

Supplementary Information for

Coexistence of chiral phonons and antiferroelectricity in breathing

kagome semiconductor Nb_3I_8 at room-temperature

5 Jin Hong^{1, #}, Fengrui Sui^{1, #}, Kaiqi Wang^{1, #}, Xin Han^{2, #}, Yufan Zheng¹, Wen-yi Tong¹, Xing Deng¹,
6 Zhao, Guan¹, Bobo Tian¹, Ruijuan Qi^{1,*}, Rong Huang¹, Ni Zhong¹, Hui Peng¹, Fangyu Yue^{1,3*},
7 Junhao Chu^{1,4}, Youguo Shi^{2*} & Chungang Duan^{1,3*}

⁸ ¹Key Laboratory of Polar Materials and Devices (MOE), Shanghai Center of Brain-inspired
⁹ Intelligent Materials and Devices, Department of Electronics, East China Normal University,
¹⁰ Shanghai 200241, China.

11 ²Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese
12 Academy of Sciences, Beijing 100190, China.

13 ³Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006,
14 China.

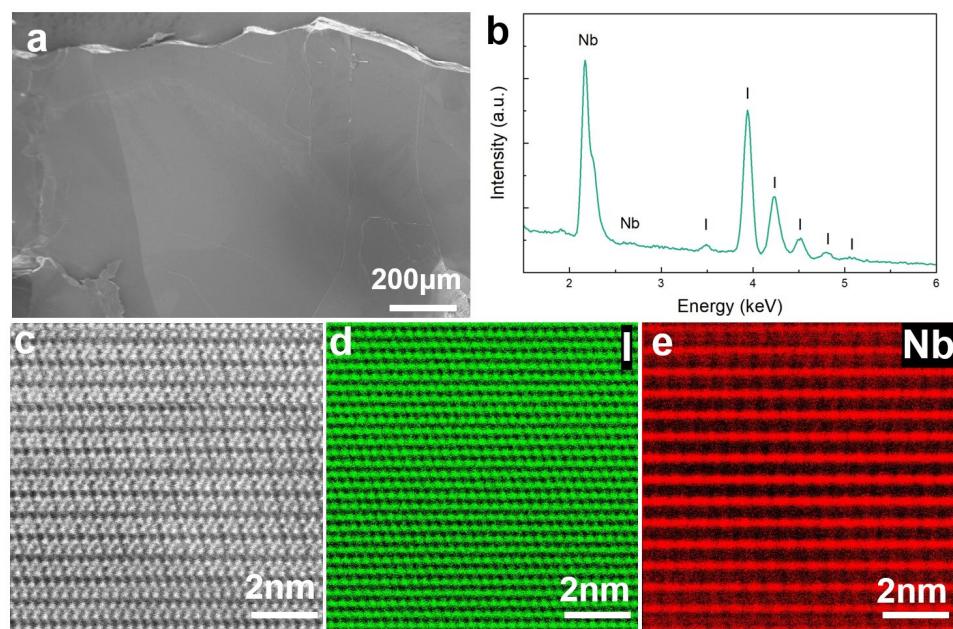
¹⁵ ⁴National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Shanghai 200083,
¹⁶ China.

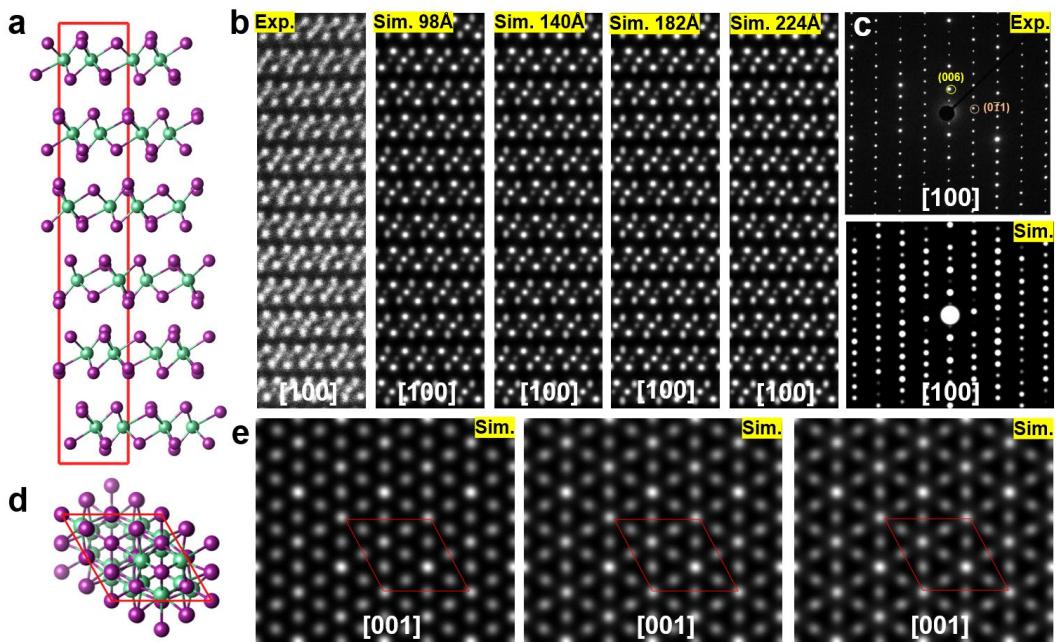
17

18 [#]They equally contribute to this work.

19 Email: rjqi@ee.echu.edu.

22 This supplementary information consists of 4 sections in support of the main text. The
23 contents of the sections are listed below:

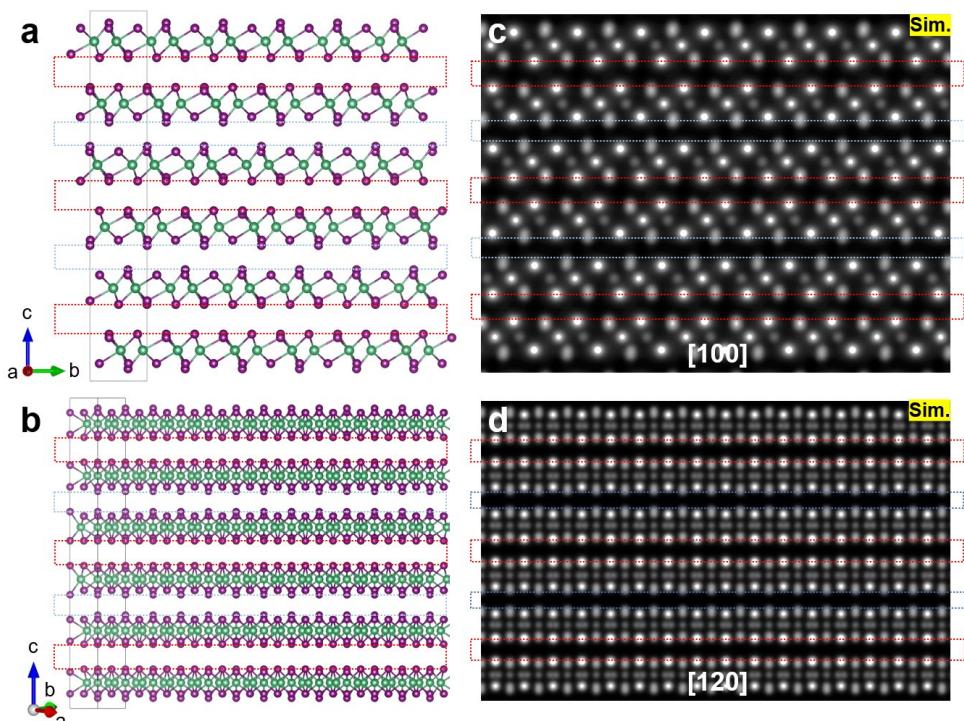

24 **1. Additional information about the microstructure of Nb_3I_8 crystal**


25 **2. Band structures and polarized Raman spectra of Nb_3I_8**

26 **3. Verifying the ferroelectricity in Nb_3I_8**

27 **4. Polarization switching in monolayer and bilayer Nb_3I_8**

28 **Section 1. Additional information about the microstructure of Nb_3I_8 crystal**
 29 2D Nb_3I_8 crystal stabilizes as layered structure at room temperature (Fig. S1a) with the
 30 chemical composition of $\text{Nb:I} \approx 3:8$ (Fig. S1b). However, it is extremely ambient-
 31 sensitive when being thinned down or prepared to be TEM lamellae. We adopt effective
 32 approaches to obtain HAADF-STEM images of Nb_3I_8 , such as short exposure time to air
 33 and low probe voltage during image acquiring. In addition, to verify the atomic
 34 configurations of Nb_3I_8 , we perform detailed simulations on HAADF-STEM images
 35 for different thick Nb_3I_8 along both [100] and [001] zone axes (Fig. S2). Simulated
 36 results are well consistent with our experiments. Also, the alternating vdWs gaps at
 37 atomic-scale in Nb_3I_8 are simulated along [100] and [120] zone axes, respectively (Fig.
 38 S3).



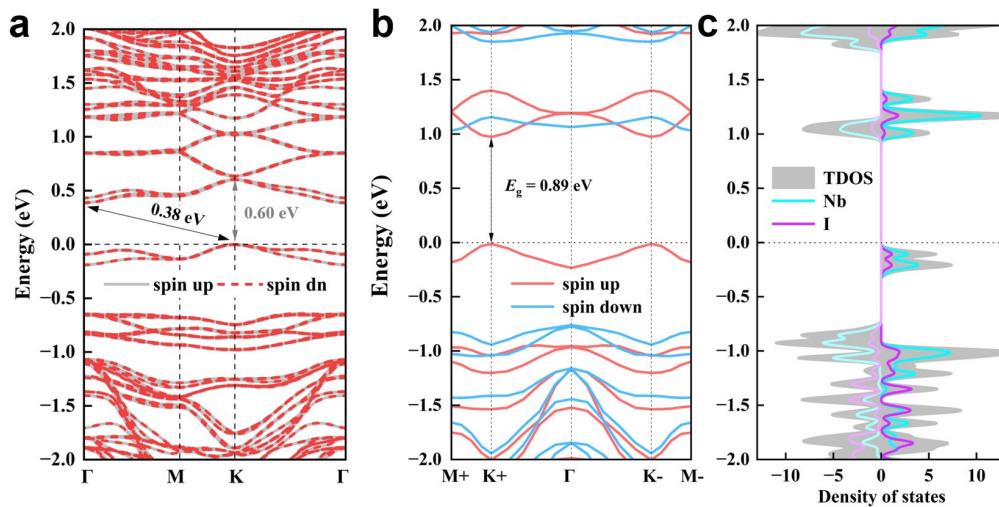
43

44 **Supplementary Fig. 2 | Crystal structure schematics of Nb_3I_8 .** **a**, Side view of Nb_3I_8 unit cell. **b**,
 45 Simulated HAADF-STEM images along [100] zone axis. **c**, SAED patterns of Nb_3I_8 along [100]
 46 zone axis. **d**, Top view of Nb_3I_8 unit cell. **e**, Simulated HAADF-STEM images along [001] zone
 47 axis.

48

49

50 **Supplementary Fig. 3 | VdWs gaps arrangements with alternating distances at atomic-scale in**
 51 **Nb_3I_8 .** **a** and **b**, Side-views of the crystal structure along [100] and [120] zone axes. **c** and **d**,


52 Corresponding simulated HAADF-STEM images along [100] and [120] zone axes.

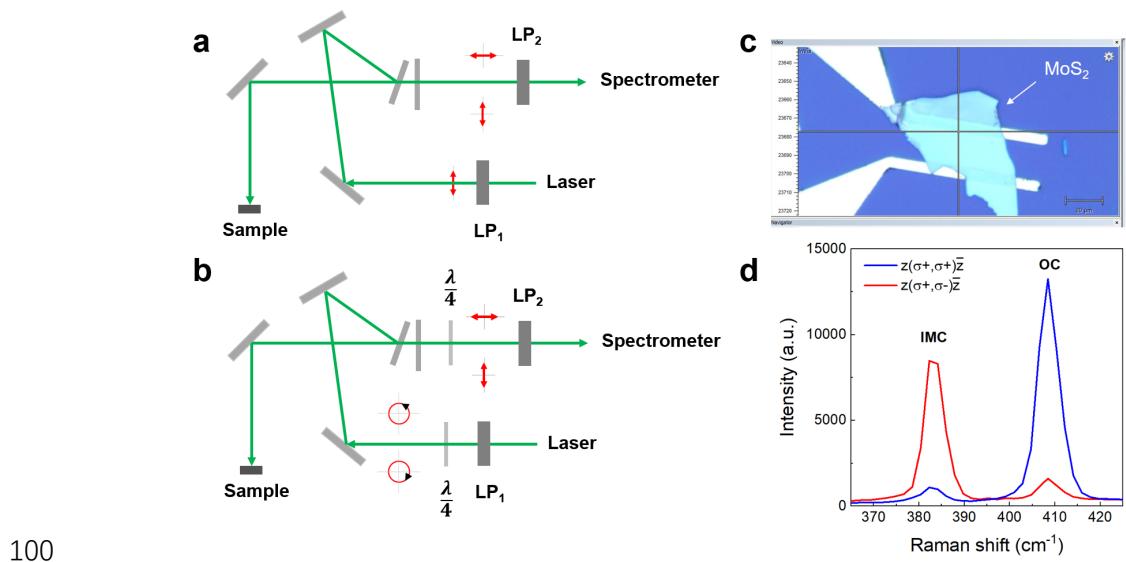
53 **Section 2. Band structures and polarized Raman spectra of Nb_3I_8**

54 Tunable optical bandgap of Nb_3I_8 in infrared waveband

55 As mentioned in the main text, bulk Nb_3I_8 is indirect with an optical bandgap of ~ 0.22
56 eV. Here, considering the interlayer antiferromagnetic configuration of bulk phase, we
57 calculate the spin-resolved band structure of bulk Nb_3I_8 , as shown in Fig. 4a. The band
58 dispersion of bulk phase of spin up and spin down are almost coincident, giving an
59 indirect bandgap of ~ 0.38 eV. When the flake is thinned down to monolayer, the
60 ferrovalley feature would appear, as shown in Fig. S4b, c for the calculated results.
61 Considering the ferromagnetic configuration of monolayer Nb_3I_8 , first-principles
62 calculations show spin-resolved band structures with two direct optical transitions
63 around 1.0 eV in K^+ and K^- valleys, consistent with the report¹. Notice that our thinned
64 nanoflakes give an optical bandgap of ~ 0.68 eV by optical transmission spectroscopy.
65 Thus, the tunable optical bandgap of Nb_3I_8 in infrared waveband is revealed by our
66 experimental and calculated results.

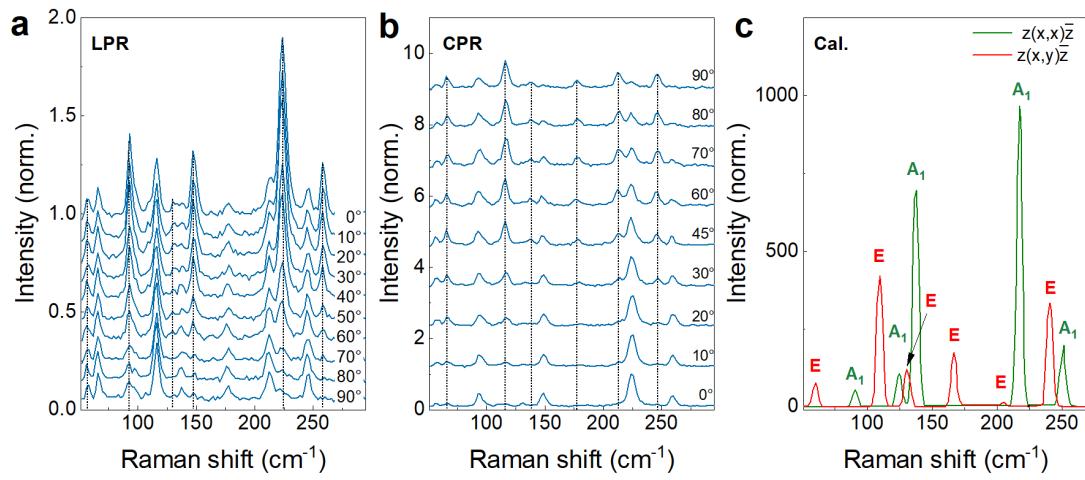
67

68

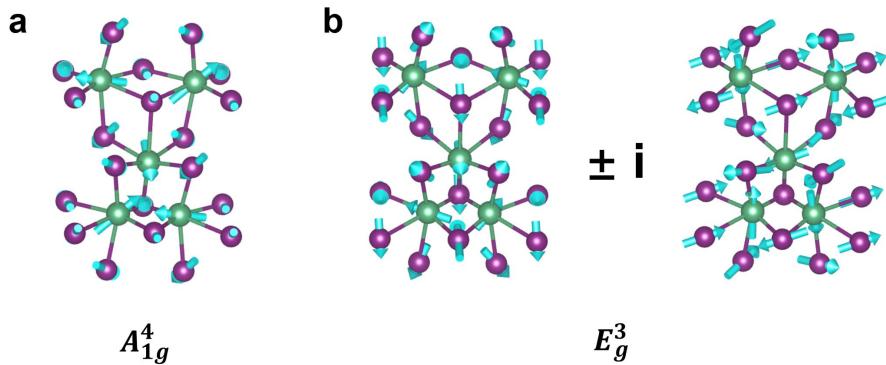

69 **Supplementary Fig. 4 | Band structure of Nb_3I_8 .** a and b, Spin-polarized band structures of bulk
70 (a) and monolayer (b). c, Corresponding density of states of monolayer Nb_3I_8 .

71

72


73 Linearly and circularly polarized Raman: Optical setup and results

74 The schematic of optical setup for linearly polarized Raman (LPR) is displayed in Fig.
75 [S5a](#), while that for circularly polarized Raman (CPR) is shown in Fig. [S5b](#). For the LPR
76 measurements, a linear polarizer (LP_1) is placed in the incident path to achieve x
77 direction polarization, while another broadband linear polarizer (LP_2) is in front of
78 detector for backscattered Raman signal analysis. The LP_2 can be rotated at different
79 angles to obtain the 360° angle-dependent LPR spectra. For the CPR measurements, a
80 quarter-wave plate is placed behind LP_1 in the incident path to achieve the right ($\sigma+$) or
81 left ($\sigma-$) circular polarization, while another quarter-wave plate is placed in front of LP_2
82 for the helicity of backscattered Raman signal analysis. The $\sigma+$ (or $\sigma-$) incident light is
83 confirmed at the sample position. The $\sigma-$ or $\sigma+$ polarizations in front of detector are
84 employed to check the helicity of the scattered photons. We rotate the quarter-wave
85 plate in front of LP_2 to complete the angle-dependent CPR measurements. We verify
86 the effectivity of our optical setup by referring to the CPR spectra of a MoS_2 flake with
87 a thickness of ~ 15 nm ([Fig. S5c](#)). [Fig. S5d](#) shows the room-temperature CPR spectrum
88 of a MoS_2 flake in $z(\sigma+, \sigma+) \bar{z}$ and $z(\sigma+, \sigma-) \bar{z}$ geometric configurations. It is clear
89 that the OC phonon scattered photons have the same $\sigma+$ helicity as the incident photons
90 (bule curve), while the IMC phonon peak is obviously enhanced under the opposite ($\sigma-$)
91 polarization (red curve), totally consistent with the previous report², proving the
92 reliability of the optical setup. Subsequently, we perform the angle-dependent LPR and
93 CPR measurements on bulk Nb_3I_8 . As presented in [Fig. S6a](#), the Raman peaks of A_{1g}
94 modes are continuously weakened till to disappear when the LP_2 is rotated from 0° to
95 90° . For the angle-dependent CPR results ([Fig. S6b](#)), the Raman signals of E_g modes
96 gradually increase to maximum when the geometries are switched from $z(\sigma+, \sigma+) \bar{z}$
97 (0°) to $z(\sigma+, \sigma-) \bar{z}$ (90°). The peak positions of A_{1g} and E_g modes are consistent with
98 our first-principles calculations ([Fig. S6c](#)).

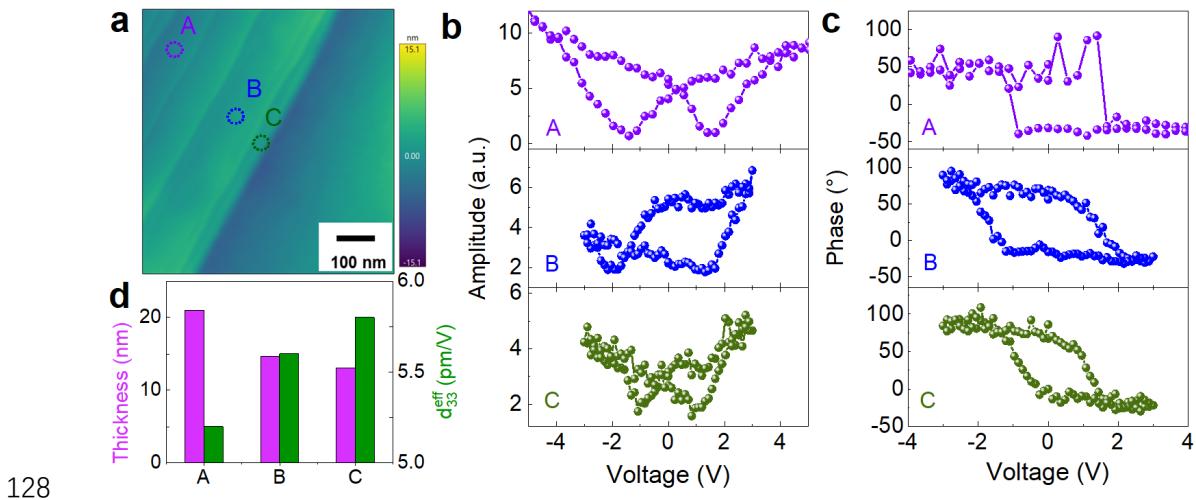


101 **Supplementary Fig. 5 | Schematic of optical setup for polarized Raman measurements. a and**
102 **b, Optical setup for LPR (a) and CPR (b) spectroscopy. c, Morphology of the MoS₂ flake with a**
103 **thickness of ~15 nm. d, Room-temperature CPR spectrum of the MoS₂ flake in (c) in z(σ+, σ+)z̄**
104 **and z(σ+, σ-)z̄ geometric configurations.**

105

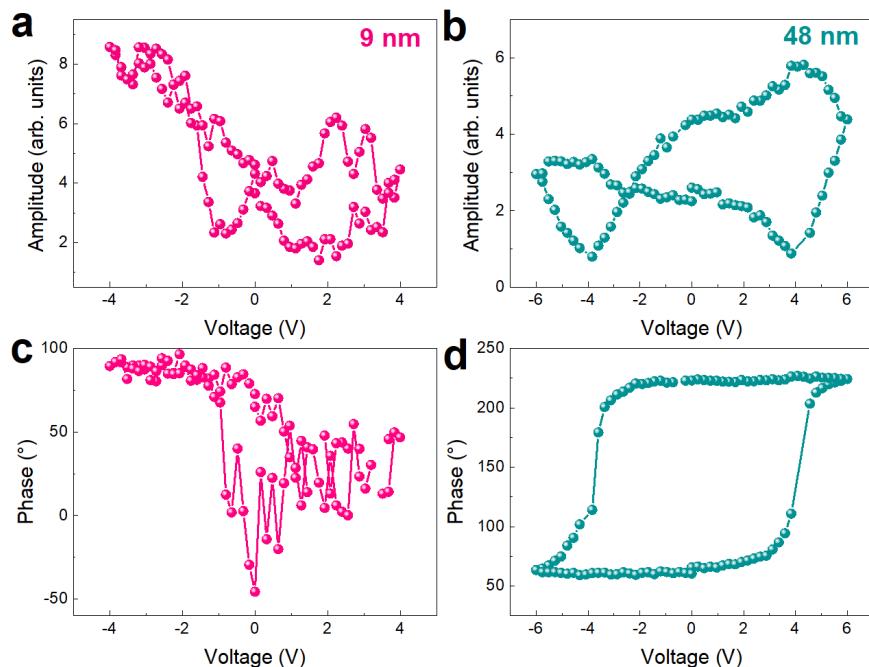
106
107 **Supplementary Fig. 6 | Experimental and calculated Raman spectra of Nb₃I₈. a and b, Angle-**
108 **dependent LPR (a) and CPR (b) spectra. The initial 0° in angle-dependent LPR and CPR**
109 **measurements, respectively, represent the z(x, x)z̄ and z(σ+, σ-)z̄ configurations. The dashed**
110 **lines in a and b identify the achiral and chiral modes, respectively. c, Calculated Raman spectra of**
111 **monolayer Nb₃I₈ in z(x, x)z̄ and z(x, y)z̄ configurations.**

112


113 **Supplementary Fig. 7 | Phonon eigenvectors with calculated frequencies of achiral and chiral**
 114 **modes at the Brillouin zone center in Nb_3I_8 .** **a** and **b**, The Nb and I atomic vibrations of A_{1g}^4 (a)
 115 and E_g^3 (b) modes. Note that superposition of two orthogonal linear vibrations of E_g^3 results in
 116 right-handed or left-handed circular motions at the Γ -point.

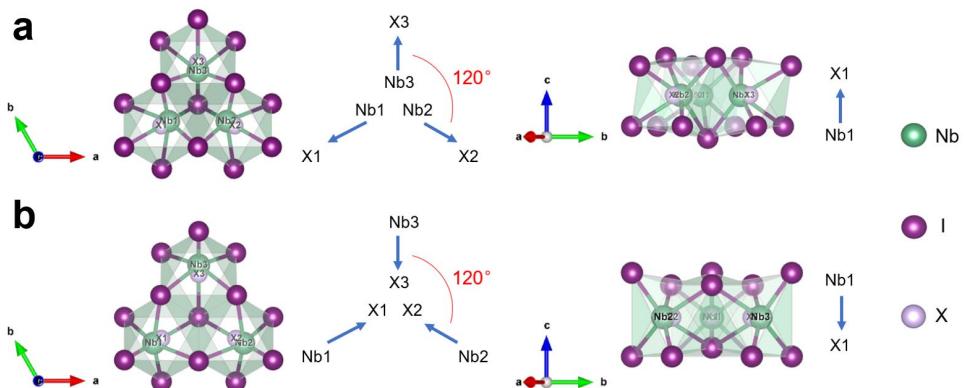
117 Section3. Verifying the ferroelectricity in Nb₃I₈

Hysteresis loop measurements by piezoresponse force microscopy (PFM) have regarded as a powerful technique for probing polarization switching in nanoscale³⁻⁵. As known, a ferroelectric material possessing spontaneous polarization that can be reversed by the external electric field, which will show switchable local PFM amplitude and 180° phase loops. Here, the electric-field induced ferroelectricity in Nb₃I₈ has been verified on different thick flakes (Fig. S8a-c and Fig. S9). The out-of-plane effective piezoelectric constant (d_{33}^{eff}) for different thicknesses in the as-prepared Nb₃I₈ nanoflakes are calculated (Fig. S8d).

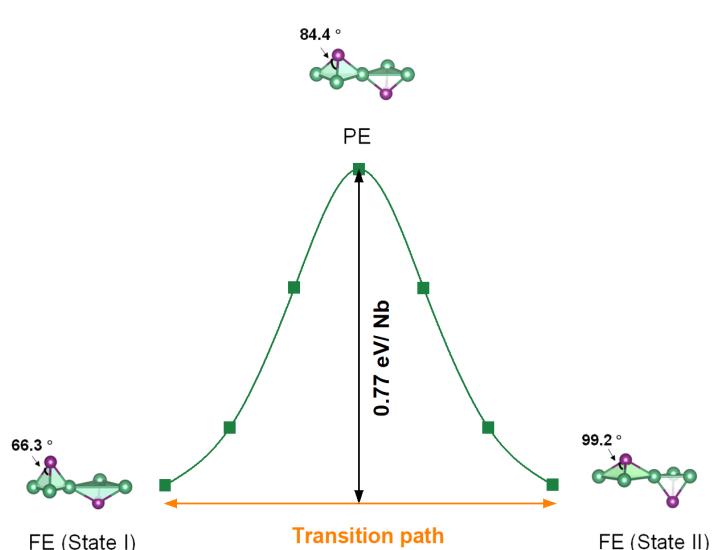

126

127

129 **Supplementary Fig. 8 | Additional PFM results of Nb_3I_8 flakes with different thicknesses.** **a**,
130 Morphology of the exfoliated Nb_3I_8 flake with stepped shape, where the regions marked
131 by A, B, and C represent different thicknesses. **b** and **c**, Local PFM amplitude (b) and
132 PFM phase (c) hysteresis loops from the A, B, and C regions. **d**, The determined
133 thicknesses (purple) and calculated d_{33}^{eff} -values (green) for A, B, and C regions.

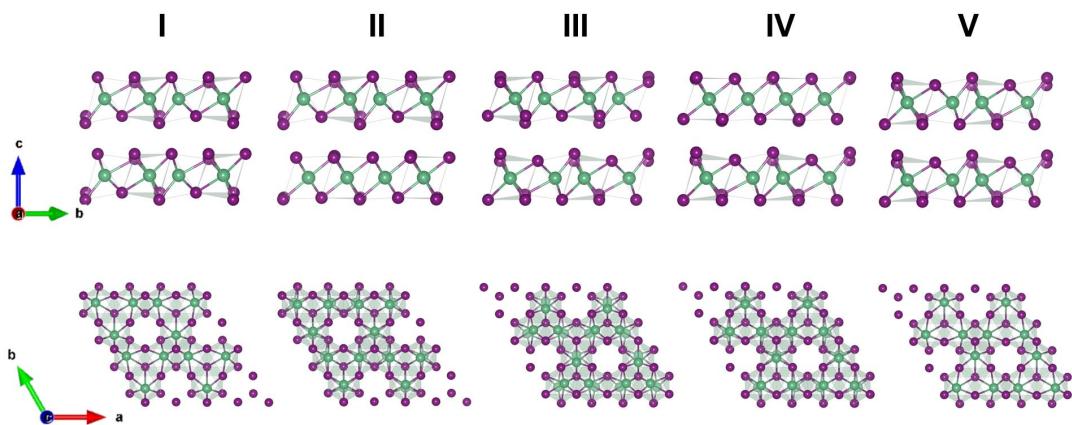

134

135
136 **Supplementary Fig. 9 | Additional PFM results of Nb_3I_8 flakes with different thicknesses.** **a-d**,
137 Local PFM amplitude (a, b) and phase (c, d) hysteresis loops of Nb_3I_8 flakes with thickness of ~9
138 nm and 48 nm, respectively.


139 **Section4. Polarization switching in monolayer and bilayer Nb₃I₈**

140

142 **Supplementary Fig. 10 | Electric polarization states of the small and big triangles of Nb₃I₁₃ architectures.** **a** and **b**, Atomic configuration of Nb₃I₁₃, where the X atom represents the center site of the iodine atom in each octahedron. As the angle between any two electric dipole moments is 120 degrees, the net electric dipole moment in a-b plane is zero. However, in the a-c plane, the three octahedra provide an upward dipole moment, which leads to an upward polarization in the Nb₃I₁₃ architecture (a) and thus leads to a downward dipole moment in (b). It should be noted that the magnitude of the electric dipole moment in (b) is slightly smaller than that in (a) along c direction.


149

151 **Supplementary Fig. 11 | Kinetic pathway of polarization switching in monolayer Nb₃I₈.** The climbing image nudged elastic band (NEB) results of the Nb₃I₈ monolayers for ferroelectric switching path from State I to State II. Two ferroelectric (FE) states and the unstable paraelectric

154 (PE) state are illustrated by the side views of the tetrahedron structures formed by iodine atoms at
155 the top/bottom apex sites and Nb atoms as triangular bases. The energy barrier is calculated to be
156 ~0.77 eV per Nb atom, consistent with the report⁶.

157

158

159 **Supplementary Fig. 12 | Structures of five specified states in bilayer Nb_3I_8 .** Side-views (upper)
160 and top-views (lower) of five states in bilayer Nb_3I_8 .

161

162

163

164

165

166 **References**

- 167 1. Peng, R. et al. Intrinsic anomalous valley Hall effect in single-layer Nb_3I_8 . *Phys. Rev. B* **102**, 035412 (2020).
- 168 2. Chen, S. et al. Helicity-resolved Raman scattering of MoS_2 , MoSe_2 , WS_2 , and
169 WSe_2 atomic layers. *Nano Lett.* **15**, 2526-2532 (2015).
- 170 3. Strelcov, E. et al. Role of measurement voltage on hysteresis loop shape in
171 piezoresponse force microscopy. *Appl. Phys. Lett.* **101**, 192902 (2012).
- 172 4. Vasudevan, R. K. et al. Ferroelectric or non-ferroelectric: Why so many materials
173 exhibit “ferroelectricity” on the nanoscale. *Appl. Phys. Lett.* **4**, 021302 (2017).
- 174 5. Guan, Z. et al. Identifying intrinsic ferroelectricity of thin film with piezoresponse
175 force microscopy. *AIP Adv.* **7**, 095116 (2017).
- 176 6. Feng, Y. & Yang Q. Enabling triferroics coupling in breathing kagome lattice
177 Nb_3X_8 ($\text{X} = \text{Cl}, \text{Br}, \text{I}$) monolayers. *J. Mater. Chem. C* **11**, 5762-5769 (2023).