (δ) for *A. fischeri*, 1 μm silica beads, and 1 μm polystyrene beads are
27 0.14 π , 0.38 π , and 0.87 π , respectively. Notably, there are significant discrepancies between the depth reference libraries of 1
28 μm polystyrene beads and *A. fischeri* (see Fig.S1B). This underscores the necessity of establishing dedicated bacterial depth
29 reference libraries for precise z-position determination.

30 **Mg²⁺-regulated flagella number.** The number of polar flagella in *A. fischeri* can be regulated by [Mg²⁺] (0-50 mM) without
31 impacting the cell growth and morphology. We conducted measurements of flagellar filament numbers and the distribution of
32 swimming speeds under various regulatory media (Fig.S2). The flagellar count exhibits a direct correlation with magnesium
33 concentration. At lower magnesium levels, *A. fischeri* tends to exhibit minimal growth and mainly has just a single flagellar
34 filament. In contrast, under marine conditions with a magnesium concentration of 50 mM, *A. fischeri* consistently develops
35 at least one or two flagella. The distribution of swimming speeds reveals two distinct populations, which can be effectively
36 described by fitting a bimodal Gaussian function to the speed probability density function (Fig.S2A). We observed that
37 swimming speed reached saturation when the [Na⁺] exceeded 30 mM. Typically, *A. fischeri* displays robust motility resembling
38 that observed in natural marine environments when [Mg²⁺] surpasses 2 mM. Regardless of flagellar number and energy
39 conditions, the faster swimming speed is approximately twice as rapid as the slower swimming speed (Fig.S2B).

40 **A high temporal-spatial resolution strobe fluorescence microscopy.** The flagellar rotation speed of *A. fischeri* surpasses 200
41 Hz, as determined through back-focal-plane interferometry. This implies that the flagellar motor completes one revolution in less
42 than 5 milliseconds. Conventional video-rate fluorescence imaging is unsuitable for capturing flagellar filament configurations
43 because prolonged excitation times lead to the accumulation of flagellar motion, resulting in blurred images ((Fig.S3, red
44 section)). Let's assume that ten observation points are needed to document a single rotation. In this case, the acquisition
45 rate should ideally exceed 2000 frames per second (fps) to provide a more detailed view of flagellar configurations. However,
46 cameras with such high frame rates and large fields of view can be expensive and may pose phototoxicity risks to the cells. On
47 the other hand, scientific complementary metal-oxide-semiconductor (sCMOS) cameras can achieve high frame rates up to
48 kilohertz by reducing the region of interest (ROI). Unfortunately, reducing the ROI size does not offer any advantage when
49 it comes to observing flagellar motion, as bacteria can quickly swim out of the observation field. The underlying concept of
50 strobe fluorescent microscopy is to minimize excitation time to freeze transient motion while maintaining the camera frame
51 rate (Fig.S3, green section). Strobe fluorescence microscopy can be readily implemented in standard fluorescence microscopes
52 equipped with high-power LED or laser illuminations. It serves as an effective method for real-time observation of bacterial
53 swimming modes.

54 **More transitions example.** We present examples of mode transitions, including transitions from push mode to wrap mode
55 (Fig.S4) and transitions from wrap mode to push mode (Fig.S5).

56 **Active particle model and Accumulation curves.** We provide a concise summary of the swimming dynamics of *A. fischeri*. In
57 low-viscosity environments, *A. fischeri* predominantly exhibits a switch between push-pull motions. As the viscosity of the
58 environment increases, the likelihood of *A. fischeri* entering wrap modes becomes more pronounced. For our analysis, we focus
59 exclusively on high-viscosity conditions, in which *A. fischeri* primarily displays push-wrap modes. Notably, our investigations
60 revealed that *A. fischeri* can undergo synchronized flagellar polymorphic transitions and flagellar motor switching during wrap
61 mode. To verify the advantages of this novel motility pattern in highly viscous environments, we constructed a mathematical
62 model and conducted Brownian dynamic simulations. The numerical simulation procedure can be summarized as follows:

- 63 1.) We consider two distinct swimming modes for *A. fischeri*: forward (push) and backward (wrap).
- 64 2.) The rotational states of flagellar motors adhere to the CCW-CW-CCW-CW sequential rule. The run time τ follows an
65 exponential distribution (5):

$$66 \quad f(\tau) = \frac{1}{\tau_0} \cdot e^{-\frac{\tau}{\tau_0}} \quad [1]$$

67 Here, τ_0 represents the mean run time, while τ_0^{CCW} and τ_0^{CW} denote the mean run times for CCW and CW rotations,
68 respectively.

69 3.) In our simplified model, *A. fischeri* initiates from the forward push mode (CCW, LH) and transitions to the backward
 70 wrap mode (CW, RH). During this phase, it has the option to either transit to another wrap mode (CCW, LH) with a
 71 probability of P_{sync} or return to push mode (CCW, LH) with a probability of $1-P_{sync}$.

72 4.) When *A. fischeri* undergoes reversal-like swim direction changes, such as push-to-wrap or wrap-to-push transitions, the
 73 turning angle follows an exponential distribution with a mean angle of 150° (6):

$$74 \quad f_\psi(\psi) = \frac{6}{\pi} \cdot e^{-\frac{6(\psi-\pi)}{\pi}} \quad [2]$$

75 Transitions between wrap modes (CW, RH) and (CCW, LH) do not impact the swimming direction.

76 5.) The spatial distribution of the attractant source is modeled as a time-independent 2-dimensional Gaussian distribution:

$$77 \quad C(r_a) = C_0 \cdot e^{-\frac{(r_a - r_0^{che})^2}{2\sigma^2}} \quad [3]$$

78 , where r_0^{che} and σ denote the attractant center and the standard deviation of the Gaussian distribution, respectively.

79 6.) When virtual cells sense attractant concentrations exceeding $0.1 \mu\text{M}$ (7), the average run time of CCW rotation (τ_0^{CCW})
 80 is determined by a gain function (8):

$$81 \quad (\tau_0^{CCW})_{che} = \tau_0^{CCW} \cdot \frac{A}{1 + Be^{-KC}} \quad [4]$$

82 Here, K represents the motor gain value, while A and B are parameters fitted to match our experimental data.

83 7.) If virtual cells sense an increase in attractant concentration, the CCW cycle follows the aforementioned rules. Otherwise,
 84 counterclockwise motion halts with a response time of 0.4 seconds (7). Furthermore, the saturating concentration of chemotactic
 85 receptors is limited to $100 \mu\text{M}$ (9).

86 8.) The positions of the cells are updated in accordance with the rules described above.

87 **Accumulation function.** The process of accumulation can be further analyzed as the accumulation of random walkers within a
 88 defined area. We assume that the probability of locating bacteria follows a 2-dimensional time-dependent Gaussian diffusion
 89 equation:

$$90 \quad n(r, t) = \frac{1}{4\pi Dt} \cdot e^{-\frac{(r - r_0^{cell})^2}{4Dt}} \quad [5]$$

91 Here, r represents the current position of bacteria, and r_0^{cell} denotes the initial position of the bacteria. We can then integrate
 92 this diffusion formula to obtain the accumulation probability within the attraction region \mathfrak{R} :

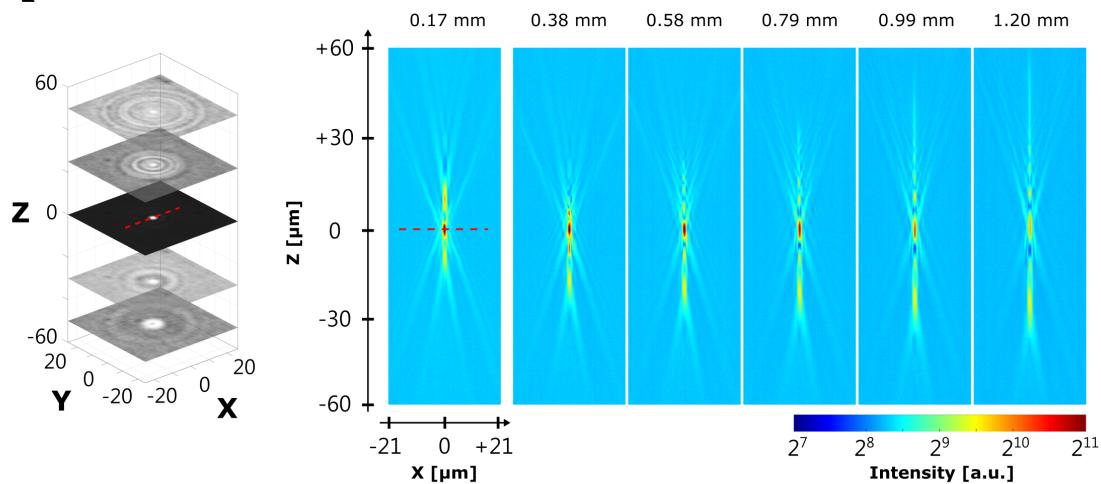
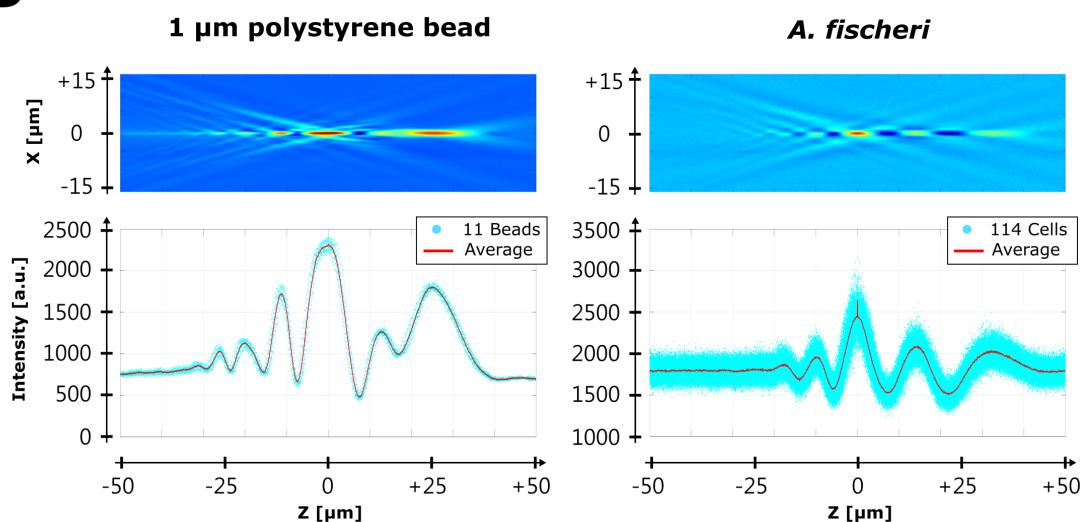
$$93 \quad N(\mathfrak{R}, t) = \int n(r, t) dt d\mathfrak{R} \quad [6]$$

94 We refer to $N(\mathfrak{R}, t)$ as the time-dependent accumulation function, and the attraction region \mathfrak{R} is defined as the region with
 95 the minimal attraction concentration:

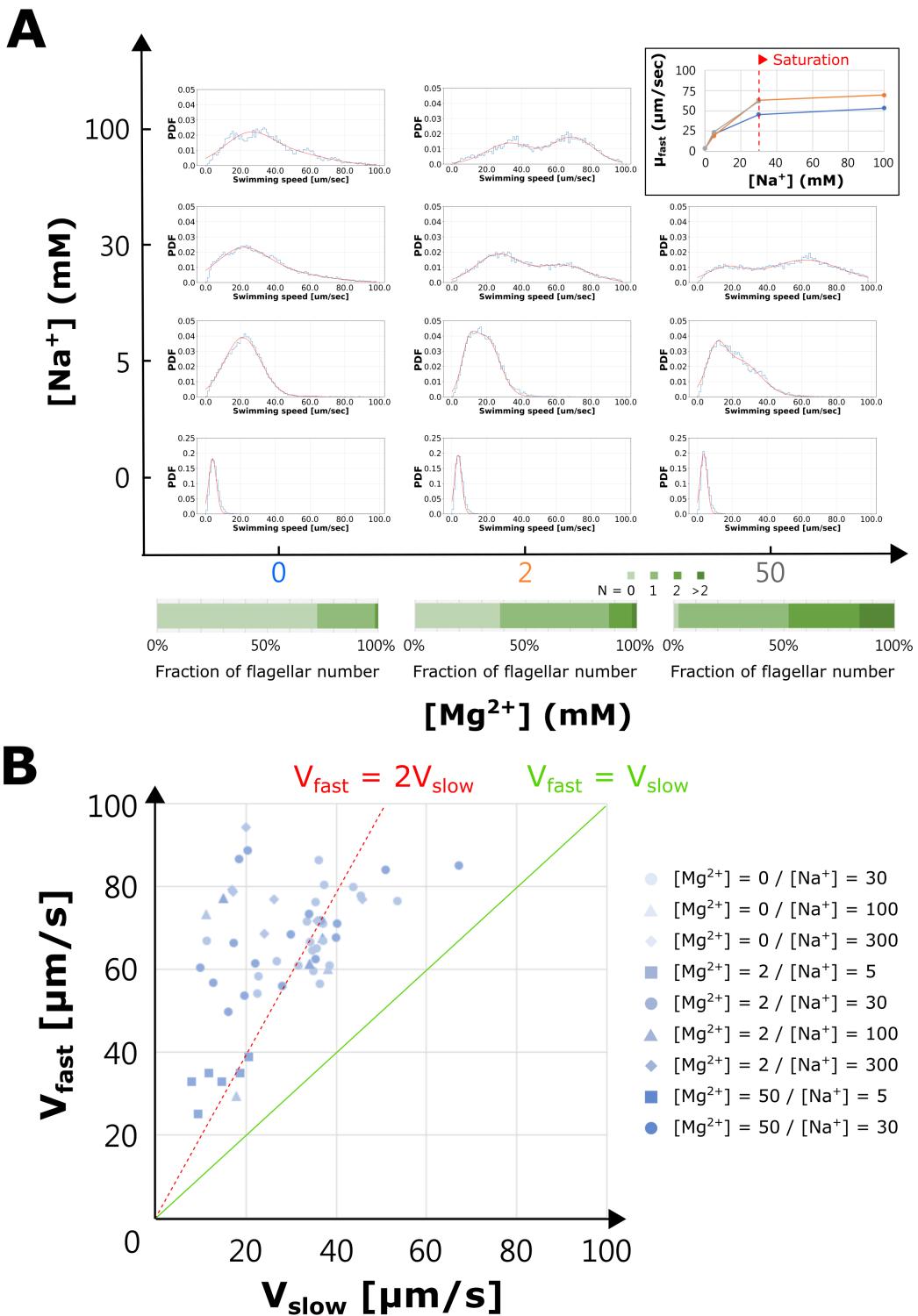
$$96 \quad 0 < r < r_{min}^{response} = r_0^{che} + \sqrt{-2\sigma^2 \cdot \ln \frac{C_{min}^{response}}{C_0}} \quad [7]$$

97 Assuming the initial location of bacteria is far from the attractant source, we can rewrite the tail of the Gaussian function
 98 as a constant term. In this case, the accumulation probability can be calculated as:

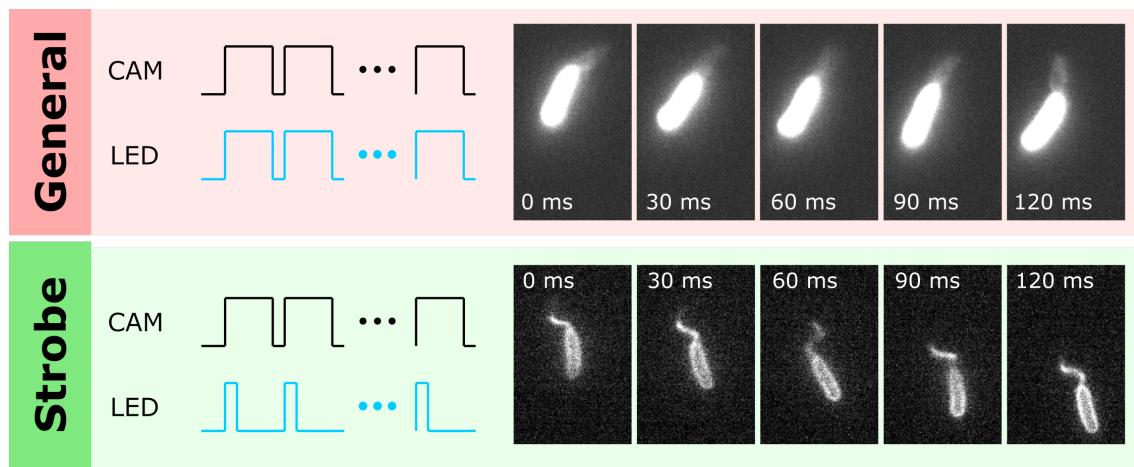
$$99 \quad N(\mathfrak{R}, t) = \left[\frac{1}{4\pi D} \cdot \ln \frac{4Dt}{r_0^2} - \frac{1}{4\pi D} \cdot \sum_{m=1}^{\infty} \frac{(-\frac{r_0^2}{4Dt})^m}{m \cdot m!} + (\text{Const.}) \right] \cdot [\pi(r_{min}^{response})^2] \quad [8]$$



100 When t significantly exceeds t_0 (defined as $r_0^2/4D$), we can derive an approximate accumulation probability within the
 101 observation region as:

$$102 \quad N(\mathfrak{R}, t) \approx \frac{(r_{min}^{response})^2}{4D} \cdot \ln \frac{4Dt}{r_0^2} \quad [9]$$


103 Furthermore, bacteria begin to accumulate when t is greater than or equal to t_0 :

$$104 \quad N(\mathfrak{R}, t) \propto \ln t \quad [10]$$


105 The accumulation function for cells under various parameters, including P_{sync} , L , versus time is shown in Figure (Fig.S6).

A**B**

Fig. S1. Image Reference Libraries. (A) Left: A 3D image of the reference stacks for cells. Right: Comparison of image reference libraries obtained with various correction collar settings. (B) Comparison of image reference libraries created using 1 μm polystyrene beads and *A. fischeri* cells.

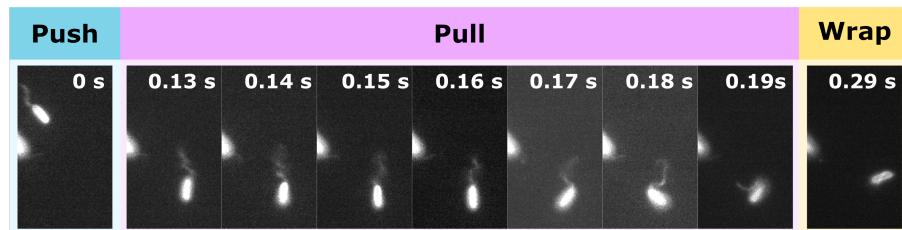
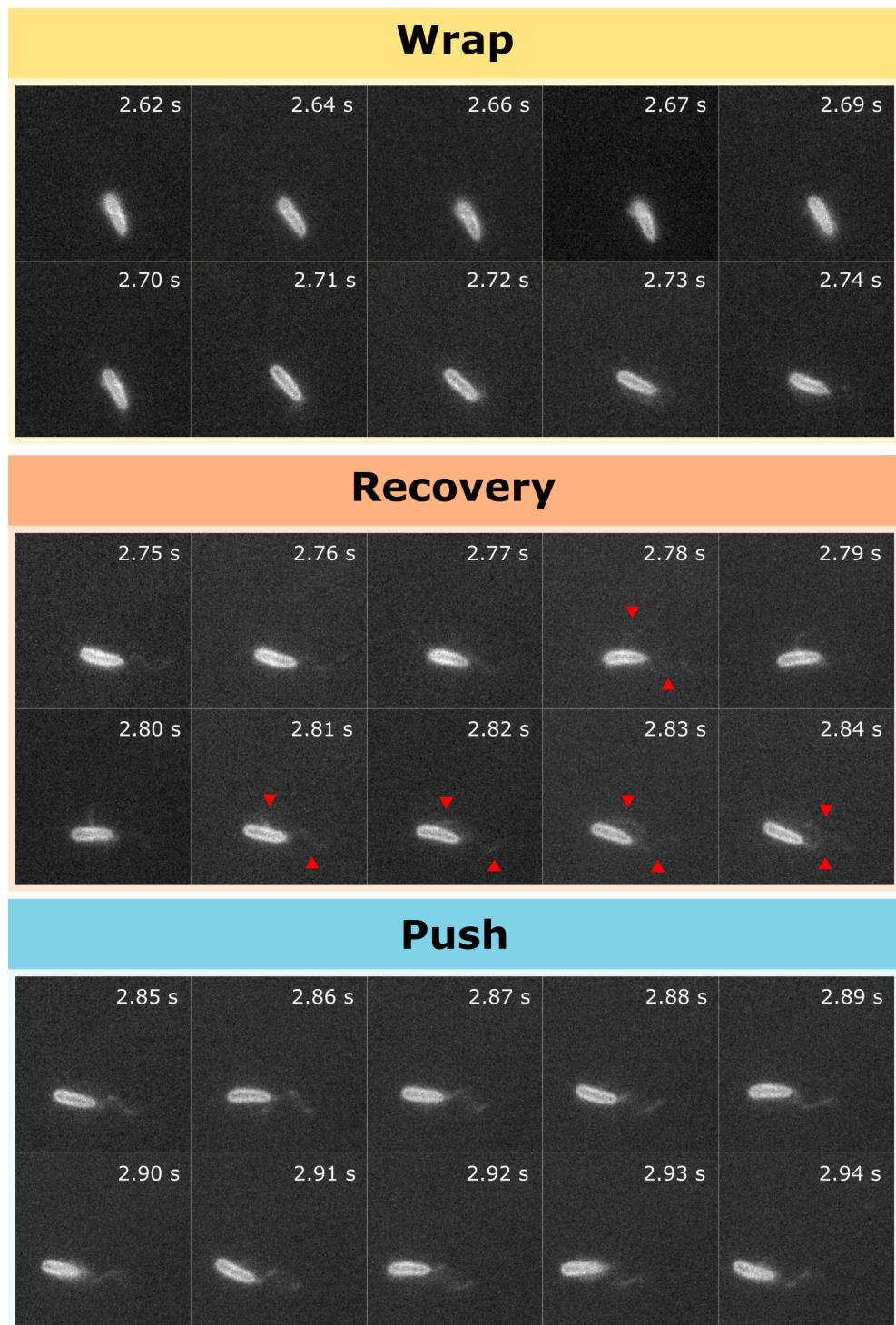


Fig. S2. Swimming Speed Analysis. (A) Histograms depicting swimming speeds under varying flagellar numbers and sodium concentrations. (B) A comparison of two swimming speeds under different sodium and magnesium concentrations. Concentration units are expressed in millimolars (mM).

Fig. S3. Comparison of *A. fischeri* flagellar motion in fluorescence images. Fluorescence images capturing *A. fischeri*'s flagellar motion, using both standard (30 milliseconds) and strobe (150 microseconds) excitation techniques, captured at a frame rate of 33 frames per second (fps).


Cell #1

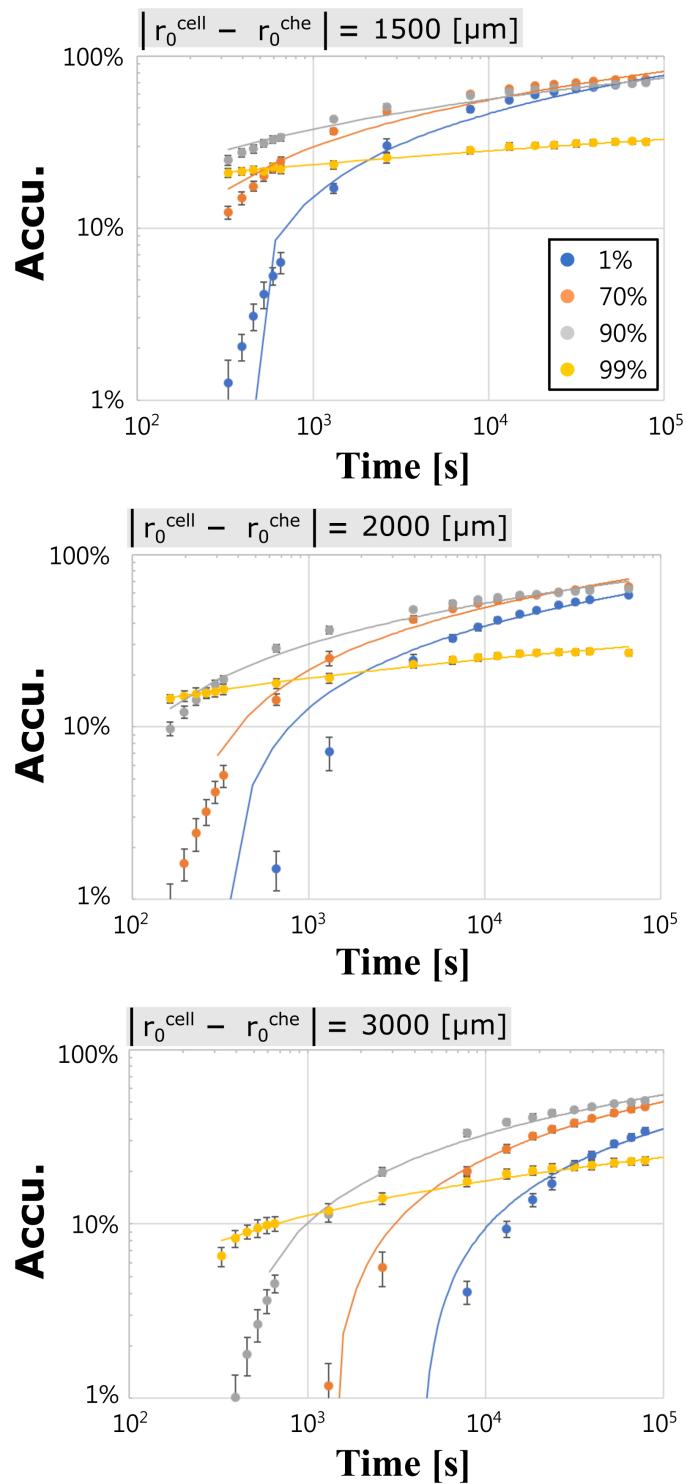

Cell #2

Fig. S4. Transitions to Wrap Mode. In Cell 1, the sequence illustrates transitions from push mode to pull mode and then to wrap mode, with all flagella forming a bundle. In Cell 2, the same transition sequence is observed; however, the flagella bundle disassembles during the pull mode and reassembles into a bundle during the wrap mode.

Fig. S5. Transition from Wrap to Push Mode. The cell exhibits a flagellar bundle during the wrap mode. At 2.78 seconds, the first flagellum departs from the bundle, followed by the second flagellum during the recovery process. Eventually, these flagella rejoin into a polar bundle, and the cell resumes the push mode.

Fig. S6. Comparison of accumulation efficiency at a fixed Distance from the attractant source for Various synchronization probabilities. The solid line represents the fitted curve, while the discrete points represent simulated data points.

106 **Movie S1.** Strobe fluorescence images of real-time swimming configurations in *Aliivibrio fischeri* within a
107 medium of viscosity 0.89 cP. The full HD images were captured with a field of view measuring 124.8 μm
108 (width) by 70.2 μm (height) at a frame rate of 33.3 frames per second (fps) and an illumination time of 150
109 μs . Playback is shown at half-speed (1/2x).

110 **Movie S2.** Polymorphic transitions to extended wrap mode duration in *Aliivibrio fischeri*. Playback is shown
111 at one-sixth speed (1/6x).

112 **References**

- 113 1. K Taute, S Gude, S Tans, T Shimizu, High-throughput 3d tracking of bacteria on a standard phase contrast microscope.
114 *Nat. communications* **6**, 1–9 (2015).
- 115 2. AE Balaev, K Dvoretski, VA Dubrovski, Refractive index of escherichia coli cells in *Saratov Fall Meeting 2001: Optical*
116 *Technologies in Biophysics and Medicine III*. (SPIE), Vol. 4707, pp. 253–260 (2002).
- 117 3. P Liu, et al., Real-time measurement of single bacterium's refractive index using optofluidic immersion refractometry.
118 *Procedia Eng.* **87**, 356–359 (2014).
- 119 4. IH Malitson, Interspecimen comparison of the refractive index of fused silica. *Josa* **55**, 1205–1209 (1965).
- 120 5. Q Cai, Z Li, Q Ouyang, C Luo, VD Gordon, Singly flagellated pseudomonas aeruginosa chemotaxes efficiently by unbiased
121 motor regulation. *MBio* **7**, e00013–16 (2016).
- 122 6. Z Alirezaeizanjani, R Großmann, V Pfeifer, M Hintsche, C Beta, Chemotaxis strategies of bacteria with multiple run modes.
123 *Sci. advances* **6**, eaaz6153 (2020).
- 124 7. T Sagawa, et al., Single-cell e. coli response to an instantaneously applied chemotactic signal. *Biophys. journal* **107**, 730–739
125 (2014).
- 126 8. DR Brumley, et al., Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. *Proc. Natl.*
127 *Acad. Sci.* **116**, 10792–10797 (2019).
- 128 9. V Sourjik, HC Berg, Receptor sensitivity in bacterial chemotaxis. *Proc. Natl. Acad. Sci.* **99**, 123–127 (2002).