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This supplementary information consists of 4 sections in support of the main text. The
contents of the sections are listed below:

1. Additional information about the microstructure of Nbsls crystal

Band structures and polarized Raman spectra of Nbsls

Verifying the ferroelectricity in Nbsls

A

Polarization switching in monolayer and bilayer Nbsls
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Section 1. Additional information about the microstructure of Nbsls crystal

2D Nbslg crystal stabilizes as layered structure at room temperature (Fig. S1a) with the
chemical composition of Nb:[=3:8 (Fig. S1b). However, it is extremely ambient-
sensitive when being thinned down or prepared to be TEM lamellae. We adopt effective
approaches to obtain HAAD-STEM images of Nbsls, such as short exposure time to air
and low probe voltage during image acquiring. In addition, to verify the atomic
configurations of Nbsls, we perform detailed simulations on HAADF-STEM images
for different thick Nbslg along both [100] and [001] zone axes (Fig. S2). Simulated
results are well consistent with our experiments. Also, the alternating vdWs gaps at
atomic-scale in Nbslg are simulated along [100] and [120] zone axes, respectively (Fig.

S3).

o

Nb

Intensity (a.u.)

Energy (keV)

Supplementary Fig. 1 | SEM image and chemical composition of Nbsls. a, SEM image. b, SEM-

EDS spectrum. ¢-e, HAADF-STEM image and corresponding EDS maps of Nd and iodine atoms.
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Supplementary Fig. 2 | Crystal structure schematics of Nbsls. a, Side view of Nbsls unit cell. b,
Simulated HAADF-STEM images along [100] zone axis. ¢, SAED patterns of Nbslg along [100]
zone axis. d, Top view of Nbsls unit cell. e, Simulated HAADF-STEM images along [001] zone

axis.
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Supplementary Fig. 3 | VdWs gaps arrangements with alternating distances at atomic-scale in

Nbsls. a and b, Side-views of the crystal structure along [100] and [120] zone axes. ¢ and d,
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Corresponding simulated HAADF-STEM images along [100] and [120] zone axes.

Section 2. Band structures and polarized Raman spectra of Nbsls

Tunable optical bandgap of Nbslsg in infrared waveband

As mentioned in the main text, bulk Nbsls is indirect with an optical bandgap of ~0.22
eV. Here, considering the interlayer antiferromagnetic configuration of bulk phase, we
calculate the spin-resolved band structure of bulk Nbslg, as shown in Fig. 4a. The band
dispersion of bulk phase of spin up and spin down are almost coincident, giving an
indirect bandgap of ~0.38 eV. When the flake is thinned down to monolayer, the
ferrovalley feature would appear, as shown in Fig. S4b, c for the calculated results.
Considering the ferromagnetic configuration of monolayer Nbasls, first-principles
calculations show spin-resolved band structures with two direct optical transitions
around 1.0 eV in K+ and K- valleys, consistent with the report'. Notice that our thinned
nanoflakes give an optical bandgap of ~0.68 eV by optical transmission spectroscopy.
Thus, the tunable optical bandgap of Nbslg in infrared waveband is revealed by our

experimental and calculated results.
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Supplementary Fig. 4 | Band structure of Nbsls. a and b, Spin-polarized band structures of bulk

(a) and monolayer (b). ¢, Corresponding density of states of monolayer Nbsls.
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Linearly and circularly polarized Raman: Optical setup and results

The schematic of optical setup for linearly polarized Raman (LPR) is displayed in Fig.
S5a, while that for circularly polarized Raman (CPR) is shown in Fig. S5b. For the LPR
measurements, a linear polarizer (LP) is placed in the incident path to achieve x
direction polarization, while another broadband linear polarizer (LP>) is in front of

detector for backscattered Raman signal analysis. The LP> can be rotated at different

angles to obtain the 360° angle-dependent LPR spectra. For the CPR measurements, a

quarter-wave plate is placed behind LP; in the incident path to achieve the right (c+) or
left (o-) circular polarization, while another quarter-wave plate is placed in front of LP»
for the helicity of backscattered Raman signal analysis. The 6+ (or 6-) incident light is
confirmed at the sample position. The o- or o+ polarizations in front of detector are
employed to check the helicity of the scattered photons. We rotate the quarter-wave
plate in front of LP> to complete the angle-dependent CPR measurements. We verify
the effectivity of our optical setup by referring to the CPR spectra of a MoS; flake with
a thickness of ~15 nm (Fig. S5¢). Fig. S5d shows the room-temperature CPR spectrum
of a MoS; flake in z(0+, 0+)Z and z(o+, 0—)Z geometric configurations. It is clear
that the OC phonon scattered photons have the same 6+ helicity as the incident photons
(bule curve), while the IMC phonon peak is obviously enhanced under the opposite (c-)
polarization (red curve), totally consistent with the previous report’, proving the
reliability of the optical setup. Subsequently, we perform the angle-dependent LPR and

CPR measurements on bulk Nbsls. As presented in Fig. S6a, the Raman peaks of A,

modes are continuously weakened till to disappear when the LP: is rotated from 0° to

90°. For the angle-dependent CPR results (Fig. S6b), the Raman signals of E; modes

gradually increase to maximum when the geometries are switched from z(o+,0+)Z

(0°) to z(o+, 0—)Z (90°). The peak positions of A; 4 and E; modes are consistent with

our first-principles calculations (Fig. S6c).
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Supplementary Fig. 5 | Schematic of optical setup for polarized Raman measurements. a and
b, Optical setup for LPR (a) and CPR (b) spectroscopy. ¢, Morphology of the MoS, flake with a
thickness of ~15 nm. d, Room-temperature CPR spectrum of the Mo$S; flake in (c) in z(o+,0+)Z

and z(o+, 0—)Z geometric configurations.
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Supplementary Fig. 6 | Experimental and calculated Raman spectra of Nbsls. a and b, Angle-
dependent LPR (a) and CPR (b) spectra. The initial 0° in angle-dependent LPR and CPR
measurements, respectively, represent the z(x, x)Z and z(0+,0—)Z configurations. The dashed
lines in a and b identify the achiral and chiral modes, respectively. ¢, Calculated Raman spectra of

monolayer Nbslg in z(x, x)Z and z(x, y)Z configurations.
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Supplementary Fig. 7 | Phonon eigenvectors with calculated frequencies of achiral and chiral

modes at the Brillouin zone center in Nbsls. a and b, The Nb and I atomic vibrations of A‘fg (a)

and Eg3 (b) modes. Note that superposition of two orthogonal linear vibrations of Eg results in

right-handed or left-handed circular motions at the /™-point.

Section3. Verifying the ferroelectricity in Nbsls

Hysteresis loop measurements by piezoresponse force microscopy (PFM) have
regarded as a powerful technique for probing polarization switching in nanoscale®~. As
known, a ferroelectric material possessing spontaneous polarization that can be
reversed by the external electric field, which will show switchable local PFM amplitude
and 180° phase loops. Here, the electric-field induced ferroelectricity in Nbslg has been
verified on different thick flakes (Fig. S8a-c and Fig. S9). The out-of-plane effective
piezoelectric constant (4% ) for different thicknesses in the as-prepared Nbsls nanoflakes

are calculated (Fig. S8d).
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Supplementary Fig. 8 | Additional PFM results of Nbsls flakes with different thicknesses. a,

Morphology of the exfoliated Nbsls flake with stepped shape, where the regions marked

by A, B, and C represent different thicknesses. b and ¢, Local PFM amplitude (b) and

PFM phase (c) hysteresis loops from the A, B, and C regions. d, The determined

thicknesses (purple) and calculated &% -values (green) for A, B, and C regions.
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Supplementary Fig. 9 | Additional PFM results of Nbsls flakes with different thicknesses. a-d,

Local PFM amplitude (a, b) and phase (c, d) hysteresis loops of Nbslg flakes with thickness of ~9

nm and 48 nm, respectively.
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Section4. Polarization switching in monolayer and bilayer Nb:ls
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Supplementary Fig. 10 | Electric polarization states of the small and big triangles of Nbsl3
architechtures. a and b, Atomic configuration of Nbsl;3, where the X atom represents the center
site of the iodine atom in each octahedron. As the angle between any two electric dipole moments
is 120 degrees, the net electric dipole moment in a-b plane is zero. However, in the a-c plane, the
three octahedra provide an upward dipole moment, which leads to an upward polarization in the
Nbsl;3 architecture (a) and thus leads to a downward dipole moment in (b). It should be noted that

the magnitude of the electric dipole moment in (b) is slightly smaller than that in (a) along c direction.
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Supplementary Fig. 11 | Kinetic pathway of polarization switching in monolayer Nbsls. The
climbing image nudged elastic band (NEB) results of the Nbsls monolayers for ferroelectric

switching path from State I to State II. Two ferroelectric (FE) states and the unstable paraelectric
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(PE) state are illustrated by the side views of the tetrahedron structures formed by iodine atoms at

the top/bottom apex sites and Nb atoms as triangular bases. The energy barrier is calculated to be

~0.77 eV per Nb atom, consistent with the report®.
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Supplementary Fig. 12 | Structures of five specified states in bilayer Nbsls. Side-views (upper)

and top-views (lower) of five states in bilayer Nbsls.
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