Identification and Validation of Nicotinamide metabolism-Related Gene Signatures as a Novel Prognostic Model for hepatocellular carcinoma

Sijia Yang
Sun Yat-sen University

Ang Li
Sun Yat-sen University

Lihong Lv
Sun Yat-sen Memorial Hospital

Jinxin Duan
Sun Yat-sen University

Zhihua Zheng
Sun Yat-sen University

Weibang Yang
Second Affiliated Hospital of Guangzhou Medical University

Wenfeng Zhuo
Fifth Affiliated Hospital of Sun Yat-sen University

Jun Min
Sun Yat-sen Memorial Hospital

Jinxing Wei
weijx5@mail.sysu.edu.cn
Sun Yat-sen Memorial Hospital

Research Article

Keywords: hepatocellular carcinoma, nicotinamide, bioinformatics analysis, diagnostic, prognostic

Posted Date: November 10th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3487654/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: No competing interests reported.
Identification and Validation of Nicotinamide metabolism-Related Gene Signatures as a Novel Prognostic Model for hepatocellular carcinoma

Sijia Yang1,2,†, Ang Li1,2,†, Lihong Lv3,‡, Jinxin Duan, Zhihua Zheng5, Wenfeng Zhuo2, Jun Min2,* , Jinxing Wei2,*

Sijia Yang1,2,†, Ang Li1,2,†, Lihong Lv3,‡, Jinxin Duan2, Zhihua Zheng4, Weibang Yang5, Wenfeng Zhuo6, Jun Min2,* , Jinxing Wei2,*

1 Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
2 Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
3 Clinical Trial Institution of Pharmaceuticals, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
4 Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
5 Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, Guangdong, China
6 Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University 528406 Zhuhai, Guangdong, China

*Correspondence: minjun@mail.sysu.edu.cn (Jun Min); weijx5@mail.sysu.edu.cn (Jinxing Wei)
†These authors contributed equally.

Abstract:

Background: Nicotinamide (NAM) regulates redox and metabolic activities in the mitochondria. The intention of the research was to identify key genes that relate to nicotinamide in hepatocellular carcinoma (HCC).

Methods: Relevant clinical information were collected as well as RNA-seq data using the Cancer Genome Atlas (TCGA) database. Differential analysis was used to discover the genes that were differently expressed. On the key genes associated with NAM, functional enrichment analysis were carried out. Next, receiver operating characteristic (ROC) and prognosis Kaplan-Meier (K-M) curve analyses were used to evaluate the importance of important gene expression, respectively. The immune cell signatures were estimated using the CIBERSORT algorithm. The key genes were validated using clinical RT-qPCR finally, and experiments were performed to verify inhibitory effect of NAM on HCC.

Results: Six prognostic key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP and NT5E) were identified. There is an association between the level of key gene expression and the clinical prognosis. Four key genes (NAXE, NADSYN1, NT5C and NT5C3A) have statistical significance of survival prognosis. Finally, the expression of NAM-related genes and the inhibitory effect of NAM on HCC were verified by experiments.

Conclusion: The study first found some Nicotinamide metabolism-related differentially expressed genes (NMREDEGs) that are related to HCC can contribute to predicting survival and monitoring the treatment.

Keywords: hepatocellular carcinoma; nicotinamide; bioinformatics analysis;
INTRODUCTION

The most frequent primary liver cancer is HCC, which also happens to be the sixth most common tumor. This malignancy has been gradually on the rise in terms of incidence and mortality in recent years. Numerous people continue to receive diagnoses of advanced-stage cancer with a wide range of symptoms, despite the significant improvements in cancer screening techniques (Yang, Hainaut et al. 2019, Parikh and Pillai 2021). However, there aren't many HCC patients who can benefit from successful therapy options. In order to improve all therapy approaches, it is vital that we explore more diagnostic biomarkers and potential therapeutic targets.

The water-soluble vitamin B3 (niacin) has an amide form called NAM, which is more frequently found in foods like meat, fish, beans, mushrooms, nuts, and cereals. By use of the enzyme nicotinamide phosphate ribosyl transferase (NAMPT), NAM is directly transformed in living cells into nicotinamide mononucleotide (NMN), which subsequently binds to ATP to create nicotinamide adenine dinucleotide (NAD\(^+\)). NAM, the fundamental component of cellular energy metabolism, is crucial for the formation of NAD\(^+\) (Jung, Lee et al. 2022). Cancer is characterized by metabolic dysregulation, which promotes unregulated cancer growth (Hanahan 2022). NAM is therefore thought to impact tumor growth through modifying cell metabolism.

Based on the TCGA and GeneCards datasets, this study intended to locate nicotinamide-related genes in HCC and then confirmed the expression of these genes in multiple datasets acquired from the GEO database. Using the CIBERSORT approach, the link between niacinamide expression level and immune cell infiltration was investigated. The drug sensitivity investigation of NAM major genes related with HCC used the Genomics of Cancer Cell Line Encyclopedia (CCLE), Drug Sensitivity in Cancer (GDSC), and CellMiner databases. Our research identifies a trustworthy and feasible treatment target for HCC.

MATERIALS AND METHODS

Data Acquisition

The Liver Hepatocellular Carcinoma (LIHC) dataset was downloaded from TCGA database(https://portal.gdc.cancer.gov/) (Colaprico, Silva et al. 2016). 374 cases of liver cancer samples (grouping: LIHC) and 50 cases of paracancerous samples (grouping: Normal) were got from the UCSC Xena database (http://genome.ucsc.edu) (Zhang, Guo et al. 2022). The limma package was performed to normalize the count sequencing data of the TCGA-LIHC data set (Ritchie, Phipson et al. 2015). Using tool GEOquery (Davis and Meltzer 2007), the LIHC-related datasets GSE25097 (Hong, Ivanovska et al. 2011), GSE46408 (Wong, Chen et al. 2013) and GSE84402 (Wang, Huo et al. 2017) were obtained (Barrett, Wilhite et al. 2012). The probe names of the datasets were annotated using the pertinent GPL platform files (supplementary Table S2).

Identification of Nicotinamide metabolism-related genes (NMRGs)

Forty-two NMRGs were acquired from related references, and eight NMRGs were obtained from the GeneCards database (Fishilevich, Nudel et al. 2017). Additionally, the single nucleotide polymorphism (SNP) data from the TCGA-LIHC dataset's somatic mutations were retrieved and displayed using the R package maftools (Mayakonda, Lin et al. 2018). The TCGA-LIHC dataset's "Copy Number Variation" data were obtained by R package
TCGAbiolinks for GISTIC 2.0 analysis (Mermel, Schumacher et al. 2011). The differentially expressed genes (DEGs) were intersected with NMRGs to produce the NMRDEGs linked to LIHC disease.

Functional Enrichment Analysis

GO (Harris, Clark et al. 2004) and KEGG (Kanehisa and Goto 2000) enrichment analysis on NMRDEGs was carried out using the clusterProfiler package. The 'h.all.v7.4.symbols.gmt' genome was used to determine whether there is significant enrichment which was got from the Molecular Signatures Database (MSigDB). The expressed genes were then subjected to Gene Set Enrichment Analysis (GSEA) (Subramanian, Tamayo et al. 2005) and Gene Set Variation Analysis (GSVA) (Hänzelmann, Castelo et al. 2013).

LASSO regression analysis to screen NMRDEGs

The LASSO regression model's risk score, or riskScore, was subsequently calculated based on the NMRDEGs after the penalty coefficient (lambda) of the obtained NMRDEGs was extracted (Kang, Choi et al. 2021).

\[
\text{riskScore} = \sum \text{Coefficient (gene}_i\text{)} \times \text{mRNA Expression (gene}_i\text{)}
\]

Prognostic clinical analysis

A Cox regression model was created using single/multivariate Cox regression analysis on the expression of key genes (mRNA) set to examine the clinical prognostic value of the target gene on HCC. The results were shown by a nomogram diagram which was evaluated by Calibration curves and R software package ggDCA. To figure out related genes with significant differences, K-M curves were created for NMRDEGs.

Immune Infiltration Assay (CIBERSORT)

Each TCGA-LIHC sample's NM scores were determined using the ssGSEA method and the GSVA package of the R package. The TCGA-LIHC data set's immune cell infiltration state was assessed using the CIBERSORT algorithm (Chen, Khodadoust et al. 2018). First, the LIHC group's infiltration differences of 22 different types of immune cells were examined and displayed in group comparison charts. The relevance of immune cells was then depicted using a correlation heat map.

Drug sensitivity analysis of key genes

Based on the expression levels of key genes and the drug data in GDSC (Yang, Soares et al. 2013), CCLE (Nusinow, Szpyt et al. 2020), and CellMiner databases (Tlemsani, Pongor et al. 2020), drug sensitivity analysis was conducted on key genes.

Receiver Operating Characteristic (ROC) Curve Analysis

To assess the diagnostic impact of key genes' expression on diseases, the area under the ROC curve (AUC) was figure. The diagnostic impact increases as the AUC gets closer to 1.

Extraction and quantification of RNA

All participants in this study were older than 18 and included 6 healthy controls and 6 HCC patients. From July 2023 to August 2023, all patients who met the diagnostic standards for HCC were admitted to the Sun Yat-Sen Memorial Hospital’s hepatobiliary surgery. Informed consent was obtained from all individual participants included in the study. Within
24 hours of admission, peripheral blood samples from the enrolled individuals were obtained. Using Total RNA Extraction Reagent (DP433, TIANGEN Biotech, Beijing, China), RNA was isolated from whole blood according to standard protocols. Then, a cDNA synthesis kit (FSQ-201, TOYOBO, Japan) was used to create cDNA from the acquired RNAs. SYBR Green Master Mix (QPS-201, TOYOBO, Japan) was used to measure gene expression using Roche LightCycler 480, and the $2^{-\Delta\Delta CT}$ technique was used to compute the expression levels. The internal standard for normalization was GAPDH. Sangon Biotech (Sangon, China) generated all of the primers used in Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) (supplementary Table S1).

Western Blot
Using lysis buffer (KeyGEN, China) to extract proteins from HCC tissues, relative quantities were measured using Bradford (Thermo, USA). The protein was supplied at roughly the same amount and concentration. The following commercial antibodies were bought: NT5C, β-actin, and NADSYNI were acquired from Affinity Biosciences (Beijing, China), Cell Signaling Technology (USA), and Abcam (USA), respectively.

EdU assay
NAM solution (10, 20, and 50 mM) were used to treat HCC cells. Cell proliferation was measured by EdU assay.

Wound-healing assay
The HCC cells were grown until a confluent monolayer developed. A 10-μl pipette tip was used to scrape the monolayer after that. Then the cells were treated with NAM solution (10, 20, and 50 mM). Every 24 hours, the migratory distance was shown and captured on microscope.

Migration and invasion assay
The transwell top chamber (pore size 12μm, BD, USA) received HCC cells, and the transwell lower chamber received 600μl of DMEM with 15% FBS. The cells were fixed, stained, and counted following a 24-hour incubation period.

Statistical analysis
Data analysis for this research was executed using R software (version 4.1.2). For continuous data between two groups, the Mann-Whitney U-test were used for non-normally distributed variables and the independent Student’s t-test were used for normally distributed ones. The chi-square test or Fisher’s exact test were applied for comparing categorical data. The Spearman's rank correlation analysis was used to determine the correlations between molecules. All statistical analyses were conducted with a two-sided significance level, and P-values surpassing the predetermined threshold were considered to indicate statistical significance. GraphPad Prism 10.0 were used to plot the results of the experiments.

RESULTS

Identification of NMRDEGs in LIHC

Fig. 1 depicts the research flow chart for our investigation. The data for LIHC datasets GSE25097, GSE46408, and GSE84402 were downloaded, and the removal of batch effects was evaluated through distribution boxplots and PCA graphs (Fig. 2A-D).
Figure 1 Flowchart of the overall research.

Figure 2 The sample distribution boxplot and PCA diagram of the merged dataset before and after merging

A-B. The sample distribution of the merged dataset's boxplot. C-D. The PCA graph of merged
dataset. PCA: principal component analysis.

The TCGA database was used to download the information for 374 LIHC samples. We utilized the limma software to identify the genes that were differentially expressed on the TCGA-LIHC data set. In the result, there are 13305 genes that meet the criteria. The result was shown by a volcano map (Fig. 3A). Finally, thirty-three NMRDEGs were obtained after intersecting DEGs and NMRGs, and the result shown by a Venn diagram (Fig. 3B).

Figure 3 Analysis of differential genes in the liver cancer dataset

A. Differential gene volcano map of dataset TCGA-LIHC. B. Venn diagram of DEGs and NMRGs in dataset TCGA-LIHC. DEGs: differentially expressed genes. NMRGs: Nicotinamide metabolism-related genes.

NMRDEGs functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis

The 33 NMRDEGs were analyzed using the GO (supplementary Table S3) and KEGG (supplementary Table S4) enrichment analysis, and the results were shown in the diagrams below (Fig. 4A–4D). The results showed that 33 NMRDEGs were most heavily involved in negative regulation of NF-kappaB transcription factor activity (GO: 0032088), reaction to hypoxia (GO: 0001666), circadian rhythm (GO: 0007623), response to oxidative stress (GO: 0006979) in BP, nucleotide activity (GO: 0008252), glycosyltransferase activity (GO: 0016757), phosphatase activity (GO: 0016791) and nucleotide-triphosphate diphosphate activity (GO: 0047429) in MF. The pathways of nucleotide metabolism (hsa01232), pyrimidine metabolism (hsa00240), purine metabolism (hsa00230), and cofactor biosynthesis (hsa01240) are primarily affected by the results of the KEGG enrichment analysis.
Figure 4 NMRDEGs functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis

The results of GO functional enrichment analysis and KEGG pathway enrichment analysis of NMRDEGs are displayed in bubble diagrams (A), circular network diagram (B), Histogram display (C), circle diagrams (D). NMRDEGs: Nicotinamide metabolism-related differentially expressed genes. GO: Gene Ontology. BP: biological process. MF: molecular function. KEGG: Kyoto Encyclopedia of Genes and Genomes. The screening criteria were P.value < 0.05 and FDR value (q.value) < 0.05.

GSEA and GSVA enrichment analysis of LIHC dataset

We examined gene expression and involved biological processes among various groups (Normal/LIHC) in HCC patient samples in the data set TCGA-LIHC to ascertain the effect of gene expression levels on HCC through GSEA enrichment analysis. The findings demonstrated that all TCGA-LIHC genes were considerably enriched in five key pathways (Fig. 5A), including the TP53 pathway (Fig. 5B), Notch pathway (Fig. 5C), Wnt pathway (Fig. 5D), Jak-Stat pathway (Fig. 5E), Pi3k Akt pathway (Fig. 5F), etc. We conducted GSVA analysis on the data set TCGA-LIHC (Fig. 5G) to calculate the functional enrichment difference between liver cancer samples and corresponding normal samples. When LIHC samples were compared to matched normal samples in the dataset TCGA-LIHC, the results revealed variations in the WNT_BETA pathway and other gene sets (supplementary
Table S5).

Fig. 5 GSEA enrichment analysis of dataset TCGA-LIHC

A. Five main biological characteristics of the GSEA enrichment analysis. The differential genes were significantly prominent in TP53 pathway (B), Notch pathway (C), Wnt pathway (D), Jak Stat pathway (E), Pi3k Akt pathway (F) etc. G. GSVA analysis in dataset TCGA-LIHC. GSEA: Gene Set Enrichment Analysis. The significant screening criteria were P.value < 0.05 and FDR value (q.value) < 0.25.
LASSO regression analysis to screen NMRDEGs

In order to identify six prognostic key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E), we screened NMRDEGs using LASSO regression analysis (Fig. 6A). The LASSO variogram (Fig. 6B) revealed that the number of genes with coefficients of 0 grew gradually as decreased and that the genes changed with the coefficient (logarithmic posterior) of the LASSO penalty term. Using a risk factor map (Fig. 6C) and the ROC curve of the LASSO regression model riskScore for various outcome groups (Fig. 6D), respectively, we simultaneously showed the risk factor grouping of NMRDEGs. The ROC curve demonstrated that the riskScore component of the LASSO regression model performed poorly (0.5 < AUC < 0.7) among various outcome group. Finally, we created a riskScore correlation lollipop diagram (Fig. 6E) between the level of NMRDEG expression and the LASSO regression model.

Figure 6 Construction of LASSO regression model

A. LASSO regression model diagram of NMRDEGs. B. Variable trajectory plot of the LASSO regression model. C. Display of the risk factor diagram results for NMRDEGs in the LASSO regression model. D. ROC curve of the LASSO regression model. E. Lollipop plots of correlations
between NMRDEGs and LASSO regression models. LASSO: Least absolute shrinkage and selection operator. NMRDEGs: Nicotinamide metabolism-related differentially expressed genes. The risk factor map consists of two parts: 1. Risk grouping: the RiskScore obtained by predicting the Cox regression prognostic model is grouped by median. 2. Survival outcome: Use dot plots to display the survival time and status of the TCGA-LIHC clinical samples in the data set.

Expression analysis of key genes in the data set TCGA-LIHC

According to the findings of the differential analysis, the expression levels of the six essential genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E) in the two groups (Normal/LIHC) were all highly statistically significant (Fig. 7A). Correlation analysis was conducted using the entire expression matrix of the six important genes, and a correlation heat map was created (Fig. 7B). It was discovered that the genes NAXE, PNP, and NT5E have a significant negative link, but NAXE, NADSYN1, NT5C, and NT5C3A have a significant positive connection. According to the ROC curve, there is a considerable degree of accuracy (0.7 < AUC < 0.9) in the expression levels of NAXE, NADSYN1, NT5C and NT5C3A. The expression levels of PNP and NT5E revealed poor distinction between groups (0.5 < AUC < 0.7) (Fig. 7C-H).
Figure 7 The expression of key genes in the data set TCGA-LIHC

A. The group comparison chart results of key genes in Normal/LIHC groups. B. The correlation heat map results of key genes. ROC curve analysis of key genes NAXE (C), NADSYN1 (D), NT5C (E), NT5C3A (F), PNP (G), NT5E (H). * P < 0.05, *** P < 0.001. LIHC: Liver hepatocellular carcinoma. ROC: Receiver operating characteristic curve.

Expression analysis of key genes in GEO datasets

Violin plot comparisons were used to show the results of the differential analysis of the expression levels of NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E in the merged dataset's different groups (Normal/LIHC) (Fig. 8A). The results revealed that, after removing the missing genes from the merged dataset, the expression of the key gene NT5E varied significantly between the Normal and LIHC groups. According to the correlation heat map based on the complete expression matrix of the key genes in the merged datasets (Fig. 8B), NT5E and NT5C are positively correlated, but negatively
correlated with NADSYN1. The expression levels of PNP and NT5E in the various groups (Normal/LIHC) in the datasets GSE25097 and GSE84402 were highly statistically significant. (Fig. 8C-D).

Fig. 8 The expression of key genes in GEO dataset

A. The grouping comparison chart results of key genes in different groups (Normal/LIHC) of the merge datasets. **B.** Display of the correlation heat map results of key genes in the merge datasets. **C.** The grouping comparison chart results of key genes in different groups (Normal/LIHC) of GSE25097. **D.** The grouping comparison chart results of key genes between different groups (Normal/LIHC) of GSE84402. * P < 0.05, ** P < 0.01, *** P < 0.001.

Prognostic clinical manifestations of key genes

This demonstrated a relationship between the clinical prognosis and the degree of key gene expression by univariate and multivariate Cox regression analysis (supplementary Table S6, Fig. 9A). The predictive performance of the Cox regression model was subsequently evaluated through a nomogram analysis (Fig. 9B), revealing that, within the diagnostic model for LIHC, NAXE exhibited the highest efficacy, whereas NT5C demonstrated the lowest effectiveness. Additionally, our multivariate Cox regression model ran calibration analyses for the 1-year, 3-year, and 5-year prognoses and created calibration curves (Fig. 9C-E). We discovered that the model's predicted survival for the
patients was largely in line with their actual survival. Then, we assessed the therapeutic value of the created Cox regression prognostic model by decision curve analysis (DCA) (Fig. 9F-9H). The outcome demonstrated that the 5-year prognosis model has the best clinical value.

Fig. 9 Prognostic performance of key genes

A-B. Univariate regression analysis forest plot (A) and nomogram of key genes (B). C-E. Calibration curves of the Cox regression prognostic model for 1-year (C), 3-year (D), and 5-year (E) survival probabilities. The x-axis represents the predicted survival probability, while the y-axis indicates the actual survival probability. Various colored lines and points denote model predictions at different time points. Lines closer to the gray ideal-case line suggest improved prediction accuracy. F-H. DCA plots of the Cox regression prognostic model for 1-year (F), 3-year (G), and 5-year (H) survival probabilities. The x-axis of the DCA diagram displays the threshold probability,
and the y-axis shows the net benefit. The model's effectiveness is evident when its line consistently surpasses the all-positive and all-negative lines over an extensive x-value range. DCA: Decision curve analysis.

Prognostic performance of key genes

In the TCGA-LIHC datasets, Kaplan-Meier (K-M) survival and prognostic curves were generated for key genes. Our findings reveal that NAXE, NADSYN1, NT5C, and NT5C3A demonstrate statistical significance within the TCGA-LIHC datasets (Fig. 10A-D).

![Kaplan-Meier survival curves for key genes](image)

Figure 10 K-M curve analysis of the prognosis performance of key genes

A-D. Prognostic analysis of key genes KM curve. KM curve: Kaplan-Meier curve. P < 0.05 means statistically significant

Mutation analysis of key genes in LIHC patients

We counted the six key genes in the LIHC patient samples in order to investigate the somatic mutations of the key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E) through the "maftools" R package. The findings indicated that the TCGA-LIHC data set
contained two primary categories of somatic mutations: missense mutations and frameshift Deletion Mutations (Frame Shift Del), with missense mutations making up the majority of them (Fig. 11A). In addition, single nucleotide polymorphisms (SNPs) and a limited number of deletions (DEls) predominated among the mutation types of the six key genes in LIHC patients. Additionally, C > A is the most common single nucleotide variant (SNV). (Fig. 11B). We also looked at the copy number variation (CNV) of six key genes for patients with LIHC. The findings demonstrated that there are four key genes that have numerous amplifications and deletions in LIHC patient samples, with the top three genes for amplification being NT5C, NT5E, and NADSYN, and the top three for deletion being NT5E, PNP, and NADSYN (Fig. 11C).

Figure 11 Mutation analysis of key genes in LIHC patients

A. The somatic mutation status of key genes. B. Proportion results of key genes. C. The copy number variation of key genes. TCGA: the cancer genome atlas. LIHC: Liver hepatocellular carcinoma. SNP: single nucleotide polymorphism. CNV: copy number variations.

Drug Sensitivity analysis of key genes

We also used the GDSC, CCLE and the CellMiner database to construct a ridge regression model using the pRRophytic algorithm. We predicted the sensitivity of key genes to common anticancer drugs using IC50 values. The results showed that key genes can find multiple drugs with interaction relationships in GDSC, CCLE, and CellMiner databases (Fig. 12A-C).
Figure 12 Drug sensitivity analysis

The drug susceptibility analysis results of key genes in GDSC database (A), CCLE database (B) and CellMiner database (C) are displayed. GDSC: Genomics of Drug Sensitivity in Cancer. CCLE: Cancer Cell Line Encyclopedia.

Nicotinamide Metabolism Score

We used the ssGSEA algorithm to determine the Nicotinamide Metabolism (NMs) in the TCGA-LIHC data set based on the expression of six key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, NT5E). The results revealed that the expression levels of the six key genes in the TCGA-LIHC patient samples were highly statistically significant between the high and low levels of NMs score (Fig. 13A). Additionally, we added six key genes that are co-expressed in heatmaps (Fig. 13B). In our subsequent steps, we plotted the ROC curve for the six pivotal genes, categorizing them into High/Low groups based on the NMs score from TCGA-LIHC patient samples. Notably, the ROC curve revealed that the key genes, NT5E and NT5C, effectively predicted samples within the High/Low NMs score groups. Conversely, within the same dataset, the genes NT5C3A, PNP, NADSYN1, and NAXE...
were less adept at differentiating the High/Low NM score groups (Fig. 13C-H).

Fig. 13 The expression of key genes in the high and low nicotinamide metabolism score (High/Low) group

A. The group comparison chart between High/Low groups of the nicotinamide metabolism score of the key genes. B. The co-expression heatmap results of key genes. C-H. ROC curves for prediction models based on key genes NT5E (C), NT5C (D), NT5C3A (E), PNP (F), NADSYN1 (G), NAXE (H). *** P < 0.001. ROC: Receiver operating characteristic curve. AUC values closer to 1.0 signify better predictive performance of the model.
B. Immune infiltration analysis of high and low nicotinamide metabolic score groups (CIBERSORT)

We used the CIBERSORT method to determine the association between the sample expression profile data of 22 distinct types of immune cells in the TCGA-LIHC data set in order to further investigate the relationship between the nicotinamide metabolism score and antitumor immunity in LIHC patients (Fig. 14A). The findings demonstrated that nine immune cells had statistically significant variations in the NMs score (High/Low) groupings expression levels (Fig. 14B). Additionally, we proved the relationship between the degree of immune cell infiltration with statistically significant changes. The results suggest a mild positive association between the abundance of resting dendritic cells in the infiltrate and M1 macrophages. Conversely, there's a mild negative association between the infiltrating dendritic cells and M2 macrophages, monocytes, and resting NK cells (Fig. 14C). We found the interplay between the abundance of immune cell infiltration and six pivotal genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, NT5E), noting statistically significant differences. Specifically, a positive correlation emerged between macrophage M0 and the key gene NT5C (Fig. 14D).
Fig. 14 Immune infiltration analysis (CIBERSORT) between high and low nicotinamide metabolism scores (High/Low) groups

A. The immune infiltration results of 22 kinds of immune cells between High/Low groups of the nicotinamide metabolism score. B. Group comparison chart of immune cells in High/Low groups of the nicotinamide metabolism score. C. The correlation analysis results between immune cells. D. The correlation analysis results between key genes and immune cell infiltration abundance.

Verification of Selected Key Genes by RT-PCR and Western Blot
In whole blood samples taken from HCC patients and healthy controls, RT-qPCR was used to validate the six important genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E) that were found to have considerable diagnostic and prognostic significance in HCC. The results showed that the six key genes were significantly downregulated in the HCC group (Fig. 15A). Compared with paracancerous tissue, the protein levels of NADSYN1 and NT5C are low expressed in HCC tissue which were obtained from HCC patients (Fig. 15B).

NAM inhibits cell proliferation and migration of HCC cells

The CCK-8 assay (Fig. 15C) and the EdU assay (Fig. 15D) revealed that the experimental groups proliferated less than the control group did. Furthermore, Huh7 and HepG2 cell migration was greatly reduced by overexpressing NAM, as demonstrated by wound-healing assays (Fig. 15E) and transwell assays without Matrigel (Fig. 15F).

Fig. 15 The relative expression of NAM-related genes in whole blood samples and tissues and the effect of nicotinamide on cell migration and proliferation in HCC.

A. The mRNA levels of NAM-related genes in whole blood samples of HCC patients and normal people, Control normal people, HCC hepatocellular carcinoma. B. protein levels of NADSYN1 and NT5C in HCC tissues and paired paracarcinoma tissues. NL normal liver, HCC hepatocellular carcinoma. A CCK-8 assay (C) and an EdU assay (D) showed the cell proliferation ability of Huh7 and HepG2 cultured by 0, 30, or 50 mM of NAM for 48 h. Wound-healing assays (E) and Transwell assays (F) showed the cell proliferation ability of HCC cells cultured by 0, 10, 30, or 50 mM of NAM for 48 h. The data are expressed as the mean ± SD; * P < 0.05, ** P < 0.01, **** P < 0.0001.

supplementary Table S1

<table>
<thead>
<tr>
<th>mRNA primers</th>
<th>Gene name</th>
<th>Species</th>
<th>Direction</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NT5E</td>
<td>Human</td>
<td>FORWARD</td>
<td>TCAATCATGCCGCTTTAGAGAATGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>REVERSE</td>
<td>TCAATCATGCCGCTTTAGAGAATGC</td>
</tr>
<tr>
<td></td>
<td>PNP</td>
<td>Human</td>
<td>FORWARD</td>
<td>TCACCTAGACGCAGACCTCAAG</td>
</tr>
<tr>
<td>Gene</td>
<td>Species</td>
<td>Platform</td>
<td>Samples in Normal group</td>
<td>Samples in LIHC group</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>NT5C3A</td>
<td>Human</td>
<td>GPL10687</td>
<td>50</td>
<td>374</td>
</tr>
<tr>
<td>NT5C</td>
<td>Human</td>
<td>GPL4133</td>
<td>243</td>
<td>268</td>
</tr>
<tr>
<td>NADSYN1</td>
<td>Human</td>
<td>GPL570</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>NAXE</td>
<td>Human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Human</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Table 3. GO enrichment analysis results of NMRDEGs.

<table>
<thead>
<tr>
<th>Ontology</th>
<th>ID</th>
<th>Description</th>
<th>GeneRatio</th>
<th>BgRatio</th>
<th>pvalue</th>
<th>p. adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>GO: 0072524</td>
<td>pyridine-containing compound metabolic process</td>
<td>15/33</td>
<td>38/18800</td>
<td>1.6e-33</td>
<td>1.9e-30</td>
</tr>
<tr>
<td>BP</td>
<td>GO: 0019362</td>
<td>pyridine nucleotide</td>
<td>14/33</td>
<td>32/18800</td>
<td>4.83e-32</td>
<td>1.92e-29</td>
</tr>
<tr>
<td>GO ID</td>
<td>GO Term</td>
<td>Total 33</td>
<td>Total 18800</td>
<td>p-value</td>
<td>q-value</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>GO: 0046496</td>
<td>metabolic process, nicotinamide nucleotide</td>
<td>14/33</td>
<td>32/18800</td>
<td>4.83e-32</td>
<td>1.92e-29</td>
<td></td>
</tr>
<tr>
<td>GO: 0019359</td>
<td>biosynthetic process, pyridine nucleotide</td>
<td>13/33</td>
<td>28/18800</td>
<td>3.61e-30</td>
<td>8.61e-28</td>
<td></td>
</tr>
<tr>
<td>GO: 0019363</td>
<td>biosynthetic process, pyridine nucleotide</td>
<td>13/33</td>
<td>28/18800</td>
<td>3.61e-30</td>
<td>8.61e-28</td>
<td></td>
</tr>
<tr>
<td>GO: 0016763</td>
<td>pentosyltransferase activity</td>
<td>8/33</td>
<td>49/18410</td>
<td>1.82e-14</td>
<td>2.21e-12</td>
<td></td>
</tr>
<tr>
<td>GO: 0008253</td>
<td>5'-nucleotidase activity</td>
<td>5/33</td>
<td>13/18410</td>
<td>1.72e-11</td>
<td>1.04e-09</td>
<td></td>
</tr>
<tr>
<td>GO: 0008252</td>
<td>Nucleotidase activity</td>
<td>5/33</td>
<td>15/18410</td>
<td>4e-11</td>
<td>1.61e-09</td>
<td></td>
</tr>
<tr>
<td>GO: 1990404</td>
<td>NAD+-protein ADP-ribosyltransferase activity</td>
<td>5/33</td>
<td>20/18410</td>
<td>2.05e-10</td>
<td>6.2e-09</td>
<td></td>
</tr>
<tr>
<td>GO: 0003950</td>
<td>NAD+ ADP-ribosyltransferase activity</td>
<td>5/33</td>
<td>23/18410</td>
<td>4.43e-10</td>
<td>1.07e-08</td>
<td></td>
</tr>
</tbody>
</table>

NMRDEGs: Nicotinamide metabolism-related differentially expressed genes. GO: Gene Ontology.

Supplementary Table 4. KEGG enrichment analysis results of NMRDEGs.

<table>
<thead>
<tr>
<th>Ontology</th>
<th>ID</th>
<th>Description</th>
<th>GeneRatio</th>
<th>BgRatio</th>
<th>pvalue</th>
<th>p. adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEGG</td>
<td>hsa00760</td>
<td>Nicotinate and nicotinamide metabolism</td>
<td>21/27</td>
<td>36/8164</td>
<td>6.05e-48</td>
<td>3.21e-46</td>
</tr>
<tr>
<td>KEGG</td>
<td>hsa01232</td>
<td>Nucleotide metabolism</td>
<td>8/27</td>
<td>85/8164</td>
<td>1.87e-10</td>
<td>4.95e-09</td>
</tr>
<tr>
<td>KEGG</td>
<td>hsa00240</td>
<td>Pyrimidine metabolism</td>
<td>7/27</td>
<td>58/8164</td>
<td>5e-10</td>
<td>8.84e-09</td>
</tr>
<tr>
<td>KEGG</td>
<td>hsa00230</td>
<td>Purine metabolism</td>
<td>7/27</td>
<td>128/8164</td>
<td>1.35e-07</td>
<td>1.79e-06</td>
</tr>
<tr>
<td>KEGG</td>
<td>hsa01240</td>
<td>Biosynthesis of cofactors</td>
<td>5/27</td>
<td>153/8164</td>
<td>0.0001</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

NMRDEGs: Nicotinamide metabolism-related differentially expressed genes. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Supplementary Table 5. GSEA analysis of TCGA-LIHC.

<table>
<thead>
<tr>
<th>ID</th>
<th>setSize</th>
<th>enrichmentScore</th>
<th>NES</th>
<th>pvalue</th>
<th>p. adjust</th>
<th>qvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACTOME_COMPLEMENTCASCADE</td>
<td>57</td>
<td>-0.8375431</td>
<td>-3.255242</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
</tr>
<tr>
<td>KEGG_RETINOL_METABOLISM</td>
<td>62</td>
<td>-0.8132315</td>
<td>-3.197013</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
</tr>
<tr>
<td>Gene Set</td>
<td>logFC</td>
<td>AveExpr</td>
<td>t</td>
<td>P.Value</td>
<td>adj.P.Val</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>KEGG_DRUG_MEtabolism</td>
<td>-0.7682903</td>
<td>-3.041438</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>M_CYTOCHROME_P450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTOME_BIOLOGICAL_OXIDATIONS</td>
<td>-0.6284499</td>
<td>-3.004459</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>REACTOME_DRUG_ADME</td>
<td>-0.7079259</td>
<td>-2.973698</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>KEGG_COMPLEMENT_AND_COAGULATION_CASCADE</td>
<td>-0.7448710</td>
<td>-2.948727</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>REACTOME_ASPIRIN_ADM</td>
<td>-0.7907808</td>
<td>-2.886034</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>WP_COMPLEMENT_AND_COAGULATION_CASCADES</td>
<td>-0.7388804</td>
<td>-2.876955</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>KEGG_METABOLISM_OF_ENOBiotics_BY_CYTOCHROME_P450</td>
<td>-0.7263567</td>
<td>-2.861686</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
<tr>
<td>REACTOME_PHASE_I_FUNCTIONALIZATION_OF_COMPOUNDS</td>
<td>-0.6638046</td>
<td>-2.838928</td>
<td>1e-10</td>
<td>5.99e-09</td>
<td>4.48e-09</td>
<td></td>
</tr>
</tbody>
</table>

GSEA: Gene Set Enrichment Analysis.

Supplementary Table 6. GSVA analysis results of TCGA-LIHC.
<table>
<thead>
<tr>
<th>Hallmark</th>
<th>FDR</th>
<th>Adjusted p-value</th>
<th>Significance Score</th>
<th>FDR</th>
<th>Adjusted p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALLMARK_TNFA_SI</td>
<td>0.560586271</td>
<td>-0.021469335</td>
<td>12.38289642</td>
<td>2.06E-30</td>
<td>5.15E-29</td>
</tr>
<tr>
<td>HALLMARK_XENOBIOTIC_METABOLISM</td>
<td>0.578191415</td>
<td>0.01167253</td>
<td>11.52092775</td>
<td>5.15E-27</td>
<td>8.59E-26</td>
</tr>
<tr>
<td>HALLMARK_INFLAMMATORY_RESPONSE</td>
<td>0.511789761</td>
<td>-0.00557134</td>
<td>11.45304306</td>
<td>9.43E-27</td>
<td>1.13E-25</td>
</tr>
<tr>
<td>HALLMARK_MYC_TARGETS_V1</td>
<td>-0.580054582</td>
<td>-0.028502056</td>
<td>-11.41892891</td>
<td>1.28E-26</td>
<td>1.13E-25</td>
</tr>
<tr>
<td>HALLMARK_KRAS_SI_SIGNALING_UP</td>
<td>0.428674623</td>
<td>0.002908456</td>
<td>11.41184043</td>
<td>1.36E-26</td>
<td>1.13E-25</td>
</tr>
<tr>
<td>HALLMARK_HYPOXIA</td>
<td>0.399263859</td>
<td>-0.009095682</td>
<td>11.23571756</td>
<td>6.44E-26</td>
<td>4.18E-25</td>
</tr>
<tr>
<td>HALLMARK_COAGULATION</td>
<td>0.529372843</td>
<td>0.010473853</td>
<td>11.23149489</td>
<td>6.68E-26</td>
<td>4.18E-25</td>
</tr>
<tr>
<td>HALLMARK_ESTROGEN_RESPONSE_EARLY</td>
<td>0.355090111</td>
<td>0.007273318</td>
<td>10.76224947</td>
<td>3.94E-24</td>
<td>1.97E-23</td>
</tr>
<tr>
<td>HALLMARK_E2F_TARGETS</td>
<td>-0.605429905</td>
<td>-0.039246457</td>
<td>-10.76212488</td>
<td>3.95E-24</td>
<td>1.97E-23</td>
</tr>
<tr>
<td>HALLMARK_ESTROGEN_RESPONSE_LATE</td>
<td>0.324406581</td>
<td>0.01096607</td>
<td>10.63836869</td>
<td>1.14E-23</td>
<td>5.18E-23</td>
</tr>
<tr>
<td>HALLMARK_IL2_STENCIL_SIGNALING</td>
<td>0.398405687</td>
<td>-0.00827816</td>
<td>10.57845472</td>
<td>1.90E-23</td>
<td>7.90E-23</td>
</tr>
<tr>
<td>HALLMARK_UNFOLD</td>
<td>-0.42088559</td>
<td>-0.039898681</td>
<td>-10.56201614</td>
<td>2.18E-23</td>
<td>8.39E-23</td>
</tr>
<tr>
<td>HALLMARK_KRAS_SI_SIGNALING_DN</td>
<td>0.312921984</td>
<td>0.046053609</td>
<td>10.53960576</td>
<td>2.64E-23</td>
<td>9.42E-23</td>
</tr>
</tbody>
</table>
DISCUSSION

Uncontrolled cellular energy metabolism has been linked in several studies to the onset and growth of tumors (Park, Lee et al. 2012, Nikas, Paschou et al. 2020). NAM is well known for being a crucial regulator of REDOX processes and mitochondrial metabolism, which controls cellular energy metabolism. NAM's contribution to cancer treatment and prevention is being supported by more and more research. Numerous researches have recently concentrated on the function of nicotinamide in the detection and treatment of tumors (Chen, Martin et al. 2015). Studies on nicotinamide's function in HCC are still scarce, nevertheless.

In this work, we chose 48 differentially expressed NMRDEGs after a thorough analysis of the most recent online GeneCards database and the NMRGs provided by the literature. 33 NMRDEGS associated with HCC were found after looking at the expression profiles of these NMRDEGS and the differentially expressed genes of HCC patients in the TCGA database. Then, we conducted GO and KEGG analyses on 33 NMRDEGS in order to look into the potential molecular mechanism of NMRDEGS. The results revealed that NMRDEGs are primarily enriched and controlled in the following ways: the inhibition of the NF-kappaB transcription factor, the hypoxia response, the circadian rhythm, the inhibition of the oxidative stress response, the nucleotide metabolism, the pyrimidine metabolism, the purine metabolism, the co-factor biosynthesis pathway, and other pathways. Energy metabolism and REDOX processes are connected to these important pathways. It has long been understood that cancer cells behave metabolically differently from the tissues from which they originated (Nault, Ningarhari et al. 2019). As cancer cells undergo carcinogenesis and metastasis, their metabolic activity surges, leading to an uptick in ROS production. This in turn triggers signaling pathways bolstering cancer cell survival, proliferation, and metabolic flexibility. In response to elevated ROS levels, tumor cells amplify their antioxidant defenses, further fueling cancer growth (Hsu and Sabatini 2008, Kroemer and Pouyssegur 2008, DeBerardinis and Chandel 2016). Therefore, we speculate that niacinamide may influence the activity of cancer cells by influencing their capacity for metabolism and REDOX reactions, ultimately influencing the development of tumors.

By using LASSO regression analysis, we discovered six key genes—NAXE, NADSYN1, NT5C, NT5C3A, PNP, and NT5E—associated with prognosis, allowing us to investigate the connection between nicotinamide and HCC. We confirmed the statistical significance of the levels of expression for these six key genes in the TCGA-LIHC dataset. QRT-PCR was used in six pairs of clinical samples (Normal/LIHC) to further corroborate the significant variations in mRNA expression levels of these six key genes. Previous studies have demonstrated a connection between NAXE and the development of HCC (Kremer, Danhauser et al. 2016, Van Bergen, Walvekar et al. 2022). In HCC tissues and cell lines, NAXE expression is markedly downregulated, and this enhances HCC invasion
and metastasis both in vitro and in vivo (Trinh, Imhoff et al. 2019, Sun, Yu et al. 2021).

As an anti-inflammatory mediator, NT5C3A prevents the IFN response's chromatin modifications and NF-B-mediated gene expression, which prevents the release of cytokines. Inhibiting NT5C3A boosts the production of IL-8 in response to TNF stimulation, activates an anti-inflammatory pathway, and acts as a counterbalance to inflammatory cytokine signaling (Bogusławska, Skulski et al. 2022). Cancer is known to be characterized by inflammation, which greatly encourages the emergence and growth of malignant tumors (Parrinello, Coppe et al. 2005). The function of NT5C3A in HCC and other cancers hasn't been fully understood, though. By inducing inflammatory reactions, the decreased expression of NT5C3A may encourage the occurrence and growth of HCC.

Research on PNP's connection to diseases and our understanding of it are still relatively young. Nicotinamide riboside (NR), which is delivered into cells, is broken down by PNP, causing a buildup of NAM. When PNP activity is inhibited, NR can be used to synthesize NAD, and cancer is linked to dysregulation of NAD+-dependent metabolism and signaling (Sethi, Zhang et al. 2018, Kropotov, Kulikova et al. 2022). As a result, it is thought that PNP may slow the development of cancer via influencing NAD+ production.

In this work, we discovered several previously unidentified genes in HCC, indicating their potential as biomarkers for the disease. Patients with HCC had downregulated levels of the six key genes which may contribute to the suppression of the disease. To solidify the link between the expression levels of these crucial genes and HCC onset, we examined the correlation between the expression of these six key genes and clinical prognosis. We observed that higher expression of these genes correlated significantly with reduced survival chances, potentially aiding in predicting HCC patient prognosis. Thus, these six genes hold both diagnostic and prognostic value for HCC.

We employed the CIBERSORT algorithm to discern statistically significant differences in the expression levels of nine immune cell types between high and low NAM score groups. This underscores that the NM degree is intricately linked to the immune infiltration in HCC cells, emphasizing the pivotal role of NMRDEGS in regulating the recruitment and invasion of HCC immune cells. Further preclinical and clinical studies are necessary before determining whether it could serve as a therapeutic target. The six key genes may have an impact on the immune milieu in the HCC microenvironment and offer points for determining which patients would respond favorably to HCC immunotherapy. The balance between intracellular activities (internal metabolites, ROS, reducing/oxidizing substrates) and external signals (growth factors, nutritional availability) determines the metabolic pathways that control immune cell maintenance and activation. Growth factors and nutrient availability are environmental factors, whereas internal metabolites, ROS, and reduction/oxidation fifth factors are intracellular activities (Llovet, Castet et al. 2021). Hepatocellular carcinoma (HCC) is often associated with chronic inflammatory processes and is considered as a model immunogenic cancer. Dysregulation in the immune microenvironment is considered a key feature of HCC (Donne and Lujambio 2023). This imbalance involves a variety of immune regulatory mechanisms, which play a central role in tumor formation, proliferation and progression, such as genetic modification, promoting cell proliferation, enhancing drug resistance, inhibiting apoptosis, interfering with genome stability, and shaping the microenvironment. According to the analysis of our data, the
infiltration of M1 and M2 type macrophages was reduced in the NAM high expression group compared to the NAM low expression group, while the infiltration of M0 type macrophages was increased (Scatozza, Moschella et al. 2020). M0 macrophages can transform into M1 macrophages in the presence of certain immune activating factors such as LPS, IFN$_{\gamma}$ and TNF$_{\alpha}$ (Mizukoshi and Kaneko 2019). However, it can be transformed into M2 type under the regulation of IL-4, IL-13, IL-10, IL-33 and TGF-β (Zapata-Pérez, Wanders et al. 2021). M1-type macrophages will release proinflammatory cytokines, maintain chronic inflammation, and activate T cells in the initial stages of cancer, and their antitumor effect is partially dependent on the activation of Th1-type immune responses. In the tumor microenvironment, M0 macrophages tend to transition into M2 macrophages. It's believed that M2 macrophages typically promote tumor progression, possibly through the secretion of immunosuppressive cytokines like IL-10 and TGF-β, and by influencing the recruitment of Treg cells(DeBerardinis and Chandel 2016). According to our study, the high expression of NAM seems to be able to inhibit the transformation of M0 macrophages to M1 and M2 macrophages, thereby reducing their inflammatory and tumorigenic effects in the tumor immune microenvironment, which may inhibit the development of cancer(Hsu and Sabatini 2008). Moreover, our findings highlighted a pronounced increase in Treg cell infiltration coupled with a marked decrease in monocyte infiltration within the high-score NAM group. Such patterns underscore NAM's potential critical influence on tumor immune regulation. Significantly, mast cells, particularly when in their resting phase, are recognized for their strong association with the onset and advancement of HCC (Zhang, Sun et al. 2021). From our observations, elevated NAM expression seems to decrease the infiltration abundance of mast cells in their resting state, potentially enhancing the prognosis for HCC patients.

Dendritic cells (DCs) are pivotal in orchestrating T-cell immune reactions, with the antigen presentation by resting DCs to CD8+ T cells potentially elevating tolerance (Probst, McCoy et al. 2005, Ouyang, Wu et al. 2016). Furthermore, metabolism stands as a cornerstone in the dynamic between immune and cancer cells within the tumor milieu, influencing both immune surveillance and evasion mechanisms (Xie, Bai et al. 2020, Xu, Wang et al. 2021). In sum, our research underscores NAM's paramount influence on the immune landscape of HCC.

Through our experiments, we've confirmed NAM's suppressive impact on HCC cell proliferation and migration. The metabolic interplay between cancer cells and adjacent immune cells can shape the intensity and nature of the immune response, underscoring the potential role of metabolic interactions in immune surveillance and evasion. As tumors evolve, cancer cells persistently take in nutrients to fuel their rapid growth. Simultaneously, the generation of immunosuppressive metabolites can modulate the survival and functionality of immune cells, tilting the balance towards immune evasion and further tumor advancement. NAM and ROS and reduction/oxidation go hand in hand. Therefore, alterations in immune metabolism may also be affected by aberrant expression of NAM-related genes, and the NAM metabolism may dynamically control variations in immune cell function. Using the GDSC, CCLE, and CellMiner databases, we discovered medications that interact with these six key genes. Future research must be done on the functions of these medications in HCC.

Our research offers novel perspectives into the metabolic pathways underlying HCC
by presenting the first thorough examination of the association between NM and HCC. The use of data from public sources without any kind of internal validation is one of the study's weaknesses which could result in biased interpretations of the findings. Additionally, only a small number of clinical samples were included in the validation experiments, necessitating a larger sample size in order to better examine the connection between key genes and disease diagnosis and prognosis. Furthermore, there is still much to learn about the key genes revealed in this study's methods of action, necessitating additional study. Finally, a thorough examination of the clinical traits reflected by the various subtypes and phases is not possible due to a lack of clinical data on HCC patients in the database.

Conclusion:

In conclusion, six NMRDEGs associated with HCC were discovered to be highly associated with the prognosis of HCC. This signature gene model improves our understanding of HCC at the molecular level and may be very useful in determining the diagnosis, course of treatment, and prognosis of HCC patients.

References:

and RNA-seq data. BMC Bioinformatics 14: 7. DOI: 10.1186/1471-2105-14-7

Statements & Declarations

Funding

This work was supported by grant from the National Natural Science Foundation of China (81672420, 81702406, U21A20419 and 81372563), the Natural Science Foundation of Guangdong Province of China (2016A030310207) and by grant from the Guangdong Provincial Key Laboratory of Construction Foundation (2017B030314030).

Competing Interests
No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Author Contributions
Sijia Yang and Ang Li conceived of the study, performed most of the experiments and was a major contributor in writing the manuscript. Lihong Lv designed the study, analyzed data and revised the manuscript. Jinxin Duan acquired data. Wenfeng Zhuo collected the clinical samples and acquired data. Zhenghua Zheng performed part of the experiments. Peiqing Liu, Jun Min and Jinxing Wei designed the study, analyzed data, obtained funding and supervised study. All authors read and approved the final manuscript.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval
Tissue and serum samples were collected from patients after obtaining informed consent in accordance with a protocol approved by the Ethics Committee of Sun Yat-sen Memorial Hospital (Guangzhou, China). All experimental procedures involving animals were performed according to the Guide for the Care and Use of Laboratory Animals (National Institutes of Health publication No. 85–23, revised 2011) and in accordance with the institutional ethical guidelines for animal experiments.

Consent to participate
Informed consent was obtained from all individual participants included in the study.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementaryTableS1.docx
- supplementaryTableS2.docx
- supplementaryTableS3.docx
- supplementaryTableS4.docx
- supplementaryTableS5.docx
- supplementaryTableS6.docx