

Supporting Information

Nickel-Catalyzed Regio- and Diastereoselective Arylation of Unactivated Alkenes

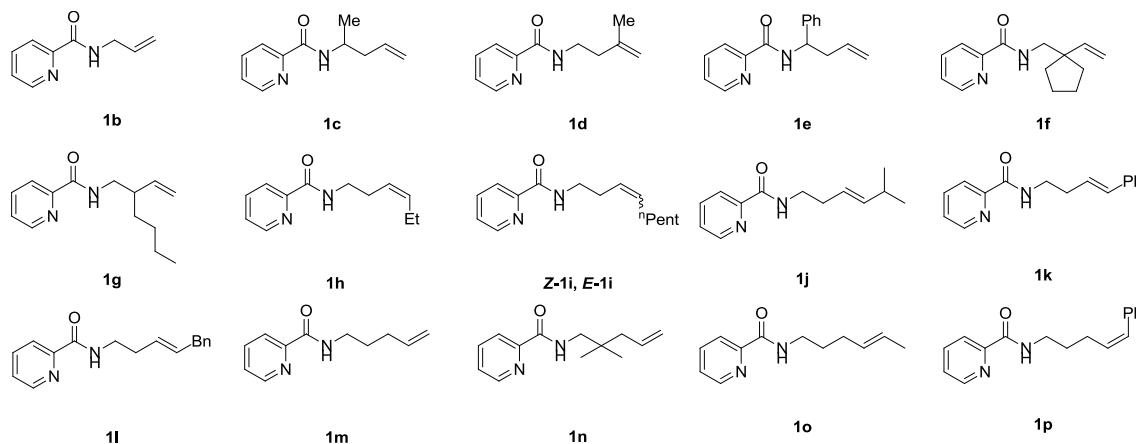
Shenghao Wang,[§] Lanlan Zhang,[§] Leipeng Xie, Chun Luo, Lei Zhao, Linping Mu, Xiuguang Wang, and Chao Wang*

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China

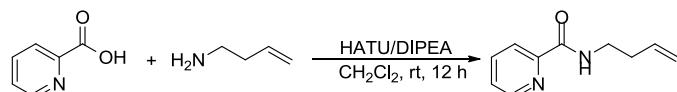
E-mail: chwang@tjnu.edu.cn

Table of Contents

1. General Remarks.....	3
2. Alkene Substrate Synthesis.....	3
3. General Procedure for the Ni-Catalyzed Arylation of Alkenyl Amines.....	13
4. Gram-scale Reaction and PA Removal.....	31
5. Late-stage Functionalization of Biorelevant Molecules	32
6. Radical Trapping Experiment	33
7. Radical Clock Experiment	34
8. X-ray Crystallographic Data	34
9. References.....	56
10. NMR Spectra.....	57

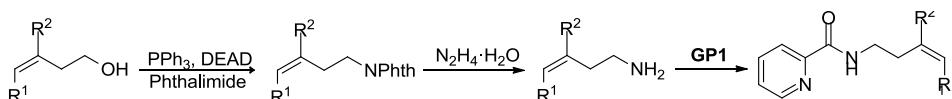

1. General Remarks

All the manipulations were performed in an argon-filled glovebox, unless mentioned otherwise. Anhydrous solvent was purchased from commercial sources and transferred under argon atmosphere. Alkene substrates and Amine benzoate substrates were prepared according to previously reported procedures, all arylboronic acids were purchased from commercial sources and used without further purification. All reagents were purchased from Energy Chemicals and used as received.


^1H NMR, ^{13}C NMR spectra were recorded using Bruker 400 MHz NMR spectrometer. ^1H NMR and ^{13}C NMR spectra were referenced to resonances of the residual protons in the deuterated solvents. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br = broad singlet and m = multiplet. GC-MS analysis was performed on Shimadzu GC-2010 gas chromatography coupled to a Shimadzu QP2010 mass selective detector. Analytical HPLC/MS was performed with an Agilent 6520 Series HPLC. Agilent 1200 Series HPLC.

2. Alkene Substrate Synthesis

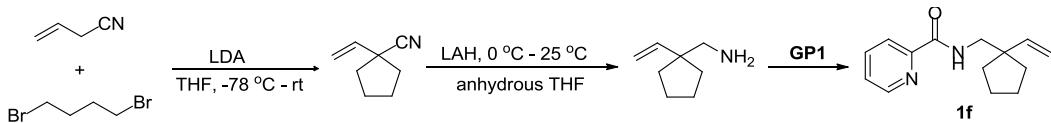
Table S1. Picolinamide-containing alkene substrates **1b-1k**.


General Procedure for Amide Coupling (GP1):

Compound **1b**, **1m** were synthesized from amines^[1].

To a 50 mL flask was added alkenyl carboxylic amide (10 mmol, 1.0 eq), picolinic acid (12 mmol, 1.2 eq), HATU (11 mmol, 1.1 eq), DIPEA (20 mmol, 2.0 eq) and CH₂Cl₂ (30 mL). The reaction mixture was left to stir for 12 h. Upon completion, the reaction was quenched with brine (10 mL), and extracted with CH₂Cl₂ (50 mL × 4). The organic layers were combined, and the solvent was removed in vacuo to yield a yellow residue. Purification using column chromatography gave the pure product.

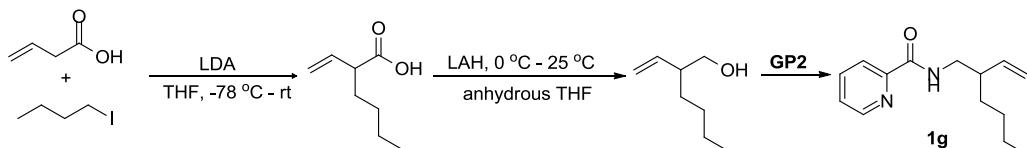
General Procedure for Amide Coupling(GP2):


Compound **1c-1e**, **1h-1i**, **1o** were synthesized from enols^[2].

To a mixture of triphenylphosphine (25 mmol, 1.0 eq), phthalimide (25 mmol, 1.0 eq) and the corresponding allyl alcohol (25 mmol, 1.0 eq) in THF (30 mL) was slowly added diethyl azodicarboxylate (DEAD) (25 mmol, 1.0 eq) at 0 °C. The mixture was stirred at 0 °C for 3 h. After the completion of the reaction, the reaction mixture was diluted with *n*-hexane and filtered. The filtrate was dried over Na₂SO₄ and concentrated in vacuo to give the crude product, which was used without further purification.

To the solution of phthalimide product in ethanol (100 mL) was added hydrazine monohydrate (25 mmol) at 50 °C. The mixture was stirred for 1 h and quenched with 6 M HCl (20 mL). The precipitates formed were removed by filtration, and the resultant filtrate was dried over Na₂SO₄ and concentrated in vacuo to give an unsaturated amine hydrochloride. Aqueous NaOH (6.0 M, 10 mL) was added to the amine salt, and the resulting solution was extracted with CH₂Cl₂ (25 mL × 3). The combined organic extracts was then washed again with brine (10 mL), dried over Na₂SO₄, and filtered. The amine solution was used without further purification.

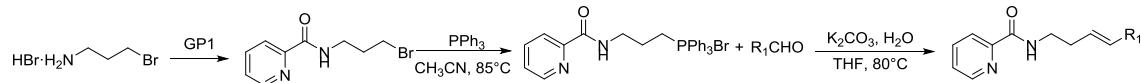
To the solution of amine (25 mmol, 1.0 eq) was successively added picolinic acid (30 mmol, 1.2 eq), HATU (27.5 mmol, 1.1 eq) and DIPEA (50 mmol, 2.0 eq). The resultant mixture was stirred at room temperature overnight. Water was added and the mixture was extracted with CH₂Cl₂ (50 mL × 3). The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The resulting residue was purified by alumina gel flash chromatography (ethyl acetate:hexanes = 1:8) to give the desired product.


Synthesis of compound **1f**.

To a 100 mL schlenk flask was added lithium diisopropylamide (44 mmol, 1.1 eq, 2.0 M in THF), anhydrous THF (10 mL) under Ar atmosphere. The resulting solution was submerged in a -78 °C dry ice bath. A solution of acrylonitrile (40 mmol, 1.0 eq) in 10 mL THF was added dropwise over 5 min, and a solution of 1,4-dibromobutane (38 mmol, 0.95 eq) in 10 mL THF was added dropwise over 0.5 h. After 4 h at this temperature, the solution was quenched slowly with water (10 mL). The aqueous layer was transferred to a separatory funnel and washed with Et₂O (50 mL × 2) before being charged back into the schlenk flask. Hydrochloric acid was added dropwise into the vigorously stirring solution at 0 °C until pH = 3. The milky solution was then extracted with EtOAc (100 mL × 2). The combined organic extracts were washed with brine (50 mL), dried over Na₂SO₄, concentrated, and carried forward to the next step without further purification.

To a 250 mL oven-dried flask under Ar atmosphere was added anhydrous THF (100 mL) followed by LiAlH₄ (15 mL, 2.4 M in THF). A solution of nitrile (40 mmol, 1.0 eq) in THF (50 mL) was added dropwise at 0 °C. The reaction vessel was allowed to warm to room temperature and left to stir for 3 h. After this time, the reaction mixture was diluted with Et₂O, washed with 1 M HCl, sat. NaHCO₃ solution, brine and extracted with EtOAc (10 mL × 5)^[3]. The organic solvent is removed to get a yellow oil which is used to synthesize the final product **1f** through the process **GP1**.

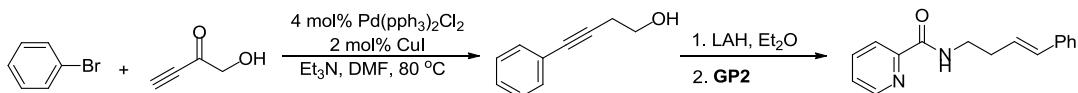
Synthesis of compound **1g**.



To a 100 mL schlenk flask was added LDA (55 mmol, 2.2 eq, 2.0 M in THF), anhydrous THF (10 mL) under Ar atmosphere. The resulting solution was submerged in a -78 °C dry ice bath. A solution of 3-butenoic acid (25 mmol, 1.0 eq) in 5 mL THF was added dropwise over 5 min, and

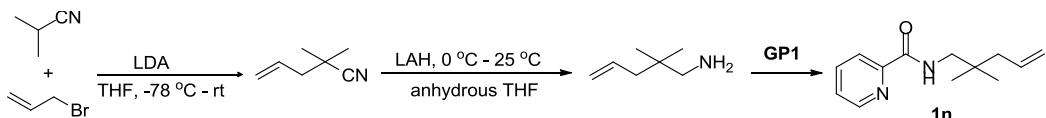
a solution of 1-iodobutane (25 mmol, 1.0 eq) in 5 mL THF was added dropwise over 5 min. After 4 h at this temperature, the solution was quenched slowly with water (10 mL). The aqueous layer was transferred to a separatory funnel and washed with Et_2O (50 mL \times 2) before being charged back into the schlenk flask. Hydrochloric acid was added dropwise into the vigorously stirring solution at 0 °C until pH = 3. The milky solution was then extracted with EtOAc (100 mL \times 2). The combined organic extracts were washed with brine (50 mL), dried over Na_2SO_4 , concentrated, and carried forward to the next step without further purification.

To a 250 mL oven-dried flask under Ar atmosphere was added anhydrous THF (100 mL) followed by LAH (15 mL, 2.4 M in THF). A solution of acid (25 mmol, 1.0 eq) in THF (50 mL) was added dropwise at 0 °C. The reaction vessel was allowed to warm to room temperature and left to stir for 3 h. After this time, the reaction mixture was diluted with Et_2O , washed with 1 M HCl, sat. NaHCO_3 solution, brine and extracted with EtOAc (10 mL \times 5)^[3]. The organic solvent is removed to get a yellow oil which is used to synthesize the final product **1g** through the process **GP2**.


Synthesis of compound **1j**, **1l**.

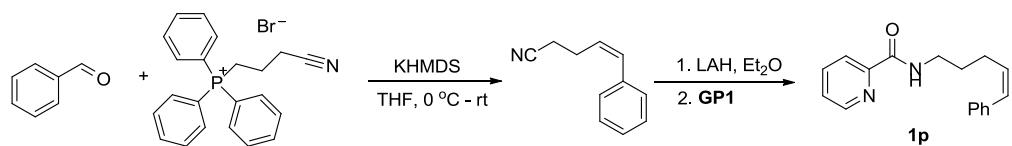
To a 100 mL schlenk flask was added 3-Bromopropylamine hydrobromide (30 mmol, 1.0 eq), then through the process **GP1**. After that, the reaction mixture was diluted with EtOAc (100 mL) and washed with brine (3 \times 100 mL). The organic layer was separated, dried over Na_2SO_4 , and concentrated, and carried forward to the next step without further purification.

PPh_3 (30 mmol, 1.0 eq), CH_3CN (150 mL) was added to the resulting solution and then the reaction vessel was allowed to heat to reflux under argon for 48 h. After this time, the reaction vessel was cooled to room temperature, removed solvent by vacuum. Then added aldehyde (30 mmol, 1.0 eq), K_2CO_3 (45 mmol, 1.5 eq), H_2O (30 mmol, 1.0 eq) in THF (80 mL) was stirred at 80 °C for 12 h. After that, the combined organic layers were washed with water and brine, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (ethyl acetate:hexanes = 1:8) to give the desired product.


Synthesis of compound **1k**.

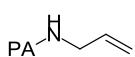
To a 100 mL flask was added bromobenzene (50 mmol, 1.0 eq), 1-hydroxybut-3-yn-2-one (55 mmol, 1.1 eq), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (0.008 mmol, 4 mol%), CuI (0.004 mmol, 2 mol%), Et_3N (60 mmol, 1.2 eq) and DMF (50 mL). The reaction mixture was left to stir for 12 h at 80 °C. Upon completion, the reaction was quenched with brine (10 mL), and extracted with CH_2Cl_2 (50 mL × 4). The organic layers were combined, and the solvent was removed in vacuo to yield a brown residue. Purification using column chromatography gave the pure product.^[4]

To a suspension of LAH (75 mmol, 1.5 eq) in diethyl ether (0.3 M) under N_2 at 0 °C was slowly added a solution of 4-phenylbut-3-yn-1-ol (50 mmol, 1.0 eq). After 15 min the reaction was allowed to warm to room temperature and stirred for an additional 3 h. The reaction was re-cooled to 0 °C, diluted with wet Et_2O , quenched by slow addition of aq. NaOH (1 M), stirred for an additional 0.5 h, filtered through celite and concentrated under reduced pressure. The resulting crude product was used to synthesize the final product **1k** through the process **GP2**.


Synthesis of compound **1n**.

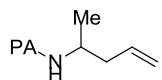
To a 100 mL schlenk flask was added LDA (66 mmol, 1.1 eq, 2.0 M in THF), anhydrous THF (10 mL) under Ar atmosphere. The resulting solution was submerged in a -78 °C dry ice bath. A solution of isobutyronitrile (60 mmol, 1.0 eq) in 10 mL THF was added dropwise over 5 min, and a solution of allyl bromide (72 mmol, 1.2 eq) in 10 mL THF was added dropwise over 0.5 h. After 4 h at this temperature, the solution was quenched slowly with water (10 mL). The aqueous layer was transferred to a separatory funnel and washed with Et_2O (50 mL × 2) before being charged back into the schlenk flask. Hydrochloric acid was added dropwise into the vigorously stirring solution at 0 °C until $\text{pH} = 3$. The milky solution was then extracted with EtOAc (100 mL × 2). The combined organic extracts were washed with brine (50 mL × 1), dried over Na_2SO_4 , concentrated, and carried forward to the next step without further purification.

To a 250 mL oven-dried flask under Ar atmosphere was added anhydrous THF (100 mL) followed by LiAlH₄ (15 mL, 2.4 M in THF). A solution of nitrile (60 mmol, 1.0 eq) in THF (50 mL) was added dropwise at 0 °C. The reaction vessel was allowed to warm to room temperature and left to stir for 3 h. After this time, the reaction mixture was diluted with Et₂O, washed with 1 M HCl, sat. NaHCO₃ solution, brine and extracted with EtOAc (10 mL × 5)^[3]. The organic solvent is removed to get a yellow oil which is used to synthesize the final product **1n** through the process **GP1**.

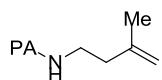

Synthesis of compound **1p**.

To a suspension of (3-cyanopropyl)triphenylphosphonium bromide (7.3 mmol, 1.1 eq) in 20 mL THF at 0 °C was added KHMDS (20 wt% in THF, 8.3 mmol, 1.25 eq) slowly over 2 min, which resulted in an orange suspension. The reaction was stirred at 0 °C for 15 min before the benzaldehyde (6.65 mmol, 1.0 eq) was added in one portion. The reaction was stirred an additional 0.5 h at 0 °C, 1.5 h at room temperature. The resulting mixture was filtered through a silica plug, concentrated and purified by flash column silica gel chromatography using the indicated solvent system^[5].

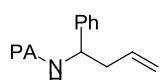
To a suspension of LAH (10 mmol, 1.5 eq) in Et₂O (0.3 M) under N₂ at 0 °C was slowly added a solution of nitrile (6.65 mmol, 1.0 eq). After 15 min the reaction was allowed to warm to room temperature and stirred for an additional 3 h. The reaction was re-cooled to 0 °C, diluted with wet Et₂O, quenched by slow addition of aq. NaOH (1 M), stirred for an additional 0.5 h, filtered through celite and concentrated under reduced pressure. The resulting crude product was used to synthesize the final product **1p** through the process **GP1**.


N-allylpicolinamide (**1b**)

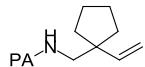
The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:6). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (m, 1H), 8.21


(m, 1H), 8.14 (br, 1H), 7.85 (m, 1H), 7.43 (m, 1H), 6.03–5.87 (m, 1H), 5.31–5.15 (m, 2H), 4.13–4.04 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.31, 150.04, 148.23, 137.50, 134.22, 126.32, 122.44, 116.60, 41.95. GC-MS (EI): Calcd for $\text{C}_{11}\text{H}_{14}\text{N}_2\text{O}$: 162.08, found: 162.10.

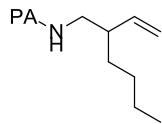
N-(pent-4-en-2-yl)picolinamide (1c)


The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.50 (dd, J = 2.8, 1.7 Hz, 1H), 8.19–8.12 (m, 1H), 7.92 (br, 1H), 7.80 (m, 1H), 7.41–7.34 (m, 1H), 5.89–5.73 (m, 1H), 5.16–5.01 (m, 2H), 4.23 (m, 1H), 2.33 (d, J = 6.7 Hz, 2H), 1.26–1.20 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 163.55, 150.11, 148.05, 137.38, 134.45, 126.09, 122.23, 117.88, 44.81, 41.02, 20.32. GC-MS (EI): Calcd for $\text{C}_{11}\text{H}_{14}\text{N}_2\text{O}$: 190.11, found: 190.15.

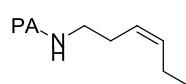
N-(3-methylbut-3-en-1-yl)picolinamide (1d)


The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.57–8.51 (m, 1H), 8.19 (d, J = 7.8 Hz, 1H), 8.08 (br, 1H), 7.84 (m, 1H), 7.41 (m, 1H), 4.88–4.77 (m, 2H), 3.61 (dd, J = 12.9, 6.9 Hz, 2H), 2.35 (t, J = 6.9 Hz, 2H), 1.79 (s, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.32, 150.13, 148.18, 142.72, 137.48, 126.19, 122.33, 112.41, 37.62, 37.40, 22.38. GC-MS (EI): Calcd for $\text{C}_{11}\text{H}_{14}\text{N}_2\text{O}$: 190.11, found: 190.14.

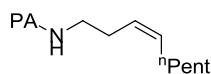
N-(1-phenylbut-3-en-1-yl)picolinamide (1e)


The title compound was isolated as a yellow solid after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.55 (dd, J = 4.8, 0.7 Hz, 1H), 8.44 (br, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.83 (m, 1H), 7.46–7.29 (m, 5H), 7.25 (m, 1H), 5.77 (m, 1H), 5.27 (dd, J = 15.4, 7.0 Hz, 1H), 5.22–5.04 (m, 2H), 2.77–2.65 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 163.67, 149.96, 148.18, 141.85, 137.48, 134.08, 128.74, 127.46, 126.70, 126.30, 122.46, 118.38, 52.90, 40.90. GC-MS (EI): Calcd for $\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}$: 252.13, found: 252.10.

N-((1-vinylcyclopentyl)methyl)picolinamide (1f)

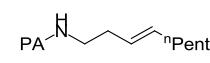

The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.54 (m, 1H), 8.19 (m, 1H), 8.11 (br, 1H), 7.83 (m, 1H), 7.41 (m, 1H), 5.90 (dd, J = 17.5, 10.8 Hz, 1H), 5.16–5.07 (m, 2H), 3.47 (d, J = 6.1 Hz, 2H), 1.74–1.63 (m, 6H), 1.59 (d, J = 6.9 Hz, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.51, 150.20, 148.29, 144.41, 137.39, 126.13, 126.10, 122.39, 50.18, 46.55, 35.07, 24.13. GC-MS (EI): Calcd for $\text{C}_{14}\text{H}_{18}\text{N}_2\text{O}$: 230.14, found: 230.15.

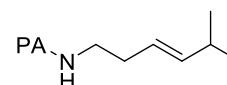
***N*-(2-vinylhexyl)picolinamide (1g)**


The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.52 (dd, J = 2.8, 1.9 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.10 (br, 1H), 7.82 (dd, J = 10.7, 4.7 Hz, 1H), 7.48–7.34 (m, 1H), 5.63 (m, 1H), 5.11 (dd, J = 13.3, 5.3 Hz, 2H), 3.76–3.49 (m, 1H), 3.34–3.09 (m, 1H), 2.28 (dd, J = 8.3, 4.7 Hz, 1H), 1.34 (m, 6H), 0.87 (s, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.29, 150.15, 148.19, 140.49, 137.37, 126.11, 122.29, 116.77, 44.46, 43.35, 32.14, 29.32, 22.79, 14.13. GC-MS (EI): Calcd for $\text{C}_{14}\text{H}_{20}\text{N}_2\text{O}$: 232.16, found: 232.15.

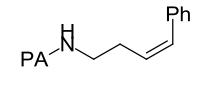
(Z)-*N*-(hex-3-en-1-yl)picolinamide (1h)

The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.54–8.47 (m, 1H), 8.22–8.15 (m, 1H), 8.11 (br, 1H), 7.89–7.78 (m, 1H), 7.40 (m, 1H), 5.61–5.45 (m, 1H), 5.38 (m, 1H), 3.49 (t, J = 6.6 Hz, 2H), 2.51–2.21 (m, 2H), 2.21–1.83 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.34, 150.12, 148.11, 137.45, 134.78, 126.16, 125.14, 122.29, 39.25, 27.51, 20.75, 14.35. GC-MS (EI): Calcd for $\text{C}_{12}\text{H}_{16}\text{N}_2\text{O}$: 204.13, found: 204.10.

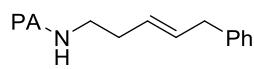

(Z)-*N*-(non-3-en-1-yl)picolinamide (Z-1i)


The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.50 (d, J = 4.6 Hz, 1H), 8.16 (dd, J = 7.3, 3.4 Hz, 1H), 8.10 (br, 1H), 7.85–7.74 (m, 1H), 7.37 (m, 1H), 5.55–5.32 (m, 2H), 3.52–3.41 (m, 2H), 2.41–2.29 (m, 2H), 2.01 (d, J = 6.6 Hz, 2H), 1.24 (dd, J = 35.8, 4.7 Hz, 6H), 0.84–0.73 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.27, 150.08, 148.04, 137.34,

133.12, 126.07, 125.66, 122.20, 39.18, 31.51, 29.36, 27.56, 27.35, 22.59, 14.07. GC-MS (EI): Calcd for C₁₅H₂₂N₂O: 246.17, found: 246.15.

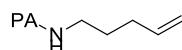

(E)-N-(non-3-en-1-yl)picolinamide (E-1i)

 The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:8). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.7 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 8.09 (br, 1H), 7.84 (m, 1H), 7.41 (m, 1H), 5.61–5.52 (m, 1H), 5.49–5.39 (m, 1H), 3.50 (dd, *J* = 12.9, 6.8 Hz, 2H), 2.32 (m, 2H), 2.01 (m, 2H), 1.38–1.32 (m, 2H), 1.28–1.22 (m, 4H), 0.86 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.30, 150.24, 148.14, 137.40, 133.86, 126.44, 126.12, 122.28, 39.16, 32.80, 32.73, 31.43, 29.27, 22.67, 14.16. GC-MS (EI): Calcd for C₁₅H₂₂N₂O: 246.17, found: 246.20.

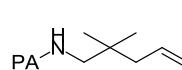

(E)-N-(5-methylhex-3-en-1-yl)picolinamide (1j)

 The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.7 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.12 (br, 1H), 7.84 (m, 1H), 7.44–7.39 (m, 1H), 5.31 (m, 2H), 3.50 (dd, *J* = 13.1, 6.7 Hz, 2H), 2.61 (m, 1H), 2.39 (m, 2H), 0.93 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.35, 150.15, 148.11, 140.65, 137.40, 126.15, 123.35, 122.25, 39.34, 27.73, 26.72, 23.22. GC-MS (EI): Calcd for C₁₃H₁₈N₂O: 218.14, found: 218.18.

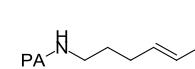
(Z)-N-(4-phenylbut-3-en-1-yl)picolinamide (1k)


 The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:8). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (m, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.17 (br, 1H), 7.84 (m, 1H), 7.42–7.38 (m, 1H), 7.38–7.33 (m, 2H), 7.30 (dd, *J* = 8.2, 6.8 Hz, 2H), 7.24–7.19 (m, 1H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.24 (m, 1H), 3.63 (m, 2H), 2.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.45, 150.08, 148.18, 137.46, 137.44, 132.44, 128.64, 127.34, 127.02, 126.25, 126.21, 122.30, 39.13, 33.33. GC-MS (EI): Calcd for C₁₆H₁₆N₂O: 252.13, found: 252.15.

(E)-N-(5-phenylpent-3-en-1-yl)picolinamide (1l)


The title compound was isolated as a yellow oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.54 (d, $J = 4.7$ Hz, 1H), 8.20 (d, $J = 7.8$ Hz, 1H), 8.16 (br, 1H), 7.85 (m, 1H), 7.44–7.41 (m, 1H), 7.22 (dd, $J = 8.6, 6.1$ Hz, 2H), 7.18–7.13 (m, 3H), 5.73 (m, 1H), 5.61–5.54 (m, 1H), 3.57 (dd, $J = 13.2, 6.8$ Hz, 2H), 3.43 (d, $J = 7.3$ Hz, 2H), 2.52 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.42, 150.10, 148.15, 140.74, 137.43, 131.20, 128.51, 128.45, 126.90, 126.18, 126.01, 122.31, 39.18, 33.68, 27.75. GC-MS (EI): Calcd for $\text{C}_{15}\text{H}_{22}\text{N}_2\text{O}$: 266.14, found: 266.20.

N-(pent-4-en-1-yl)picolinamide (1m)


The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:6). ^1H NMR (400 MHz, CDCl_3) δ 8.54 (m, 1H), 8.20 (m, 1H), 8.09 (br, 1H), 7.84 (m, 1H), 7.42 (m, 1H), 5.84 (m, 1H), 5.13–4.94 (m, 2H), 3.49 (dd, $J = 13.4, 7.0$ Hz, 2H), 2.22–2.12 (m, 2H), 1.78–1.70 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.35, 150.13, 148.11, 137.87, 137.52, 126.20, 122.35, 115.37, 39.03, 31.27, 28.93. GC-MS (EI): Calcd for $\text{C}_{11}\text{H}_{14}\text{N}_2\text{O}$: 190.11, found: 190.15.

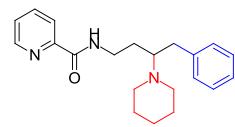
N-(2,2-dimethylpent-4-en-1-yl)picolinamide (1n)

The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:6). ^1H NMR (400 MHz, CDCl_3) δ 8.56 (m, 1H), 8.20 (m, 2H), 7.86–7.81 (m, 1H), 7.42 (m, 1H), 5.92–5.81 (m, 1H), 5.11–5.06 (m, 2H), 3.31 (d, $J = 6.7$ Hz, 2H), 2.06 (d, $J = 7.5$ Hz, 2H), 0.97 (s, 6H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.48, 150.20, 148.19, 137.47, 134.93, 126.17, 122.43, 117.76, 49.10, 44.70, 35.23, 25.17. GC-MS (EI): Calcd for $\text{C}_{13}\text{H}_{18}\text{N}_2\text{O}$: 218.14, found: 218.15.

(E)-N-(hex-4-en-1-yl)picolinamide (1o)

The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.57–8.51 (m, 1H), 8.19 (d, $J = 7.8$ Hz, 1H), 8.07 (br, 1H), 7.84 (m, 1H), 7.41 (m, 1H), 5.57–5.36 (m, 2H),

3.47 (m, 2H), 2.09 (m, 2H), 1.75–1.67 (m, 2H), 1.65 (d, J = 4.8 Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.32, 150.21, 148.11, 137.42, 130.36, 126.12, 125.90, 122.27, 39.08, 30.15, 29.49, 18.03. GC-MS (EI): Calcd for $\text{C}_{12}\text{H}_{16}\text{N}_2\text{O}$: 204.13, found: 204.15.


(Z)-N-(5-phenylpent-4-en-1-yl)picolinamide (1p)

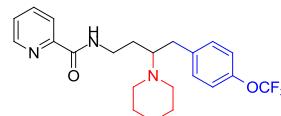
 The title compound was isolated as a colorless oil after chromatography on silica with ethyl acetate/hexane (1:8). ^1H NMR (400 MHz, CDCl_3) δ 8.52 (d, J = 4.8 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 8.06 (br, 1H), 7.83 (m, 1H), 7.41 (dd, J = 7.5, 4.8 Hz, 1H), 7.28 (m, 4H), 7.20 (t, J = 6.9 Hz, 1H), 6.47 (d, J = 11.6 Hz, 1H), 5.69 (m, 1H), 3.50 (m, 2H), 2.52–2.38 (m, 2H), 1.83–1.75 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.39, 150.13, 148.12, 137.57, 137.44, 131.70, 129.89, 128.84, 128.30, 126.72, 126.17, 122.29, 39.12, 29.96, 26.11. GC-MS (EI): Calcd for $\text{C}_{17}\text{H}_{18}\text{N}_2\text{O}$: 266.14, found: 266.20.

3. General Procedure for the Ni-Catalyzed Arylation of Alkenyl Amines

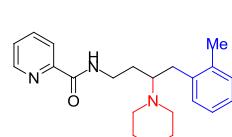
In an argon-filled glovebox, $\text{NiBr}_2\bullet\text{DME}$ (0.03 mmol, 15 mol%), K_3PO_4 (0.6 mmol, 3.0 eq), alkene substrate (0.2 mmol, 1.0 eq), appropriate amine benzoate electrophile (0.4 mmol, 2 eq), appropriate aryl boronic nucleophile (0.6 mmol, 3.0 eq), *t*-BuOH (2 mL) were added to a 10 mL schlenk flask. The reaction mixture was stirred at 80 °C for 24 h and the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on alumina gel with a mixture of ethyl acetate and hexane as eluent. The conditions for flash chromatography and data for characterization of the products are listed below.

***N*-(4-phenyl-3-(piperidin-1-yl)butyl)picolinamide (2a)**

 The title compound was isolated as a colorless oil (80% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.22 (br, 1H), 8.48–8.42 (m, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.72 (m, 1H), 7.32–7.28 (m, 1H), 7.19 (t, J = 7.4 Hz, 2H), 7.11 (d, J = 7.3 Hz, 1H), 7.05 (d, J =

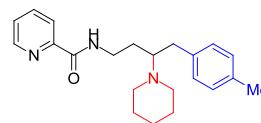

7.2 Hz, 2H), 3.59 (m, 1H), 3.11 (m, 1H), 2.98 (dd, $J = 13.0, 3.2$ Hz, 1H), 2.74 (m, 3H), 2.44 (m, 2H), 2.23 (dd, $J = 13.0, 10.5$ Hz, 1H), 1.73–1.60 (m, 5H), 1.55–1.41 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.60, 150.46, 147.94, 140.57, 137.20, 129.28, 128.54, 126.00, 125.94, 122.23, 68.14, 49.89, 39.53, 34.53, 28.15, 26.01, 25.15. HRMS (ESI) m/z calculated for $\text{C}_{21}\text{H}_{27}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 338.2232, found 338.2235.

N-(4-(4-methoxyphenyl)-3-(piperidin-1-yl)butyl)picolinamide (2b)

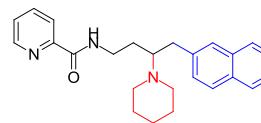

The title compound was isolated as a colorless oil (67% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.30 (br, 1H), 8.56–8.49 (m, 1H), 8.16 (d, $J = 7.8$ Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.06 (d, $J = 7.7$ Hz, 2H), 6.85–6.79 (m, 2H), 3.79 (s, 3H), 3.68 (s, 1H), 3.20 (m, 1H), 3.00 (d, $J = 10.4$ Hz, 1H), 2.79 (s, 3H), 2.50 (s, 2H), 2.24 (s, 1H), 1.73 (s, 6H), 1.51 (s, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 162.68, 156.11, 156.01, 146.03, 135.26, 135.20, 128.23, 123.99, 120.28, 112.14, 53.48, 48.01, 47.95, 37.59, 31.71, 26.34, 24.24, 23.25. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}_2$ $[\text{M}+\text{H}]^+$ 368.2338, found 368.2339.

N-(3-(piperidin-1-yl)-4-(4-(trifluoromethoxy)phenyl)butyl)picolinamide (2c)

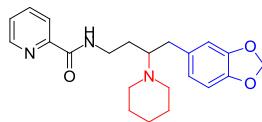
The title compound was isolated as a white solid (71% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.14 (br, 1H), 8.52 (d, $J = 4.6$ Hz, 1H), 8.16 (d, $J = 7.8$ Hz, 1H), 7.82 (m, 1H), 7.42–7.36 (m, 1H), 7.13 (m, 4H), 3.68 (m, 1H), 3.26 (m, 1H), 3.04 (dd, $J = 13.2, 3.5$ Hz, 1H), 2.78 (dd, $J = 10.4, 4.5$ Hz, 3H), 2.51 (m, 2H), 2.33 (dd, $J = 13.1, 10.2$ Hz, 1H), 1.73 (m, 5H), 1.54 (dd, $J = 13.8, 5.3$ Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.56, 150.53, 147.99, 147.59, 139.58, 137.28, 137.22, 130.51, 130.45, 126.00, 122.31, 121.91, 121.11, 119.36, 67.82, 49.92, 39.30, 34.05, 28.43, 26.20, 25.24. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{26}\text{F}_3\text{N}_3\text{O}_2$ $[\text{M}+\text{H}]^+$ 422.2055, found 422.2060.


N-(3-(piperidin-1-yl)-4-(o-tolyl)butyl)picolinamide (2d)

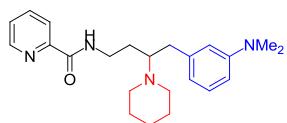
The title compound was isolated as a colorless oil (84% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400


MHz, CDCl_3) δ 9.32 (br, 1H), 8.55–8.48 (m, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.15–7.09 (m, 3H), 7.06 (dd, J = 6.5, 2.5 Hz, 1H), 3.78–3.66 (m, 1H), 3.19 (m, 1H), 3.07 (dd, J = 13.2, 3.0 Hz, 1H), 2.88 (m, 2H), 2.83–2.75 (m, 1H), 2.55 (m, 2H), 2.41–2.34 (m, 1H), 2.33 (s, 3H), 1.76 (m, 5H), 1.61–1.49 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.46, 150.71, 147.91, 138.68, 137.20, 136.17, 130.56, 130.51, 126.19, 126.01, 125.88, 122.28, 66.72, 49.81, 39.76, 31.58, 28.00, 26.21, 25.36, 19.73. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 352.2389, found 352.2389.

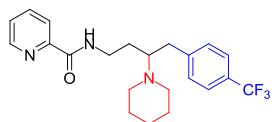
N-(3-(piperidin-1-yl)-4-(*p*-tolyl)butyl)picolinamide (2e)


The title compound was isolated as a white solid (75% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.33 (br, 1H), 8.52 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.11–7.02 (m, 4H), 3.69 (dd, J = 13.3, 6.9 Hz, 1H), 3.24–3.14 (m, 1H), 3.02 (d, J = 12.5 Hz, 1H), 2.87–2.72 (m, 3H), 2.51 (s, 2H), 2.31 (s, 3H), 2.26 (t, J = 11.6 Hz, 1H), 1.74 (s, 6H), 1.55–1.48 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.53, 150.66, 147.94, 137.21, 135.45, 129.26, 129.20, 125.91, 122.28, 68.38, 49.93, 39.71, 34.08, 28.09, 26.16, 25.32, 21.15. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 352.2389, found 352.2389.

N-(4-(naphthalen-2-yl)-3-(piperidin-1-yl)butyl)picolinamide (2f)

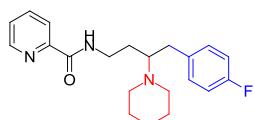

The title compound was isolated as a yellow solid (65% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.13 (br, 1H), 8.51–8.46 (m, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.79–7.74 (m, 3H), 7.61 (s, 1H), 7.50–7.27 (m, 5H), 3.64 (m, 1H), 3.28 (dd, J = 13.1, 3.3 Hz, 1H), 3.21 (m, 1H), 3.06 (m, 1H), 2.91 (m, 2H), 2.66 (m, 2H), 2.54 (dd, J = 13.0, 10.3 Hz, 1H), 1.95–1.86 (m, 1H), 1.86–1.76 (m, 4H), 1.70–1.63 (m, 1H), 1.58–1.51 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.60, 150.42, 147.96, 137.18, 133.69, 132.15, 128.27, 128.03, 127.75, 127.67, 127.61, 127.50, 126.15, 125.94, 125.42, 122.22, 67.47, 49.92, 39.30, 35.20, 28.53, 25.73, 24.92. HRMS (ESI) m/z calculated for $\text{C}_{25}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 388.2389, found 388.2390.

N-(4-(benzo[d][1,3]dioxol-5-yl)-3-(piperidin-1-yl)butyl)picolinamide (2g)

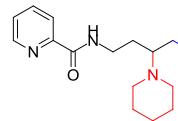

The title compound was isolated as a yellow solid (53% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ¹H NMR (400 MHz, CDCl₃) δ 9.28 (br, 1H), 8.52 (d, *J* = 4.4 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (dd, *J* = 6.7, 4.9 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 6.62 (s, 1H), 6.58 (d, *J* = 7.9 Hz, 1H), 5.92 (s, 2H), 3.70 (m, 1H), 3.22 (m, 1H), 2.99–2.94 (m, 1H), 2.83–2.69 (m, 3H), 2.53–2.42 (m, 2H), 2.21 (dd, *J* = 13.0, 10.5 Hz, 1H), 1.77–1.67 (m, 5H), 1.60–1.48 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.55, 150.60, 147.95, 147.76, 145.82, 137.23, 134.54, 125.93, 122.29, 122.12, 109.52, 108.33, 100.93, 68.28, 49.88, 39.63, 34.32, 28.13, 26.18, 25.30. HRMS (ESI) m/z calculated for C₂₂H₂₇N₃O₃ [M+H]⁺ 382.2131, found 382.2131.

N-(4-(3-(dimethylamino)phenyl)-3-(piperidin-1-yl)butyl)picolinamide (2h)

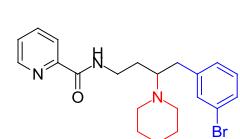
The title compound was isolated as a yellow oil (77% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ¹H NMR (400 MHz, CDCl₃) δ 9.35 (br, 1H), 8.52 (m, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.81 (m, 1H), 7.38 (m, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.60–6.55 (m, 1H), 6.53 (d, *J* = 6.8 Hz, 2H), 3.71 (m, 1H), 3.20 (m, 1H), 3.05 (dd, *J* = 12.9, 3.0 Hz, 1H), 2.93 (s, 6H), 2.84 (m, 3H), 2.59–2.49 (m, 2H), 2.26 (dd, *J* = 12.8, 10.6 Hz, 1H), 1.83–1.71 (m, 5H), 1.66–1.49 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.54, 150.85, 150.61, 147.92, 141.50, 137.18, 129.18, 125.88, 122.25, 117.71, 113.62, 110.41, 68.20, 49.89, 40.72, 39.76, 34.98, 28.18, 26.03, 25.23. HRMS (ESI) m/z calculated for C₂₃H₃₂N₄O [M+H]⁺ 381.2654, found 381.2660.


N-(3-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)picolinamide (2i)

The title compound was isolated as a white solid (71% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ¹H NMR (400 MHz, CDCl₃) δ 9.07 (br, 1H), 8.49–8.37 (m, 1H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.73 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.32 (m, 1H), 7.21–7.15 (m, 2H), 3.60 (m, 1H), 3.17 (m, 1H), 3.01 (dd, *J* = 13.0, 3.2 Hz, 1H), 2.72 (m, 3H), 2.44 (m, 2H), 2.31 (dd, *J* = 13.0, 10.1 Hz, 1H), 1.75–1.61 (m, 5H), 1.49–1.39 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.57, 150.39, 147.98, 145.06, 137.28, 129.58, 128.51, 128.18, 126.03, 125.76, 125.46, 125.42, 123.06, 122.26.

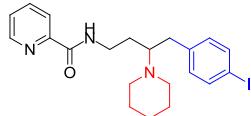

67.72, 49.93, 39.25, 34.64, 28.42, 26.12, 25.17. HRMS (ESI) m/z calculated for $C_{22}H_{26}F_3N_3O$ $[M+H]^+$ 406.2106, found 406.2110.

N-(4-(4-fluorophenyl)-3-(piperidin-1-yl)butyl)picolinamide (2j)

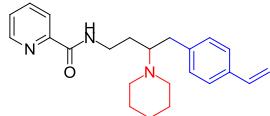

The title compound was isolated as a white solid (78% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 9.06 (br, 1H), 8.51 (d, J = 4.3 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.40–7.36 (m, 1H), 7.11 (dd, J = 8.4, 5.5 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 3.63 (m, 1H), 3.23 (m, 1H), 3.07 (dd, J = 13.2, 3.3 Hz, 1H), 2.85 (m, 3H), 2.57 (m, 2H), 2.34 (dd, J = 13.2, 10.2 Hz, 1H), 1.85–1.70 (m, 5H), 1.56 (m, 3H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 164.59, 150.48, 148.00, 137.27, 135.99, 131.70, 130.69, 130.61, 129.85, 128.14, 126.00, 122.29, 115.51, 115.30, 67.55, 49.86, 39.28, 34.25, 28.41, 25.86, 25.01. HRMS (ESI) m/z calculated for $C_{21}H_{26}FN_3O$ $[M+H]^+$ 356.2138, found 356.2138.

N-(4-(4-chlorophenyl)-3-(piperidin-1-yl)butyl)picolinamide (2k)

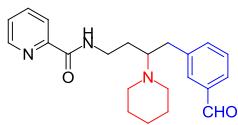
The title compound was isolated as a white solid (79% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 9.14 (br, 1H), 8.55–8.48 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 3.66 (m, 1H), 3.23 (m, 1H), 3.00 (dd, J = 13.1, 3.6 Hz, 1H), 2.77 (dd, J = 10.7, 5.6 Hz, 3H), 2.50 (m, 2H), 2.29 (dd, J = 13.1, 10.1 Hz, 1H), 1.73 (m, 5H), 1.59–1.48 (m, 3H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 164.58, 150.50, 147.99, 139.22, 137.28, 131.79, 130.63, 128.68, 126.00, 122.29, 67.89, 49.95, 39.36, 34.13, 28.39, 26.15, 25.22. HRMS (ESI) m/z calculated for $C_{21}H_{26}ClN_3O$ $[M+H]^+$ 372.1843, found 372.1842.


N-(4-(3-bromophenyl)-3-(piperidin-1-yl)butyl)picolinamide (2l)

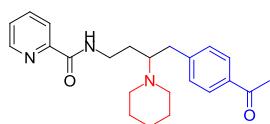
The title compound was isolated as a colorless oil (80% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 9.17 (br, 1H), 8.52 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.31 (d, J = 8.7 Hz, 2H), 7.13 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H),


3.69 (m, 1H), 3.24 (m, 1H), 3.02 (d, $J = 12.5$ Hz, 1H), 2.88–2.66 (m, 3H), 2.50 (s, 2H), 2.35–2.22 (m, 1H), 1.73 (s, 6H), 1.54–1.48 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.53, 150.50, 147.97, 137.30, 137.26, 132.24, 130.09, 129.15, 127.99, 125.98, 122.61, 122.28, 67.85, 49.91, 39.35, 34.42, 28.34, 26.14, 25.22. HRMS (ESI) m/z calculated for $\text{C}_{21}\text{H}_{26}\text{BrN}_3\text{O}$ $[\text{M}+\text{H}]^+$ 416.1338, found 416.1337.

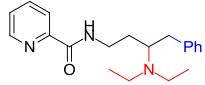
***N*-(4-(4-iodophenyl)-3-(piperidin-1-yl)butyl)picolinamide (2m)**


The title compound was isolated as a yellow solid (64% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.16 (br, 1H), 8.52 (m, 1H), 8.16 (d, $J = 7.8$ Hz, 1H), 7.82 (d, $J = 1.7$ Hz, 1H), 7.61–7.54 (m, 2H), 7.42–7.37 (m, 1H), 6.90 (d, $J = 8.2$ Hz, 2H), 3.66 (m, 1H), 3.22 (m, 1H), 3.00 (dd, $J = 13.1, 3.3$ Hz, 1H), 2.78 (dd, $J = 10.8, 5.3$ Hz, 3H), 2.56–2.45 (m, 2H), 2.27 (dd, $J = 13.0, 10.2$ Hz, 1H), 1.84–1.67 (m, 5H), 1.53 (dd, $J = 10.9, 5.3$ Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.61, 150.42, 148.01, 137.61, 137.31, 131.43, 126.05, 122.30, 91.12, 67.81, 49.90, 39.39, 34.37, 28.31, 26.04, 25.15, 1.15. HRMS (ESI) m/z calculated for $\text{C}_{21}\text{H}_{26}\text{IN}_3\text{O}$ $[\text{M}+\text{H}]^+$ 464.1199, found 464.1197.

***N*-(3-(piperidin-1-yl)-4-(4-vinylphenyl)butyl)picolinamide (2n)**

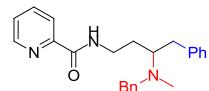

The title compound was isolated as a colorless oil (47% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.28 (br, 1H), 8.52 (d, $J = 4.1$ Hz, 1H), 8.16 (d, $J = 7.8$ Hz, 1H), 7.81 (m, 1H), 7.41–7.37 (m, 1H), 7.32 (d, $J = 8.0$ Hz, 2H), 7.11 (d, $J = 8.0$ Hz, 2H), 6.68 (dd, $J = 17.6, 10.9$ Hz, 1H), 5.70 (d, $J = 17.6$ Hz, 1H), 5.20 (d, $J = 11.2$ Hz, 1H), 3.68 (m, 1H), 3.20 (m, 1H), 3.06 (dd, $J = 13.0, 2.8$ Hz, 1H), 2.87–2.75 (m, 3H), 2.58–2.46 (m, 2H), 2.35–2.27 (m, 1H), 1.81–1.69 (m, 5H), 1.61–1.50 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.61, 150.51, 147.97, 137.26, 136.68, 136.66, 135.48, 129.55, 129.49, 126.44, 125.98, 122.30, 68.14, 49.93, 39.62, 34.43, 28.20, 26.04, 25.21. HRMS (ESI) m/z calculated for $\text{C}_{23}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 364.2389, found 364.2389.

***N*-(4-(3-formylphenyl)-3-(piperidin-1-yl)butyl)picolinamide (2o)**

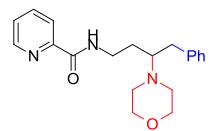

The title compound was isolated as a blue oil (50% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.97 (br, 1H), 9.00 (br, 1H), 8.50 (d, J = 4.6 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.69 (d, J = 4.4 Hz, 2H), 7.44 (d, J = 4.8 Hz, 2H), 7.40–7.37 (m, 1H), 3.62 (dd, J = 13.4, 6.7 Hz, 1H), 3.26 (m, 1H), 3.21–3.16 (m, 1H), 2.91 (d, J = 9.4 Hz, 1H), 2.83 (dd, J = 10.5, 5.2 Hz, 2H), 2.65–2.57 (m, 2H), 2.48 (dd, J = 12.8, 10.3 Hz, 1H), 1.87 (dd, J = 14.5, 5.9 Hz, 1H), 1.76 (d, J = 5.1 Hz, 4H), 1.58–1.49 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 192.57, 164.63, 150.29, 148.03, 137.32, 136.76, 135.57, 130.11, 130.06, 129.31, 128.10, 126.09, 122.28, 67.30, 49.94, 39.05, 34.85, 28.49, 25.82, 24.93. HRMS (ESI) m/z calculated for $\text{C}_{23}\text{H}_{29}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 366.2182, found 366.2185.

N-(4-(4-acetylphenyl)-3-(piperidin-1-yl)butyl)picolinamide (2p)

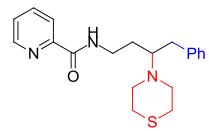
The title compound was isolated as a white solid (76% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.00 (br, 1H), 8.51 (d, J = 4.2 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.88 (s, 1H), 7.82 (m, 1H), 7.49–7.42 (m, 1H), 7.40 (m, 1H), 7.27 (d, J = 4.4 Hz, 2H), 3.62 (dd, J = 13.6, 6.8 Hz, 1H), 3.25 (m, 1H), 3.17 (dd, J = 12.9, 3.5 Hz, 1H), 2.97 (t, J = 9.7 Hz, 1H), 2.92–2.82 (m, 2H), 2.63 (d, J = 5.2 Hz, 2H), 2.58 (s, 3H), 2.48 (dd, J = 12.9, 10.2 Hz, 1H), 1.91–1.73 (m, 5H), 1.62–1.52 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 197.75, 164.73, 148.10, 137.38, 137.33, 130.11, 129.59, 128.85, 128.38, 126.14, 122.28, 66.83, 50.02, 38.82, 29.83, 28.95, 26.68, 26.62, 25.42. HRMS (ESI) m/z calculated for $\text{C}_{23}\text{H}_{29}\text{N}_3\text{O}_2 [\text{M}+\text{H}]^+$ 380.2338, found: 380.2431.


N-(3-(diethylamino)-4-phenylbutyl)picolinamide (3a)

The title compound was isolated as a yellow oil (70% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.02 (br, 1H), 8.54–8.47 (m, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.79 (m, 1H), 7.36 (m, 1H), 7.28–7.23 (m, 2H), 7.15 (dd, J = 19.4, 7.2 Hz, 3H), 3.59 (m, 1H), 3.35–3.24 (m, 1H), 2.97 (d, J = 10.5 Hz, 2H), 2.76 (m, 2H), 2.47 (dd, J = 12.8, 6.6 Hz, 2H), 2.31 (t, J = 12.3 Hz, 1H), 1.75–1.65 (m, 1H), 1.60 (m, 1H), 1.14 (t, J = 7.1 Hz, 6H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.37,

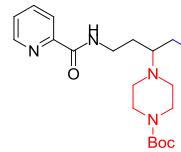

150.57, 148.01, 137.22, 137.16, 129.32, 128.56, 125.98, 125.85, 122.20, 62.15, 43.46, 39.14, 35.18, 29.23, 14.41. HRMS (ESI) m/z calculated for $C_{20}H_{27}N_3O$ $[M+H]^+$ 326.2232, found: 326.2240.

N-(3-(benzyl(methyl)amino)-4-phenylbutyl)picolinamide (3b)

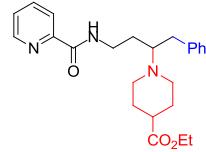

The title compound was isolated as a yellow oil (75% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 8.73 (br, 1H), 8.47–8.42 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.40–7.36 (m, 3H), 7.29 (d, J = 6.9 Hz, 2H), 7.25–7.20 (m, 3H), 7.17 (dd, J = 8.4, 6.3 Hz, 1H), 7.12 (d, J = 7.0 Hz, 2H), 3.82 (d, J = 13.2 Hz, 1H), 3.70 (d, J = 13.2 Hz, 1H), 3.57 (m, 1H), 3.40–3.32 (m, 1H), 3.08 (dd, J = 13.0, 3.9 Hz, 1H), 2.94 (m, 1H), 2.40 (dd, J = 13.0, 9.8 Hz, 1H), 2.32 (s, 3H), 1.79 (m, 1H), 1.61 (m, 1H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 164.25, 150.43, 148.12, 140.44, 137.25, 129.34, 129.09, 128.54, 128.39, 127.08, 126.96, 126.03, 125.91, 122.19, 63.71, 59.19, 38.34, 35.86, 34.26, 29.93. HRMS (ESI) m/z calculated for $C_{24}H_{27}N_3O$ $[M+H]^+$ 374.2232, found: 374.2232.

N-(3-morpholino-4-phenylbutyl)picolinamide (3c)

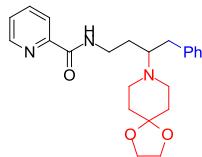
The title compound was isolated as a yellow oil (82% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 9.09 (br, 1H), 8.59–8.52 (m, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.83 (m, 1H), 7.42 (s, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.20 (d, J = 7.3 Hz, 1H), 7.15 (d, J = 7.1 Hz, 2H), 3.89 (t, J = 4.4 Hz, 4H), 3.76–3.65 (m, 2H), 3.27 (m, 1H), 3.10 (d, J = 13.1 Hz, 1H), 2.87 (dd, J = 10.3, 5.3 Hz, 2H), 2.68–2.58 (m, 2H), 2.42–2.32 (m, 1H), 1.84–1.70 (m, 1H), 1.64 (m, 1H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 164.52, 150.30, 148.09, 137.41, 129.29, 128.68, 128.48, 126.25, 126.15, 122.37, 67.54, 67.13, 48.96, 39.24, 34.72, 28.27. HRMS (ESI) m/z calculated for $C_{20}H_{25}N_3O_2$ $[M+H]^+$ 340.2025, found: 340.2030.


N-(4-phenyl-3-thiomorpholinobutyl)picolinamide (3d)

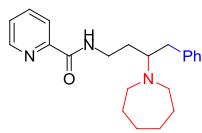
The title compound was isolated as a colorless oil (60% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400


MHz, CDCl_3) δ 9.33 (br, 1H), 8.66–8.62 (m, 1H), 8.18 (d, J = 7.8 Hz, 1H), 8.15–8.05 (m, 1H), 7.83 (m, 1H), 7.42 (m, 1H), 7.28 (s, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 7.0 Hz, 2H), 3.76–3.67 (m, 1H), 3.18 (m, 3H), 3.06 (dd, J = 13.1, 3.6 Hz, 1H), 2.88 (s, 7H), 2.35 (dd, J = 13.1, 10.3 Hz, 1H), 1.77 (m, 1H), 1.59 (m, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.52, 150.25, 148.11, 137.43, 130.21, 129.30, 128.67, 128.51, 126.18, 122.33, 69.59, 51.61, 39.67, 35.16, 35.13, 27.98. HRMS (ESI) m/z calculated for $\text{C}_{20}\text{H}_{25}\text{N}_3\text{OS} [\text{M}+\text{H}]^+$ 356.1797, found: 356.1796.

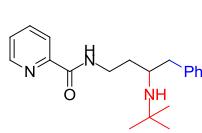
tert-butyl 4-(1-phenyl-4-(picolinamido)butan-2-yl)piperazine-1-carboxylate (3e)


The title compound was isolated as a white solid (61% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.16 (br, 1H), 8.50–8.43 (m, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.80 (m, 1H), 7.42–7.34 (m, 2H), 7.24 (d, J = 1.5 Hz, 1H), 7.20–7.14 (m, 1H), 7.14–7.08 (m, 2H), 3.75–3.50 (m, 5H), 3.24 (m, 1H), 3.00 (dd, J = 13.1, 3.5 Hz, 1H), 2.94–2.66 (m, 3H), 2.62–2.43 (m, 2H), 2.31 (dd, J = 13.0, 10.2 Hz, 1H), 1.76 (dd, J = 10.0, 4.9 Hz, 1H), 1.61 (m, 1H), 1.47 (s, 9H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.58, 155.06, 150.13, 148.02, 137.47, 137.42, 129.23, 128.66, 126.25, 126.19, 122.34, 79.85, 67.48, 48.46, 48.38, 39.31, 34.78, 28.55, 28.35. HRMS (ESI) m/z calculated for $\text{C}_{25}\text{H}_{34}\text{N}_4\text{O}_3 [\text{M}+\text{H}]^+$ 439.2709, found: 439.2709.

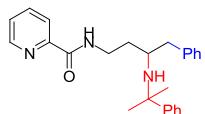
ethyl 1-(1-phenyl-4-(picolinamido)butan-2-yl)piperidine-4-carboxylate (3f)


The title compound was isolated as a colorless oil (70% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.47–9.33 (m, 1H), 8.63 (d, J = 4.1 Hz, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.80 (m, 1H), 7.39 (m, 1H), 7.28 (d, J = 7.5 Hz, 2H), 7.19 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.1 Hz, 2H), 4.19 (m, 2H), 3.84–3.71 (m, 1H), 3.19–3.01 (m, 3H), 2.94–2.82 (m, 2H), 2.73 (m, 1H), 2.39–2.24 (m, 3H), 2.09 (m, 2H), 1.95 (dd, J = 24.1, 12.3 Hz, 2H), 1.75 (m, 1H), 1.61 (d, J = 3.1 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 175.59, 164.51, 150.50, 148.37, 140.50, 137.12, 129.29, 128.60, 126.09, 125.93, 122.14, 68.35, 60.38, 51.77, 45.17, 42.12, 34.57, 28.84, 27.96, 14.41. HRMS (ESI) m/z calculated for $\text{C}_{24}\text{H}_{31}\text{N}_3\text{O}_3 [\text{M}+\text{H}]^+$ 410.2444, found: 410.2444.

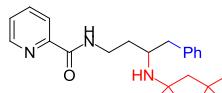
N-(4-phenyl-3-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)butyl)picolinamide (3g)


The title compound was isolated as a white solid (69% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.76–9.62 (m, 1H), 8.64 (d, J = 4.2 Hz, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.80 (m, 1H), 7.42–7.36 (m, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.2 Hz, 2H), 4.00 (s, 4H), 3.83–3.76 (m, 1H), 3.15–3.05 (m, 2H), 2.99 (m, 2H), 2.89 (t, J = 10.6 Hz, 1H), 2.71–2.58 (m, 2H), 2.31 (dd, J = 12.8, 10.9 Hz, 1H), 2.07–1.93 (m, 4H), 1.73 (m, 1H), 1.60 (m, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.51, 150.54, 148.26, 140.53, 137.15, 129.31, 128.61, 126.07, 125.96, 122.11, 108.02, 68.41, 64.37, 40.17, 40.12, 34.98, 34.61, 27.59. HRMS (ESI) m/z calculated for $\text{C}_{23}\text{H}_{29}\text{N}_3\text{O}_3$ $[\text{M}+\text{H}]^+$ 396.2287, found: 396.2287.

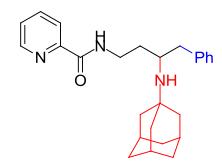
N-(3-(azepan-1-yl)-4-phenylbutyl)picolinamide (3h)


The title compound was isolated as a colorless oil (70% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.73 (br, 1H), 8.55–8.49 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.26 (d, J = 14.6 Hz, 2H), 7.19–7.12 (m, 3H), 3.55 (m, 1H), 3.42 (m, 1H), 2.98 (dd, J = 13.0, 3.9 Hz, 1H), 2.92–2.84 (m, 3H), 2.67 (m, 2H), 2.39 (dd, J = 13.0, 9.7 Hz, 1H), 1.71 (m, 6H), 1.66–1.60 (m, 4H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.47, 150.44, 148.02, 137.28, 137.21, 129.31, 128.49, 128.42, 125.96, 122.27, 67.99, 51.75, 38.89, 35.73, 30.25, 29.43, 27.03. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 352.2389, found: 352.2391.

N-(3-(tert-butylamino)-4-phenylbutyl)picolinamide (3i)

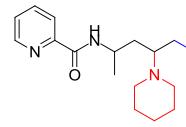

The title compound was isolated as a yellow oil (76% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.26 (br, 1H), 8.52 (m, 1H), 8.19 (m, 1H), 7.82 (m, 1H), 7.38 (m, 1H), 7.31–7.26 (m, 2H), 7.25–7.14 (m, 3H), 3.63–3.52 (m, 2H), 3.13–2.99 (m, 1H), 2.81 (dd, J = 13.3, 6.2 Hz, 1H), 2.69 (dd, J = 13.3, 7.4 Hz, 1H), 1.86–1.74 (m, 1H), 1.56 (dd, J = 13.9, 6.2 Hz, 1H), 1.08 (s, 9H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.28, 150.61, 148.11, 139.46, 137.26, 129.53, 128.56, 126.44, 125.91, 122.28, 53.04, 51.34, 43.84, 37.46, 34.99, 29.95. HRMS (ESI) m/z calculated for $\text{C}_{20}\text{H}_{27}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 326.2232, found: 326.2333.

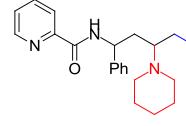
N-(4-phenyl-3-((2-phenylpropan-2-yl)amino)butyl)picolinamide (3j)


The title compound was isolated as a yellow oil (68% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.99 (br, 1H), 8.55 (m, 1H), 8.20 (d, $J = 7.8$ Hz, 1H), 7.84 (m, 1H), 7.43 (dd, $J = 8.3, 1.2$ Hz, 2H), 7.42–7.38 (m, 1H), 7.30–7.24 (m, 3H), 7.22–7.16 (m, 3H), 7.03–6.88 (m, 2H), 3.62–3.36 (m, 2H), 2.91–2.80 (m, 1H), 2.49 (dd, $J = 11.3, 7.0$ Hz, 2H), 1.58 (m, 1H), 1.51 (d, $J = 10.1$ Hz, 6H), 1.46–1.39 (m, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.26, 150.56, 148.10, 147.80, 139.40, 137.30, 129.39, 128.47, 128.15, 126.54, 126.25, 126.20, 125.95, 122.28, 56.00, 53.42, 42.77, 36.85, 33.94, 30.46. HRMS (ESI) m/z calculated for $\text{C}_{25}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 388.2389, found: 388.2389.

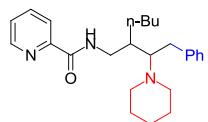
N-(4-phenyl-3-((2,4,4-trimethylpentan-2-yl)amino)butyl)picolinamide (3k)

The title compound was isolated as a colorless oil (80% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.99 (br, 1H), 8.46 (d, $J = 4.7$ Hz, 1H), 8.11 (d, $J = 7.8$ Hz, 1H), 7.75 (m, 1H), 7.41–7.24 (m, 2H), 7.22–7.18 (m, 2H), 7.15–7.09 (m, 3H), 3.55–3.42 (m, 2H), 3.04 (m, 1H), 2.71 (dd, $J = 13.5, 6.3$ Hz, 1H), 2.63 (dd, $J = 13.3, 7.3$ Hz, 1H), 1.77–1.70 (m, 1H), 1.53 (dd, $J = 13.9, 6.3$ Hz, 1H), 1.41 (d, $J = 14.4$ Hz, 1H), 1.28 (d, $J = 14.3$ Hz, 1H), 1.19 (d, $J = 6.0$ Hz, 1H), 1.07 (s, 3H), 1.00 (s, 3H), 0.88 (s, 9H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.42, 150.37, 148.11, 139.35, 137.29, 129.51, 128.56, 126.47, 126.00, 122.28, 55.96, 52.32, 43.55, 37.10, 35.23, 32.02, 31.60, 29.05, 27.90. HRMS (ESI) m/z calculated for $\text{C}_{24}\text{H}_{35}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 382.2858, found: 388.2866.


N-(3-(((3s,5s,7s)-adamantan-1-yl)amino)-4-phenylbutyl)picolinamide (3l)

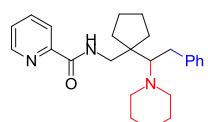

The title compound was isolated as a yellow oil (61% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.24 (br, 1H), 8.55–8.49 (m, 1H), 8.19 (d, $J = 7.8$ Hz, 1H), 7.83 (m, 1H), 7.40 (m, 1H), 7.30 (t, $J = 7.2$ Hz, 2H), 7.24–7.17 (m, 3H), 3.57 (m, 2H), 3.20 (m, 1H), 2.81 (dd, $J = 13.3, 6.1$ Hz, 1H), 2.68 (dd, $J = 13.3, 7.4$ Hz, 1H), 2.02 (s,

3H), 1.82–1.75 (m, 1H), 1.59 (dd, J = 30.3, 12.6 Hz, 14H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.27, 150.63, 148.10, 139.42, 137.29, 129.58, 128.56, 126.46, 125.94, 122.31, 51.59, 50.91, 43.69, 43.60, 37.57, 36.76, 35.26, 29.76. HRMS (ESI) m/z calculated for $\text{C}_{26}\text{H}_{33}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 404.2702, found: 404.2702.


N-(5-phenyl-4-(piperidin-1-yl)pentan-2-yl)picolinamide (4a)

 The title compound was isolated as a colorless oil (51% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.70 (d, J = 7.4 Hz, 1H), 8.52 (d, J = 4.2 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 7.41–7.36 (m, 1H), 7.27 (d, J = 6.1 Hz, 2H), 7.17 (dd, J = 18.8, 7.2 Hz, 3H), 4.30 (m, 1H), 3.05 (t, J = 12.4 Hz, 2H), 2.83 (m, 2H), 2.62–2.42 (m, 2H), 2.32–2.20 (m, 1H), 1.88 (m, 1H), 1.79–1.74 (m, 3H), 1.56–1.49 (m, 2H), 1.40–1.34 (m, 1H), 1.27–1.25 (m, 1H), 1.08 (d, J = 6.7 Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.69, 150.67, 148.06, 141.80, 137.21, 128.99, 128.41, 125.95, 125.88, 122.40, 71.50, 52.32, 46.59, 34.55, 26.20, 24.94, 21.63, 12.44. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 352.2389, found: 352.2390.

N-(1,4-diphenyl-3-(piperidin-1-yl)butyl)picolinamide (4b)

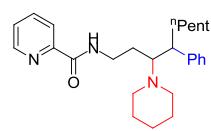

 The title compound was isolated as a yellow solid (41% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 10.45 (d, J = 7.6 Hz, 1H), 8.59 (d, J = 4.4 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.83 (m, 1H), 7.43 (dd, J = 6.7, 4.8 Hz, 1H), 7.14 (d, J = 6.3 Hz, 6H), 6.99 (d, J = 6.4 Hz, 2H), 6.86–6.77 (m, 2H), 5.37 (m, 1H), 2.94 (dd, J = 13.2, 3.0 Hz, 1H), 2.85–2.74 (m, 2H), 2.69 (t, J = 10.4 Hz, 1H), 2.49–2.37 (m, 2H), 2.25 (dd, J = 13.0, 11.2 Hz, 1H), 2.11 (m, 1H), 1.93–1.78 (m, 4H), 1.76–1.70 (m, 1H), 1.57 (d, J = 5.5 Hz, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.40, 150.74, 147.93, 141.98, 140.16, 137.17, 129.02, 128.35, 128.24, 126.41, 126.03, 125.96, 125.78, 122.56, 62.94, 52.36, 49.99, 33.57, 33.44, 26.03, 25.49. HRMS (ESI) m/z calculated for $\text{C}_{27}\text{H}_{31}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 414.2545, found: 414.2545.

N-(2-(2-phenyl-1-(piperidin-1-yl)ethyl)hexyl)picolinamide (4c)

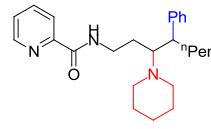
The title compound was isolated as a colorless oil (62% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 1.9:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. The following analytical data correspond to the mixture. ^1H NMR (400 MHz, CDCl_3) δ 9.56 (s, 0.35H), 8.89 (s, 0.65H), 8.54 (d, J = 4.7 Hz, 0.35H), 8.51 (d, J = 4.2 Hz, 0.65H), 8.17 (d, J = 7.9 Hz, 2H), 7.82 (m, 1H), 7.47 (s, 1H), 7.41–7.38 (m, 1H), 7.23–7.16 (m, 3H), 3.90 (dd, J = 13.6, 7.3 Hz, 0.36H), 3.61–3.53 (m, 0.65H), 3.45–3.36 (m, 0.65H), 3.18–3.12 (m, 0.35H), 3.06–2.98 (m, 1H), 2.98–2.75 (m, 2H), 2.74–2.53 (m, 4H), 1.75 (dd, J = 10.7, 5.8 Hz, 3H), 1.52–1.40 (m, 3H), 1.38–1.20 (m, 7H), 0.89–0.84 (m, 2H), 0.82 (d, J = 7.1 Hz, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 165.53, 165.18, 158.68, 158.56, 148.33, 148.09, 137.42, 137.29, 135.39, 135.14, 130.00, 129.67, 129.12, 129.01, 128.67, 127.91, 127.29, 126.30, 122.41, 122.34, 69.30, 69.26, 52.85, 52.79, 41.70, 41.63, 39.06, 39.04, 33.90, 33.86, 32.36, 32.33, 30.24, 29.90, 29.83, 29.55, 25.88, 25.64, 23.00, 22.93, 14.15, 14.07. HRMS (ESI) m/z calculated for $\text{C}_{25}\text{H}_{35}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 394.2858, found: 394.2859.

N-((1-(2-phenyl-1-(piperidin-1-yl)ethyl)cyclopentyl)methyl)picolinamide (4d)

The title compound was isolated as a colorless oil (44% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.54 (br, 1H), 8.20 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.71 (dd, J = 5.6, 3.4 Hz, 1H), 7.53 (dd, J = 5.6, 3.3 Hz, 1H), 7.44–7.35 (m, 2H), 7.20 (dd, J = 13.3, 6.5 Hz, 3H), 4.21 (d, J = 6.2 Hz, 1H), 3.57–3.47 (m, 2H), 2.81 (t, J = 6.6 Hz, 1H), 2.66 (d, J = 7.5 Hz, 1H), 1.69 (dd, J = 13.6, 7.7 Hz, 4H), 1.30 (dd, J = 22.6, 8.9 Hz, 8H), 0.95–0.87 (m, 6H); ^{13}C NMR (101 MHz, CDCl_3) δ 167.88, 148.15, 142.29, 137.46, 131.00, 128.96, 128.58, 128.48, 126.17, 122.35, 68.33, 60.52, 38.93, 30.55, 29.44, 29.10, 28.89, 23.94, 23.13. HRMS (ESI) m/z calculated for $\text{C}_{25}\text{H}_{33}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 392.2702, found: 392.2710.

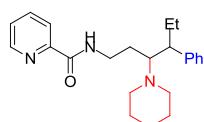

N-(3-methyl-4-phenyl-3-(piperidin-1-yl)butyl)picolinamide (4e)

The title compound was isolated as a yellow oil (79% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.00 (br, 1H), 8.52 (d, J = 4.5 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H),

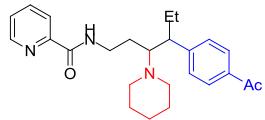

7.82 (m, 1H), 7.39 (dd, $J = 6.9, 4.5$ Hz, 1H), 7.26–7.13 (m, 5H), 3.58 (m, 1H), 3.46–3.36 (m, 1H), 2.90–2.74 (m, 2H), 2.69 (t, $J = 9.1$ Hz, 4H), 2.05 (dd, $J = 14.9, 7.4$ Hz, 1H), 1.75–1.64 (m, 4H), 1.48 (dd, $J = 10.3, 4.2$ Hz, 3H), 1.08 (s, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.05, 150.98, 147.82, 140.93, 137.14, 129.25, 128.54, 125.94, 125.82, 122.32, 63.67, 49.91, 44.22, 34.29, 33.26, 26.03, 25.41, 19.53. HRMS (ESI) m/z calculated for $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 352.2389, found: 352.2384.

N-(4-phenyl-3-(piperidin-1-yl)nonyl)picolinamide (4f)

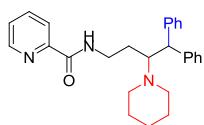
The title compound was isolated as a colorless oil (70% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. ^1H NMR (400 MHz, CDCl_3) δ 8.51 (d, $J = 4.3$ Hz, 1H), 8.22 (br, 1H), 8.14 (d, $J = 7.8$ Hz, 1H), 7.81 (m, 1H), 7.40–7.37 (m, 1H), 7.25 (t, $J = 7.3$ Hz, 2H), 7.20–7.11 (m, 3H), 3.22 (m, 2H), 2.74–2.65 (m, 5H), 1.73–1.66 (m, 1H), 1.63–1.58 (m, 3H), 1.54–1.45 (m, 3H), 1.35 (d, $J = 15.2$ Hz, 1H), 1.27 (d, $J = 12.1$ Hz, 2H), 1.23–1.14 (m, 4H), 1.02–0.94 (m, 2H), 0.90–0.84 (m, 1H), 0.80 (t, $J = 6.8$ Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.18, 150.39, 148.00, 137.33, 132.29, 128.78, 128.57, 126.17, 125.99, 122.26, 68.42, 50.39, 39.19, 34.32, 32.07, 29.83, 29.08, 27.28, 26.95, 25.35, 22.68, 14.19. HRMS (ESI) m/z calculated for $\text{C}_{26}\text{H}_{37}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 408.3015, found: 408.3023.


N-(4-phenyl-3-(piperidin-1-yl)nonyl)picolinamide (4g)

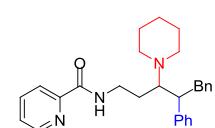
The title compound was isolated as a colorless oil (72% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. ^1H NMR (400 MHz, CDCl_3) δ 8.79 (br, 1H), 8.53–8.50 (m, 1H), 8.19 (d, $J = 7.8$ Hz, 1H), 7.82 (dd, $J = 7.7, 1.7$ Hz, 1H), 7.41–7.37 (m, 1H), 7.25 (d, $J = 8.0$ Hz, 2H), 7.17 (d, $J = 7.2$ Hz, 3H), 3.66 (dd, $J = 13.4, 6.6$ Hz, 1H), 3.43 (dd, $J = 11.9, 6.8$ Hz, 1H), 2.83 (dd, $J = 10.2, 4.8$ Hz, 1H), 2.79–2.70 (m, 1H), 2.57 (m, 2H), 2.47–2.36 (m, 2H), 1.84 (m, 2H), 1.63 (d, $J = 8.9$ Hz, 2H), 1.54–1.49 (m, 3H), 1.41–1.36 (m, 2H), 1.29–1.25 (m, 2H), 1.19 (dd, $J = 7.2, 2.7$ Hz, 3H), 1.05 (d, $J = 6.9$ Hz, 2H), 0.82–0.78 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 150.42,


147.89, 145.29, 137.18, 137.13, 128.31, 128.11, 125.86, 125.75, 122.16, 70.01, 50.60, 45.93, 39.35, 32.05, 31.82, 27.39, 27.22, 26.51, 25.07, 22.55, 14.06. HRMS (ESI) m/z calculated for $C_{26}H_{37}N_3O$ [M+H]⁺ 408.3015, found: 408.3019.

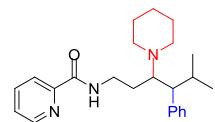
N-(4-phenyl-3-(piperidin-1-yl)hexyl)picolinamide (4h)


The title compound was isolated as a colorless oil (79% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 4.2 Hz, 1H), 8.15 (br, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.72 (m, 1H), 7.30 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 1H), 7.07–7.01 (m, 2H), 3.13 (m, 2H), 2.75–2.43 (m, 6H), 1.63 (m, 1H), 1.52 (m, 4H), 1.41 (m, 3H), 1.28 (m, 1H), 1.24–1.15 (m, 1H), 0.56 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.43, 150.18, 148.05, 137.43, 137.33, 128.84, 128.50, 126.32, 126.06, 122.24, 68.23, 51.47, 50.33, 39.06, 28.96, 27.25, 26.73, 25.15, 12.23. HRMS (ESI) m/z calculated for $C_{23}H_{31}N_3O$ [M+H]⁺ 366.2545, found: 366.2555.

N-(4-(4-acetylphenyl)-3-(piperidin-1-yl)hexyl)picolinamide (4i)

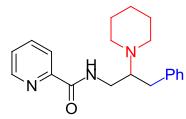

The title compound was isolated as a white solid (51% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 15:1 mixture of diastereomers. The reported dr was determined by ¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.2 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 8.12–8.09 (m, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.80 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.39 (dd, *J* = 7.0, 5.2 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 2H), 3.28 (dd, *J* = 18.1, 6.9 Hz, 2H), 2.86–2.59 (m, 6H), 2.57 (s, 3H), 2.11–2.02 (m, 1H), 1.69 (dd, *J* = 14.8, 7.1 Hz, 1H), 1.58 (d, *J* = 4.9 Hz, 4H), 1.54–1.50 (m, 1H), 1.48 (d, *J* = 5.5 Hz, 2H), 1.29 (m, 2H), 0.63 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.96, 164.21, 150.29, 150.23, 148.04, 137.39, 135.44, 129.04, 128.68, 126.09, 122.25, 68.01, 51.95, 50.45, 39.02, 29.37, 27.10, 26.96, 26.65, 25.29, 12.21. HRMS (ESI) m/z calculated for $C_{25}H_{33}N_3O_2$ [M+H]⁺ 408.2651, found: 408.2650.

N-(4,4-diphenyl-3-(piperidin-1-yl)butyl)picolinamide (4j)

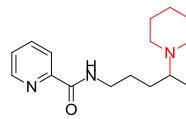

The title compound was isolated as a colorless oil (72% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. ^1H NMR (400 MHz, CDCl_3) δ 8.53 (br, 1H), 8.50 (s, 1H), 8.31 (d, J = 2.7 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 6.9 Hz, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.30 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 7.4 Hz, 3H), 7.14 (m, 3H), 4.06 (d, J = 10.3 Hz, 1H), 3.71 (m, 1H), 3.53 (d, J = 6.5 Hz, 1H), 3.45 (d, J = 6.2 Hz, 1H), 2.62 (s, 2H), 2.48 (s, 2H), 1.45 (s, 5H), 1.29–1.25 (m, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 165.00, 149.75, 148.24, 146.66, 137.45, 129.07, 128.60, 128.23, 127.74, 122.36, 67.30, 38.27, 32.69, 30.93, 30.41, 29.83, 26.51. HRMS (ESI) m/z calculated for $\text{C}_{27}\text{H}_{31}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 414.2545, found: 414.2540.

N-(4,5-diphenyl-3-(piperidin-1-yl)pentyl)picolinamide (4k)

The title compound was isolated as a colorless oil (71% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. ^1H NMR (400 MHz, CDCl_3) δ 8.50 (d, J = 4.4 Hz, 1H), 8.16 (d, J = 7.8 Hz, 1H), 8.05 (br, 1H), 7.81 (m, 1H), 7.39 (m, 1H), 7.19–7.01 (m, 8H), 6.87 (d, J = 6.8 Hz, 2H), 3.50 (dd, J = 13.3, 3.2 Hz, 1H), 3.29 (dd, J = 13.3, 7.1 Hz, 1H), 3.15 (dd, J = 13.6, 7.1 Hz, 1H), 2.93 (d, J = 7.0 Hz, 1H), 2.85 (s, 1H), 2.76 (m, 5H), 1.79 (dd, J = 14.2, 6.7 Hz, 1H), 1.64 (d, J = 4.8 Hz, 4H), 1.56–1.48 (m, 2H), 1.44–1.36 (m, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.17, 150.25, 148.00, 143.24, 141.38, 137.35, 129.14, 129.02, 128.33, 127.93, 126.33, 126.04, 125.52, 122.23, 67.13, 52.17, 50.31, 41.02, 39.04, 28.69, 26.99, 25.31. HRMS (ESI) m/z calculated for $\text{C}_{28}\text{H}_{33}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 428.2702, found: 428.2712.

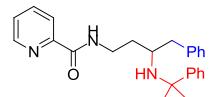

N-(5-methyl-4-phenyl-3-(piperidin-1-yl)hexyl)picolinamide (4l)

The title compound was isolated as a colorless oil (71% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 10:1 mixture of diastereomers. The reported dr was determined by ^1H NMR analysis. The following analytical data correspond to the mixture. ^1H NMR (400 MHz,

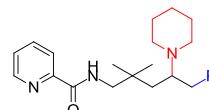

CDCl_3) δ 8.53 (d, J = 4.7 Hz, 0.09H), 8.50 (d, J = 4.6 Hz, 0.91H), 8.21 (d, J = 7.8 Hz, 0.09H), 8.16 (d, J = 7.8 Hz, 0.91H), 8.13 (br, 0.74H), 7.85 (dd, J = 7.8, 1.7 Hz, 0.09H), 7.81 (m, 0.91H), 7.43–7.40 (m, 0.09H), 7.38 (m, 0.91H), 7.25–7.16 (m, 3H), 7.10 (d, J = 6.9 Hz, 2H), 3.48–3.22 (m, 2H), 3.03 (m, 1H), 2.67 (t, J = 4.8 Hz, 5H), 2.27 (dd, J = 11.9, 6.7 Hz, 1H), 1.74 (dd, J = 14.5, 6.3 Hz, 1H), 1.66–1.49 (m, 4H), 1.45 (t, J = 14.2 Hz, 2H), 1.40 – 1.33 (m, 1H), 1.25 (s, 1H), 0.77 (d, J = 6.8 Hz, 3H), 0.72 (d, J = 7.0 Hz, 3H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.19, 150.34, 148.01, 141.17, 137.33, 130.18, 127.87, 126.18, 126.02, 122.24, 63.94, 54.89, 50.36, 39.31, 29.26, 27.06, 25.36, 21.99, 17.58. HRMS (ESI) m/z calculated for $\text{C}_{24}\text{H}_{33}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 380.2702, found: 380.2720.

N-(3-phenyl-2-(piperidin-1-yl)propyl)picolinamide (4m)

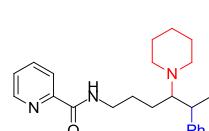
The title compound was isolated as a colorless oil (46% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.54–8.49 (m, 1H), 8.20–8.16 (m, 1H), 8.01 (br, 1H), 7.83 (m, 1H), 7.40 (m, 1H), 7.27–7.21 (m, 2H), 7.20–7.07 (m, 3H), 3.37 (d, J = 6.9 Hz, 1H), 3.07–2.92 (m, 1H), 2.66 (s, 2H), 2.45 (s, 1H), 2.34–2.22 (m, 1H), 1.79–1.65 (m, 2H), 1.54 (dd, J = 13.0, 6.6 Hz, 5H), 1.48–1.36 (m, 2H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.29, 150.28, 148.05, 137.47, 137.38, 129.30, 128.36, 126.19, 126.06, 122.28, 66.64, 49.71, 39.57, 35.34, 27.98, 26.97. HRMS (ESI) m/z calculated for $\text{C}_{20}\text{H}_{25}\text{N}_3\text{O}$ $[\text{M}+\text{H}]^+$ 324.2076, found: 324.2080.


N-(5-phenyl-4-(piperidin-1-yl)pentyl)picolinamide (4n)

The title compound was isolated as a colorless oil (81% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.52 (d, J = 4.6 Hz, 1H), 8.18 (d, J = 7.9 Hz, 1H), 8.01 (br, 1H), 7.83 (m, 1H), 7.40 (dd, J = 6.9, 5.1 Hz, 1H), 7.26–7.20 (m, 2H), 7.18–7.08 (m, 3H), 3.37 (m, 2H), 3.00 (dd, J = 13.1, 4.1 Hz, 1H), 2.76–2.58 (m, 3H), 2.53–2.41 (m, 2H), 2.30 (dd, J = 13.0, 9.4 Hz, 1H), 1.71–1.52 (m, 6H), 1.48–1.22 (m, 4H); ^{13}C NMR (101 MHz, CDCl_3) δ 164.30, 150.30, 148.05, 137.37, 129.30, 128.36, 126.05, 125.74, 122.29, 122.24, 66.64, 49.68, 39.58,


35.37, 27.99, 26.98, 26.68, 25.18. HRMS (ESI) m/z calculated for $C_{22}H_{29}N_3O$ $[M+H]^+$ 352.2389, found: 352.2390.

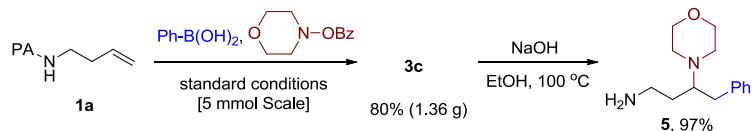
N-(4-(tert-butylamino)-5-phenylpentyl)picolinamide (4o)


The title compound was isolated as a yellow oil (71% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 8.45 (d, $J = 4.7$ Hz, 1H), 8.11 (d, $J = 7.8$ Hz, 1H), 8.07 (br, 1H), 7.76 (m, 1H), 7.33 (m, 1H), 7.20–7.16 (m, 2H), 7.10 (d, $J = 6.4$ Hz, 3H), 3.37 (m, 2H), 3.23 (s, 1H), 2.80 (m, 1H), 2.63 (dd, $J = 9.4, 6.9$ Hz, 2H), 1.72–1.58 (m, 2H), 1.52–1.35 (m, 2H), 0.94 (s, 9H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 166.78, 154.84, 148.05, 139.07, 136.94, 129.62, 128.35, 124.64, 124.22, 123.79, 59.68, 46.76, 40.13, 39.92, 29.86, 28.70, 24.62. HRMS (ESI) m/z calculated for $C_{21}H_{29}N_3O$ $[M+H]^+$ 340.4824, found: 340.2394.

N-(2,2-dimethyl-5-phenyl-4-(piperidin-1-yl)pentyl)picolinamide (4p)

The title compound was isolated as a colorless oil (45% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). 1H NMR (400 MHz, $CDCl_3$) δ 8.69 (br, 1H), 8.54 (d, $J = 4.1$ Hz, 1H), 8.17 (s, 1H), 8.11 (s, 1H), 7.84 (m, 1H), 7.45–7.41 (m, 2H), 7.22 (s, 1H), 7.17 (d, $J = 7.3$ Hz, 1H), 7.09 (d, $J = 7.1$ Hz, 1H), 3.21 (s, 1H), 3.06 (dd, $J = 13.6, 6.1$ Hz, 1H), 2.98 (dd, $J = 12.9, 3.4$ Hz, 1H), 2.87–2.71 (m, 3H), 2.58 (s, 2H), 2.29–2.23 (m, 1H), 1.82–1.66 (m, 4H), 1.57–1.43 (m, 3H), 1.10 (d, $J = 14.9$ Hz, 1H), 0.88 (m, 1H), 0.78 (s, 3H), 0.35 (s, 3H); ^{13}C NMR (101 MHz, $CDCl_3$) δ 165.48, 148.28, 137.59, 135.17, 129.66, 128.76, 128.47, 127.55, 126.63, 122.55, 64.63, 47.52, 39.28, 35.56, 34.81, 29.83, 27.14, 24.95, 24.49. HRMS (ESI) m/z calculated for $C_{24}H_{33}N_3O$ $[M+H]^+$ 380.2702, found: 380.2710.

N-(5-phenyl-4-(piperidin-1-yl)hexyl)picolinamide (4q)

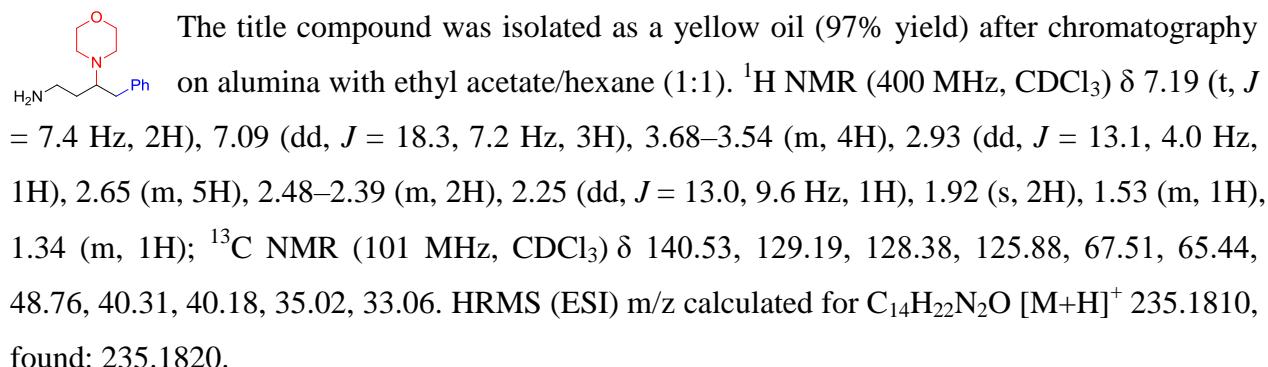

The title compound was isolated as a colorless oil (48% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by

¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.4 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.04 (br, 1H), 7.84 (m, 1H), 7.42 (m, 1H), 7.19 (m, 5H), 3.44 (m, 2H), 3.01–2.90 (m, 1H), 2.61 (s, 1H), 2.45–2.34 (m, 3H), 1.72–1.59 (m, 3H), 1.36–1.19 (m, 10H), 0.91 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.33, 150.30, 148.12, 147.26, 137.44, 128.04, 127.91, 126.12, 125.71, 122.32, 70.05, 50.87, 40.85, 39.72, 28.10, 27.03, 25.66, 25.21, 18.85. HRMS (ESI) m/z calculated for C₂₃H₃₁N₃O [M+H]⁺ 366.2545, found: 366.2545.

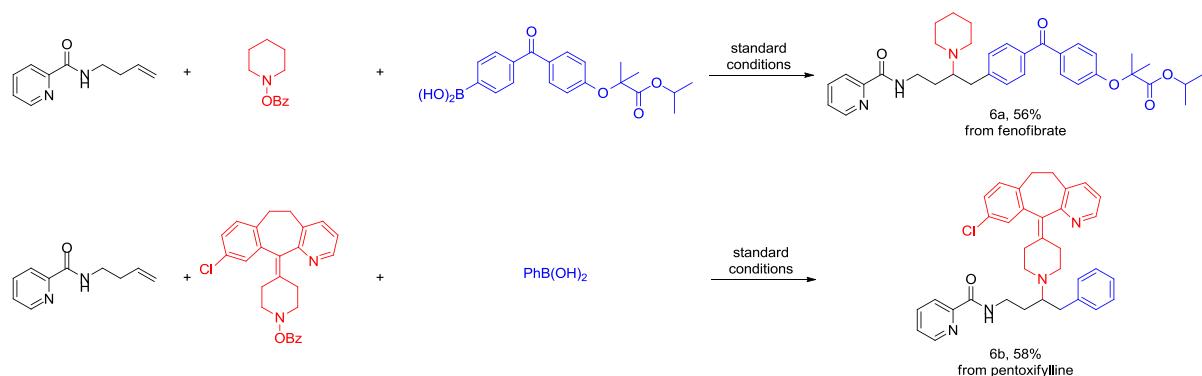
N-(5,5-diphenyl-4-(piperidin-1-yl)pentyl)picolinamide (4r)

The title compound was isolated as a colorless oil (65% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). This product was isolated as a 20:1 mixture of diastereomers. The reported dr was determined by ¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.7 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.93 (br, 1H), 7.85 (m, 1H), 7.44–7.40 (m, 1H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.28 (s, 2H), 7.24–7.16 (m, 3H), 7.15–7.11 (m, 2H), 7.05 (t, *J* = 7.3 Hz, 1H), 3.93 (d, *J* = 10.5 Hz, 1H), 3.50–3.24 (m, 3H), 2.69–2.07 (m, 4H), 1.77–1.40 (m, 4H), 1.18 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.20, 150.07, 147.96, 137.32, 128.57, 128.15, 127.96, 126.01, 125.82, 122.18, 66.98, 50.31, 50.21, 39.15, 29.73, 27.82, 26.88, 25.00. HRMS (ESI) m/z calculated for C₂₈H₃₃N₃O [M+H]⁺ 428.2702, found: 428.2710.

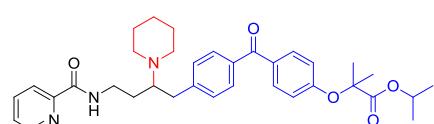
4. Gram-scale Reaction and PA Removal



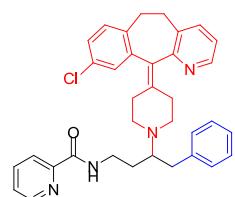
General Procedure for Removal of Picolinamide Directing Group(GP3):


Removal of picolinic acid directing group was carried out by adapting a literature procedure^[6]. To an oven-dried schlenk flask was added the aryl amination product **3c** (0.2 mmol, 1.0 eq), NaOH (1 mmol, 5 eq), and EtOH (1 mL). The resulting mixture was stirred at 100 °C for 12 h. After this time, the reaction mixture was allowed to cool to room temperature, diluted by addition of EtOAc (5 mL) and H₂O (2 mL × 2). The aqueous layers were combined and extracted

with EtOAc (10 mL \times 2). The organic layers were combined, dried over Na_2SO_4 , and concentrated in vacuo to give pure primary amine product.


3-morpholino-4-phenylbutan-1-amine (5)

5. Late-stage Functionalization of Biorelevant Molecules

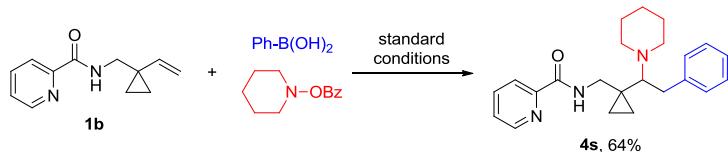

Isopropyl 2-methyl-2-(4-(4-(4-(picolinamido)-2-(piperidin-1-yl)butyl)benzoyl)phenoxy)propanoate (6a)

The title compound was isolated as a yellow oil (56% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 8.54 (br, 1H), 8.20 (d, J = 7.4 Hz, 1H), 8.07 (s, 1H), 7.85 (t, J = 7.7 Hz, 1H), 7.77–7.66 (m, 5H), 7.42 (t, J = 7.2 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.11–5.06 (m, 1H), 3.72 (d, J = 6.9 Hz, 1H), 3.69–3.63 (m, 1H), 3.52 (d,


J = 6.5 Hz, 1H), 2.75 (t, *J* = 7.3 Hz, 1H), 2.61 (d, *J* = 6.9 Hz, 1H), 1.75 (m, 4H), 1.66 (s, 6H), 1.26 (t, *J* = 6.6 Hz, 6H), 1.20 (d, *J* = 6.2 Hz, 8H); ^{13}C NMR (101 MHz, CDCl_3) δ 173.24, 164.44, 164.38, 159.52, 159.48, 150.12, 148.11, 147.95, 146.86, 137.43, 137.21, 135.93, 132.00, 131.05, 130.97, 130.21, 130.15, 129.14, 128.37, 126.16, 125.93, 122.27, 117.30, 79.46, 69.32, 39.24, 29.39, 28.51, 25.48, 21.63, 21.59. HRMS (ESI) *m/z* calculated for $\text{C}_{35}\text{H}_{43}\text{N}_3\text{O}_5$ [M+H] $^+$ 586.3281, found: 586.3288.

***N*-(3-(4-(9-chloro-5H-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11(6*H*)-ylidene)piperidin-1-yl)-4-phenylbutyl)picolinamide (6b)**

The title compound was isolated as a brown oil (58% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ^1H NMR (400 MHz, CDCl_3) δ 9.08 (m, 1H), 8.47 (t, *J* = 5.1 Hz, 1H), 8.33 (d, *J* = 4.9 Hz, 1H), 8.06 (dd, *J* = 7.8, 2.3 Hz, 1H), 7.71 (dd, *J* = 8.7, 6.5 Hz, 1H), 7.36–7.33 (m, 1H), 7.30 (t, *J* = 6.2 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 2H), 7.09–6.99 (m, 7H), 3.58 (m, 1H), 3.41–3.28 (m, 2H), 3.28–3.14 (m, 2H), 2.93 (m, 2H), 2.76–2.70 (m, 2H), 2.68–2.63 (m, 2H), 2.56–2.50 (m, 1H), 2.34 (m, 2H), 2.20 (dd, *J* = 13.0, 10.0 Hz, 1H), 1.65 (m, 1H), 1.56–1.47 (m, 1H), 1.17 (d, *J* = 2.1 Hz, 1H), 1.15 (d, *J* = 7.2 Hz, 1H); ^{13}C NMR (101 MHz, CDCl_3) δ 171.05, 164.27, 157.89, 150.30, 147.92, 146.60, 140.32, 139.65, 139.44, 139.40, 137.81, 137.75, 137.12, 133.41, 133.37, 132.54, 132.39, 130.96, 129.11, 128.39, 125.88, 122.06, 67.13, 51.33, 39.14, 34.79, 31.92, 31.35, 31.08, 28.48. HRMS (ESI) *m/z* calculated for $\text{C}_{35}\text{H}_{35}\text{ClN}_4\text{O}$ [M+H] $^+$ 563.2578, found: 563.2585.


6. Radical Trapping Experiment

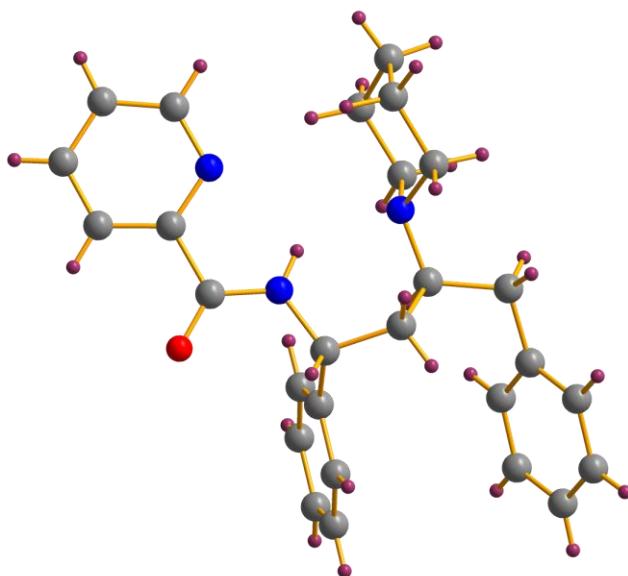
Procedure: To a 25 mL Schlenk tube were added $\text{NiBr}_2\bullet\text{DME}$ (0.03 mmol, 15 mol%), K_3PO_4 (0.6 mmol, 3 eq), alkene substrate (0.2 mmol, 1.0 eq), amine benzoate substrates (0.4 mmol, 2 eq), phenylboronic acid (0.6 mmol, 3 eq), Additive (0.2 mmol, 1 equiv) and *t*-BuOH (2 mL). The

resulting mixture was stirred for 24 h at 80 °C. The product were separately obtained with a isolated yield of 76% and 62%. This result indicates that the reaction likely did not involve a radical process.

7. Radical Clock Experiment

To a 25 mL Schlenk tube were added $\text{NiBr}_2\text{-DME}$ (0.03 mmol, 15 mol%), K_3PO_4 (0.5 mmol, 2.5 eq), alkene substrate (0.2 mmol, 1.0 eq), phenylboronic acid (0.4 mmol, 2 eq), *t*-BuOH (2 mL). The resulting mixture was stirred for 24 h at 80 °C. Finally, only cyclopropane remained product 4s was formed in 64% yield, implying that the cyclopropylmethyl radical intermediate known to ring rupture might not be generated in the catalytic cycle.

N-((1-(2-phenyl-1-(piperidin-1-yl)ethyl)cyclopropyl)methyl)picolinamide (4s)


The title compound was isolated as a white oil (64% yield) after chromatography on alumina with ethyl acetate/hexane (1:3). ¹H NMR (400 MHz, CDCl_3) δ 9.53 (br, 1H), 8.56 (d, J = 4.1 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.83 (m, 1H), 7.42–7.38 (m, 1H), 7.28 (s, 2H), 7.21–7.16 (m, 3H), 3.66 (dd, J = 14.2, 4.2 Hz, 1H), 3.32 (dd, J = 14.1, 6.5 Hz, 1H), 3.05 (dd, J = 14.4, 5.4 Hz, 1H), 2.68–2.53 (m, 6H), 1.68 (dd, J = 8.9, 5.4 Hz, 3H), 1.46–1.40 (m, 2H), 1.27 (d, J = 12.0 Hz, 1H), 0.60 (dd, J = 9.2, 5.2 Hz, 1H), 0.52 (dd, J = 9.2, 4.5 Hz, 1H), 0.41 (dd, J = 9.6, 4.5 Hz, 1H), 0.36 (dd, J = 9.5, 5.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl_3) δ 164.68, 150.67, 148.05, 141.81, 137.21, 128.98, 128.41, 125.95, 125.87, 122.39, 71.49, 52.33, 34.53, 26.21, 24.94, 21.63, 12.44, 8.76. HRMS (ESI) m/z calculated for $\text{C}_{23}\text{H}_{29}\text{N}_3\text{O} [\text{M}+\text{H}]^+$ 364.2389, found: 364.2400.

8. X-ray Crystallographic Data

Single crystals for X-ray studies were grown by slow evaporation of a solution of compound **4b** in a mixture of petroleum ether and ethyl acetate at room temperature. X-Ray structural analysis

of single crystal **4b** was obtained to confirm the absolute configuration. The X-ray data of **4b** is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2054628.

Crystal Data for $C_{27}H_{31}N_3O$ ($M = 413.55$ g/mol): triclinic, space group P-1, $a = 11.5615(3)$ Å, $b = 12.3247(3)$ Å, $c = 18.0802(4)$ Å, $V = 2284.03(10)$ Å 3 , $Z = 4$, $T = 150.00(10)$ K, $\mu(\text{MoK}\alpha) = 0.573$ mm $^{-1}$, $D_{\text{calc}} = 1.203$ g/cm 3 , 34752 reflections measured ($5.136^\circ \leq 2\Theta \leq 134.132^\circ$), 8156 unique ($R_{\text{int}} = 0.0478$, $R_{\text{sigma}} = 0.0303$) which were used in all calculations. The final R_1 was 0.0411 ($I > 2\sigma(I)$) and wR_2 was 0.1155 (all data).

Figure S2. X-ray structure of compound **4b**.

Table S2. Crystal data and structure refinement for **4b**.

Identification code	4b
Empirical formula	$C_{27}H_{31}N_3O$
Formula weight	413.55
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.5615(3)

b/Å	12.3247(3)
c/Å	18.0802(4)
$\alpha/^\circ$	76.633(2)
$\beta/^\circ$	74.160(2)
$\gamma/^\circ$	68.705(2)
Volume/Å ³	2284.03(10)
Z	4
$\rho_{\text{calc}}/\text{g/cm}^3$	1.203
μ/mm^{-1}	0.573
F(000)	888.0
Crystal size/mm ³	0.24 × 0.23 × 0.2
Radiation	CuK α ($\lambda = 1.54184$)
2 Θ range for data collection/°	5.136 to 134.132
Index ranges	-13 ≤ h ≤ 13, -14 ≤ k ≤ 14, -21 ≤ l ≤ 21
Reflections collected	34752
Independent reflections	8156 [$R_{\text{int}} = 0.0478$, $R_{\text{sigma}} = 0.0303$]
Data/restraints/parameters	8156/0/560
Goodness-of-fit on F ²	1.038
Final R indexes [$I \geq 2\sigma(I)$]	$R_1 = 0.0411$, $wR_2 = 0.1105$
Final R indexes [all data]	$R_1 = 0.0449$, $wR_2 = 0.1155$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.23

Table S3. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å² $\times 10^3$) for **4b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

Atom	x	y	z	$U(\text{eq})$
O(1)	3140.6(8)	7328.6(8)	3523.3(5)	29.8(2)
N(1)	3070.6(10)	9420.1(9)	4604.0(6)	30.2(2)
N(2)	2128.6(9)	7661.4(8)	4754.2(6)	22.3(2)
N(3)	990.2(9)	8118.0(8)	6332.7(6)	20.4(2)
C(1)	3499.7(11)	8783.8(10)	4020.8(7)	23.7(3)
C(2)	3573.6(14)	10264.7(12)	4545.1(9)	37.6(3)

C(3)	4495.5(14)	10505.4(13)	3924.3(9)	40.3(3)
C(4)	4946.7(13)	9830.5(13)	3334.8(8)	37.7(3)
C(5)	4442.5(12)	8946.5(12)	3384.4(7)	29.8(3)
C(6)	2907.0(11)	7854.8(10)	4075.2(7)	22.4(2)
C(7)	1417.8(11)	6847.1(10)	4877.9(7)	20.7(2)
C(8)	2223(1)	5556(1)	4994.3(6)	20.4(2)
C(9)	1838.3(11)	4729.3(11)	4801.4(7)	25.2(3)
C(10)	2504.3(13)	3538.7(11)	4925.9(8)	31.7(3)
C(11)	3563.7(13)	3150.4(11)	5252.3(8)	31.6(3)
C(12)	3954.3(12)	3963.1(11)	5449.8(7)	28.8(3)
C(13)	3292.1(11)	5160.1(11)	5316.1(7)	24.4(3)
C(14)	291.1(10)	7132.1(10)	5568.7(7)	21.2(2)
C(15)	673.3(10)	7064.7(10)	6332.1(7)	19.8(2)
C(16)	-110.0(11)	9186.9(10)	6454.5(8)	26.3(3)
C(17)	335.2(13)	10252.2(11)	6299.7(8)	32.3(3)
C(18)	1231.8(13)	10087.8(11)	6830.5(8)	33.4(3)
C(19)	2310.7(12)	8928.7(11)	6754.3(8)	29.1(3)
C(20)	1791.6(11)	7913.5(10)	6888.0(7)	25.2(3)
C(21)	-300.5(11)	6747.8(10)	7048.4(7)	25.0(3)
C(22)	-364.9(11)	5537.1(10)	7076.1(7)	23.6(3)
C(23)	-1500.0(12)	5377.6(11)	7088.5(7)	26.7(3)
C(24)	-1544.6(13)	4275.3(12)	7063.9(7)	31.0(3)
C(25)	-450.8(14)	3315.9(11)	7022.6(7)	31.2(3)
C(26)	683.0(13)	3455.8(11)	7021.7(8)	33.9(3)
C(27)	724.4(12)	4554.3(11)	7053.7(8)	30.8(3)
O(2)	4502.9(9)	2304.6(8)	2227.4(5)	31.7(2)
N(4)	6300.7(12)	4271.9(10)	1628.4(7)	35.5(3)
N(5)	5890.1(9)	2597.8(8)	1102.1(6)	22.5(2)
N(6)	7553.9(9)	3157.3(8)	-333.1(6)	20.6(2)
C(28)	5501.3(11)	3735.9(10)	2113.2(7)	25.0(3)

C(29)	6478.9(16)	5121.9(13)	1884.4(9)	44.2(4)
C(30)	5882.4(15)	5471.8(13)	2602.8(10)	43.2(4)
C(31)	5076.7(13)	4902.1(13)	3097.7(9)	38.1(3)
C(32)	4890.0(12)	4008.2(12)	2852.8(8)	30.7(3)
C(33)	5256.7(11)	2807.6(10)	1821.1(7)	23.2(3)
C(34)	5680.9(11)	1775.4(10)	730.6(7)	20.9(2)
C(35)	6394.9(11)	494.1(10)	990.6(6)	21.1(2)
C(36)	7461.8(11)	147.9(11)	1309.6(7)	25.1(3)
C(37)	8099.9(12)	-1038.7(12)	1509.1(8)	32.0(3)
C(38)	7683.0(13)	-1890.5(12)	1394.0(8)	35.8(3)
C(39)	6619.5(14)	-1555.4(12)	1077.1(9)	35.9(3)
C(40)	5983.4(12)	-374.9(11)	879.2(8)	28.4(3)
C(41)	6023.7(11)	2091.7(10)	-158.6(7)	21.0(2)
C(42)	7395.2(10)	2095.3(10)	-479.3(6)	20.5(2)
C(43)	6966.6(12)	4253.7(10)	-816.8(7)	25.6(3)
C(44)	7016.2(12)	5307.3(11)	-537.4(8)	31.8(3)
C(45)	8376.3(13)	5201.9(11)	-558.1(9)	34.9(3)
C(46)	9016.2(13)	4022.2(11)	-108.4(9)	33.7(3)
C(47)	8892.4(11)	3019.5(11)	-403.8(8)	28.6(3)
C(48)	7862.5(12)	1857.9(10)	-1333.4(7)	24.8(3)
C(49)	7932.5(11)	637.8(10)	-1399.2(7)	23.3(2)
C(50)	8734.6(13)	-355.0(12)	-1029.3(8)	33.8(3)
C(51)	8718.9(15)	-1471.3(12)	-1038.1(8)	39.3(3)
C(52)	7916.3(13)	-1618.3(11)	-1422.8(7)	32.0(3)
C(53)	7148.5(12)	-648.0(11)	-1811.7(8)	30.4(3)
C(54)	7161.4(12)	470.7(11)	-1800.5(7)	26.9(3)

Table S4. Anisotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for **4b**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^*^2U_{11} + 2hka^*b^*U_{12} + \dots]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	34.7(5)	28.8(5)	25.8(4)	-7.0(4)	-0.1(4)	-12.9(4)

N(1)	33.0(6)	25.1(5)	34.9(6)	-5.0(4)	-2.8(5)	-14.9(5)
N(2)	27.1(5)	20.9(5)	22.1(5)	-4.7(4)	-2.7(4)	-12.2(4)
N(3)	19.7(5)	16.7(5)	25.9(5)	-4.0(4)	-5.3(4)	-6.1(4)
C(1)	23.2(6)	20.7(6)	26.0(6)	2.6(5)	-8.0(5)	-7.4(5)
C(2)	44.8(8)	30.1(7)	44.6(8)	-6.9(6)	-6.8(6)	-20.6(6)
C(3)	44.5(8)	35.0(7)	49.1(9)	5.7(6)	-13.1(7)	-26.6(7)
C(4)	36.5(7)	43.3(8)	35.2(7)	10.4(6)	-7.7(6)	-24.5(6)
C(5)	28.8(6)	33.4(7)	26.4(6)	3.1(5)	-6.4(5)	-13.0(5)
C(6)	22.3(6)	19.1(6)	24.1(6)	-0.8(5)	-5.8(5)	-5.4(4)
C(7)	24.2(6)	19.4(6)	21.7(6)	-2.1(4)	-6.0(4)	-10.6(5)
C(8)	22.4(6)	21.3(6)	17.6(5)	-4.6(4)	-0.1(4)	-9.1(5)
C(9)	26.5(6)	24.9(6)	27.4(6)	-4.7(5)	-8.0(5)	-9.8(5)
C(10)	38.4(7)	23.0(6)	39.7(7)	-9.0(5)	-12.2(6)	-11.2(5)
C(11)	33.4(7)	20.1(6)	39.1(7)	-6.6(5)	-10.3(6)	-2.7(5)
C(12)	25.3(6)	28.5(7)	32.5(7)	-7.8(5)	-8.7(5)	-4.5(5)
C(13)	24.3(6)	24.5(6)	26.4(6)	-7.4(5)	-3.6(5)	-9.3(5)
C(14)	20.3(5)	18.4(5)	27.3(6)	-3.7(4)	-5.9(5)	-7.9(4)
C(15)	19.2(5)	15.9(5)	24.1(6)	-4.9(4)	-2.0(4)	-5.9(4)
C(16)	23.4(6)	19.5(6)	36.6(7)	-8.0(5)	-7.6(5)	-4.1(5)
C(17)	36.0(7)	17.7(6)	44.3(8)	-4.8(5)	-13.4(6)	-6.1(5)
C(18)	41.0(7)	23.8(6)	43.0(8)	-9.8(6)	-11.4(6)	-14.2(6)
C(19)	30.8(6)	28.4(7)	34.9(7)	-6.9(5)	-11.3(5)	-12.9(5)
C(20)	26.8(6)	21.0(6)	29.2(6)	-4.2(5)	-9.5(5)	-6.3(5)
C(21)	26.5(6)	22.3(6)	25.8(6)	-6.6(5)	0.7(5)	-10.2(5)
C(22)	29.0(6)	23.4(6)	18.0(5)	-1.5(4)	-0.2(4)	-12.1(5)
C(23)	28.5(6)	25.8(6)	25.1(6)	-2.4(5)	-1.9(5)	-11.3(5)
C(24)	38.9(7)	32.2(7)	27.4(6)	-0.4(5)	-5.8(5)	-21.2(6)
C(25)	50.6(8)	22.0(6)	23.4(6)	-0.5(5)	-4.6(5)	-18.2(6)
C(26)	40.2(7)	20.5(6)	32.5(7)	1.7(5)	-3.0(6)	-6.9(5)
C(27)	29.9(6)	25.8(6)	35.0(7)	1.2(5)	-5.8(5)	-11.1(5)

O(1)	37.9(5)	33.2(5)	25.2(4)	-5.9(4)	0.8(4)	-17.1(4)
N(4)	50.3(7)	29.5(6)	31.2(6)	-7.5(5)	-4.3(5)	-19.3(5)
N(5)	25.2(5)	21.2(5)	22.9(5)	-6.0(4)	-1.7(4)	-10.4(4)
N(6)	21.4(5)	16.9(5)	24.9(5)	-1.4(4)	-7.0(4)	-7.2(4)
C(28)	26.8(6)	20.1(6)	26.8(6)	-4.7(5)	-8.8(5)	-3.0(5)
C(29)	63.3(10)	34.2(8)	44.8(9)	-10.5(6)	-7.4(7)	-26.7(7)
C(30)	52.7(9)	32.0(8)	52.8(9)	-20.9(7)	-17.3(7)	-9.2(7)
C(31)	32.5(7)	41.7(8)	40.3(8)	-23.9(6)	-10.8(6)	1.3(6)
C(32)	24.6(6)	34.8(7)	31.5(7)	-13.6(5)	-6.7(5)	-2.1(5)
C(33)	24.2(6)	19.9(6)	23.2(6)	-3.1(5)	-6.3(5)	-3.6(5)
C(34)	20.9(5)	20.7(6)	23.0(6)	-5.9(4)	-2.8(4)	-8.7(4)
C(35)	22.6(5)	21.8(6)	18.2(5)	-4.9(4)	1.2(4)	-9.2(5)
C(36)	26.2(6)	25.9(6)	24.3(6)	-4.4(5)	-3.1(5)	-10.8(5)
C(37)	28.5(6)	31.4(7)	33.5(7)	-2.4(5)	-9.7(5)	-5.7(5)
C(38)	38.0(7)	21.5(6)	42.5(8)	-1.1(6)	-9.0(6)	-5.0(5)
C(39)	41.3(8)	24.1(7)	46.8(8)	-4.8(6)	-10.4(6)	-14.9(6)
C(40)	28.5(6)	25.8(6)	34.0(7)	-4.8(5)	-7.4(5)	-11.3(5)
C(41)	23.3(6)	19.8(6)	22.4(6)	-4.2(4)	-5.6(4)	-8.5(4)
C(42)	23.0(6)	17.3(5)	21.5(6)	-1.1(4)	-5.1(4)	-7.4(4)
C(43)	27.6(6)	20.3(6)	30.8(6)	1.4(5)	-12.2(5)	-8.5(5)
C(44)	34.4(7)	18.6(6)	43.1(8)	-0.8(5)	-15.4(6)	-6.3(5)
C(45)	41.2(7)	23.0(6)	47.8(8)	1.2(6)	-18.4(6)	-16.1(6)
C(46)	33.0(7)	26.5(7)	49.8(8)	-0.1(6)	-20.5(6)	-13.7(5)
C(47)	23.4(6)	21.6(6)	42.2(7)	-2.2(5)	-11.6(5)	-7.0(5)
C(48)	29.9(6)	21.8(6)	22.5(6)	-2.1(5)	-2.7(5)	-10.7(5)
C(49)	25.5(6)	22.4(6)	19.2(5)	-4.8(4)	1.6(4)	-7.9(5)
C(50)	37.5(7)	28.6(7)	36.3(7)	-7.7(6)	-14.6(6)	-4.9(6)
C(51)	50.8(8)	22.6(7)	38.2(8)	-2.6(6)	-15.7(7)	-1.0(6)
C(52)	44.6(8)	21.8(6)	27.5(6)	-7.5(5)	2.8(6)	-13.2(6)
C(53)	32.3(7)	31.3(7)	30.4(7)	-10.3(5)	-2.0(5)	-13.3(5)

C(54)	29.6(6)	24.7(6)	25.2(6)	-4.4(5)	-5.5(5)	-6.9(5)
-------	---------	---------	---------	---------	---------	---------

Table S5. Bond Lengths for **4b**.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(1)	C(6)	1.2305(15)	O(2)	C(33)	1.2313(15)
N(1)	C(1)	1.3369(17)	N(4)	C(28)	1.3388(17)
N(1)	C(2)	1.3370(17)	N(4)	C(29)	1.3368(18)
N(2)	C(6)	1.3384(15)	N(5)	C(33)	1.3383(15)
N(2)	C(7)	1.4587(14)	N(5)	C(34)	1.4556(15)
N(3)	C(15)	1.4716(14)	N(6)	C(42)	1.4756(14)
N(3)	C(16)	1.4717(15)	N(6)	C(43)	1.4708(14)
N(3)	C(20)	1.4667(15)	N(6)	C(47)	1.4667(14)
C(1)	C(5)	1.3855(17)	C(28)	C(32)	1.3854(18)
C(1)	C(6)	1.5070(16)	C(28)	C(33)	1.5045(17)
C(2)	C(3)	1.381(2)	C(29)	C(30)	1.379(2)
C(3)	C(4)	1.375(2)	C(30)	C(31)	1.375(2)
C(4)	C(5)	1.3864(19)	C(31)	C(32)	1.3809(19)
C(7)	C(8)	1.5228(16)	C(34)	C(35)	1.5224(16)
C(7)	C(14)	1.5370(16)	C(34)	C(41)	1.5389(15)
C(8)	C(9)	1.3914(16)	C(35)	C(36)	1.3888(17)
C(8)	C(13)	1.3884(16)	C(35)	C(40)	1.3915(17)
C(9)	C(10)	1.3849(18)	C(36)	C(37)	1.3895(18)
C(10)	C(11)	1.3842(19)	C(37)	C(38)	1.3788(19)
C(11)	C(12)	1.3844(18)	C(38)	C(39)	1.385(2)
C(12)	C(13)	1.3916(17)	C(39)	C(40)	1.3825(19)
C(14)	C(15)	1.5365(16)	C(41)	C(42)	1.5338(15)
C(15)	C(21)	1.5451(15)	C(42)	C(48)	1.5494(16)
C(16)	C(17)	1.5196(16)	C(43)	C(44)	1.5223(17)
C(17)	C(18)	1.5289(18)	C(44)	C(45)	1.5209(18)
C(18)	C(19)	1.5227(18)	C(45)	C(46)	1.5241(18)
C(19)	C(20)	1.5201(16)	C(46)	C(47)	1.5193(17)

C(21)	C(22)	1.5095(16)	C(48)	C(49)	1.5071(16)
C(22)	C(23)	1.3896(17)	C(49)	C(50)	1.3930(18)
C(22)	C(27)	1.3935(18)	C(49)	C(54)	1.3852(18)
C(23)	C(24)	1.3893(18)	C(50)	C(51)	1.3863(19)
C(24)	C(25)	1.381(2)	C(51)	C(52)	1.382(2)
C(25)	C(26)	1.382(2)	C(52)	C(53)	1.3760(19)
C(26)	C(27)	1.3869(19)	C(53)	C(54)	1.3892(18)

Table S6. Bond Angles for **4b**.

Atom	Atom	Atom	Angle/ [°]	Atom	Atom	Atom	Angle/ [°]
C(1)	N(1)	C(2)	116.94(11)	C(29)	N(4)	C(28)	116.69(12)
C(6)	N(2)	C(7)	121.67(10)	C(33)	N(5)	C(34)	121.16(10)
C(15)	N(3)	C(16)	114.79(9)	C(43)	N(6)	C(42)	114.66(9)
C(20)	N(3)	C(15)	112.28(9)	C(47)	N(6)	C(42)	111.93(9)
C(20)	N(3)	C(16)	109.76(9)	C(47)	N(6)	C(43)	109.46(9)
N(1)	C(1)	C(5)	123.14(11)	N(4)	C(28)	C(32)	123.28(12)
N(1)	C(1)	C(6)	117.01(10)	N(4)	C(28)	C(33)	117.19(11)
C(5)	C(1)	C(6)	119.85(11)	C(32)	C(28)	C(33)	119.52(11)
N(1)	C(2)	C(3)	123.81(14)	N(4)	C(29)	C(30)	123.86(14)
C(4)	C(3)	C(2)	118.72(13)	C(31)	C(30)	C(29)	118.72(13)
C(3)	C(4)	C(5)	118.50(13)	C(30)	C(31)	C(32)	118.64(13)
C(1)	C(5)	C(4)	118.86(13)	C(31)	C(32)	C(28)	118.78(13)
O(1)	C(6)	N(2)	123.89(11)	O(2)	C(33)	N(5)	123.83(11)
O(1)	C(6)	C(1)	120.88(10)	O(2)	C(33)	C(28)	120.63(11)
N(2)	C(6)	C(1)	115.23(10)	N(5)	C(33)	C(28)	115.53(10)
N(2)	C(7)	C(8)	113.71(9)	N(5)	C(34)	C(35)	113.19(9)
N(2)	C(7)	C(14)	109.16(9)	N(5)	C(34)	C(41)	109.80(9)
C(8)	C(7)	C(14)	110.96(9)	C(35)	C(34)	C(41)	110.93(9)
C(9)	C(8)	C(7)	118.50(10)	C(36)	C(35)	C(34)	123.25(10)
C(13)	C(8)	C(7)	122.99(10)	C(36)	C(35)	C(40)	118.35(11)
C(13)	C(8)	C(9)	118.45(11)	C(40)	C(35)	C(34)	118.36(10)

C(10)	C(9)	C(8)	120.94(11)	C(35)	C(36)	C(37)	120.50(11)
C(11)	C(10)	C(9)	120.26(12)	C(38)	C(37)	C(36)	120.53(12)
C(10)	C(11)	C(12)	119.40(12)	C(37)	C(38)	C(39)	119.46(12)
C(11)	C(12)	C(13)	120.25(11)	C(40)	C(39)	C(38)	120.05(12)
C(8)	C(13)	C(12)	120.69(11)	C(39)	C(40)	C(35)	121.11(12)
C(15)	C(14)	C(7)	114.05(9)	C(42)	C(41)	C(34)	114.40(9)
N(3)	C(15)	C(14)	110.87(9)	N(6)	C(42)	C(41)	110.91(9)
N(3)	C(15)	C(21)	115.62(9)	N(6)	C(42)	C(48)	115.33(9)
C(14)	C(15)	C(21)	111.66(9)	C(41)	C(42)	C(48)	111.39(9)
N(3)	C(16)	C(17)	109.94(10)	N(6)	C(43)	C(44)	110.11(10)
C(16)	C(17)	C(18)	110.54(10)	C(45)	C(44)	C(43)	111.05(11)
C(19)	C(18)	C(17)	110.04(11)	C(44)	C(45)	C(46)	109.82(10)
C(20)	C(19)	C(18)	110.61(10)	C(47)	C(46)	C(45)	110.42(11)
N(3)	C(20)	C(19)	110.25(9)	N(6)	C(47)	C(46)	110.83(10)
C(22)	C(21)	C(15)	111.62(10)	C(49)	C(48)	C(42)	111.53(9)
C(23)	C(22)	C(21)	121.00(11)	C(50)	C(49)	C(48)	120.92(11)
C(23)	C(22)	C(27)	118.04(11)	C(54)	C(49)	C(48)	121.01(11)
C(27)	C(22)	C(21)	120.89(11)	C(54)	C(49)	C(50)	118.01(11)
C(24)	C(23)	C(22)	121.05(12)	C(51)	C(50)	C(49)	120.67(12)
C(25)	C(24)	C(23)	120.17(12)	C(52)	C(51)	C(50)	120.46(12)
C(24)	C(25)	C(26)	119.52(12)	C(53)	C(52)	C(51)	119.45(12)
C(25)	C(26)	C(27)	120.26(12)	C(52)	C(53)	C(54)	120.05(12)
C(26)	C(27)	C(22)	120.93(12)	C(49)	C(54)	C(53)	121.29(12)

Table S7. Torsion Angles for **4b**.

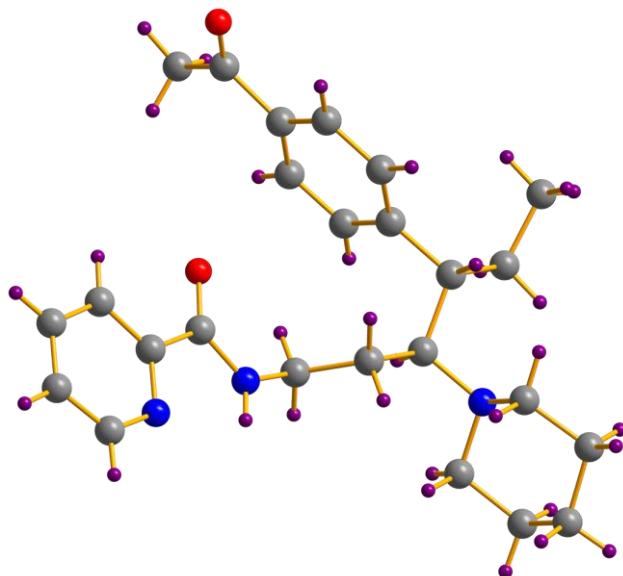
A	B	C	D	Angle/°	A	B	C	D	Angle/°
N(1)	C(1)	C(5)	C(4)	-1.80(18)	N(4)	C(28)	C(32)	C(31)	2.18(19)
N(1)	C(1)	C(6)	O(1)	171.41(11)	N(4)	C(28)	C(33)	O(2)	-177.80(11)
N(1))	C(1)	C(6)	N(2)	-8.49(15)	N(4)	C(28)	C(33)	N(5)	1.14(15)
N(1)	C(2)	C(3)	C(4)	-1.2(2)	N(4)	C(29)	C(30)	C(31)	1.5(2)
N(2)	C(7)	C(8)	C(9)	-153.89(10)	N(5)	C(34)	C(35)	C(36)	-22.14(15)

N(2)	C(7)	C(8)	C(13)	29.06(15)	N(5)	C(34)	C(35)	C(40)	160.09(10)
N(2)	C(7)	C(14)	C(15)	-58.34(12)	N(5)	C(34)	C(41)	C(42)	58.06(12)
N(3)	C(15)	C(21)	C(22)	-168.43(9)	N(6)	C(42)	C(48)	C(49)	167.50(9)
N(3)	C(16)	C(17)	C(18)	-58.24(14)	N(6)	C(43)	C(44)	C(45)	58.07(14)
C(1)	N(1)	C(2)	C(3)	0.0(2)	C(28)	N(4)	C(29)	C(30)	-0.7(2)
C(2)	N(1)	C(1)	C(5)	1.54(18)	C(29)	N(4)	C(28)	C(32)	-1.19(19)
C(2)	N(1)	C(1)	C(6)	-178.29(11)	C(29)	N(4)	C(28)	C(33)	177.87(12)
C(2)	C(3)	C(4)	C(5)	0.9(2)	C(29)	C(30)	C(31)	C(32)	-0.5(2)
C(3)	C(4)	C(5)	C(1)	0.50(19)	C(30)	C(31)	C(32)	C(28)	-1.25(19)
C(5)	C(1)	C(6)	O(1)	-8.42(17)	C(32)	C(28)	C(33)	O(2)	1.30(17)
C(5)	C(1)	C(6)	N(2)	171.68(10)	C(32)	C(28)	C(33)	N(5)	-179.77(10)
C(6)	N(2)	C(7)	C(8)	75.64(13)	C(33)	N(5)	C(34)	C(35)	-80.54(13)
C(6)	N(2)	C(7)	C(14)	-159.88(10)	C(33)	N(5)	C(34)	C(41)	154.91(10)
C(6)	C(1)	C(5)	C(4)	178.03(11)	C(33)	C2(8)	C(32)	C(31)	-176.86(11)
C(7)	N(2)	C(6)	O(1)	-4.08(17)	C(34)	N(5v)	C(33)	O(2)	2.81(17)
C(7)	N(2)	C(6)	C(1)	175.82(9)	C(34)	N(5)	C(33)	C(28)	-176.09(9)
C(7)	C(8)	C(9)	C(10)	-177.25(11)	C(34)	C(35)	C(36)	C(37)	-177.59(11)
C(7)	C(8)	C(13)	C(12)	176.39(11)	C(34)	C(35)	C(40)	C(39)	177.63(12)
C(7)	C(14)	C(15)	N(3)	77.55(11)	C(34)	C(41)	C(42)	N(6)	-75.71(11)
C(7)	C(14)	C(15)	C(21)	-151.96(9)	C(34)	C(41)	C(42)	C(48)	154.39(9)
C(8)	C(7)	C(14)	C(15)	67.74(12)	C(35)	C(34)	C(41)	C(42)	-67.79(12)
C(8)	C(9)	C(10)	C(11)	0.5(2)	C(35)	C(36)	C(37)	C(38)	-0.07(19)
C(9)	C(8)	C(13)	C(12)	-0.66(17)	C(36)	C(35)	C(40)	C(39)	-0.25(19)
C(9)	C(10)	C(11)	C(12)	-0.3(2)	C(36)	C(37)	C(38)	C(39)	0.0(2)
C(10)	C(11)	C(12)	C(13)	-0.4(2)	C(37)	C(38)	C(39)	C(40)	-0.1(2)
C(11)	C(12)	C(13)	C(8)	0.92(19)	C(38)	C(39)	C(40)	C(35)	0.2(2)
C(13)	C(8)	C(9)	C(10)	-0.07(18)	C(40)	C(35)	C(36)	C(37)	0.19(18)
C(14)	C(7)	C(8)	C(9)	82.60(13)	C(41)	C(34)	C(35)	C(36)	101.80(12)
C(14)	C(7)	C(8)	C(13)	-94.45(12)	C(41)	C(34)	C(35)	C(40)	-75.98(13)
C(14)	C(15)	C(21)	C(22)	63.58(12)	C(41)	C(42)	C(48)	C(49)	-64.95(12)

C(15)	N(3)	C(16)	C(17)	-169.84(10)	C(42)	N(6)	C(43)	C(44)	171.62(10)
C(15)	N(3)	C(20)	C(19)	168.57(10)	C(42)	N(6)	C(47)	C(46)	-169.58(10)
C(15)	C(21)	C(22)	C(23)	-122.17(12)	C(42)	C(48)	C(49)	C(50)	-61.56(15)
C(15)	C(21)	C(22)	C(27)	54.84(15)	C(42)	C(48)	C(49)	C(54)	115.58(12)
C(16)	N(3)	C(15)	C(14)	75.14(12)	C(43)	N(6)	C(42)	C(41)	-72.51(12)
C(16)	N(3)	C(15)	C(21)	-53.24(13)	C(43)	N(6)	C(42)	C(48)	55.28(13)
C(16)	N(3)	C(20)	C(19)	-62.48(13)	C(43)	N(6)	C(47)	C(46)	62.16(13)
C(16)	C(17)	C(18)	C(19)	53.55(15)	C(43)	C(44)	C(45)	C(46)	-53.57(16)
C(17)	C(18)	C(19)	C(20)	-53.29(15)	C(44)	C(45)	C(46)	C(47)	53.27(16)
C(18)	C(19)	C(20)	N(3)	58.04(14)	C(45)	C(46)	C(47)	N(6)	-58.23(15)
C(20)	N(3)	C(15)	C(14)	-158.59(9)	C(47)	N(6)	C(42)	C(41)	162.04(10)
C(20)	N(3)	C(15)	C(21)	73.03(12)	C(47)	N(6)	C(42)	C(48)	-70.16(12)
C(20)	N(3)	C(16)	C(17)	62.59(13)	C(47)	N(6)	C(43)	C(44)	-61.65(13)
C(21)	C(22)	C(23)	C(24)	175.85(11)	C(48)	C(49)	C(50)	C(51)	174.64(12)
C(21)	C(22)	C(27)	C(26)	-175.24(11)	C(48)	C(49)	C(54)	C(53)	-174.83(11)
C(22)	C(23)	C(24)	C(25)	-0.32(19)	C(49)	C(50)	C(51)	C(52)	0.8(2)
C(23)	C(22)	C(27)	C(26)	1.85(19)	C(50)	C(49)	C(54)	C(53)	2.38(18)
C(23)	C(24)	C(25)	C(26)	1.29(19)	C(50)	C(51)	C(52)	C(53)	1.3(2)
C(24)	C(25)	C(26)	C(27)	-0.68(19)	C(51)	C(52)	C(53)	C(54)	-1.5(2)
C(25)	C(26)	C(27)	C(22)	-0.9(2)	C(52)	C(53)	C(54)	C(49)	-0.36(19)
C(27)	C(22)	C(23)	C(24)	-1.24(18)	C(54)	C(49)	C(50)	C(51)	-2.6(2)

Table S8. Hydrogen Atom Coordinates ($\text{\AA} \times 10^4$) and Isotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for **4b**.

Atom	x	y	z	U(eq)
H(2)	2045	8027	5127	27
H(2A)	3286	10716	4946	45
H(3)	4805	11112	3905	48
H(4)	5576	9964	2912	45
H(5)	4732	8471	2997	36
H(7)	1072	6986	4414	25


H(9)	1124	4980	4586	30
H(10)	2239	2998	4790	38
H(11)	4009	2351	5338	38
H(12)	4662	3708	5673	35
H(13)	3569	5700	5444	29
H(14A)	-275	7919	5439	25
H(14B)	-176	6587	5648	25
H(15)	1464	6403	6339	24
H(16A)	-587	9103	6985	32
H(16B)	-664	9296	6107	32
H(17A)	-393	10951	6389	39
H(17B)	770	10361	5761	39
H(18A)	1576	10735	6690	40
H(18B)	767	10089	7366	40
H(19A)	2848	8972	6239	35
H(19B)	2825	8792	7131	35
H(20A)	2490	7185	6826	30
H(20B)	1297	7838	7414	30
H(21A)	-65	6776	7518	30
H(21B)	-1132	7325	7031	30
H(23)	-2242	6019	7114	32
H(24)	-2313	4184	7075	37
H(25)	-477	2581	6996	37
H(26)	1421	2811	7000	41
H(27)	1490	4636	7060	37
H(5A)	6430	2955	855	27
H(29)	7038	5500	1559	53
H(30)	6022	6081	2750	52
H(31)	4666	5114	3587	46
H(32)	4364	3597	3178	37

H(34)	4772	1871	876	25
H(36)	7751	715	1390	30
H(37)	8814	-1260	1722	38
H(38)	8113	-2684	1528	43
H(39)	6333	-2125	997	43
H(40)	5268	-158	668	34
H(41A)	5884	1533	-396	25
H(41B)	5454	2865	-311	25
H(42)	7920	1426	-175	25
H(43A)	6091	4331	-788	31
H(43B)	7413	4230	-1355	31
H(44A)	6641	6024	-866	38
H(44B)	6524	5357	-11	38
H(45A)	8381	5838	-329	42
H(45B)	8841	5263	-1093	42
H(46A)	9907	3923	-168	40
H(46B)	8626	4008	440	40
H(47A)	9327	3006	-944	34
H(47B)	9291	2276	-107	34
H(48A)	7288	2433	-1646	30
H(48B)	8696	1948	-1536	30
H(50)	9286	-268	-774	41
H(51)	9252	-2126	-783	47
H(52)	7895	-2367	-1419	38
H(53)	6621	-741	-2082	36
H(54)	6642	1120	-2068	32

Single crystals for X-ray studies were grown by slow evaporation of a solution of compound **4i** in a mixture of petroleum ether and ethyl acetate at room temperature. X-Ray structural analysis

of single crystal **4i** was obtained to confirm the absolute configuration. The X-ray data of **4i** is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2054629.

Crystal Data for $C_{25}H_{33}N_3O_2$ ($M = 407.54$ g/mol): monoclinic, space group $P2_1/c$, $a = 21.748(3)$ Å, $b = 5.4836(6)$ Å, $c = 19.4942(13)$ Å, $V = 2291.3(4)$ Å 3 , $Z = 4$, $T = 293(2)$ K, $\mu(\text{MoK}\alpha) = 0.593$ mm $^{-1}$, $D_{\text{calc}} = 1.181$ g/cm 3 , 7506 reflections measured ($8.25^\circ \leq 2\Theta \leq 134.122^\circ$), 4044 unique ($R_{\text{int}} = 0.0533$, $R_{\text{sigma}} = 0.0617$) which were used in all calculations. The final R_1 was 0.0787 ($I > 2\sigma(I)$) and wR_2 was 0.2353 (all data).

Figure S3. X-ray structure of compound **4i**.

Table S9. Crystal data and structure refinement for **4i**.

Identification code	4i
Empirical formula	$C_{25}H_{33}N_3O_2$
Formula weight	407.54
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
$a/\text{\AA}$	21.748(3)

b/Å	5.4836(6)
c/Å	19.4942(13)
α/°	90
β/°	99.738(10)
γ/°	90
Volume/Å ³	2291.3(4)
Z	4
ρ _{calc} g/cm ³	1.181
μ/mm ⁻¹	0.593
F(000)	880.0
Crystal size/mm ³	0.2 × 0.15 × 0.4
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	8.25 to 134.122
Index ranges	-24 ≤ h ≤ 25, -4 ≤ k ≤ 6, -21 ≤ l ≤ 23
Reflections collected	7506
Independent reflections	4044 [R _{int} = 0.0533, R _{sigma} = 0.0617]
Data/restraints/parameters	4044/0/273
Goodness-of-fit on F ²	1.072
Final R indexes [I>=2σ (I)]	R ₁ = 0.0787, wR ₂ = 0.1919
Final R indexes [all data]	R ₁ = 0.1287, wR ₂ = 0.2353
Largest diff. peak/hole / e Å ⁻³	0.22/-0.30

Table S10. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å $^2 \times 10^3$) for **4i**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

Atom	x	y	z	U(eq)
O(1)	6302.2(19)	7341(9)	4638.9(18)	116.3(14)
O(2)	6847.6(16)	9790(7)	7094.0(15)	93.3(11)
N(1)	5720.6(18)	3411(9)	3245.0(19)	89.4(13)
N(2)	6548.4(15)	7067(8)	3558.6(19)	81.9(11)
N(3)	8573.8(13)	10317(6)	3350.3(12)	49.6(7)
C(1)	5769.7(18)	4386(9)	3870(2)	72.5(12)

C(2)	5293(3)	1684(14)	3070(3)	118(2)
C(3)	4897(3)	933(14)	3489(4)	124(2)
C(4)	4947(3)	1900(16)	4128(4)	137(3)
C(5)	5398(3)	3662(15)	4338(3)	123(2)
C(6)	6230.1(19)	6408(10)	4061(2)	77.8(13)
C(7)	6992(2)	9091(10)	3642(3)	88.0(14)
C(8)	7650.0(17)	8269(7)	3758.6(17)	57.9(9)
C(9)	8131.4(16)	10365(7)	3848.4(14)	48.6(8)
C(10)	8264.7(18)	10872(8)	2644.6(15)	60.3(10)
C(11)	8739(2)	11116(9)	2152.8(17)	69.7(12)
C(12)	9133.4(19)	8867(9)	2167.6(17)	68.8(11)
C(13)	9435.0(18)	8309(9)	2907.1(18)	71.1(12)
C(14)	8941.4(18)	8085(8)	3369.7(17)	61.4(10)
C(15)	8491.2(16)	10517(7)	4605.5(15)	53.3(9)
C(16)	8969.6(19)	12585(9)	4697.9(17)	69.2(12)
C(17)	9397(2)	12568(12)	5399(2)	100.6(19)
C(18)	8044.5(16)	10732(7)	5126.8(15)	50.5(8)
C(19)	7637.5(19)	12682(7)	5108.8(16)	61.2(10)
C(20)	7238.0(19)	12905(8)	5594.7(17)	62.2(10)
C(21)	7241.3(17)	11196(7)	6110.9(15)	54.4(9)
C(22)	7639.8(18)	9224(8)	6124.2(16)	59.5(10)
C(23)	8039.4(18)	9022(7)	5640.3(15)	56.9(9)
C(24)	6832.9(18)	11364(9)	6656.7(19)	64.8(11)
C(25)	6427(2)	13553(10)	6656(3)	89.9(15)

Table S11. Anisotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for **4i**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^*{}^2U_{11} + 2hka^*b^*U_{12} + \dots]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	118(3)	148(4)	81(2)	-32(2)	13(2)	-14(3)
O(2)	108(2)	111(3)	69.9(17)	17.9(19)	39.2(17)	-3(2)
N(1)	80(3)	117(4)	70(2)	3(2)	9.6(18)	-30(3)

N(2)	57(2)	107(3)	81(2)	-9(2)	11.8(17)	-22(2)
N(3)	52.0(16)	61.6(19)	34.0(12)	4.4(12)	3.6(11)	0.5(14)
C(1)	50(2)	95(4)	72(2)	16(2)	9.4(18)	0(2)
C(2)	96(4)	155(6)	102(4)	-13(4)	19(3)	-53(4)
C(3)	91(4)	143(6)	142(5)	4(5)	29(4)	-38(4)
C(4)	113(5)	173(7)	140(6)	24(5)	63(4)	-40(5)
C(5)	104(4)	177(7)	98(4)	4(4)	47(3)	-30(5)
C(6)	56(2)	101(4)	73(2)	-4(3)	2.7(19)	-5(2)
C(7)	60(3)	89(4)	113(4)	-4(3)	8(2)	-13(3)
C(8)	62(2)	63(2)	47.6(16)	2.0(16)	4.7(15)	-8.8(19)
C(9)	52.5(19)	55(2)	37.7(14)	3.7(14)	5.2(13)	-0.5(17)
C(10)	65(2)	76(3)	37.7(15)	3.2(16)	2.9(15)	11(2)
C(11)	83(3)	85(3)	41.7(16)	11.9(18)	13.5(17)	3(2)
C(12)	65(2)	95(3)	47.6(17)	-3(2)	13.3(16)	-1(2)
C(13)	58(2)	100(3)	54.8(19)	1(2)	9.7(16)	10(2)
C(14)	61(2)	74(3)	47.6(17)	11.3(18)	6.9(15)	11(2)
C(15)	59(2)	63(2)	36.5(14)	3.3(15)	6.1(14)	-4.7(18)
C(16)	68(2)	93(3)	45.6(17)	-5.5(19)	8.1(16)	-18(2)
C(17)	80(3)	166(6)	54(2)	-20(3)	6(2)	-33(4)
C(18)	61(2)	51(2)	37.3(14)	1.9(14)	3.5(14)	-2.9(18)
C(19)	81(3)	61(3)	42.5(16)	13.4(17)	13.4(16)	0(2)
C(20)	71(2)	64(3)	52.0(18)	-1.8(18)	9.7(16)	3(2)
C(21)	58(2)	64(2)	40.6(15)	-0.1(16)	6.8(14)	-10.6(19)
C(22)	73(2)	63(3)	42.5(16)	11.6(16)	9.1(16)	-6(2)
C(23)	67(2)	63(2)	40.4(15)	7.2(16)	6.4(15)	3(2)
C(24)	61(2)	80(3)	54.3(19)	-7(2)	11.6(17)	-12(2)
C(25)	80(3)	105(4)	92(3)	-12(3)	35(3)	-7(3)

Table S12. Bond Lengths for **4i**.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(1)	C(6)	1.222(5)	C9	C15	1.551(4)

O(2)	C(24)	1.210(5)	C10	C11	1.528(5)
N(1)	C(1)	1.318(6)	C11	C12	1.499(6)
N(1)	C(2)	1.331(7)	C12	C13	1.511(5)
N(2)	C(6)	1.342(5)	C13	C14	1.519(5)
N(2)	C(7)	1.461(6)	C15	C16	1.529(5)
N(3)	C(9)	1.478(4)	C15	C18	1.524(4)
N(3)	C(10)	1.458(4)	C16	C17	1.518(5)
N(3)	C(14)	1.459(5)	C18	C19	1.385(5)
C(1)	C(5)	1.375(6)	C18	C23	1.373(5)
C(1)	C(6)	1.498(7)	C19	C20	1.395(5)
C(2)	C(3)	1.347(8)	C20	C21	1.374(5)
C(3)	C(4)	1.341(9)	C21	C22	1.383(5)
C(4)	C(5)	1.389(9)	C21	C24	1.500(5)
C(7)	C(8)	1.481(6)	C22	C23	1.391(5)
C(8)	C(9)	1.545(5)	C24	C25	1.490(7)

Table S13. Bond Angles for **4i**.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(1)	N(1)	C(2)	118.0(4)	C(12)	C(11)	C(10)	111.1(3)
C(6)	N(2)	C(7)	122.4(4)	C(11)	C(12)	C(13)	109.9(3)
C(10)	N(3)	C(9)	111.6(3)	C(12)	C(13)	C(14)	110.3(3)
C(10)	N(3)	C(14)	111.3(3)	N(3)	C(14)	C(13)	110.9(3)
C(14)	N(3)	C(9)	114.4(3)	C(16)	C(15)	C(9)	112.1(3)
N(1)	C(1)	C(5)	122.1(5)	C(18)	C(15)	C(9)	111.3(3)
N(1)	C(1)	C(6)	118.5(4)	C(18)	C(15)	C(16)	111.2(3)
C(5)	C(1)	C(6)	119.4(5)	C(17)	C(16)	C(15)	113.7(4)
N(1)	C(2)	C(3)	123.6(6)	C(19)	C(18)	C(15)	121.3(3)
C(4)	C(3)	C(2)	118.8(6)	C(23)	C(18)	C(15)	121.2(3)
C(3)	C(4)	C(5)	119.5(5)	C(23)	C(18)	C(19)	117.5(3)
C(1)	C(5)	C(4)	118.0(6)	C(18)	C(19)	C(20)	121.3(3)
O(1)	C(6)	N(2)	124.0(5)	C(21)	C(20)	C(19)	120.7(4)

O(1)	C(6)	C(1)	121.1(4)	C(20)	C(21)	C(22)	118.2(3)
N(2)	C(6)	C(1)	115.0(4)	C(20)	C(21)	C(24)	123.2(4)
N(2)	C(7)	C(8)	112.9(4)	C(22)	C(21)	C(24)	118.6(3)
C(7)	C(8)	C(9)	114.2(4)	C(21)	C(22)	C(23)	120.7(3)
N(3)	C(9)	C(8)	114.6(3)	C(18)	C(23)	C(22)	121.5(4)
N(3)	C(9)	C(15)	110.3(3)	O(2)	C(24)	C(21)	120.5(4)
C(8)	C(9)	C(15)	111.8(3)	O(2)	C(24)	C(25)	121.3(4)
N(3)	C(10)	C(11)	111.0(3)	C(25)	C(24)	C(21)	118.1(4)

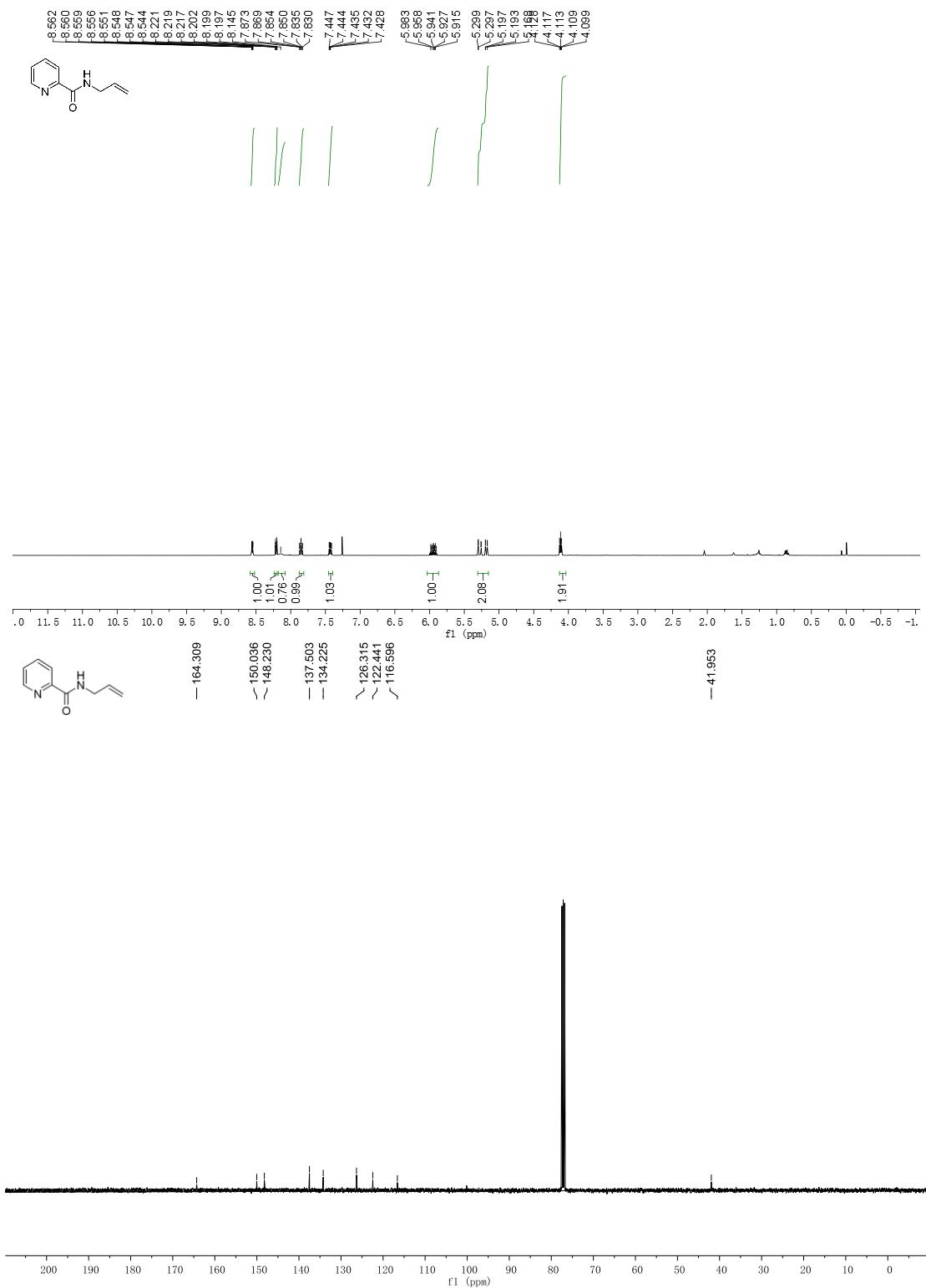
Table S14. Torsion Angles for **4i**.

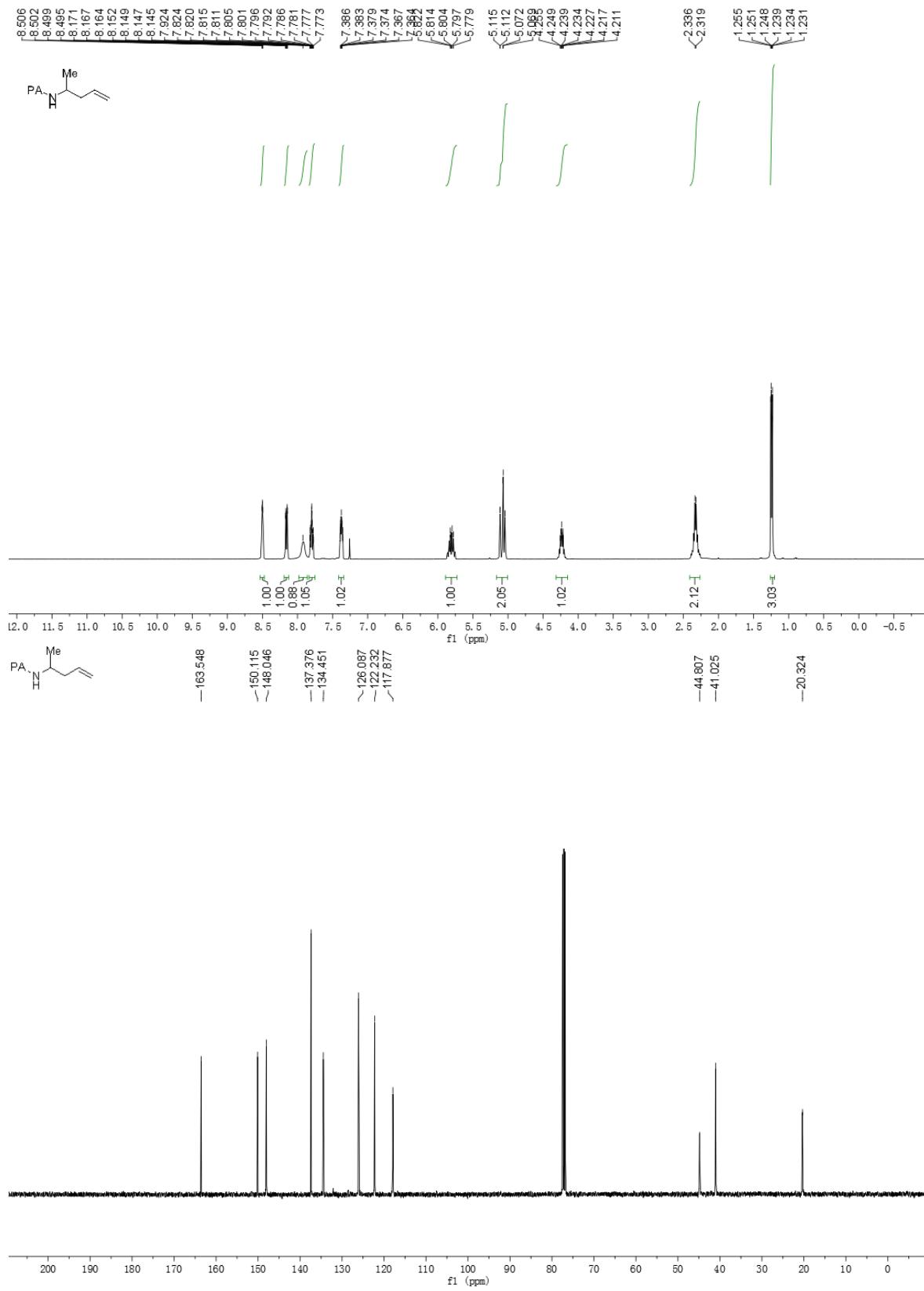
A	B	C	D	Angle/°	A	B	C	D	Angle/°
N(1)	C(1)	C(5)	C(4)	-2.0(10)	C(9)	C(15)	C(18)	C(23)	120.4(4)
N(1)	C(1)	C(6)	O(1)	-178.6(5)	C(10)	N(3)	C(9)	C(8)	69.2(4)
N(1)	C(1)	C(6)	N(2)	1.0(7)	C(10)	N(3)	C(9)	C(15)	-163.7(3)
N(1)	C(2)	C(3)	C(4)	-2.6(12)	C(10)	N(3)	C(14)	C(13)	59.1(4)
N(2)	C(7)	C(8)	C(9)	180.0(3)	C(10)	C(11)	C(12)	C(13)	-54.6(5)
N(3)	C(9)	C(15)	C(16)	51.2(4)	C(11)	C(12)	C(13)	C(14)	55.6(5)
N(3)	C(9)	C(15)	C(18)	176.4(3)	C(12)	C(13)	C(14)	N(3)	-57.9(5)
N(3)	C(10)	C(11)	C(12)	55.8(5)	C(14)	N(3)	C(9)	C(8)	-58.3(4)
C(1)	N(1)	C(2)	C(3)	2.0(10)	C(14)	N(3)	C(9)	C(15)	68.8(4)
C(2)	N(1)	C(1)	C(5)	0.4(8)	C(14)	N(3)	C(10)	C(11)	-57.7(4)
C(2)	N(1)	C(1)	C(6)	-177.4(5)	C(15)	C(18)	C(19)	C(20)	-178.6(3)
C(2)	C(3)	C(4)	C(5)	0.8(13)	C(15)	C(18)	C(23)	C(22)	179.0(3)
C(3)	C(4)	C(5)	C(1)	1.4(12)	C(16)	C(15)	C(18)	C(19)	64.9(4)
C(5)	C(1)	C(6)	O(1)	3.6(8)	C(16)	C(15)	C(18)	C(23)	-113.8(4)
C(5)	C(1)	C(6)	N(2)	-176.8(5)	C(18)	C(15)	C(16)	C(17)	63.2(5)
C(6)	N(2)	C(7)	C(8)	105.1(5)	C(18)	C(19)	C(20)	C(21)	0.5(6)
C(6)	C(1)	C(5)	C(4)	175.7(6)	C(19)	C(18)	C(23)	C(22)	0.3(5)
C(7)	N(2)	C(6)	O(1)	-3.8(8)	C(19)	C(20)	C(21)	C(22)	-1.6(6)
C(7)	N(2)	C(6)	C(1)	176.7(4)	C(19)	C(20)	C(21)	C(24)	178.7(4)
C(7)	C(8)	C(9)	N(3)	-123.1(4)	C(20)	C(21)	C(22)	C(23)	2.0(5)

C(7)	C(8)	C(9)	C(15)	110.5(4)	C(20)	C(21)	C(24)	O(2)	178.9(4)
C(8)	C(9)	C(15)	C(16)	179.9(3)	C(20)	C(21)	C(24)	C(25)	-3.0(6)
C(8)	C(9)	C(15)	C(18)	-54.9(4)	C(21)	C(22)	C(23)	C(18)	-1.3(6)
C(9)	N(3)	C(10)	C(11)	173.2(3)	C(22)	C(21)	C(24)	O(2)	-0.8(6)
C(9)	N(3)	C(14)	C(13)	-173.2(3)	C(22)	C(21)	C(24)	C(25)	177.2(4)
C(9)	C(15)	C(16)	C(17)	-171.5(4)	C(23)	C(18)	C(19)	C(20)	0.1(5)
C(9)	C(15)	C(18)	C(19)	-60.8(5)	C(24)	C(21)	C(22)	C(23)	-178.3(3)

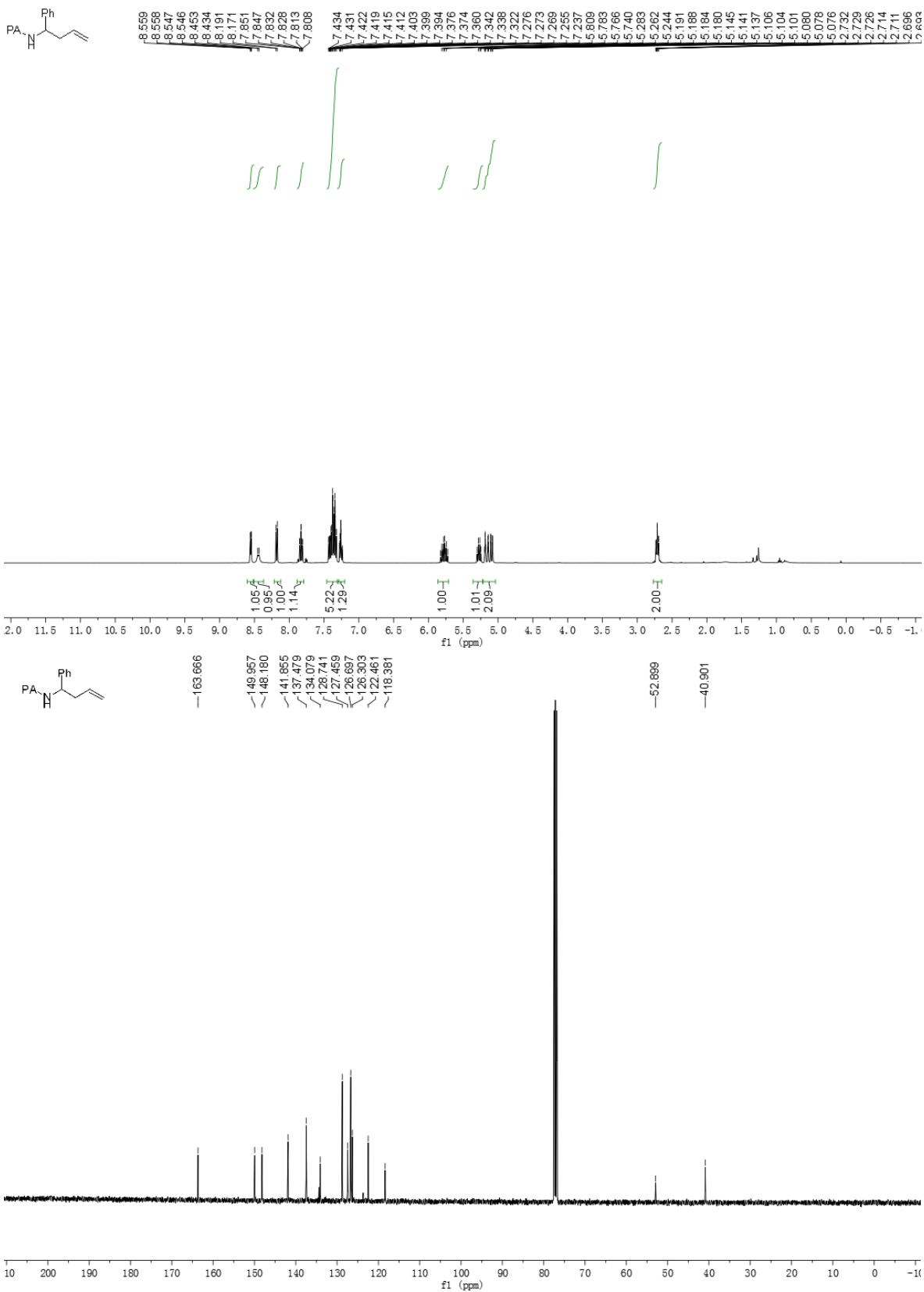
Table S15. Hydrogen Atom Coordinates ($\text{\AA} \times 10^4$) and Isotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for **4i**.

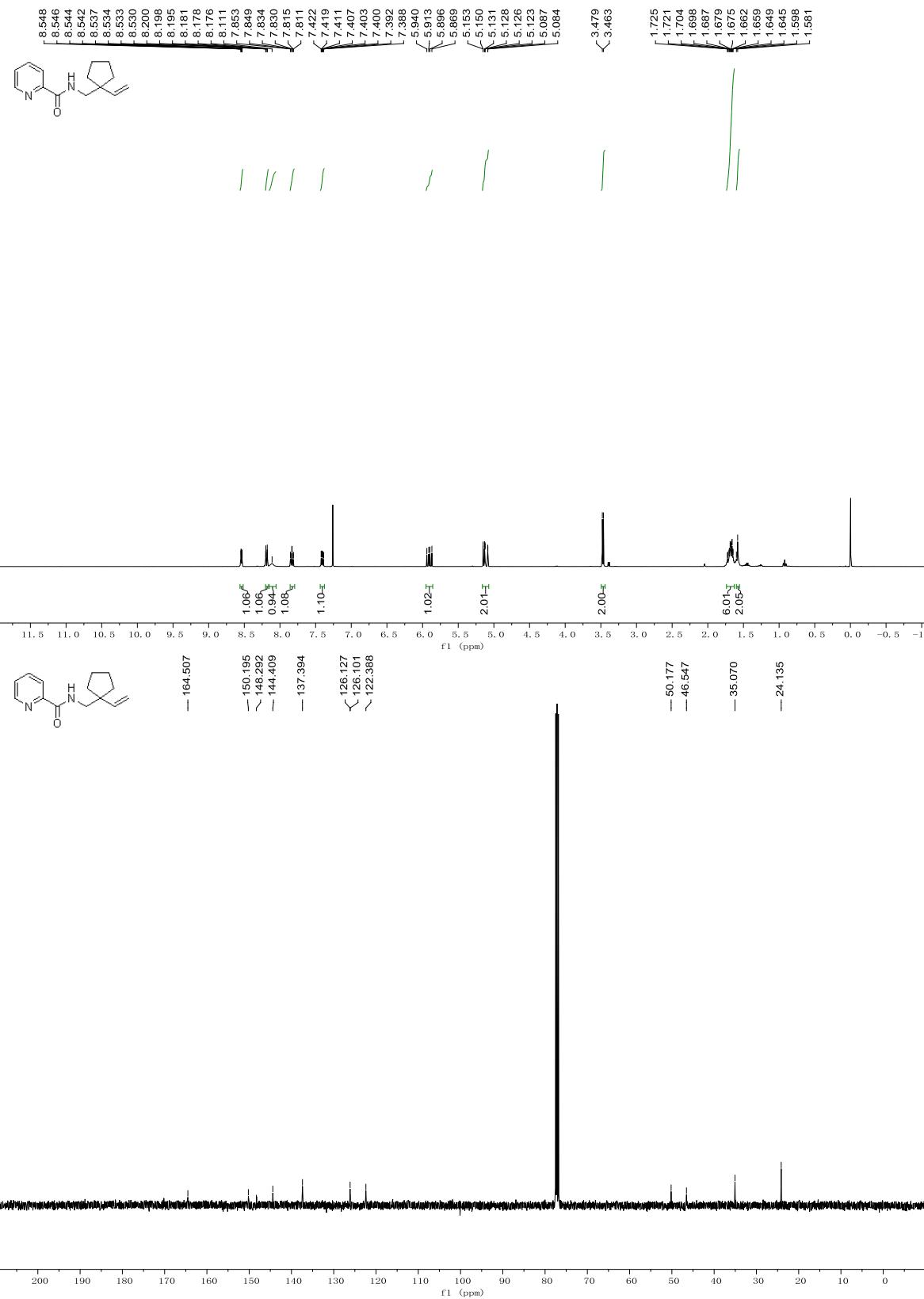
Atom	x	y	z	U(eq)
H(2)	6489	6269	3173	98
H(2A)	5266	955	2635	141
H(3)	4594	-235	3337	149
H(4)	4682	1395	4427	165
H(5)	5448	4333	4782	148
H(7A)	6922	10085	4033	106
H(7B)	6916	10102	3228	106
H(8A)	7717	7269	3368	69
H(8B)	7723	7253	4172	69
H(9)	7894	11884	3762	58
H(10A)	8033	12384	2646	72
H(10B)	7971	9584	2480	72
H(11A)	8521	11390	1682	84
H(11B)	9005	12514	2289	84
H(12A)	9453	9115	1883	83
H(12B)	8876	7501	1978	83
H(13A)	9725	9601	3080	85
H(13B)	9668	6796	2918	85
H(14A)	8668	6724	3214	74
H(14B)	9141	7762	3844	74


H(15)	8721	8985	4703	64
H(16A)	9222	12466	4334	83
H(16B)	8750	14131	4641	83
H(17A)	9151	12715	5763	151
H(17B)	9682	13912	5425	151
H(17C)	9626	11066	5454	151
H(19)	7630	13866	4766	73
H(20)	6966	14225	5569	75
H(22)	7641	8020	6460	71
H(23)	8309	7698	5665	68
H(25A)	6195	13434	7032	135
H(25B)	6144	13643	6222	135
H(25C)	6682	14993	6715	135



9. References


- [1] J. A. Gurak, K. S. Yang, Z. Liu, K. M. Engle, *J. Am. Chem. Soc.* **2016**, *138*, 5805.
- [2] Y.-C. Luo, C. Yang, S.-Q. Qiu, Q.-J. Liang, Y.-H. X, T.-P. Loh, *ACS Catal.* **2019**, *9*, 4271.
- [3] Z. Liu, T. Zeng, K. S. Yang, K. M. Engle, *J. Am. Chem. Soc.* **2016**, *138*, 15122.
- [4] M. Feuerstein, H. Doucet, M. Santelli, *Tetrahedron letters*, **2001**, *42*, 5659-5662.
- [5] B. S. Schreib, M. Fadel, E. M. Carreira, *Angewandte Chemie*, **2020**, *132*, 7892-7896.
- [6] J. Derosa, V. T. Tran, M. N. Boulous, J. S. Chen, K. M. Engle, *J. Am. Chem. Soc.* **2017**, *139*, 10657.


10. NMR Spectra

