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Supplementary Materials

Simultaneous Clustering

Starting with Hartigan’s direct clustering [1], simultaneous data matrix clustering of rows and columns has
been described using various terms such as two-way two-mode clustering, biclustering, subspace clustering,
and coclustering [2-5]. Though sequential clustering of rows and columns can yield useful outputs!, the
resulting submatrices may not be homogeneous. However, simultaneous clustering leads to homogeneous
submatrices within a data matrix which could appear in various forms, including partitions of entire rows
and columns or overlapping submatrices with partial rows and columns. We will use the term bicluster to
refer to these homogeneous submatrices.

In this article, a data matrix D is represented as D = (R, C'), where R = {ry,...,r,} is a set of n
rows (or disease cases) and C = {c1,..., ¢} is the set of m columns (or phenotypes). The element d;; € D
denotes the magnitude of row i observed at column j. Various simultaneous clustering techniques have been
tailored for biomedical use [5, 8, 9]. This article delves into spectral methods, notably spectral coclustering
and spectral biclustering, which harness the eigenvectors of DD via the singular value decomposition (SVD)
of D [10].

Spectral biclustering (SBC), conceptualized for genome expression data, is rooted in the assumption of
a checkerboard structure in the data. Given a matrix D showcasing this pattern, when we apply a steplike
classification vector z, the result is another steplike vector y. Reapplying DT to y yields a vector akin to z.
Thus, SBC finds eigenvectors (x and y) which satisfy the coupled eigenvalue equations

DTDx = M2z,
DDy = X%y,

where both x and y share the same eigenvalue. This translates to obtaining the SVD of D:
D =UAVT,

with A being a diagonal matrix with descending non-negative entries; Uy, xmin(n,m) and Vi xmin(n,m) are,
respectively, the right and left singular vectors associated with DDT and DTD. Pre-eigenproblem-solving,
SBC normalizes data to negate biases from differently scaled features. Bistochastisation and log-interaction
normalization, introduced by [11], serve to prep data before SVD application. Post-SVD, if normalization
is via bistochastisation or scaling, the first principal eigenvector from U and V is discarded for its uniform
contribution to D. Information for partitioning is extracted by sorting eigenvector entries, setting thresholds
to split them, and then choosing eigenvectors that can be approximated by piecewise-constant vectors. The
final clustering step involves using the k-means algorithm and normalized cut method on data projected to
the top eigenvectors.

Spectral coclustering (SCC), a bipartite graph partitioning technique, was proposed to co-cluster the
word-by-document matrix D, where rows correspond to words and columns to documents. Given that the
matrix entry D;; symbolizes the occurrence of word ¢ in document j, D is inherently sparse. For a given D,
a graph G = (V, E) is defined, where vertices V = {1,2,...,n} represent documents and words, and edges

1For instance, see the heat map widget in Orange and the cluster map application in Seaborn [6, 7]



E = {i,j} represent word i appearing in document j (or vice versa). An adjacency matrix M is constructed
as

0 D
M = |:DT 0:| )
with M;; = w;; (the edge weight) for every {i,j} € E. A cut, defined as cut(V1,V2) = >, v, icv, Mij,
provides insight into how clusters are interconnected. To ensure cluster balance, a normalized-cut objective

function is employed, defined as

cut(Vy, Vo) n cut(Vy, Va)

NV, Va) =
(V1 V2) weight(Vy) — weight(Va)’

where the weight is weight(V') = > ;. >, Eir. This objective function is tackled using SVD to pinpoint
the I = log,(k) singular vectors U = [ug,...,u4+1] and W = [we,...,wi41] of the normalized matrix
D, =D, %DDQ_ 2. Here, Dy and D5 are diagonal degree matrices. The derived singular vectors construct a
dataset of dimension [,
DU
Dy W
which is then clustered using the k-means method to yield k& clusters.

Both SBC and SCC are spectral-based but make different assumptions regarding the underlying structure
in D. SBC assumes a checkerboard pattern, whereas SCC views D as a sparse matrix aiming to discover a
diagonal block structure. Moreover, SCC results in the same number of row and column clusters, leading
to an equal number of submatrices, whereas SBC can yield a different number of row and column clusters,
producing a distinct set of submatrices.
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Data Visualizations Before and After Simultaneous Clustering
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Supplementary Fig. 1: Data structure
for the dementia dataset before cocluster-
ing. There are 15 columns (features) and
87 rows (cases). The heat map shows the
mean feature score for each row normalized
to the interval [0,1].
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Supplementary Fig. 2: Data structure
for dementia dataset after coclustering.
Columns and rows have been re-arranged
according to cluster membership. Coclus-
tering brings out a diagonal pattern in the
heat map.
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Supplementary Fig. 3: Data structure
for the movement disorders dataset before
coclustering. There are 18 columns (fea-
tures) and 86 rows (cases). The heat map
shows the mean feature score for each row
normalized to the interval [0,1].
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Supplementary Fig. 4: Data struc-
ture for movement disorders dataset after
coclustering. Columns and rows have been
rearranged according to cluster member-
ship. Coclustering produces a diagonal pat-
tern in the heat map.
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Supplementary Fig. 5: Data structure
for the MS dataset before coclustering.
There are 16 columns (features) and 119
rows (cases). The heat map shows the mean
feature score for each row normalized to the
interval [0,1].
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Supplementary Fig. 6: Data structure
for MS dataset after coclustering. Columns
and rows have been rearranged according to
cluster membership. Coclustering produces
a diagonal pattern in the heat map.
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