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Abstract 94 

A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of 95 

marine animal groups in the fossil record. However, there is still debate about what evidence from 96 

the sedimentary geochemical record – if any – provides strong support for a persistent shift in 97 

surface oxygen immediately preceding the rise of animals. We present statistical learning analyses 98 

of a large dataset of geochemical data and associated geological context from the Neoproterozoic 99 

and Paleozoic sedimentary record, and then use Earth system modeling to link trends in redox 100 

sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and 101 

atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late 102 

Neoproterozoic. We do, however, reconstruct a moderate long-term increase in atmospheric 103 

oxygen and marine productivity. These changes to the Earth system would have increased 104 

dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic 105 

time that the major animal groups first radiated. This approach provides some of the most direct 106 

evidence for potential physiological drivers of the Cambrian radiation, while highlighting the 107 

importance of later Paleozoic oxygenation in the evolution of the modern Earth system. 108 

 109 

 110 
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Introduction 111 

Earth’s oceans and atmosphere are traditionally thought to have undergone two major episodes of 112 

oxygenation1. The first, the Great Oxidation Event, occurred between 2.2 and 2.4 billion years ago 113 

and resulted in an increase in atmospheric oxygen from trace concentrations to levels above 0.1% 114 

of the present atmospheric level (PAL)2,3. A second, Neoproterozoic Oxygenation Event (NOE) 115 

has long been inferred around the Ediacaran-Cambrian boundary (~538.8 million years ago, Ma), 116 

originally interpreted as the time when atmospheric oxygen concentrations increased from 117 

Proterozoic to near modern levels (canonically from 1-10% to ~100% PAL)1,4. This presumed 118 

Neoproterozoic Oxygenation Event has received extensive attention due to its broad temporal 119 

coincidence with the appearance of the first unambiguous macroscopic animal fossils in the later 120 

Ediacaran and Cambrian5. Ocean-atmosphere oxygenation has widely been invoked as a plausible 121 

environmental driver of early animal evolution, since all extant animal groups rely on 122 

environmental oxygen to complete their life cycle, and observations from modern oceans indicate 123 

that many Cambrian animal body plans and ecologies would not have been permitted at very low 124 

oxygen levels6. 125 

Over the past decade, however, the inferred trajectory of Neoproterozoic oxygenation has 126 

been challenged. Multiple lines of evidence support the general persistence of anoxic water masses 127 

in the deep ocean (and intermittently on the shelves) until the mid-Paleozoic Era7–11, punctuated 128 

by a series of extreme 1-10 Myr-scale oscillations in the oxygenation of Earth’s oceans and 129 

atmosphere (oceanic oxygenation events) through much of the Neoproterozoic Era and into the 130 

Cambrian12–14. These data call into question a late Neoproterozoic pO2 increase to near-modern 131 

levels. They further highlight the importance of spatial and temporal scale in framing questions 132 

about Neoproterozoic environmental change and the evolution of animals. Many geochemical 133 



 7 

proxies for paleoredox record fluctuations in bottom-water oxygenation along the outer shelf and 134 

slope, whereas the majority of modern marine animals and those recorded in the fossil record live 135 

in shallow shelf environments. It is therefore the oxygenation of these shallow environments that 136 

would control the degree of hypoxic stress experienced by marine animals. While Earth system 137 

boundary conditions such as continental configuration can play a major role in global deep ocean 138 

oxygenation at 10Myr timescales15, dissolved [O2] in shallow marine animal habitats is expected 139 

to be primarily controlled by ocean-atmosphere gas exchange. Furthermore, geochemical proxies 140 

commonly record fluctuations on 10kyr to 1Myr timescales, whereas Neoproterozoic-Paleozoic 141 

animal radiations were evolutionary singularities, with new body plans and ecologies remaining 142 

viable on 100Myr timescales. In order to test permissive environment hypotheses relating to 143 

environmental oxygen and the diversification of early animals, we must therefore specifically 144 

investigate the long-term oxygenation of Earth’s continental shelf environments.  145 

Dramatic changes in organic carbon burial have also been inferred across the 146 

Neoproterozoic-Paleozoic transition. On short-term, physiological timescales, increased benthic 147 

carbon flux is expected to provide increased food supply to benthic marine ecosystems, potentially 148 

acting as an alternative or synergistic physiological driver of ecological and evolutionary change16. 149 

If sustained over geologic timescales, increased organic carbon burial would also have driven 150 

increased oxygen flux to the atmosphere17, in turn increasing the oxygenation of shallow-water 151 

environments where dissolved [O2] is dominated by air-sea gas exchange. Better understanding 152 

organic carbon burial through the Neoproterozoic and Paleozoic is therefore critical for 153 

constraining the oxygenation of shallow shelf-slope environments where most early animals were 154 

living. Organic carbon flux is also a key environmental parameter impacting the reduction rates of 155 

trace metals such as U and Mo in shallow sediments18, complicating inferences based on some of 156 
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the most commonly used geochemical proxies for late Neoproterozoic ocean oxygenation9,14,19–21. 157 

Any dramatic increase in benthic organic carbon flux around the Ediacaran-Cambrian transition is 158 

therefore important to understand as a potential physiological driver, as an underexplored indicator 159 

of shallow-water oxygenation, and as a complicating factor in reconstructing global ocean 160 

oxygenation from commonly used geochemical proxies. 161 

Here, we combine approaches from statistical learning, biogeochemical modeling, and 162 

ecophysiology to better constrain changes in both global ocean biogeochemistry and 163 

physiologically important environmental conditions in marine animal habitats through the 164 

Neoproterozoic and Paleozoic. We conduct statistical learning analyses of a large dataset of 165 

geochemical data and associated geological context assembled by the Sedimentary Geochemistry 166 

and Paleoenvironments Project22 (SGP) for shales from the Tonian through Carboniferous (~1000-167 

300 Ma). We investigate sedimentary records of the trace metals molybdenum and uranium, 168 

proxies that are widely used to investigate global ocean oxygenation because of their high burial 169 

rates in modern anoxic settings relative to modern oxygenated settings14,19–21,23. Based on these 170 

modern observations, faithful archives of seawater Mo and U concentrations are expected to record 171 

the extent of bottom-water anoxia globally. We also investigate trends in the local redox of anoxic 172 

environments using the iron speciation proxy and trends in shale total organic carbon (TOC) as a 173 

proxy for organic carbon burial flux. Reconstructing the global scale biogeochemical processes 174 

that motivate this study from these sedimentary geochemical proxies is complicated by local 175 

biogeochemical and physical factors during deposition as well as by post-depositional processes. 176 

Uneven geological sampling in space and time also complicate reconstructions. The statistical 177 

analyses we apply in this study are designed to address these issues, enabling us to reconstruct 178 

meaningful biogeochemical trends from the aggregated sedimentary geochemical record.  179 



 9 

First, we reconstruct temporal trends in the mean distributions of sedimentary geochemical 180 

data, accounting for sampling biases using a weighted bootstrap analysis that incorporates the 181 

spatial and temporal proximity of samples in the dataset24 (Materials and Methods). Improving on 182 

previous data compilations9,16,19,22,25, this analysis accommodates the impact of geographical 183 

sampling bias to generate global mean trends in sedimentary concentrations24, as well as benefiting 184 

from the improved data density in the SGP dataset22. We then conduct a statistical learning analysis 185 

designed to isolate global long-term trends in the biogeochemical processes that motivate our use 186 

of these proxies, separated from the complex caveats and interactions that affect interpretations of 187 

raw sedimentary data. We use a Monte Carlo random forest framework (Materials and Methods) 188 

to generate partial dependence analyses that isolate the marginal effect of geologic time on the 189 

mean value of each geochemical proxy with all identified confounding geochemical and geologic 190 

context variables held constant. For Mo and U, these analyses are designed to identify trends in 191 

the seawater inventories of these metals, faithfully tracking the oxygenation of global bottom-192 

waters. For iron speciation, these analyses are designed to reconstruct how sulfide levels have 193 

varied in sampled low-oxygen shelf-slope settings independent of other oceanographic factors. For 194 

total organic carbon, these analyses are designed to reconstruct trends in organic carbon flux to 195 

sampled environments independent of other oceanographic factors, with supplementary analyses 196 

further indicating how organic carbon delivery to anoxic settings changed through this time 197 

interval. Although the absolute magnitude of these results are a reflection of the preserved 198 

sedimentary record (for instance, with organic carbon concentrations being higher than expected 199 

global averages because of the high concentrations found in shelf-slope settings where most of our 200 

sedimentary record comes from), the directional trends produced in these statistical learning 201 

analyses enable us to reconstruct changes in global biogeochemical cycles.  202 
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Finally, we combine our statistical reconstructions with Earth system modeling to 203 

investigate trends in atmospheric pO2, global ocean biogeochemistry, and the oxygenation of 204 

shallow marine habitats over the Neoproterozoic and Paleozoic eras. Specifically, we apply a 205 

combined biogeochemical modeling framework to investigate the impacts of atmospheric oxygen 206 

and marine productivity on seawater Mo and U concentrations, organic carbon burial rates, and 207 

dissolved [O2] in shallow shelf environments. First, we conduct an ensemble modeling experiment 208 

using an Earth system model of intermediate complexity (cGENIE26) to investigate the impact of 209 

different stable atmospheric oxygen and marine productivity scenarios27 on three-dimensional 210 

global ocean simulations of dissolved [O2]. The benthic dissolved oxygen profiles from these 211 

ocean simulations are then used to estimate the simulated extents of redox-sensitive sinks, which 212 

are used to force coupled Mo and U mass balance models and thus estimate dissolved trace metal 213 

inventories for each oxygen-productivity scenario. Estimates of global marine organic carbon 214 

burial rates are then further calculated for each scenario based upon binned mean rates from the 215 

CANOPS biogeochemical model27,28. The simulated seawater Mo and U concentrations and 216 

organic carbon burial rates for each stable pO2-productivity scenario are ultimately combined with 217 

our statistical reconstructions of ocean biogeochemistry to provide new long-term (~10Myr 218 

timescale) estimates of atmospheric oxygen, marine productivity, seafloor redox and shallow shelf 219 

dissolved [O2] through the Neoproterozoic and Paleozoic eras. 220 

 221 

Geochemical proxy records 222 

Trace metal concentrations in anoxic black shales do increase in the late Neoproterozoic in our 223 

temporal-spatial weighted analyses of bootstrapped means, but they subsequently decrease in the 224 

early Paleozoic before increasing again in the Devonian (Fig. 1A and C). Distributions of both Mo 225 
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in euxinic shale and U in anoxic shale show similar trends when temporal and spatial sampling 226 

biases are accounted for.  When trace metals are standardized to TOC, there is considerable noise 227 

in bootstrap means and no clear trend through the Neoproterozoic and Early Paleozoic, although 228 

both Mo/TOC and U/TOC increase in the later Devonian (Extended Fig. 3). These analyses alone 229 

therefore suggest that there was no major sustained increase in marine Mo or U concentrations 230 

until the Devonian, contrasting sharply with previous interpretations of trace metal data.   231 

 A major (~130%) Ediacaran-Cambrian increase in TOC is also captured in our spatial-232 

temporal bootstrap analyses, followed by further increases in the mid Paleozoic (Fig. 1D). There 233 

is a low proportion of euxinic (anoxic, sulfidic) samples for most of the Tonian through 234 

Carboniferous based upon iron speciation data, indicating that the majority of anoxic samples in 235 

the Neoproterozoic and Paleozoic were deposited under ferruginous (anoxic, non-sulfidic) bottom 236 

water conditions (Fig. 1B) according to standard iron speciation thresholds (see further discussion 237 

of the iron speciation proxy in Materials and Methods). The late Ediacaran and Devonian are 238 

notable exceptions, with relatively high proportions of anoxic shale samples classified as euxinic. 239 

Some transient trends, such as high late Tonian (~800Ma) Mo and TOC values are difficult to 240 

interpret due to the limited number of euxinic shale units sampled through those intervals (Fig. 1), 241 

although this interval of the late Tonian merits further investigation given correlated shifts in other 242 

proxy records5. 243 

 244 

Deconvolved biogeochemical trends 245 

Temporal reconstructions of mean global Mo and U, isolated from the impacts of local redox, 246 

organic carbon, and depositional and post-depositional processes (Materials and Methods) show 247 

minor, partially transient increases in trace metal concentrations in the late Neoproterozoic 248 
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followed by major increases in the mid-Paleozoic (Fig. 2A and C). The trajectories of the Mo and 249 

U partial dependence plots generated in our Monte Carlo random forest analyses differ slightly in 250 

the timings and rates of change. This remains the case when iron speciation data are used as 251 

predictor data, rather than thresholds (Extended Figure 6), indicating the robustness of these trends 252 

to specific proxy interpretations (c.f. Pasquier et al.29). This potentially suggests minor differences 253 

in the response of these trace metals to Earth system boundary conditions, although we are hesitant 254 

to overinterpret these differences given both the different sample distributions between analyses 255 

and the broad temporal resolution of this study. Notably, these analyses are designed to investigate 256 

changes in the mean state of the Earth system on relatively long geologic timescales, and are 257 

therefore not expected to capture <~10 Myr redox instabilities, such as those observed in the 258 

Ediacaran-Cambrian U cycle13 and produced by biogeochemical models at similar timescales12. 259 

Variable importance plots (Extended Fig. 4) illustrate that TOC (followed by geologic age and 260 

[Al]) is the most important predictor of Mo and U concentrations in our random forest models.  261 

 In contrast to our trace metal reconstructions, deconvolved TOC reconstructions do exhibit 262 

a major sustained increase in the late Neoproterozoic and early Cambrian (Fig. 2). This ~70% 263 

increase in deconvolved mean values is in broad agreement with compilations of raw data16, but 264 

of lower magnitude than previously estimated after accounting for confounding variables and 265 

sampling biases. This Ediacaran-Cambrian TOC increase is followed by a steady increase from 266 

the Middle Ordovician onward in analyses including all shale samples. TOC analyses that are 267 

restricted to anoxic shales (reflecting deconvolved trends in organic carbon burial in anoxic 268 

settings alone) show a more muted Ordovician-Devonian increase, while TOC analyses of anoxic 269 

shales with FePy/FeHR as a predictor variable (reflecting deconvolved trends in organic carbon 270 

burial in anoxic settings independent of temporal changes in the Fe-S biogeochemistry of anoxic 271 
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environments) show a major stepwise Ediacaran-Cambrian increase followed by relatively stable 272 

values until a more muted Devonian increase (Extended Fig. 5). Analyses of variable importance 273 

(Extended Fig. 4) indicate that Al concentrations, lithology, and geographic coordinates (latitude 274 

and longitude) are the most important predictors of TOC in our primary analyses. The proportion 275 

of euxinic samples moderately increases in the late Ediacaran before decreasing in the early 276 

Paleozoic, then increases dramatically in the Silurian-Devonian in agreement with previous 277 

statistical analyses8. 278 

 279 

Implications for oxygen and productivity 280 

In our ensemble Earth system modeling experiment, we estimate the impact of atmospheric oxygen 281 

concentrations and marine productivity on the biogeochemical processes that we aim to isolate in 282 

our statistical learning analyses, as well as on the oxygenation of both the global ocean and shallow 283 

marine habitats. Our cGENIE simulations of 3D ocean biogeochemistry show that the oxygenation 284 

of shallow shelf and global bottom water environments respond differently to changes in 285 

atmospheric pO2 and marine PO4 combinations that are predicted to be stable on geologic 286 

timescales27 (Fig. 3; Materials and Methods). Most of the global seafloor is overlain by reducing 287 

bottom waters at relatively low atmospheric O2 levels (below ~25-100% PAL depending on marine 288 

PO4), with the proportions of anoxic and suboxic seafloor varying as a function of atmospheric 289 

oxygen and marine productivity (Figs. 3A, D; Extended Figs. 8-9). At relatively high atmospheric 290 

oxygen levels (~25-100% PAL – again depending on marine PO4), the majority of the global 291 

seafloor – including the deep ocean – is overlain by oxygenated bottom waters. In contrast, 292 

dissolved [O2] in shallow shelf environments scales essentially linearly with atmospheric 293 

oxygenation (Fig. 3F, with minor decreases in shelf oxygenation with increasing productivity. 294 
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Changing the continental configuration, global climate state, or biological pump strength in 295 

cGENIE does not substantially impact these results (Extended Fig. 10). Although continental 296 

configuration may have played a role in structuring deep ocean ventilation during the Paleozoic15, 297 

this does not challenge our key observation that shallow shelf oxygenation scales essentially 298 

linearly with atmospheric oxygen while deep ocean oxygenation exhibits a contrastingly non-299 

linear relationship with atmospheric oxygen. 300 

 We link these oceanographic trends to the biogeochemical dynamics isolated in our 301 

statistical learning analyses by coupling cGENIE outputs to biogeochemical models of 302 

molybdenum, uranium and organic carbon. The predominance of reducing seafloor conditions at 303 

low atmospheric pO2 levels results in a very limited sensitivity of seawater Mo and U 304 

concentrations to changing atmospheric oxygen below ~25% PAL atmospheric pO2 (Fig. 3B, E). 305 

Our simulations demonstrate that both anoxic and suboxic conditions can act as major controls on 306 

the trace metal inventory of seawater, with the same marine Mo and U concentrations simulated 307 

by a range of biogeochemical landscapes defined by the balance of the two reducing sinks30 308 

(Extended Fig. 7). Seawater trace metal concentrations therefore broadly track the extent of oxic 309 

seafloor (or, equivalently, fanox+subox, the combined extent of reducing seafloor), and the seawater 310 

inventories of Mo and U are much more sensitive to both atmospheric oxygen concentrations and 311 

marine productivity above ~25% PAL pO2. In contrast to modeled trace metal concentrations, 312 

organic carbon burial rates are sensitive to changing atmospheric oxygen and marine productivity 313 

across the whole logarithmic range of pO2-productivity scenarios investigated here (Fig. 3C). 314 

Global average organic carbon burial rates (and therefore average TOC in shales, unless separately 315 

impacted by other factors) are predicted to increase relatively continuously with logarithmic 316 
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increases in atmospheric oxygen and marine productivity, similar to shallow shelf dissolved 317 

oxygen concentrations (Fig. 3F, Extended Figs. 8-9).   318 

 319 

Discussion 320 

By integrating statistically deconvolved proxy records with a novel combination of 321 

biogeochemical models, we are able to provide new long-term reconstructions of Neoproterozoic-322 

Paleozoic ocean-atmosphere oxygenation and marine productivity. Coupling increased sampling 323 

with improved statistical treatment of confounding geologic context and geochemical variables 324 

enables us to both reevaluate classical trace metal evidence for a stepwise Neoproterozoic 325 

oxygenation and to realize the potential of global TOC records for constraining changes in the 326 

oxygenation of the atmosphere and shallow marine environments, as well as changes in marine 327 

productivity. Although previous studies have inferred a Paleozoic shift in marine redox8–11, our 328 

analyses provide the first direct reconciliation of canonical evidence for a Neoproterozoic 329 

oxygenation event19,20 with mid-Paleozoic ocean-atmosphere oxygenation. Our analyses further 330 

establish the existence of sustained changes in ocean-atmosphere oxygenation and productivity at 331 

longer timescales than Ediacaran-Cambrian oscillations in ocean-atmosphere oxygenation12,13. 332 

The contrasting sensitivities of modeled seawater trace metal concentrations and organic 333 

carbon burial rates to atmospheric oxygenation and marine productivity provide a plausible 334 

environmental mechanism for the two major transitions observed in our deconvolved 335 

reconstructions of Mo, U and TOC (Fig. 2). In the late Neoproterozoic, we reconstruct a minor 336 

increase in marine trace metal concentrations but a major stepwise increase in organic carbon 337 

burial. These contrasting responses likely indicate a late Neoproterozoic increase in atmospheric 338 

oxygen, marine productivity, and organic carbon burial without a major change in global deep-339 
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ocean oxygenation (Fig. 4). Relatively low seawater trace metal concentrations were maintained 340 

because the majority of bottom waters remained reducing, even though raw shale metal 341 

concentrations may have increased on average19,20 due to the impact of increased organic carbon 342 

loading and accompanying metal sequestration. In the mid-Paleozoic, we reconstruct major 343 

increases in both marine trace metal concentrations and organic carbon burial, indicating that 344 

during this interval atmospheric oxygen and marine productivity increased to levels at which both 345 

proxies are expected to be sensitive. The seemingly contradictory implications of deconvolved 346 

TOC and Mo-U records can therefore be reconciled if the Ediacaran-Cambrian increase in 347 

atmospheric oxygen and marine productivity was insufficient to oxygenate deep ocean water 348 

masses and the global ocean did not become persistently oxygenated to near-modern levels until 349 

the Silurian-Devonian.  350 

Although trace metal proxies are commonly used to study ocean oxygenation through Earth 351 

history because of their sensitivity to the areal extent of reducing bottom waters, our results 352 

highlight the oblique view that trace metals provide of shallow marine animal habitats. While we 353 

refute suggestions that most of the global ocean became fully oxygenated in the late 354 

Neoproterozoic1, we do reconstruct a late Neoproterozoic increase in dissolved [O2] in shallow 355 

shelf environments. We therefore argue that whether there was a Neoproterozoic oxygenation 356 

event depends on spatial and temporal perspective. From a global oceanographic viewpoint 357 

encompassing the deep ocean, there was essentially no NOE. From an ecophysiological 358 

perspective, considering that shallow shelf environments are where most animals live and most of 359 

our fossil record is preserved, there was a NOE. Specifically, the analyses indicate that shallow 360 

marine habitats were likely suboxic or severely hypoxic (0 to 22 µmol/kg O2) on average for most 361 

of the Neoproterozoic, hypoxic (22 to 63 µmol/kg) in the early Paleozoic, and generally would not 362 
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be considered oxic from a modern ecophysiological perspective (≥63 µmol/kg)6 until the Devonian 363 

(Fig. 4e). Across spatial oxygen gradients in the modern ocean, the differences in shallow marine 364 

oxygen concentrations that we reconstruct between the Neoproterozoic and Paleozoic eras 365 

correspond to substantial differences in the functional and taxonomic diversity of marine animal 366 

communities6. 367 

Establishing drivers of the sustained Ediacaran-Cambrian and Silurian-Devonian shifts we 368 

reconstruct in oxygenation and productivity is beyond the scope of this study, although we suggest 369 

that biogeochemical feedbacks related to volcanic reductant flux31 and the ecological expansion of 370 

land plants9,11 warrant particular research attention. Changes in proxy records may also have been 371 

modulated by changes in temperature and plate tectonic configuration15, and these invite further 372 

study, however, they are unlikely to explain the scale of changes reconstructed in our statistical 373 

analyses (Extended Fig. 10). Moreover, changes in continental configuration primarily impact 374 

deep water oxygenation15, highlighting the power of our multiproxy trace metal and organic carbon 375 

approach for interrogating the oxygenation of shallow water marine animal habitats. 376 

The increase in marine productivity that we reconstruct in the late Neoproterozoic also has 377 

physiological implications for early marine animals. Our reconstructions support hypotheses 378 

linking food supply to the Cambrian radiation16,32 and open doors for further analyses evaluating 379 

the joint roles of oxygen and food supply in driving the trends we observe in the fossil record33. 380 

The second major increase in atmospheric pO2, marine primary production, and shallow marine 381 

dissolved [O2] that we reconstruct for the Silurian-Devonian has similar implications for the 382 

potential roles of oxygen and food supply in the Devonian radiation of fishes34. We expect 383 

mechanistic ecophysiological modeling approaches – similar to those designed to investigate the 384 

capability of other inferred environmental changes to drive specific reconstructed biodiversity 385 
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dynamics (e.g. refs35,36) – to be critical in establishing the specific roles that oxygen and food 386 

supply may have played as drivers of the early animal evolution. Nonetheless, these analyses 387 

establish sustained directional changes in both dissolved oxygen and export-driven food supply in 388 

late Neoproterozoic shallow marine habitats, with similar magnitudes to environmental gradients 389 

that play key roles in structuring the biodiversity and composition of modern marine ecosystems6. 390 

We thus demonstrate reductions in key ecophysiological stressors at an appropriate time to have 391 

been bottom-up drivers of the polyphyletic radiation of marine animals during the Ediacaran-392 

Cambrian transition. 393 

  394 
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Materials and Methods 395 

Data processing 396 

The complete Phase 1 dataset was downloaded from the Sedimentary Geochemistry and 397 

Paleoenvironments Project website (sgp-search.io; data API – 398 

{“type”:“nhhxrf”,“filters”:{},“show”:[“fe”,“fehr_fe_t”,“fe_py_fe_hr”,“toc”,“alu”,“mo”,“u”,“fe_399 

t_al”,“coord_lat”,“coord_long”,“basin_type”,“meta_bin”,“environment_bin”,“lithology_name”,“400 

max_age”,“min_age”,“interpreted_age”,“site_type”,“strat_name”,“strat_name_long”]}). This 401 

dataset was filtered to include only sedimentary samples with interpreted geological ages between 402 

300 and 1000 Ma (approximately Tonian through Carboniferous). The dataset was then further 403 

filtered to include only samples described as having shale-like or fine-grained lithologies (argillite, 404 

clay, claystone, dolomudstone, lime mudstone, meta-argillite, metapelite, metasiltstone, mud, 405 

mudstone, oil shale, pelite, phosphorite, shale, silt, siltite, siltstone, slate, plus samples assigned 406 

no lithology) and samples assigned marine depositional environments (basinal, outer shelf, inner 407 

shelf, plus samples assigned no depositional environment). We further removed samples with 408 

exceptionally high Mo or U concentrations that would be considered ore-grade metalliferous rocks 409 

(using a cut-off of 1000 ppm). The distribution of categorical geological context variables in this 410 

primary dataset through geologic time is shown in Extended Figure 1. The full filtering process 411 

and number of samples in the dataset after each filtering step is shown in Supplementary Data File 412 

1.  413 

 414 

Spatial-temporal weighted bootstrap analysis 415 

For our spatial-temporal weighted analyses of bootstrapped means, we remove samples without 416 

geographic coordinate data, and subset the primary SGP dataset using proxy-specific filters 417 
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(Extended Data Table 1). Next, we bin the shale samples for each proxy into 25 Myr time bins. In 418 

each 25 Myr time bin, we assign samples weights based upon their temporal and spatial proximity 419 

to other samples in the bin using the inverse weighting algorithm of Mehra et al.24. We then use 420 

these weights to generate distributions of 1000 weighted bootstrapped means for each time bin and 421 

plot those distributions as box and whisker plots. We present histograms illustrating the number 422 

of lithostratigraphic units sampled per time bin for each weighted bootstrap analysis. We conduct 423 

the same analysis for shale Mo/TOC and U/TOC values (Extended Figure 3). We also present box 424 

and whisker plots of the raw data used in these analyses (Extended Figure 2). Full spatial-temporal 425 

weighted bootstrap methods are shown in Supplementary Data File 2.  426 

 427 

Random forest analyses 428 

We conduct Monte Carlo random forest analyses to generate statistical reconstructions of changes 429 

in four key marine biogeochemical variables from the Tonian through Carboniferous – seawater 430 

[Mo], seawater [U], proportion of sampled anoxic depositional environments that were euxinic, 431 

and organic carbon burial. Each of these variables are semi-quantitatively reconstructed as a 432 

statistical model of changes in the mean value of a sedimentary geochemical proxy (shale [Mo], 433 

shale [U], proportion euxinic based on iron speciation, TOC) with geological time when all 434 

geologic context and geochemical variables known to impact the incorporation and preservation 435 

of the desired biogeochemical signal in sedimentary rocks are held constant. For each 436 

biogeochemical variable, a different combination of predictor variables is used, and additional 437 

filtering steps may be applied based upon the geological and biogeochemical processes associated 438 

with the specific proxy (Extended Data Table 2). Some filters in these analyses (also in the 439 

bootstrap analyses above) involve iron speciation parameters that are interpreted according to 440 
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standard thresholds37,38. These thresholds have recently been questioned29, although that 441 

compilation involved a large number of samples that would be deemed inappropriate for iron 442 

speciation based on criteria in Raiswell et al.38 and thus continued re-analyses of these thresholds 443 

are necessary. To test whether these iron speciation thresholds were influencing our results, we 444 

ran our molybdenum analyses (the analyses most dependent on iron speciation) with iron 445 

speciation values both as explicit filters on the dataset to isolate anoxic samples (Fig. 2) and as 446 

predictor variables in the analysis (Extended Fig. 6). The results are qualitatively very similar, 447 

indicating that ongoing debate about the use of specific iron speciation thresholds does not impact 448 

our results.  449 

To maximize the number of samples that can be used in these models, samples that have 450 

data entered for the variable of interest, estimated age, and any other necessary geochemical data 451 

for redox classification (FeHR/FeT and FePy/FeHR for Mo; FeHR/FeT or FeT/Al for U) but are missing 452 

other variables incorporated in the random forest analyses are included. For samples with partial 453 

data, missing data for categorical geologic context (lithology, site type, basin type, environmental 454 

bin, metamorphic bin) and geographic coordinates are randomly assigned in each Monte Carlo 455 

simulation from the full range of feasible values for each variable (as random forest analyses 456 

require a complete data matrix). For samples missing [Al] (in analyses that include [Al]), we 457 

impute [Al] by generating a random value between the 25th and 75th percentile of [Al] values within 458 

the sample’s assigned lithology (based upon the entire primary dataset described above and in 459 

Supplementary Data File 1). For samples without an assigned lithology that are missing [Al], a 460 

random [Al] value between the 25th and 75th percentile of [Al] values for all lithologies is imputed 461 

and then lithology is randomly assigned. In our Monte Carlo approach, these random value 462 

assignments are conducted 100 times for each analysis, corresponding to 100 separate random 463 



 22 

forest models per proxy/biogeochemical process. The results of these 100 random forest models 464 

are then evaluated to estimate the uncertainty associated with geologic age models (see description 465 

below) and samples with partial data.  466 

All samples in our Monte Carlo random forest analyses are assigned ages using on section-467 

based age models and assigned geological age uncertainties. Samples that were not assigned 468 

maximum and minimum ages by SGP contributors are assigned age uncertainties of 25 Myrs (± 469 

12.5 Myrs relative to assigned interpreted age) for Neoproterozoic samples and 10 Myrs (± 5 Myrs 470 

relative to assigned interpreted age) for Paleozoic samples. In each Monte Carlo random forest 471 

analysis, we randomly assign each sample a geologic age based upon its estimated maximum and 472 

minimum ages and its relationship with other samples in the sampled section in order to 473 

accommodate both uncertainties in geologic age models and the principle of stratigraphic 474 

superposition. These ages are assigned separately for each of 100 random forest models 475 

independently to incorporate uncertainty in assigned geologic ages. Age models are assigned by 476 

categorizing sections into 8 categories under 3 broad classifications: 477 

1. Sections with height/depth data 478 

a. Samples are assigned continuously ascending interpreted age estimates. 479 

b. Samples are all assigned the same interpreted age estimate. 480 

c. Samples are assigned interpreted age estimates in clusters or steps.  481 

2. Sections without height/depth data 482 

a. Samples are assigned continuously ascending interpreted age estimates. 483 

b. Samples are all assigned the same interpreted age estimate. 484 

c. Samples are assigned interpreted age estimates in clusters or steps.  485 

3. Sections with only one sample 486 
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a. Sample has stratigraphic height/depth 487 

b. Sample does not have stratigraphic height/depth 488 

In each scenario, ages are randomly assigned within younging upward sequences to incorporate 489 

both age uncertainty and the individual sample’s stratigraphic relationship to other samples in the 490 

section. Full age model methods are shown in Supplementary Data File 3. 491 

We present the results of our Monte Carlo random forest analyses as partial dependence 492 

plots. Partial dependence plots show the isolated marginal effect of a variable of interest (geologic 493 

time in the analyses presented in Fig. 2) on the predicted outcome of the random forest model39. 494 

We use partial dependence plots rather than other feature effect methods (e.g. accumulated local 495 

effects plots) for both statistical and biogeochemical reasons: 1) correlations between geologic 496 

time and model variables are consistently low in all model treatments, and 2) while the mean 497 

tendency of proxy variables may shift through geologic time, observations that are less likely in a 498 

certain geological time interval (e.g. rift basins or low TOC shale in the late Paleozoic) are still 499 

represented in our dataset (Extended Fig. 1; Appendices 1-2). This means that we never ask our 500 

models to make predictions in unrealistic feature space where the random forest model has not 501 

been trained. 3) Most importantly, we use global feature effects models because they exclude the 502 

impacts of other confounding variables linked to authigenic enrichments in sedimentary rocks. 503 

Partial dependence plots allow us (at least to a first approximation) to isolate changes in marine 504 

biogeochemistry, by asking questions such as “How do molybdenum concentrations in fine-505 

grained siliciclastic rocks change independent of other secular changes in sampled sedimentary 506 

environments, including changes in average organic carbon loading, local redox and depositional 507 

environment?”. Accumulated local effects plots and other local feature effects models, on the other 508 

hand, would be expected to better represent average sedimentary enrichments for each geologic 509 
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time interval (without, for example, standardizing for long-term variations in average local redox) 510 

because they do factor in changes in other predictor variables (in our case characteristics of 511 

sedimentary rocks). Consequently, they are less likely to independently track the oceanographic 512 

and Earth system changes that we are most interested in investigating. We present partial 513 

dependence plots as envelopes, summarizing the 100 random forest models in each Monte Carlo 514 

analysis (Fig. 2). The plotted envelopes are generated by linear interpolation of the 100 individual 515 

partial dependence plots generated per analysis at 0.1 Myr time intervals and computing the 5th, 516 

25th, 75th and 95th percentiles of the interpolated partial dependence plot populations at each time 517 

step. Full Monte Carlo random forest methods are shown in Supplementary Data File 3.  518 

 519 

Earth system modeling 520 

We generated three-dimensional realizations of feasible ancient ocean biogeochemistry 521 

using the cGENIE Earth system model of intermediate complexity26. We conducted an ensemble 522 

modeling experiment, varying atmospheric pO2 and marine PO4 in 11 logarithmic increments 523 

between 1% and 100% of present atmospheric/oceanic levels (1%, 1.6%, 2.5%, 4%, 6.3%, 10%, 524 

16%, 24%, 40%, 63%, 100%). Our main text results (ensemble #1) use a Cryogenian-Ediacaran 525 

(635Ma) continental configuration, a shallow (50% of modern, 294.9745m) e-folding depth to 526 

parameterize organic remineralization, 3336 ppm (12 PAL) atmospheric pCO2, and appropriate 527 

Cryogenian-Ediacaran estimate of the solar constant (1295.9701 Wm-2, a 5.2653% reduction from 528 

modern), following Reinhard et al.40. All ensembles use a single limiting nutrient (PO4) scheme to 529 

parameterize biological export, following Meyer et al.41. We conduct additional ensemble 530 

experiments as sensitivity analyses to investigate the impacts of the marine biological carbon pump 531 

(#2), continental configuration (#3), global climate (#4, #5), and combined continental 532 
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configuration and global climate (#6). Ensemble #2 uses a modern e-folding depth (589.9451m) 533 

and is otherwise identical to ensemble #1. Ensemble #3 uses an Ordovician continental 534 

configuration and solar constant42 and is otherwise identical to ensemble #1. Ensemble #4 and 535 

ensemble #5 use atmospheric pCO2 concentrations of 834 ppm (3 PAL) and 5560 ppm (20 PAL) 536 

respectively and are otherwise identical to ensemble #1. Ensemble #6 uses an Ordovician 537 

continental configuration and solar constant42, an atmospheric pCO2 concentration of 834 ppm (3 538 

PAL) and is otherwise identical to ensemble #1. All cGENIE simulations are run for 10,000 years, 539 

at which point benthic oxygen concentrations have reached steady state. 540 

 541 

For each experiment, we extract the mean annual dissolved oxygen concentrations for the final 542 

model year. We then categorize the bottom water cells of each ocean realization into three 543 

categories based upon dissolved oxygen concentrations: anoxic (dissolved [O2] ≤ 0 μmol/kg), 544 

suboxic (dissolved [O2] > 0 μmol/kg; dissolved [O2] ≤ 4.8 μmol/kg), oxic (dissolved [O2] ≥ 4.8 545 

μmol/kg)6. As all cGENIE configurations in this study use equal area grid cells, the proportional 546 

extents of anoxic, suboxic and oxic seafloor are then computed as a direct proportion of all (non-547 

land) model grid cells. For each experiment we also calculate mean shelf [O2] by computing the 548 

mean dissolved [O2] of all ocean cells adjacent to land in the top 3 layers of the cGENIE ocean 549 

(<283.8 m water depth).  550 

 551 

Stable atmospheric pO2 and marine productivity states 552 

The comparatively coarse spatial resolution and associated computational efficiency of CANOPS 553 

means that it is viable to run large model ensembles with an open oxygen cycle on geologic 554 

timescales, whereas computational constraints mean that it would be unrealistic to run large 555 
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ensemble cGENIE experiments at the scale conducted here for the timescales required for an open 556 

oxygen cycle to reach equilibrium. We therefore use results from an ensemble of model 557 

experiments using the CANOPS Earth system model27 to establish a subset of our cGENIE Earth 558 

system model experiments that are expected to be stable on geologic timescales.  559 

 560 

Trace metal mass balance 561 

We use a three-sink Mo-U mass balance model30 to simulate seawater [Mo] and [U] for each 562 

cGENIE Earth system simulation. We use the extents of anoxic, suboxic and oxic seafloor 563 

calculated from our cGENIE ocean realizations (Extended Fig. 8) as forcings for the extents of 564 

redox-sensitive sinks in the mass balance model. The naming conventions fanox (fractional extent 565 

of anoxic seafloor), fsubox (fractional extent of suboxic seafloor) and foxic (fractional extent of oxic 566 

seafloor), are used equivalently to feux, fred and foxic in Stockey et al.30 to directly match the 567 

parameters extracted from our cGENIE ocean simulations. The modern biogeochemical data 568 

underlying the parameterization of these sinks and associated fluxes remains the same. All other 569 

flux subscripts are correspondingly updated such that:  570 

d𝑁!"

dt
= F#$% −	F&'$( −	F!)*&' −	F+,&'$( 571 

 572 

Thus, the change in the seawater inventory of Mo or U (Nsw) with respect to time is a function of 573 

the metal flux into the global ocean via rivers (Friv), minus the metal fluxes into redox-sensitive 574 

depositional environments (Foxic, Fsubox, Fanox). The pseudospatial scaling algorithm of Stockey et 575 

al.30 (based on Reinhard et al.43) is also used here to incorporate the estimated attenuation of trace 576 

metal burial rates with water depth for scenarios with expansive reducing conditions in deep 577 

marine environments. For all parameters in the model analyses presented in this study, we use the 578 
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mean value (midpoint) of the uniform distributions used to define model parameters in Stockey et 579 

al.30.  580 

 We further present a global sensitivity analysis of this Mo-U mass balance model, 581 

illustrating contours of equal seawater [Mo] or [U] for varying balances of fanox and fsubox (Extended 582 

Fig. 7). This analysis uses the same parameters as the model applied to the cGENIE simulations 583 

but fanox and fsubox are varied in 31 logarithmic steps between 0.1% and 100%. 584 

 585 

Organic carbon burial 586 

We use results from the ensemble CANOPS Earth system model experiment used to establish 587 

stable Earth system states27 in order to estimate organic carbon burial rates for each atmospheric 588 

pO2 and marine productivity scenario. Global marine organic carbon burial rates (as a function of 589 

present oceanic levels) are binned into the logarithmically-spaced atmospheric pO2 and marine 590 

productivity scenarios and the mean simulated organic carbon burial flux is calculated for each 591 

scenario.  592 
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 622 

Figure 1: Spatial-temporal weighted bootstrapped means of key geochemical proxies from 623 

sampled shales. A) molybdenum concentrations in euxinic shales, B) proportion of anoxic shales 624 

that are euxinic based on iron speciation, C) uranium concentrations in anoxic shales, D) total 625 

organic carbon (TOC) in all shales. Box and whisker plots illustrate the distribution of 1000 626 

weighted bootstrapped means per 25-million-year time bin. The weighting algorithm inverse 627 

weights samples based upon their spatial and temporal proximity to other samples in the time bin24. 628 

Histograms show the number of lithostratigraphic units used in the bootstrap analyses for each 629 

time bin.  630 

 631 

  632 
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 633 

Figure 2: Statistical reconstructions of deconvolved marine biogeochemical signals for key 634 

geochemical proxies in sampled shales. Partial dependence plots illustrate the marginal effect of 635 

geologic time on A) molybdenum, B) proportion of euxinic depositional environments, C) 636 

uranium, D) total organic carbon, when all other variables expected to influence the incorporation 637 

of these proxies into fine-grained sedimentary archives are held constant. Dark grey envelopes 638 

represent the 25th to 75th percentiles of the distribution of interpolated partial dependence plot 639 

values from 100 Monte Carlo random forest analyses for each timestep, light grey envelopes 640 

represent the 5th to 95th percentiles of the same distributions. See Extended Data Table 2 for full 641 

model predictor variables.  642 

 643 

 644 

  645 
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 646 

 647 

Figure 3: Heatmaps of key biogeochemical variables from combined modeling approach for each 648 

logarithmically scaled atmospheric pO2 and marine PO4 scenario. A) fanox – the fractional extent 649 

of anoxic bottom waters in cGENIE global ocean models, B) global seawater Mo concentrations, 650 

C) global marine organic carbon burial rates as a function of present oceanic levels, D) fsubox – the 651 

fractional extent of suboxic bottom waters in cGENIE global ocean models, E) global seawater U 652 

concentrations, F) mean shelf dissolved [O2]. Only atmospheric pO2 and marine PO4 scenarios that 653 

are expected to be stable on geologic timescales based on Cole et al.27 are included.  654 

  655 
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 656 

Figure 4: Summary of reconstructed Neoproterozoic-Paleozoic Earth system evolution. A) 657 

Marine animal genus richness44, dates of Snowball Earth events16, evolution of land plants45, B) 658 

estimated ranges for atmospheric pO2, C) estimated ranges for marine primary production, D) 659 

estimated ranges for the extent of reducing seafloor (fanox+subox. or 1- fox), E) estimated ranges for 660 
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mean dissolved oxygen concentrations in shelf environments, with hypoxic thresholds6 based on 661 

modern ecophysiology. Anomalocaris canadensis silhouette credit: Caleb M. Brown. 662 

 663 

 664 

Extended Figure 1: Histograms showing the distribution of geologic context variables for the 665 

primary SGP dataset used in this study. A) Lithology, B) Site Type, C) Basin Type, D) 666 

Environmental Bin, E) Metamorphic Bin. Details regarding these geological and geographic 667 

context variables can be found on the SGP wiki 668 

(https://github.com/ufarrell/sgp_phase1/wiki/Database-description#geological-context). 669 
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 672 

 673 

Extended Figure 2: Distributions of raw geochemical data in sub-datasets used in spatial-674 

temporal weighted bootstrap analyses (Fig. 1 of main text). A) molybdenum concentrations in 675 

euxinic shales, B) proportion of anoxic shales that are euxinic based on iron speciation, C) uranium 676 

concentrations in anoxic shales, D) total organic carbon (TOC) in all shales. Box and whisker plots 677 

illustrate the distribution of all data. As box and whisker plots of proportion euxinic data are not 678 

very informative about the structure of the data, we overlay red data points illustrating the mean 679 

of the data for each time bin for panel B. Histograms show the number of lithostratigraphic units 680 

used in the bootstrap analyses for each time bin.  681 

 682 

 683 

 684 

 685 

  686 
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 687 

Extended Figure 3: Spatial-temporal weighted bootstrapped means of key geochemical proxies 688 

from sampled shales. A) Mo/TOC ratios in euxinic shales, B) U/TOC ratios in anoxic shales. Box 689 

and whisker plots illustrate the distribution of 1000 weighted bootstrapped means per 25 million 690 

year time bin. Spatial-temporal weighting algorithm inverse weights samples based upon their 691 

spatial and temporal proximity to other samples in the time bin. Histograms show the number of 692 

lithostratigraphic units used in the bootstrap analyses for each time bin.  693 

 694 
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 695 

Extended Figure 4: Random forest variable importance plots. A, C, E, and G show increased 696 

mean squared error estimates for molybdenum, uranium, proportion euxinic, and total organic 697 

carbon analyses, respectively. B, D, F, and H show increased node purity estimates for 698 

molybdenum, uranium, proportion euxinic, and total organic carbon analyses, respectively. Box 699 

and whisker plots summarize the results from the 100 Monte Carlo random forest analyses 700 

presented in the main text for each proxy. For both variable importance metrics, higher values 701 

indicate that a variable is more important in determining the predictions of the model.   702 
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 703 

 704 

 705 

 706 

 707 

Extended Figure 5: Impact of alternative redox treatments on random forest analyses. Partial 708 

dependence plots illustrate the marginal effect of geologic time on A) molybdenum, B) proportion 709 

of euxinic depositional environments, C) uranium, D) total organic carbon. All analyses included 710 

here include the full suite of geologic context variables used in all random forest analyses. Redox 711 

filters are color-coded for each proxy. Envelopes represent the 25th to 75th percentiles of the 712 

distribution of interpolated partial dependence plot values from 100 Monte Carlo random forest 713 

analyses for each timestep. See Extended Data Tables 2-3 for full model predictor variables.  714 

 715 

 716 

  717 
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 718 

 719 

Extended Figure 6: Impact of using iron speciation values as predictors rather than filters (as in 720 

main text) in molybdenum random forest analyses. These analyses eliminate any assumptions 721 

linked to specific iron speciation thresholds.   722 
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 723 

 724 

 725 

Extended Figure 7: Mo-U mass balance global sensitivity analysis. Impact of fanox and fsubox on 726 

the estimated concentrations of molybdenum and uranium in seawater using the Mo-U mass 727 

balance model of Stockey et al.30.  728 
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 730 

 731 

Extended Figure 8: Maps of redox classifications for cGENIE bottom waters. Maps illustrate 732 

bottom water dissolved oxygen concentrations binned into oxic (dissolved [O2] ≥ 4.8 μmol/kg), 733 

suboxic (dissolved [O2] > 0 μmol/kg; dissolved [O2] ≤ 4.8 μmol/kg) and anoxic (dissolved [O2] 734 

≤ 0 μmol/kg) categories for the cGENIE ensemble experiment presented in Figure 3. 735 

 736 

 737 

  738 

1% PO4 1.6% PO4 2.5% PO4 4% PO4 6.3% PO4 10% PO4 16% PO4 25% PO4 40% PO4 63% PO4 100% PO4

1
%

 O
2

1
.6

%
 O

2
2

.5
%

 O
2

4
%

 O
2

6
.3

%
 O

2
1

0
%

 O
2

1
6

%
 O

2
2

5
%

 O
2

4
0

%
 O

2
6

3
%

 O
2

1
0

0
%

 O
2

−100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Longitude

L
a

ti
tu

d
e

oxic suboxic anoxic



 41 

 739 

Extended Figure 9: Hypoxia classification of cGENIE equatorial transects. Ocean transects show 740 

equatorial cross sections of the three-dimensional ocean models presented in Figure 3 binned into 741 

anoxic, suboxic, severe hypoxia, hypoxia and oxic categories (following Sperling et al.6) to 742 

illustrate the impact of oxygen-productivity scenarios on broad physiological thresholds for marine 743 

animals.  744 
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 747 

 748 

Extended Figure 10: cGENIE configuration sensitivity. In this sensitivity analysis, we replicate 749 

Figure 3 for A) Cryogenian-Ediacaran continental configuration at 12 PAL CO2 with shallow 750 

remineralization depth (Fig. 3), B) Ordovician continental configuration at 12 PAL CO2 with 751 

shallow remineralization depth, C) Cryogenian-Ediacaran continental configuration at 12 PAL 752 

CO2 with modern remineralization depth, D) Cryogenian-Ediacaran continental configuration at 3 753 

PAL CO2 with shallow remineralization depth, E) Cryogenian-Ediacaran continental configuration 754 

at 20 PAL CO2 with shallow remineralization depth, F) Ordovician continental configuration at 3 755 

PAL CO2 with shallow remineralization depth. 756 
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Extended Data Table 1: Data filtering and biogeochemical justifications for spatial-weighted 759 

bootstrap mean analyses.  760 

 761 

 762 

Proxy 
Required 

geochemical data 
Filters Description Figure 

Mo 
Mo, FeHR/FeT, 
FePy/FeHR 

FeHR/FeT ≥ 0.38 
AND  FePy/FeHR 
≥ 0.7 

Mo in euxinic 
shale only 

1A 

U 
U, [FeHR/FeT OR 
Fe/Al] 

FeHR/FeT ≥ 0.38 
OR Fe/Al ≥ 0.53 

U in anoxic shale 
only 

1C 

Proportion 
euxinic (binary 
coding based on 

FePy/FeHR) 

FeHR/FeT, 
FePy/FeHR 

FeHR/FeT ≥ 0.38 
Proportion 
euxinic in anoxic 
shale only 

1B 

TOC TOC None TOC in all shales 1D 

Mo/TOC 
Mo, FeHR/FeT, 
FePy/FeHR, TOC 

FeHR/FeT ≥ 0.38 
AND  FePy/FeHR 
≥ 0.7 AND TOC  
≥ 0.3 (wt %) 

Mo/TOC in 
euxinic shale only 

Extended 3A 

U/TOC 
U, [FeHR/FeT OR 
Fe/Al], TOC 

[FeHR/FeT ≥ 0.38 
OR Fe/Al ≥ 0.53] 
AND TOC  ≥ 0.3 
(wt %) 

U/TOC in anoxic 
shale only 

Extended 3B 

 763 

  764 
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Extended Data Table 2: Data filtering, predictor variables and biogeochemical justifications for 765 

primary Monte Carlo random forest analyses. In each row, the identified geochemical proxy is 766 

the response variable of the random forest analysis. 767 

 768 

Proxy 
Required 

geochemical data 
Filters 

Predictor 

variables 
Description Figure 

Mo 
Mo, FeHR/FeT, 
FePy/FeHR, TOC 

FeHR/FeT ≥ 
0.38  

Age model, site 
type, 
metamorphic 
bin, basin type, 
site latitude, site 
longitude, 
lithology name, 
environmental 
bin, TOC, 
FePy/FeHR, Al 

Samples 
from anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
organic 
carbon 
loading, 
detrital input 
and sulfide 
levels.  

2A 

U 
U, [FeHR/FeT OR 
Fe/Al], TOC 

FeHR/FeT ≥ 
0.38 OR 
Fe/Al ≥ 0.53 

Age model, site 
type, 
metamorphic 
bin, basin type, 
site latitude, site 
longitude, 
lithology name, 
environmental 
bin, TOC, Al 

Samples 
from anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
organic 
carbon 
loading and 
detrital input. 

2C 

Proportion 
euxinic 
(binary 
coding 

based on 
FePy/FeHR) 

FeHR/FeT, FePy/FeHR 
FeHR/FeT ≥ 
0.38 

Age model, site 
type, 
metamorphic 
bin, basin type, 
site latitude, site 
longitude, 
lithology name, 
environmental 
bin, Al 

Samples 
from anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration 

2B 
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and detrital 
input. 

TOC TOC None 

Age model, site 
type, 
metamorphic 
bin, basin type, 
site latitude, site 
longitude, 
lithology name, 
environmental 
bin, Al 

Control for 
depositional 
environment, 
post-
depositional 
alteration 
and detrital 
input. 

2D 

 769 

  770 
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Extended Data Table 3: Data filtering, predictor variables and biogeochemical justifications for 771 

supplemental Monte Carlo random forest analyses. In each row, the identified geochemical 772 

proxy is the response variable of the random forest analysis.  773 

 774 

Proxy 

Required 

geochemical 

data 

Filters 
Predictor 

variables 
Description Figure 

Mo 
Mo, [FeHR/FeT 
OR Fe/Al], 
TOC 

FeHR/FeT ≥ 
0.38 OR 
Fe/Al ≥ 0.53 

Age model, 
site type, 
metamorphic 
bin, basin 
type, site 
latitude, site 
longitude, 
lithology 
name, 
environmental 
bin, TOC, Al 

Samples from 
anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
organic carbon 
loading and 
detrital input.  

Extended 
5A 

U 
U, FeHR/FeT, 
FePy/FeHR, 
TOC 

FeHR/FeT ≥ 
0.38  

Age model, 
site type, 
metamorphic 
bin, basin 
type, site 
latitude, site 
longitude, 
lithology 
name, 
environmental 
bin, TOC, 
FePy/FeHR, Al 

Samples from 
anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
organic carbon 
loading, 
detrital input 
and sulfide 
levels.  

Extended 
5C 

Proportion 
euxinic 
(binary 

coding based 
on 

FePy/FeHR) 

FeHR/FeT, 
FePy/FeHR, 
TOC 

FeHR/FeT ≥ 
0.38 

Age model, 
site type, 
metamorphic 
bin, basin 
type, site 
latitude, site 
longitude, 
lithology 
name, 
environmental 
bin, TOC, Al 

Samples from 
anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
organic carbon 

Extended 
5B 
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loading and 
detrital input. 

TOC 
TOC, 
[FeHR/FeT OR 
Fe/Al] 

FeHR/FeT ≥ 
0.38 OR 
Fe/Al ≥ 0.53 

Age model, 
site type, 
metamorphic 
bin, basin 
type, site 
latitude, site 
longitude, 
lithology 
name, 
environmental 
bin, Al 

Samples from 
anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration and 
detrital input. 

Extended 
5D 

TOC 
TOC, 
FeHR/FeT, 
FePy/FeHR 

FeHR/FeT ≥ 
0.38 

Age model, 
site type, 
metamorphic 
bin, basin 
type, site 
latitude, site 
longitude, 
lithology 
name, 
environmental 
bin, 
FePy/FeHR, Al 

Samples from 
anoxic 
environments 
only. Control 
for 
depositional 
environment, 
post-
depositional 
alteration, 
detrital input 
and sulfide 
levels. 

Extended 
5D 

 775 

 776 
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