Causality between various cytokines and asthma: a bidirectional two-sample Mendelian randomization analysis

Yansen Zheng
Huanghe Science &Technology College

Qi Chen
Jice medical institute

Xiaqing Shi
Jice medical institute

Lei Lei
Jice medical institute

Donglin Wang
dlwang@163.com

Huanghe Science &Technology College

Article

Keywords: asthma, interleukins, interferons, tumor necrosis factors, mendelian randomization

Posted Date: October 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3455022/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.
Abstract

Background

Many studies have shown that cytokines play an important role in the pathogenesis of asthma, but their biological effects on asthma remain unclear. Mendelian randomization (MR) method was used to evaluate the causal relationship between various cytokines (such as interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs), transforming growth factor (TGF), etc.) and asthma.

Methods

In this study, inverse variance weighting was used to evaluate the causal relationship between asthma and cytokines. In addition, the reliability of the results is ensured by multiple methods such as MR-Egger, weighted median, MR-Raps, MR-Presso, and RadialMR, as well as sensitivity analysis.

Results

The results showed that none of the 11 cytokines was associated with the risk of asthma. In contrast, asthma can increase levels of IL-5 (OR = 1.112, 95% CI 1.009–1.224, \(P = 0.032 \)) and IL-9 (OR = 1.111, 95% CI 1.013–1.219, \(P = 0.025 \)).

Conclusions

Genetically predicted asthma was positively associated with elevated levels of IL-5 and IL-9. This indicates the downstream effects of IL-5 and IL-9 on asthma, and the design of treatments targeting IL-5 and IL-9 to prevent asthma exacerbations.

1. Introduction

Asthma is a chronic lower respiratory disease that is difficult to cure, with prevalence rates reaching 15% and 10% in children and adults, respectively, and continues to rise for unknown reasons\(^1,2\). The clinical symptoms of asthma include recurrent coughing, wheezing, chest tightness, difficulty breathing, etc., which seriously reduces the patient's quality of daily life and increases social medical expenses and medical burden\(^3,4\). Therefore, there is a need for a deeper understanding of the complex molecular mechanisms of asthma to develop personalized treatments that target specific immune mechanisms.

The main features of asthma are airway inflammation and airway hyperresponsiveness. Interventional therapy targeting airway inflammation is one of the main solutions to control asthma. Several cytokines such as interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs), transforming growth factor (TGF), etc., and asthma.
CSFs, and transforming growth factor (TGF) are associated with the development of airway inflammation5,6. Both IL-4 and IL-13 play inflammatory roles in the development of asthma and their expression is regulated. Kotsimbos et al. found that IL-13 and IL-4 were co-expressed and significantly upregulated in the bronchial mucosa of 9 asthma patients and 10 healthy controls. IL-4 can exacerbate asthma by inducing B-cell autophagy, promoting IgE production, and receptor expression3,7,8. Injections of TNF-\(\alpha\) into the airways of normal volunteers lead to increased bronchial reactivity, and prospective studies have shown that increased maternal weight leads to increased concentrations of TNF-\(\alpha\) in the blood of infants, thereby enhancing the risk of asthma in infants9. Sun Hao et al. conducted a meta-analysis by including 50 studies and found that TNF-\(\alpha\)-238G/A, -308G/A and -857C/T polymorphisms were significantly correlated with the risk of asthma in different ethnic groups10. IFNs have immunomodulatory properties, and studies have shown that during the onset of asthma, interferon levels in the respiratory tract are significantly changed, and reduced IFN-\(\gamma\) production was associated with the severity of asthma11-13.

Although studies have demonstrated a close relationship between cytokines and asthma, the causal relationship between the two has not been fully elucidated. In this paper, the causal relationship between asthma and various cytokines (interleukin, interferon, tumor necrosis factor, etc.) has been analyzed by Mendelian randomization, a method of causality assessment by genetic tools, which can provide a better understanding of the mechanism of cytokine action associated with inflammation in asthma, and lay the theoretical foundation for proposing more targeted and effective therapeutic regimens for better control of patients’ Asthma.

2. Methods

2.1 Data sources

Genome-wide association study (GWAS) summary datasets for asthma were obtained from the IEU Open GWAS Database (https://gwas.mrcieu.ac.uk/). We selected a variety of cytokines dominated by ILs for analysis: IL-2, IL-4, IL-5, IL-9, IL-13, IL-17, IL-27, TNF-\(\alpha\), TNF-\(\beta\), IFN-\(\gamma\), G-CSF, M-CSF, TGF-\(\beta\). Among them, IL-27 and TGF-\(\beta\) were obtained from different GWAS of inflammatory cytokines levels14,15. The rest of the cytokines GWAS data were obtained from a multicenter study in Finland. Subjects aged 25 to 74 years were randomly selected from five regions in Finland. Cytokine data of the subjects were analyzed, and peripheral blood was extracted for Eqtl analysis to quantify their gene expression profiles16. (For more details see Supplemental Table S1).

2.2 Quality control and identifying genetic instruments

To confirm the independence of SNPs, we selected SNPs that exceeded the genome-wide association threshold \((p < 5 \times 10^{-6})\) as IVs, because the small number of SNPs met the threshold for significance \((p < 5 \times 10^{-8})\); and SNPs with a physical distance less than 5000 kb and \(r^2 < 0.01\) have been deleted to avoid linkage disequilibrium (LD). For SNPs not found in the outcome dataset, proxy-SNPs were used based on
the LD-threshold $r^2 > 0.8$, and SNPs that failed to find alternative sites were eliminated. Data were collated so that the effect and other alleles are indeed the same between exposure and outcome datasets.

2.3 MR analysis

This was a bidirectional MR analysis based on a two-sample MR analysis. IVW-MR was used as the main analysis to estimate the causal effects between cytokines levels and asthma. The IVW-MR specifically requires that SNPs affect the outcome only through exposure in the study. Although many known confounding SNPs were excluded as far as possible in this study, there are still many unknown confounding factors that lead to gene pleiotropy and bias for the estimation of effect values. Therefore, we added the MR-Egger, weighted median, MR-Raps, MR-Presso, and RadialMR, as supplements to test the reliability and stability of the results.

We performed a series of sensitivity tests to ensure that our results were robust. Cochran's Q test was used to account for possible heterogeneity, with $P < 0.05$ deemed significantly heterogeneous, and a random-effect IVW model was applied. The horizontal pleiotropy effect was estimated by MR-Eggers. The statistical tests for MR analysis were performed using the “Two-Sample-MR” package (Version 0.5.4) in the R environment (R version 4.2). The statistically significant association is defined as $p < 0.05$.

3. Results

3.1 Influence of cytokines on asthma

All cytokines were analyzed using IVW as the main analytical method, the results are shown in Fig. 1 and Supplementary Table S2. The MR analysis results showed that genetically determined higher levels of cytokines did not affect the risk of asthma, and the results of IVW were consistent with those of other analysis methods. For the MR-Raps analysis method, some cytokines do not have a P-value, because only 5 or fewer SNPs are within the screening conditions, making it impossible to perform MR-Raps analysis. In sensitivity analysis, the MR-Egger intercept test suggested no evidence of pleiotropy (see Supplementary Table S4). There was significant heterogeneity in the Cochran's Q test of IL-2 and IL-27(Supplementary Table S4). We performed the random-effect model for their IVW analyses, and it supports the existing results.

3.2 Influence of asthma on cytokines

Figure 2 and Supplementary Table S3 shows the MR analysis results of the impact of asthma on the levels of various cytokines. The results show that asthma is significantly correlated with elevated levels of IL-5 and IL-9 (IL-5, OR = 1.112, 95% CI 1.009–1.224, $P = 0.032$; IL-9, OR = 1.111, 95% CI 1.013–1.219, $P = 0.025$), and the results of IVW are also supported by Radial-MR. In sensitivity analysis, no evidence of directional pleiotropy was found in the MR-Egger analysis. The test for heterogeneity indicated that there is no evidence of heterogeneity(Supplementary Table S4).
4. Discussion

Since asthma and cytokines are closely related, we investigated the causality between asthma and cytokines through a comprehensive bidirectional MR analysis. Evidence supports that asthma increases the levels of IL-5 and IL-9, while genetic liability to other cytokines was not associated with asthma. There was no evidence that these cytokines were associated with the risk of asthma.

Several observational studies have also demonstrated changes in IL-5 levels during the onset of asthma. Compared to controls, bronchial biopsy results in both early and advanced asthma patients showed increased IL-5 mRNA expression17,18. Higher concentrations of IL-5 were detected in the induced sputum of patients with acute exacerbations of asthma, and IL-5 mRNA expression was associated with clinical severity of asthma17,19. IL-5 is produced by a variety of immune cells, such as Th2 cells, Class 2 innate lymphocytes (ILC2), mast cells, natural killer T (NKT) cells, and eosinophils20. IL-5 levels increase when eosinophilic counts increase during asthma development. The results of MR do not support the genetic prediction that IL-5 increases the risk of asthma. It may be due to the effect of IL-5 on asthma risk through a complex immune cascade. IL-5 is considered to be the main regulator of eosinophilic increase and activation. IL-5 specifically binds to the receptor subunit IL-5R\textsubscript{α}, regulating the differentiation, proliferation, migration and activation of eosinophils. Upon activation, eosinophils release cytotoxins that induce damage to surrounding cells and tissues21,22.

IL-9 is derived primarily from T helper cells, a subgroup of T cells that specialize in producing IL-9, called Th9 cells. IL-9 can also be produced by different immune cells such as mast cells, macrophages, eosinophils, and neutrophils23,24. The expression of IL-9 can promote the production of immunoglobulin G and immunoglobulin E in B-cell lymphocytes, promote the survival and maturation of eosinophils synergistically with IL-5, and activate airway epithelial cells by stimulating the expression of various proteases, chemokines and selective mucins25,26. Consistent with MR Results, observational results showed that segmental allergen excitation in patients with atopic asthma led to increased expression of IL-9 in lymphocytes in bronchoalveolar lavage fluid27. Elevated levels of IL-9 have also been detected in asthmatic patients' lungs, sputum, and serum23. In addition, elevated levels of IL-9 and IL-9 receptor (IL-9R) expression were detected in asthma28. The results of the MR Analysis did not support that increased IL-9 levels increased asthma risk. A case-control study of 70 asthmatic patients and 77 healthy control adults aged 18–60 years. Asthma and its severity were confirmed by medical diagnosis and pulmonary function test. Serum levels of IL-9 and single nucleotide polymorphism of IL-9 promoter rs2069882 were detected by molecular assay. The results showed that IL-9 serum levels were not significantly associated with asthma severity or atopic type, and the IL-9 promoter rs2069882 SNP was not significantly associated with asthma susceptibility29. Similarly, Waldman et al. 's Meta-analysis of linkage studies between asthma and the IL-9 gene showed that the IL-9 gene has little correlation with the pathogenesis of asthma30.
For other cytokines, although previous studies have shown a strong relationship with asthma. In patients with eosinophilic asthma, the level of CSF in the respiratory tract is significantly increased, causing allergenic sensitization in the lungs, promoting neutrophils proliferation in the bone marrow and leading to asthma exacerbation31. Prophylactic injection of IL-27 reduced the concentration of Th2 cytokines and increased the number of type 1 regulatory T cells in mice, thereby reducing the lung inflammatory environment and improving asthma32. In this study, there was no evidence that asthma development could increase or decrease the levels of these cytokines, and that changes in the levels of these cytokines had an effect on the risk of asthma. This suggests that previous observational findings may be due to environmental influences, complex regulatory mechanisms in the body, or some other unknown mechanism.

In the study, we selected a variety of cytokines whose expression levels are altered in the onset of asthma, as well as the large sample sizes used in most of the analyses we conducted. It provides some reference for further study. Secondly, MR analysis can reduce the influence of confounding factors and reverse causality to a certain extent. Both cytokine and asthma-related genetic instrumental variables are derived from European population studies, which can greatly reduce the bias caused by population stratification.

There are some limitations to this MR study. Firstly, the samples selected for this paper were patients who were clearly diagnosed with asthma after various tests in hospitals, there was no subtype categorization of asthma to allow in-depth study of a specific asthma group, and the pooled data of multiple phenotypes made it possible for some small bias in the results. Secondly, regulatory mechanisms or cascading responses during growth and development may attenuate the effects of genetic tools. MR analyses may reflect the effects of exposure to elevated cytokines on asthma throughout the life course. However, high levels of cytokines only at a certain time of life (e.g., middle age and old age) may contribute to the risk of asthma development. Finally, the study originated from a European population, which may be partially different from other populations and cannot be applied to other Asian populations, African populations, etc. The main reason for selecting a European population is that the sample sizes of relevant GWAS studies in European populations are relatively larger and the data more comprehensive, making the results more reliable.

5. Conclusions

MR analysis showed that asthma increased levels of IL-5 and IL-9, and there was no evidence that cytokines increased or decreased the risk of asthma. Future work could further investigate whether altered levels of IL-5 and IL-9 can be used as biomarkers of asthma development, and further explore the potential mechanism of action of IL-5 and IL-9 in asthma, and evaluate their potential for clinical prevention and treatment of asthma.

Declarations

Conflict of Interest
The authors declare they have no real or potential competing interests in this work.

Author Contributions

YZ, QC and DW conceived the design of the study; LL obtained the data and performed the data analyses; LL and XS drafted and revised the manuscript, and all authors approved the manuscript and provided relevant suggestions.

Data Availability

The datasets presented in this study are available in online repositories (https://gwas.mrcieu.ac.uk/datasets). The detailed information can be found in the article/Supplementary Table S1.

Acknowledgments

The authors thanks for the contributions of IEU Open GWAS Database in providing high quality GWAS data for researchers.

References

Figures
Table

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Nsnp</th>
<th>P value</th>
<th>OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-2</td>
<td>Asthma</td>
<td>9</td>
<td>0.66</td>
<td>1.025 (0.919, 1.143)</td>
</tr>
<tr>
<td>IL-4</td>
<td>Asthma</td>
<td>9</td>
<td>0.141</td>
<td>1.076 (0.976, 1.186)</td>
</tr>
<tr>
<td>IL-5</td>
<td>Asthma</td>
<td>3</td>
<td>0.164</td>
<td>0.929 (0.837, 1.031)</td>
</tr>
<tr>
<td>IL-9</td>
<td>Asthma</td>
<td>6</td>
<td>0.699</td>
<td>1.017 (0.935, 1.106)</td>
</tr>
<tr>
<td>IL-13</td>
<td>Asthma</td>
<td>13</td>
<td>0.101</td>
<td>0.967 (0.930, 1.007)</td>
</tr>
<tr>
<td>IL-17</td>
<td>Asthma</td>
<td>9</td>
<td>0.647</td>
<td>0.981 (0.902, 1.066)</td>
</tr>
<tr>
<td>IL-27</td>
<td>Asthma</td>
<td>12</td>
<td>0.272</td>
<td>0.987 (0.963, 1.011)</td>
</tr>
<tr>
<td>Other cytokines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>Asthma</td>
<td>5</td>
<td>0.483</td>
<td>0.970 (0.890, 1.057)</td>
</tr>
<tr>
<td>TNF-β</td>
<td>Asthma</td>
<td>5</td>
<td>0.396</td>
<td>0.977 (0.927, 1.030)</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Asthma</td>
<td>8</td>
<td>0.098</td>
<td>1.089 (0.984, 1.205)</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Asthma</td>
<td>8</td>
<td>0.306</td>
<td>1.065 (0.944, 1.203)</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Asthma</td>
<td>8</td>
<td>0.597</td>
<td>1.016 (0.958, 1.078)</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Asthma</td>
<td>5</td>
<td>0.749</td>
<td>0.992 (0.945, 1.042)</td>
</tr>
</tbody>
</table>

Figure 1

Causal effect of cytokines level on asthma using Mendelian randomization. Odds ratio (OR) and 95% confidence interval (CI) represent the change in the odds ratio of asthma per 1-SD increase in cytokines level.
Figure 2

Causal effect of asthma on cytokines level using Mendelian randomization. Odds ratio (OR) and 95% confidence interval (CI) represent the change in the odds ratio of cytokines level per 1-SD increase in the risk of asthma.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalTables.xlsx