Rational Design of Chiral Single-Benzene-Based Fluorophores via Enantioselective Twofold C-H Activation: Solid-State and Circular Polarization Luminescence, and Cellular Imaging Application

Zhong-Yuan Li,*,a Fang Liu,a Heng Li,a Xing Guo,a Qinghua Wu,*,b Lijuan Jiao,a and Erhong Hao*,a

^aAnhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.

^bSchool of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.

E-mail: zhongyuanli@ahnu.edu.cn; qinghuaw@ahtcm.edu.cn;

haoehong@ahnu.edu.cn.

Table of Contents

1.General.	S3
2. Preparation of Substrates	S3
3. Characterization of Substrates	S5
4. General Procedure for the Construction of SBBFs via Rh-Catalyzed Enar	ntioselective
Twofold C-H Activation	S14
5. Characterization of Products	S14
6. Procedure for the Synthesis of Int-1	S34

7. Procedure for the Synthesis of Int-1'	S34
8. Procedure for Rh-Catalyzed C-H Activation with Int-1	S35
9. Procedure for Rh-Catalyzed C-H Activation with Int-1 '	S36
10. Crude ¹ H NMR with 1,3,5-Trimethoxybenzene as Internal Standard	S36
11. General Procedure for the Synthesis of Int-2	S37
12. General Procedure for the Synthesis of 5	S38
13. General Procedure for the Synthesis of 6	S38
14. General Procedure for the Synthesis of 7	S39
15. General Procedure for the Synthesis of 8	S39
16. General Procedure for the Synthesis of 9	S40
17. General Procedure for the Synthesis of 10	S40
18. Cellular studies of 3al and 3ao	S41
19. NMR and HPLC Spectra of 1a-1za, 3aa-3zaa, 3ab-3ao and Int-1-10e	S42
20. Crystallographic Data of 3aa	S161
21. Crystallographic Data of Int-2.	S163
22. Photophysical Spectra of 3aa-3zaa , 3ab-3ao and 10a-10e	S165
23. DFT Calculation of 10e	S174
24 References	S 176

1. General

Experimental: Unless otherwise noted, all the reactions were set up under N₂ atmosphere utilizing glassware that was flame-dried and cooled under vacuum. All non-aqueous manipulations were using standard Schlenk techniques. Reactions were monitored using thin-layer chromatography (TLC) on Silica Gel plates. Visualization of the developed plates was performed under UV light (254 nm) or KMnO₄ stain. Silicagel flash column chromatography was performed using 200–300 mesh silica gel.

Materials: Unless otherwise indicated, starting catalysts and materials were obtained from Energy Chemicals, Bidepharm and J&K Scientific. Moreover, commercially available reagents were used without additional purification.

Instrumentation: ¹H NMR spectra were recorded at 400 MHz NMR spectrometers using TMS as an internal standard, ¹³C NMR spectra were recorded at 101 MHz spectrometers using TMS as an internal standard, and were fully decoupled by broad band proton decoupling. ¹H NMR chemical shifts are reported in parts per million (ppm) and are referenced to residual protium in the NMR solvent (δ 0.00 for TMS). ¹³C NMR chemical shifts are reported in parts per million (ppm) and are referenced to the carbon resonances of the solvent residual peak (δ 77.16 for CDCl₃). Data for ¹H NMR and ¹³C NMR are reported as follows: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz) and integration. High-resolution mass spectra (HRMS) were obtained using ESI-TOF in positive or negative mode. Analytical HPLC was performed on Thermo Series or Angilent 1260 instrument using Daicel Chiralcel® columns as noted. Optical rotation values were measured on a Schmidt Haensch polarimeter.

Photophysical studies: UV-visible absorption and fluorescence emission spectra were recorded on a commercial spectrophotometer (Shimadzu UV-2450 and Edinburgh FS5 spectrometers, 190-900 nm scan range). Absolute fluorescence quantum yields were determined using a Hamamatsu Quantaurus spectrofluorometer equipped with an integrating sphere. The corresponding sample was measured at various dilutions to approach a value without self-quenching contributions. Each measurement was repeated three times and the average was calculated. Fluorescence lifetime (τ) were determined by Time-Correlated Single Photon Counting (TCSPC) technique with the FLS 1000 spectrometer by exciting the sample with pulsed laser diodes at 380 nm under magic angle conditions and using a fast PMT detector (R928P) for fluorescence detection. The fitting process was performed with the programs Fluoracle and FAST and completed when ca. χ^2 <1.2 was reached. Radiative rate (k_r) constant according to Φ_F/τ_F . Non-radiative rate constant (k_{nr}) according to $(1-\Phi_F)/\tau_F$.

2. Preparation of Substrates

General procedure A^{1a-b}

The synthesis of allyl bromides (S1).

To a 50 mL Schlenk flask equipped with a stirring bar was added allyl alcohol (5 mmol). The mixture was then evacuated and backfilled with nitrogen for three times. After that, THF (15 mL) and PBr₃ (0.5 equiv.) were added by syringe at 0 °C. The mixture was then stirred at room temperature for another 1.5 h. the reaction was quenched by adding H_2O (20 mL) and saturated NaHCO₃, extracted with ethyl acetate (25 mL × 2). After removing all of the solvent, the product was used for the next step directly without further purification.

The synthesis of substrates 1.

To a 50 mL one-neck round flask equipped with a stirring bar was added **S2** (3 mmol) and K_2CO_3 (6 mmol) in acetone (20 mL), followed by allyl *br*omide (5 mmol). The mixture was stirred at 65 °C for 5 h. The solvent was removed and reaction mixture was extracted with H_2O (20 mL) and ethyl acetate (40 mL). Dried over anhydrous Na_2SO_4 , filtration and removed all of organic solvent. The residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20 : 1) to get substrate **1**.

General procedure B^{1c}

The synthesis of allyl chlorides (S1').

To a 50 mL one-neck round flask equipped with a stirring bar were added alcohol (17 mmol) and THF (20 mL). The mixture was added NaH (20 mmol) and stirred at room temperature for 0.5 h. After that, the solution of allyl chloride (10 mmol) in THF (5 mL) was added slowly at 0 °C. The mixture was then stirred at 70 °C for another 12 h. The reaction was quenched by adding H_2O (20 mL) and saturated NaHCO₃, extracted with CH₂Cl₂ (25 mL × 2). After removing all of the solvent, the product S1' was used for the next step directly without further purification.

The synthesis of substrates 1.

To a 50 mL one-neck round flask equipped with a stirring bar was added **S2** (4 mmol) and K_2CO_3 (8 mmol) in DMF (15 mL), followed by **S1'** (4 mmol). The mixture was stirred at 50 °C for 3 h. The solvent was removed and reaction mixture was extracted with H_2O (20 mL) and CH_2Cl_2 (40 mL). Dried over anhydrous Na_2SO_4 , filtration and removed all of organic solvent. The residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20 : 1) to get substrate **1**.

The synthesis of substrates 2.²

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
EA/H_2O, 0-rt, 2h
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N$$

$$\begin{array}{c}
O \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N$$

$$\begin{array}$$

To a stirred biphasic mixture of NH₂OH·HCl (10 mmol, 2.0 equiv.) in ethyl acetate (40 mL) and H₂O (20 mL) was added K₂CO₃ (10 mmol, 2.0 equiv.). The solution was cooled to 0 °C followed by dropwise addition of acid chloride (5 mmol), and then warmed to room temperature and stirred for additional 1.5 h. The reaction mixture was extracted with ethyl acetate (25 mL \times 2) and dried over anhydrous Na₂SO₄, filtered and removed all of organic solvent. The crude product (S4) was directly used for the next step without purification.

To a stirred mixture of hydroxamic acid (S4) in CH_2Cl_2 (50 mL) was added 1,1'-carbonyldiimidazole (5.5 mmol, 1.1 equiv.). The residue was stirred for 0.5 h. The reaction was quenched with 1 M HCl (15 mL) and extracted with CH_2Cl_2 (25 mL × 2). The combined organic phase was washed with H_2O (50 mL), dried over anhydrous Na_2SO_4 and removed all of organic solvent to afford crude 3-substituted 1,4,2-dioxazol-5-ones. The crude product was purified through a short silica gel chromatography quickly (petroleum ether/ethyl acetate = 20 : 1) to get pure product of 2.

3. Characterization of Substrates (*E*)-3-(Cinnamyloxy)benzaldehyde

By following the general procedure **A**, the product **1a** was afforded (0.56 g, 78% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.50–7.40 (m, 5H), 7.36–7.31 (m, 2H), 7.29–7.22 (m, 2H), 6.76 (d, J = 16.0 Hz, 1H), 6.42 (dt, J = 16.0, 5.8 Hz, 1H), 4.77 (dd, J = 5.8, 1.5 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 138.0, 136.4, 133.7, 130.3, 128.8 (2C), 128.2, 126.7 (2C), 123.81, 123.78, 122.3, 113.2, 69.0; **HRMS** (ESI) Calcd for C₁₆H₁₅O₂ [M+H]⁺ 239.1067; found 239.1068.

(E)-3-((3-(4-Tolyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1b** was afforded (0.58 g, 76% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.50–7.43 (m, 3H), 7.32 (d, J = 8.2 Hz, 2H), 7.27–7.21 (m, 1H), 7.14 (d, J = 7.8 Hz, 2H), 6.72 (d, J = 16.0 Hz, 1H), 6.36 (dt, J = 15.9, 5.9 Hz, 1H), 4.74 (d, J = 5.7 Hz, 2H), 2.34 (s, 3H); **¹S NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 138.1, 137.9, 133.7, 133.5, 130.2, 129.4 (2C), 126.7 (2C), 123.7, 122.7, 122.3, 113.3, 69.1, 21.4; **HRMS** (ESI) Calcd for C₁₇H₁₇O₂ [M+H]⁺ 253.1223; found 253.1223.

(E)-3-((3-(4-Fluorophenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1c** was afforded (0.49 g, 64% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51–7.42 (m, 3H), 7.42–7.35 (m, 2H), 7.23 (dt, J = 6.5, 2.7 Hz, 1H), 7.06–6.99 (m, 2H), 6.72 (d, J = 16.0 Hz, 1H), 6.33 (dt, J = 15.9, 5.8 Hz, 1H), 4.75 (dd, J = 5.9, 1.5 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 162.7 (d, J = 247.5 Hz), 159.3, 138.0, 132.6, 132.5, 130.3, 128.3 (d, J = 8.1 Hz, 2C), 123.9, 123.5 (d, J = 2.3 Hz), 122.3, 115.7 (d, J = 21.7 Hz, 2C), 113.1, 68.9; **HRMS** (ESI) Calcd for C₁₆H₁₄FO₂ [M+H]⁺ 257.0972; found 257.0972.

(E)-3-((3-(4-Chlorophenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1d** was afforded (0.56 g, 68% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.50–7.41 (m, 3H), 7.36–7.27 (m, 4H), 7.23 (dt, J = 6.7, 2.6 Hz, 1H), 6.70 (d, J = 16.0 Hz, 1H), 6.38 (dt, J = 16.0, 5.7 Hz, 1H), 4.74 (dd, J = 5.7, 1.5 Hz, 2H); **¹3C NMR** (101 MHz, CDCl₃) δ 192.2, 159.1, 137.8, 134.8, 133.7, 132.1, 130.2, 128.8 (2C), 127.9 (2C), 124.4, 123.9, 122.1, 113.0, 68.6; **HRMS** (ESI) Calcd for C₁₆H₁₄ClO₂ [M+H]⁺ 273.0677; found 273.0677.

(E)-3-((3-(4-(Trifluoromethyl)phenyl)allyl)oxy)benzaldehyde

S6

By following the general procedure **A**, the product **1e** was afforded (0.54 g, 59% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.54–7.43 (m, 5H), 7.27–7.23 (m, 1H), 6.80 (d, J = 16.1 Hz, 1H), 6.51 (dt, J = 16.0, 5.5 Hz, 1H), 4.79 (dd, J = 5.5, 1.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 159.1, 139.9, 138.0, 131.8, 130.3, 129.9 (q, J = 32.4 Hz), 126.9 (2C), 126.6, 125.7 (q, J = 3.8 Hz, 2C), 124.2 (q, J = 273.1 Hz), 124.1, 122.3, 113.0, 68.5; **HRMS** (ESI) Calcd for C₁₇H₁₄F₃O₂ [M+H]⁺ 307.0940; found 307.0945.

(E)-3-((3-(3-Methoxyphenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1f** was afforded (0.69 g, 86% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51–7.42 (m, 3H), 7.28–7.21 (m, 2H), 7.01 (d, J = 7.6 Hz, 1H), 6.95 (s, 1H), 6.83 (dd, J = 7.9, 2.0 Hz, 1H), 6.73 (d, J = 16.0 Hz, 1H), 6.41 (dt, J = 15.9, 5.7 Hz, 1H), 4.76 (dd, J = 5.8, 1.5 Hz, 2H), 3.82 (s, 3H); **¹³C NMR** (101 MHz, CDCl₃) δ 192.2, 159.9, 159.3, 138.0, 137.8, 133.5, 130.3, 129.8, 124.1, 123.8, 122.3, 119.4, 113.8, 113.2, 112.0, 68.9, 55.4; **HRMS** (ESI) Calcd for C₁₇H₁₇O₃ [M+H]⁺ 269.1172; found 269.1174.

(E)-3-((3-(3-Tolyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1g** was afforded (0.60 g, 79% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.48–7.41 (m, 3H), 7.25–7.19 (m, 4H), 7.11–7.04 (m, 1H), 6.71 (d, J = 16.0 Hz, 1H), 6.39 (dt, J = 15.9, 5.8 Hz, 1H), 4.73 (dd, J = 5.9, 1.5 Hz, 2H), 2.34 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 138.3, 137.9, 136.2, 133.7, 130.2, 128.9, 128.6, 127.4, 123.8, 123.7, 123.5, 122.2, 113.2, 68.9, 21.5; **HRMS** (ESI) Calcd for C₁₇H₁₇O₂ [M+H]⁺ 253.1223; found 253.1224.

(E)-3-((3-(3-Fluorophenyl)allyl)oxy)benzaldehyde

S7

By following the general procedure **A**, the product **1h** was afforded (0.49 g, 63% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51–7.43 (m, 3H), 7.33–7.22 (m, 2H), 7.17 (d, J = 7.7 Hz, 1H), 7.11 (d, J = 10.1 Hz, 1H), 6.96 (td, J = 8.4, 2.6 Hz, 1H), 6.72 (d, J = 16.0 Hz, 1H), 6.42 (dt, J = 15.9, 5.6 Hz, 1H), 4.76 (dd, J = 5.7, 1.6 Hz, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.0, 163.1 (d, J = 245.5 Hz), 159.1, 138.6 (d, J = 7.7 Hz), 137.9, 132.0 (2.6 Hz), 130.2, 130.1 (d, J = 9.5 Hz), 125.2, 123.8, 122.6 (d, J = 2.8 Hz), 122.1, 114.8 (d, J = 21.1 Hz), 113.04, 113.03 (d, J = 21.9 Hz), 68.4; **HRMS** (ESI) Calcd for C₁₆H₁₄FO₂ [M+H]⁺ 257.0972; found 257.0974.

(E)-3-((3-(3-Chlorophenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1i** was afforded (0.52 g, 65% yield). **1H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51–7.41 (m, 3H), 7.39 (s, 1H), 7.30–7.19 (m, 4H), 6.69 (d, J = 16.0 Hz, 1H), 6.41 (dt, J = 15.8, 5.6 Hz, 1H), 4.78–4.70 (m, 2H); **13C NMR** (101 MHz, CDCl₃) δ 192.2, 159.1, 138.2, 137.9, 134.7, 131.9, 130.3, 130.0, 128.0, 126.6, 125.4, 124.9, 123.9, 122.2, 113.1, 68.5; **HRMS** (ESI) Calcd for C₁₆H₁₄ClO₂ [M+H]⁺ 273.0677; found 273.0678.

(E)-3-((3-(3-(Trifluoromethyl)phenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1j** was afforded (0.70 g, 76% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.66 (s, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.54–7.41 (m, 5H), 7.26–7.21 (m, 1H), 6.79 (d, J = 16.0 Hz, 1H), 6.49 (dt, J = 16.0, 5.5 Hz, 1H), 4.79 (d, J = 5.7 Hz, 2H); **¹SC NMR** (101 MHz, CDCl₃) δ 192.1, 159.1, 137.9, 137.1, 131.6, 131.0 (q, J = 32.1 Hz), 130.3, 129.8, 129.2, 125.9, 124.6 (q, J = 3.8 Hz), 124.1 (q, J = 273.4 Hz), 123.9, 123.3 (q, J = 3.8 Hz), 122.1, 113.0, 68.4; **HRMS** (ESI) Calcd for C₁₇H₁₄F₃O₂ [M+H]⁺ 307.0940; found 307.0943.

(E)-3-((3-(2-Methoxyphenyl)allyl)oxy)benzaldehyde

S8

By following the general procedure **A**, the product **1k** was afforded (0.44 g, 55% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.50–7.42 (m, 4H), 7.28–7.22 (m, 2H), 7.08 (d, J = 16.0 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.44 (dt, J = 16.1, 6.0 Hz, 1H), 4.77 (dd, J = 6.0, 1.5 Hz, 2H), 3.86 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.3, 159.4, 157.0, 137.9, 130.2, 129.3, 129.0, 127.4, 125.4, 124.4, 123.6, 122.3, 120.8, 113.5, 111.0, 69.6, 55.6; **HRMS** (ESI) Calcd for C₁₇H₁₇O₃ [M+H]⁺ 269.1172; found 269.1174.

(E)-3-((3-(2-Fluorophenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **11** was afforded (0.38 g, 49% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.53–7.42 (m, 4H), 7.28–7.20 (m, 2H), 7.11 (td, J = 7.6, 1.3 Hz, 1H), 7.05 (ddd, J = 10.9, 8.2, 1.2 Hz, 1H), 6.91 (d, J = 16.0 Hz, 1H), 6.51 (dt, J = 16.1, 5.7 Hz, 1H), 4.78 (dd, J = 5.7, 1.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 160.5 (d, J = 249.7 Hz), 159.2, 138.0, 130.3, 129.5 (d, J = 8.4 Hz), 127.8 (d, J = 3.6 Hz), 126.5 (d, J = 5.1 Hz), 126.0 (d, J = 3.5 Hz), 124.3 (d, J = 3.5 Hz), 124.2 (d, J = 12.0 Hz), 123.8, 122.2, 115.9 (d, J = 22.0 Hz), 113.3, 69.0; **HRMS** (ESI) Calcd for C₁₆H₁₄FO₂ [M+H]⁺ 257.0972; found 257.0973.

(E)-3-((3-(2-Bromophenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1m** was afforded (0.41 g, 43% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.58–7.53 (m, 2H), 7.51–7.44 (m, 3H), 7.32–7.23 (m, 2H), 7.16–7.08 (m, 2H), 6.35 (dt, J = 15.9, 5.7 Hz, 1H), 4.80 (dd, J = 5.7, 1.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 159.2, 138.0, 136.4, 133.1, 132.4, 130.3, 129.4, 127.7, 127.4, 126.9, 123.9, 123.8, 122.3, 113.4, 68.7; **HRMS** (ESI) Calcd for C₁₆H₁₄BrO₂ [M+H]⁺ 317.0172; found 317.0171.

(E)-3-((3-(3,4-Dimethylphenyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1n** was afforded (0.62 g, 77% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.46–7.38 (m, 3H), 7.24–7.16 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.33 (dt, J = 16.0, 5.9 Hz, 1H), 4.69 (d, J = 5.8 Hz, 2H), 2.23 (s, 3H), 2.22 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.3, 159.4, 137.9, 136.9, 136.8, 134.0, 133.8, 130.2, 130.0, 128.0, 124.2, 123.7, 122.5, 122.3, 113.4, 69.2, 19.9, 19.7; **HRMS** (ESI) Calcd for C₁₈H₁₈NaO₂ [M+Na]⁺ 289.1199; found 289.1199.

3-(Allyloxy)benzaldehyde

By following the general procedure **A**, the product **10** was afforded (0.35 g, 71% yield). **1H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.50–7.36 (m, 3H), 7.23–7.15 (m, J = 7.0, 2.3 Hz, 1H), 6.12–5.99 (m, 1H), 5.43 (dd, J = 17.3, 1.8 Hz, 1H), 5.31 (dd, J = 10.6, 1.7 Hz, 1H), 4.62–4.56 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.1, 159.2, 137.8, 132.7, 130.1, 123.6, 122.1, 118.1, 113.2, 69.0; **HRMS** (ESI) Calcd for C₁₀H₁₁O₂ [M+H]⁺ 163.0754; found 163.0737.

(E)-3-((3-(Trimethylsilyl)allyl)oxy)benzaldehyde

By following the general procedure **A**, the product **1p** was afforded (0.48 g, 68% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.47–7.40 (m, 2H), 7.38 (d, J = 2.2 Hz, 1H), 7.19 (dt, J = 6.7, 2.5 Hz, 1H), 6.21 (dt, J = 18.8, 4.4 Hz, 1H), 6.08 (d, J = 18.8 Hz, 1H), 4.60 (d, J = 4.5 Hz, 2H), 0.09 (s, 9H); **¹SC NMR** (101 MHz, CDCl₃) δ 192.3, 159.4, 139.8, 137.9, 133.7, 130.2, 123.6, 122.2, 113.4, 70.9, -1.33 (3C); **HRMS** (ESI) Calcd for $C_{13}H_{17}O_2Si$ [M-H]⁻ 233.1003; found 233.1033.

3-((2-((Benzyloxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1q** was afforded (0.86 g, 76% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.95 (s, 1H), 7.48–7.40 (m, 3H), 7.36–7.26 (m, 5H), 7.19 (ddd, J = 7.6, 2.7, 1.7 Hz, 1H), 5.38–5.35 (m, 1H), 5.34–5.32 (m, 1H), 4.64 (s, 2H), 4.54 (s, 2H), 4.13 (s, 2H); **¹³C NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 141.0, 138.1, 137.9, 130.2, 128.5 (2C), 127.8 (3C), 123.6, 122.1, 115.6, 113.5, 72.4, 70.8, 68.8; **HRMS** (ESI) Calcd for C₁₈H₁₉O₃ [M+H]⁺ 283.1329; found 283.1328.

3-((2-(([1,1'-Biphenyl]-4-ylmethoxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1r** was afforded (1.01 g, 71% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.61–7.55 (m, 4H), 7.48–7.39 (m, 7H), 7.37–7.32 (m, 1H), 7.23–7.18 (m, 1H), 5.38 (s, 1H), 5.36 (s, 1H), 4.66 (s, 2H), 4.59 (s, 2H), 4.16 (s, 2H); **¹³C NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 141.1, 141.0, 140.8, 137.9, 137.2, 130.2, 128.9 (2C), 128.3 (2C), 127.4, 127.3 (2C), 127.2 (2C), 123.7, 122.1, 115.7, 113.5, 72.1, 70.9, 68.9; **HRMS** (ESI) Calcd for C₂₄H₂₃O₃ [M+H]⁺ 359.1642; found 359.1648.

3-((2-(((4-Bromobenzyl)oxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1s** was afforded (0.99 g, 69% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.49–7.40 (m, 5H), 7.23–7.17 (m, 3H), 5.37 (d, J = 1.6 Hz, 1H), 5.33 (d, J = 1.2 Hz, 1H), 4.63 (s, 2H), 4.48 (s, 2H), 4.12 (s, 2H); **¹SC NMR** (101 MHz, CDCl₃) δ 192.2, 159.2, 140.8, 137.9, 137.1, 131.6 (2C), 130.2, 129.4 (2C), 123.8, 122.1, 121.7, 115.9, 113.3, 71.6, 70.9, 68.8; **HRMS** (ESI) Calcd for C₁₈H₁₈BrO₃ [M+H]⁺ 361.0434; found 361.0433.

3-((2-((Naphthalen-2-ylmethoxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1t** was afforded (0.84 g, 63% yield). **H NMR** (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.84–7.75 (m, 4H), 7.50–7.37 (m, 6H), 7.17 (ddd, J = 7.8, 2.8, 1.4 Hz, 1H), 5.37 (d, J = 1.6 Hz, 1H), 5.35 (s, 1H), 4.69 (s, 2H), 4.64 (s, 2H), 4.16 (s, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 141.0, 137.9, 135.6, 133.3, 133.1, 130.2, 128.3, 128.0, 127.8, 126.6, 126.3, 126.0, 125.8, 123.6, 122.0, 115.7, 113.6, 72.5, 70.8, 68.8; **HRMS** (ESI) Calcd for C₂₂H₂₁O₃ [M+H]⁺ 333.1485; found 333.1487.

3-((2-((Thiophen-2-ylmethoxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1u** was afforded (0.61 g, 52% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.49–7.39 (m, 3H), 7.28 (dd, J = 5.0, 1.3 Hz, 1H), 7.19 (ddd, J = 7.4, 2.7, 1.7 Hz, 1H), 7.02–6.95 (m, 2H), 5.37 (d, J = 1.6 Hz, 1H), 5.32 (d, J = 1.2 Hz, 1H), 4.70 (s, 2H), 4.62 (s, 2H), 4.13 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 140.8 (2C), 137.9, 130.2, 126.8, 126.7, 126.1, 123.6, 122.1, 115.8, 113.6, 70.4, 68.8, 66.7; **HRMS** (ESI) Calcd for C₁₆H₁₇O₃S [M+H]⁺ 289.0893; found 289.0891.

3-((2-((Cyclobutylmethoxy)methyl)allyl)oxy)benzaldehyde

By following the general procedure **B**, the product **1v** was afforded (0.49 g, 47% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.49–7.39 (m, 3H), 7.24–7.18 (m, 1H), 5.35–5.31 (m, 1H), 5.30–5.26 (m, 1H), 4.61 (s, 2H), 4.07 (s, 2H), 3.42 (d, J = 6.8 Hz, 2H), 2.65–2.52 (m, 1H), 2.10–2.00 (m, 2H), 1.97–1.81 (m, 2H), 1.80–1.68 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 159.3, 141.3, 137.8, 130.1, 123.6, 122.1, 115.1, 113.5, 75.1, 71.7, 68.8, 35.2, 25.2 (2C), 18.7; **HRMS** (ESI) Calcd for C₁₆H₂₁O₃ [M+H]⁺ 261.1485; found 261.1488.

(E)-3-(Cinnamyloxy)-4-fluorobenzaldehyde

By following the general procedure **A**, the product **1w** was afforded (0.53 g, 69% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.57 (dd, J = 8.0, 2.0 Hz, 1H), 7.46 (ddd, J = 8.2, 4.5, 2.0 Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.30–7.22 (m, 2H), 6.78 (d, J = 15.9 Hz, 1H), 6.42 (dt, J = 15.9, 6.0 Hz, 1H), 4.84 (d, J = 5.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 190.8, 156.9 (d, J = 257.5 Hz), 147.7 (d, J = 11.3 Hz), 136.2, 134.4, 133.3 (d, J = 3.2 Hz), 128.8 (2C), 128.3, 126.8 (2C), 125.6 (d, J = 8.4 Hz), 123.1, 116.9 (d, J = 19.7 Hz), 113.7 (d, J = 3.6 Hz), 70.1; **HRMS** (ESI) Calcd for $C_{16}H_{14}FO_2$ [M+H]⁺ 257.0972; found 257.0970.

(E)-4-Chloro-3-(cinnamyloxy)benzaldehyde

By following the general procedure **A**, the product **1x** was afforded (0.42 g, 51% yield). **1H NMR** (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.49 (d, J = 1.7 Hz, 1H), 7.45–7.39 (m, 3H), 7.34 (t, J = 7.4 Hz, 2H), 7.30–7.24 (m, 1H), 6.81 (d, J = 16.0 Hz, 1H), 6.43 (dt, J = 16.0, 5.7 Hz, 1H), 4.86 (dd, J = 5.8, 1.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 191.1, 154.9, 136.3, 136.1, 134.0, 131.1, 130.4, 128.8 (2C), 128.3, 126.8 (2C), 124.6, 123.1, 111.9, 69.9; **HRMS** (ESI) Calcd for C₁₆H₁₄ClO₂ [M+H]⁺ 273.0677; found 273.0669.

(E)-3-(Cinnamyloxy)-5-methoxybenzaldehyde

By following the general procedure **A**, the product **1y** was afforded (0.55 g, 68% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.41 (d, J = 6.8 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.30–7.23 (m, 1H), 7.09–7.05 (m, 1H), 7.04–7.01 (m, 1H), 6.79–6.71 (m, 2H), 6.40 (dt, J = 15.9, 5.8 Hz, 1H), 4.73 (dd, J = 5.9, 1.5 Hz, 2H), 3.84 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.1, 161.4, 160.3, 138.5, 136.3, 133.7, 128.8 (2C), 128.2, 126.7 (2C), 123.7, 108.1, 108.0, 107.4, 69.1, 55.8; **HRMS** (ESI) Calcd for C₁₇H₁₇O₃ [M+H]⁺ 269.1172; found 269.1164.

(E)-3-(Cinnamyloxy)-5-fluorobenzaldehyde

By following the general procedure **A**, the product **1z** was afforded (0.42 g, 54% yield). **¹H NMR** (400 MHz, CDCl₃) δ 9.90 (d, J = 1.6 Hz, 1H), 7.43–7.38 (m, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.29–7.23 (m, 2H), 7.16 (ddd, J = 7.9, 2.4, 1.3 Hz, 1H), 6.92 (dt, J = 10.0, 2.4 Hz, 1H), 6.74 (d, J = 15.9 Hz, 1H), 6.37 (dt, J = 16.0, 5.8 Hz, 1H), 4.72 (dd, J = 5.9, 1.5 Hz, 2H); **¹³C NMR** (101 MHz, CDCl₃) δ 190.8 (d, J = 2.8 Hz), 163.8 (d, J = 248.8 Hz), 160.5 (d, J = 10.6 Hz), 138.8 (d, J = 8.0 Hz), 136.1, 134.0, 128.8 (2C), 128.3, 126.7 (2C), 123.1, 111.0 (d, J = 2.7 Hz), 109.1 (d, J = 22.5 Hz), 108.9 (d, J = 25.2 Hz), 69.4; **HRMS** (ESI) Calcd for C₁₆H₁₂FO₂ [M-H]⁻ 255.0827; found 255.0834.

(E)-3-(Cinnamyloxy)-4,5-difluorobenzaldehyde

By following the general procedure **A**, the product **1za** was afforded (0.34 g, 41% yield).
¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.42 (d, J = 6.9 Hz, 2H), 7.40–7.27 (m, 5H), 6.78 (d, J = 15.9 Hz, 1H), 6.41 (dt, J = 15.9, 6.0 Hz, 1H), 4.86 (d, J = 5.9 Hz, 2H);
¹³**C NMR** (101 MHz, CDCl₃) δ 189.7 (d, J = 2.5 Hz), 151.3 (dd, J = 251.0, 11.6 Hz), 149.13 (d, J = 5.5 Hz), 145.7 (dd, J = 257.1, 11.9 Hz), 136.0, 134.8, 131.8 (dd, J = 6.1, 3.9 Hz), 128.8 (2C), 128.5, 126.9 (2C), 122.6, 112.0 (d, J = 18.3 Hz), 110.0 (d, J = 2.5 Hz), 70.7; **HRMS** (ESI) Calcd for C₁₆H₁₁F₂O₂ [M-H]⁻ 273.0733; found 273.0736.

4. General Procedure for the Construction via Rh-Catalyzed Enantioselective Twofold C-H Activation

To a 25 mL of Schlenk tube equipped with a magnetic stirring bar were added substrates 1 (0.15 mmol), 2 (0.375 mmol), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (0.225 mmol) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, chiral amine (50 mol%), HFIP (0.9 mL) and DCE (0.9 mL) were added subsequently. After stirring at 60 °C for 36 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10 : 1) as the eluent to give the corresponding products 3.

5. Characterization of Products

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1a** (36.0 mg, 0.15 mmol) with **2a** (61.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.6 mg, 0.225 mmol), AgSbF₆ (11.5 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3aa** (46.6 mg, 87% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.88 (s, 1H), 9.57 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.02 (d, J = 7.0 Hz, 2H), 7.60–7.47 (m, 3H), 7.36–

7.27 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.10–7.03 (m, 2H), 4.58–4.47 (m, 2H), 4.00–3.91 (m, 1H), 2.99 (dd, J = 13.6, 8.0 Hz, 1H), 2.90 (dd, J = 13.6, 7.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 165.8, 155.7, 137.9, 134.94, 134.85, 134.7, 132.0, 129.4 (2C), 129.0 (2C), 128.9 (2C), 127.5 (2C), 127.3, 120.9, 118.9, 117.7, 76.9, 43.0, 42.6; **HRMS** (ESI) Calcd for C₂₃H₂₀NO₃ [M+H]⁺ 358.1438; found 358.1436; [α]¹⁸_D = -24.7 (c = 0.4, CHCl₃); HPLC analysis: ee = 91%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 13.3 min, t_{major} = 18.4 min.

(S)-N-(4-Formyl-3-(4-methylbenzyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1b** (38.0 mg, 0.15 mmol) with **2a** (60.6 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (11.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ba** (41.4 mg, 74% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.90 (s, 1H), 9.70 (s, 1H), 8.82 (d, J = 8.9 Hz, 1H), 8.07–8.03 (m, 2H), 7.59–7.49 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 6.97 (d, J = 7.9 Hz, 2H), 4.54 (dd, J = 9.0, 2.1 Hz, 1H), 4.49 (dd, J = 9.0, 7.1 Hz, 1H), 3.96 (qd, J = 7.4, 2.0 Hz, 1H), 2.97–2.85 (m, 2H), 2.34 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.5, 165.8, 155.7, 136.9, 135.2, 134.9, 134.8 (2C), 132.0, 129.7 (2C), 129.3 (2C), 128.9 (2C), 127.5 (2C), 120.9, 118.9, 117.7, 76.8, 43.0, 42.3, 21.2; **HRMS** (ESI) Calcd for C₂₄H₂₂NO₃ [M+H]⁺ 372.1594; found 372.1623; [α]¹⁸_D = -52.0 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 16.1 min, t_{major} = 20.0 min.

(S)-N-(3-(4-Fluorobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1c** (38.6 mg, 0.15 mmol) with **2a** (60.6 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.5 mg, 0.225 mmol), AgSbF₆ (11.0 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ca** (40.7 mg, 72% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.86 (s, 1H), 9.70 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 7.4 Hz, 2H), 7.60–7.49 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.07–6.96 (m, 4H), 4.56–4.46 (m, 2H), 4.01–3.91 (m, 1H), 3.00–2.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 165.9, 162.1 (d, J = 246.1 Hz), 155.7, 135.0, 134.71, 134.70, 133.6 (d, J = 3.3 Hz), 132.1, 130.9 (d, J = 8.0 Hz, 2C), 129.0

(2C), 127.5 (2C), 121.1, 118.8, 117.8, 115.9 (d, J = 21.4 Hz, 2C), 76.7, 42.9, 41.7; **HRMS** (ESI) Calcd for $C_{23}H_{19}FNO_3$ [M+H]⁺ 376.1343; found 376.1335; $[\alpha]^{18}_D = -44.2$ (c = 0.4, CHCl₃); HPLC analysis: ee = 91%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) $t_{minor} = 17.0$ min, $t_{major} = 21.5$ min.

(S)-N-(3-(4-Chlorobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1d** (41.0 mg, 0.15 mmol) with **2a** (60.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (10.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3da** (45.4 mg, 77% yield). Yellow solid; **1H NMR** (400 MHz, CDCl₃) δ 11.85 (s, 1H), 9.80 (s, 1H), 8.81 (d, J = 9.0 Hz, 1H), 8.08–8.01 (m, 2H), 7.60–7.49 (m, 3H), 7.30–7.25 (m, 2H), 7.14 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 8.1 Hz, 2H), 4.52–4.45 (m, 2H), 4.01–3.92 (m, 1H), 2.91 (d, J = 7.5 Hz, 2H); **13C NMR** (101 MHz, CDCl₃) δ 192.2, 165.8, 155.7, 136.3, 135.0, 134.7, 134.6, 133.2, 132.1, 130.7 (2C), 129.1 (2C), 129.0 (2C), 127.5 (2C), 121.2, 118.7, 117.9, 76.5, 42.6, 41.8; **HRMS** (ESI) Calcd for C₂₃H₁₉ClNO₃ [M+H]⁺ 392.1048; found 392.1037; [α]¹⁸_D = -49.4 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 17.2 min, t_{major} = 21.3 min.

(S)-N-(4-Formyl-3-(4-(trifluoromethyl)benzyl)-2, 3-dihydrobenzofuran-5-yl) benzamide

By following the general procedure, the reaction of **1e** (46.6 mg, 0.15 mmol) with **2a** (60.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.6 mg, 0.225 mmol), AgSbF₆ (11.3 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.1 mg, 0.045 mmol) afforded **3ea** (42.2 mg, 66% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 11.83 (s, 1H), 9.88 (s, 1H), 8.82 (dd, J = 9.0, 1.5 Hz, 1H), 8.06–8.00 (m, 2H), 7.61–7.49 (m, 5H), 7.22 (d, J = 7.9 Hz, 2H), 7.15 (dd, J = 9.0, 1.6 Hz, 1H), 4.52–4.44 (m, 2H), 4.08–3.99 (m, 1H), 3.07–2.94 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.0, 165.9, 155.7, 142.0, 135.1, 134.6, 134.4, 132.1, 129.7 (2C), 129.6 (q, J = 32.6 Hz), 129.0 (2C), 127.5 (2C), 125.9 (q, J = 3.8 Hz, 2C), 124.2 (q, J = 272.1 Hz), 121.3, 118.6, 118.0, 76.2, 42.4, 42.2; **HRMS** (ESI) Calcd for C₂₄H₁₉F₃NO₃ [M+H]⁺ 426.1312; found 426.1330; [α]¹⁸_D = -

68.9 (c = 0.4, CHCl₃); HPLC analysis: ee = 92%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) $t_{minor} = 12.1$ min, $t_{major} = 14.4$ min.

(S)-N-(4-Formyl-3-(3-methoxybenzyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1f** (40.7 mg, 0.15 mmol) with **2a** (60.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (11.1 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.3 mg, 0.045 mmol) afforded **3fa** (43.6 mg, 75% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.90 (s, 1H), 9.62 (s, 1H), 8.83 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 6.6 Hz, 2H), 7.60–7.48 (m, 3H), 7.23 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 9.0 Hz, 1H), 6.83 (dd, J = 8.2, 2.6 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 6.59 (s, 1H), 4.58–4.48 (m, 2H), 3.96 (qd, J = 7.5, 2.3 Hz, 1H), 3.76 (s, 3H), 3.00–2.84 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.5, 165.8, 160.1, 155.7, 139.5, 135.0, 134.9, 134.8, 132.1, 130.1, 128.9 (2C), 127.5 (2C), 121.7, 121.0, 119.0, 117.7, 115.3, 112.5, 76.9, 55.3, 42.9, 42.7; **HRMS** (ESI) Calcd for C₂4H₂2NO₄ [M+H]⁺ 388.1543; found 388.1542; [α]¹⁸_D = -52.0 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 14.9 min, t_{major} = 21.2 min.

(S)-N-(4-Formyl-3-(3-methylbenzyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1g** (38.7 mg, 0.15 mmol) with **2a** (61.7 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), KH₂PO₄ (30.5 mg, 0.225 mmol), AgSbF₆ (11.0 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ga** (40.4 mg, 73% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.90 (s, 1H), 9.58 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 6.2 Hz, 2H), 7.59–7.47 (m, 3H), 7.20 (t, J = 7.7 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.90–6.84 (m, 2H), 4.57–4.46 (m, 2H), 3.99–3.89 (m, 1H), 2.98–2.82 (m, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 165.8, 155.7, 138.7, 137.9, 135.1, 134.9, 134.8, 132.0, 130.2, 128.9 (3C), 128.0, 127.5 (2C), 126.4, 120.9, 119.0, 117.7, 76.9, 43.1, 42.6, 21.5; HRMS (ESI) Calcd for C₂₄H₂₂NO₃ [M+H]⁺ 372.1594; found 372.1607; [α]¹⁸_D = -48.1 (c = 0.4, CHCl₃); HPLC analysis: ee = 88%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 14.8 min, t_{major} = 20.2 min.

(S)-N-(3-(3-Fluorobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1h** (39.3 mg, 0.15 mmol) with **2a** (62.0 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (11.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.6 mg, 0.045 mmol) afforded **3ha** (39.6 mg, 70% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 11.85 (s, 1H), 9.70 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 6.8 Hz, 2H), 7.59–7.48 (m, 3H), 7.31–7.23 (m, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.01–6.94 (m, 1H), 6.87–6.78 (m, 2H), 4.54–4.46 (m, 2H), 4.02–3.93 (m, 1H), 3.00–2.87 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.2, 165.8, 163.1 (d, J = 247.2 Hz), 155.7, 140.4 (d, J = 7.1 Hz), 135.0, 134.7, 134.5, 132.1, 130.6 (d, J = 8.3 Hz), 128.9 (2C), 127.5 (2C), 125.1 (d, J = 3.0 Hz), 121.2, 118.8, 117.9, 116.2 (d, J = 21.1 Hz), 114.2 (d, J = 21.0 Hz), 76.6, 42.6, 42.2 (d, J = 1.8 Hz); **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1329; [α]¹⁸_D = -65.0 (c = 0.4, CHCl₃); HPLC analysis: ee = 92%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 17.5 min, t_{major} = 22.1 min.

(S)-N-(3-(3-Chlorobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1i** (41.0 mg, 0.15 mmol) with **2a** (60.9 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.4 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (13.5 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ia** (50.2 mg, 85% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 11.87 (s, 1H), 9.73 (s, 1H), 8.84 (d, J = 9.0 Hz, 1H), 8.07–8.01 (m, 2H), 7.60–7.49 (m, 3H), 7.30–7.22 (m, 2H), 7.17 (d, J = 9.0 Hz, 1H), 7.12–7.09 (m, 1H), 6.95 (dt, J = 6.9, 1.7 Hz, 1H), 4.54–4.48 (m, 2H), 4.02–3.94 (m, 1H), 2.99–2.87 (m, 2H); **¹³C NMR** (101 MHz, CDCl₃) δ 192.2, 165.9, 155.7, 139.9, 135.1, 134.9, 134.7, 134.5, 132.1, 130.3, 129.5, 129.0 (2C), 127.6, 127.5 (3C), 121.3, 118.8, 118.0, 76.6, 42.7, 42.1; **HRMS** (ESI) Calcd for C₂₃H₁₉ClNO₃ [M+H]⁺ 392.1048; found 392.1036; [α]¹⁸_D = -7.8 (c = 0.2, CHCl₃); HPLC analysis: ee = 93%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 17.0 min, t_{maior} = 22.0 min.

(S)-*N*-(4-Formyl-3-(3-(trifluoromethyl)benzyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of $\bf 1j$ (46.0 mg, 0.15 mmol) with $\bf 2a$ (61.9 mg, 0.375 mmol), $[Cp*RhCl_2]_2$ (4.6 mg, 0.0075 mmol), KH_2PO_4 (31.5 mg, 0.225 mmol), $AgSbF_6$ (10.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL , 0.075 mmol), and N-Phthaloyl-L-Phenylalanine (13.4 mg, 0.045 mmol) afforded $\bf 3ja$ (39.0 mg, 61% yield). Yellow solid; $\bf ^1H$ NMR (400 MHz, CDCl₃) δ 11.82 (s, 1H), 9.69 (s, 1H), 8.84 (d, $\it J=9.0$ Hz, 1H), 8.05–8.00 (m, 2H), 7.60–7.49 (m, 4H), 7.45 (t, $\it J=7.7$ Hz, 1H), 7.31–7.26 (m, 2H), 7.18 (d, $\it J=9.0$ Hz, 1H), 4.56–4.49 (m, 2H), 4.05–3.97 (m, 1H), 3.09–2.96 (m, 2H); $\bf ^{13}C$ NMR (101 MHz, CDCl₃) δ 191.9, 165.9, 155.6, 138.8, 135.1, 134.7, 134.2, 132.8, 132.1, 131.4 (q, $\it J=32.3$ Hz), 129.5, 129.0 (2C), 127.5 (2C), 126.2 (q, $\it J=3.7$ Hz), 124.2 (q, $\it J=3.8$ Hz), 124.0 (q, $\it J=273.8$ Hz), 121.4, 118.8, 118.0, 76.5, 42.6, 42.1; HRMS (ESI) Calcd for $C_{24}H_{19}F_3NO_3$ [M+H]⁺ 426.1312; found 426.1324; $[\alpha]^{18}D = -15.6$ (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 9.9 min, t_{major} = 11.1 min.

(S)-N-(4-Formyl-3-(2-methoxybenzyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1k** (41.1 mg, 0.15 mmol) with **2a** (61.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (11.0 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.4 mg, 0.045 mmol) afforded **3ka** (29.8 mg, 51% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 1H), 9.90 (s, 1H), 8.81 (d, J = 8.9 Hz, 1H), 8.05 (d, J = 6.5 Hz, 2H), 7.57–7.49 (m, 3H), 7.33–7.27 (m, 1H), 7.15 (d, J = 9.0 Hz, 1H), 6.98 (dd, J = 7.3, 1.8 Hz, 1H), 6.89 (t, J = 7.7 Hz, 2H), 4.56 (dd, J = 9.0, 1.7 Hz, 1H), 4.49–4.43 (m, 1H), 4.12–4.05 (m, 1H), 3.86 (s, 3H), 2.95 (dd, J = 13.2, 6.1 Hz, 1H), 2.88 (dd, J = 13.3, 8.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 165.8, 157.8, 155.7, 136.1, 134.9, 134.8, 132.0, 131.2, 128.9 (2C), 128.8, 127.5 (2C), 126.6, 120.8, 120.7, 119.0, 117.5, 110.5, 77.0, 55.5, 40.8, 38.2; HRMS (ESI) Calcd for C₂₄H₂₂NO₄ [M+H]⁺ 388.1543; found 388.1547; [α]¹⁸_D = +50.7 (c = 0.4, CHCl₃); HPLC analysis: ee = 73%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 11.7 min, t_{major} = 15.7 min.

(S)-N-(3-(2-Fluorobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **11** (38.6 mg, 0.15 mmol) with **2a** (60.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (11.3 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3la** (35.8 mg, 64% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.91 (s, 1H), 9.85 (s, 1H), 8.84 (d, J = 9.0 Hz, 1H), 8.06–8.01 (m, 2H), 7.59–7.49 (m, 3H), 7.32–7.25 (m, 1H), 7.17 (d, J = 9.0 Hz, 1H), 7.12–7.04 (m, 2H), 7.01 (td, J = 7.4, 1.8 Hz, 1H), 4.55 (dd, J = 9.1, 1.9 Hz, 1H), 4.49 (dd, J = 9.1, 7.1 Hz, 1H), 4.10–4.02 (m, 1H), 2.97 (d, J = 7.5 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.6, 165.8, 161.6 (d, J = 245.3 Hz), 155.6, 135.1, 135.0, 134.8, 132.1, 131.7 (d, J = 4.6 Hz), 129.3 (d, J = 8.2 Hz), 129.0 (2C), 127.5 (2C), 125.1 (d, J = 15.5 Hz), 124.6 (d, J = 3.6 Hz), 121.1, 118.8, 117.8, 115.8 (d, J = 21.6 Hz), 76.7, 41.3 (d, J = 1.8 Hz), 36.4; **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1320; [α]¹⁸_D = -15.6 (c = 0.4, CHCl₃); HPLC analysis: ee = 85%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 16.8 min, t_{major} = 18.8 min.

(S)-N-(3-(2-Bromobenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1m** (48.1 mg, 0.15 mmol) with **2a** (60.7 mg, 0.375 mmol), [Cp*RhCl₂]₂ (5.0 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (10.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ma** (28.9 mg, 44% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.90 (s, 1H), 9.72 (d, J = 0.7 Hz, 1H), 8.84 (d, J = 9.0 Hz, 1H), 8.05–8.00 (m, 2H), 7.60 (dd, J = 7.8, 1.5 Hz, 1H), 7.58–7.48 (m, 3H), 7.25–7.14 (m, 3H), 6.97 (dd, J = 7.4, 1.9 Hz, 1H), 4.56 (dd, J = 9.1, 1.6 Hz, 1H), 4.49 (dd, J = 9.0, 7.1 Hz, 1H), 4.22–4.14 (m, 1H), 3.09 (dd, J = 13.5, 8.3 Hz, 1H), 3.01 (dd, J = 13.5, 7.6 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.8, 165.8, 155.7, 137.2, 135.0, 134.9, 134.8, 133.4, 132.3, 132.1, 129.2, 128.9 (2C), 127.9, 127.5 (2C), 125.0, 121.1, 119.1, 117.7, 76.5, 42.5, 40.4; **HRMS** (ESI) Calcd for C₂₃H₁₉BrNO₃ [M+H]⁺ 436.0543; found 436.0570; [α]¹⁸_D = +55.5 (c = 0.4, CHCl₃); HPLC analysis: ee = 83%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 16.5 min, t_{major} = 22.4 min.

(S)-N-(3-(3,4-Dimethylbenzyl)-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1n** (40.1 mg, 0.15 mmol) with **2a** (62.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (11.3 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.3 mg, 0.045 mmol) afforded **3na** (33.6 mg, 58% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 11.91 (s, 1H), 9.72 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.07–8.00 (m, 2H), 7.60–7.48 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 6.87–6.80 (m, 2H), 4.54 (dd, J = 9.0, 2.0 Hz, 1H), 4.48 (dd, J = 9.0, 7.2 Hz, 1H), 3.99–3.90 (m, 1H), 2.87 (d, J = 7.7 Hz, 2H), 2.25 (s, 3H), 2.22 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.7, 165.8, 155.7, 137.3, 135.5, 135.34, 135.32, 134.9, 134.8, 132.0, 130.7, 130.2, 128.9 (2C), 127.5 (2C), 126.7, 120.9, 118.9, 117.7, 76.8, 43.1, 42.3, 19.9, 19.6; **HRMS** (ESI) Calcd for C₂₅H₂₄NO₃ [M+H]⁺ 386.1751; found 386.1775; [α]¹⁸_D = +26.0 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 15.1 min, t_{major} = 20.1 min.

(S)-N-(4-Formyl-3-methyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following a modified procedure at 70 °C for 24 h, the reaction of **1o** (25.6 mg, 0.15 mmol) with **2a** (61.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (31.1 mg, 0.225 mmol), AgSbF₆ (13.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.3 mg, 0.045 mmol) afforded **3oa** (12.7 mg, 30% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1H), 10.26 (s, 1H), 8.79 (d, J = 9.0 Hz, 1H), 8.08–8.03 (m, 2H), 7.60–7.50 (m, 3H), 7.13 (d, J = 8.9 Hz, 1H), 4.66 (t, J = 8.4 Hz, 1H), 4.36 (dd, J = 8.8, 2.7 Hz, 1H), 3.99–3.89 (m, 1H), 1.43 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 165.9, 155.5, 137.3, 135.1, 134.8, 132.1, 129.0 (2C), 127.5 (2C), 120.9, 118.4, 117.8, 79.1, 35.7, 23.2; HRMS (ESI) Calcd for C₁₇H₁₆NO₃ [M+H]⁺ 282.1125; found 282.1123; [α]¹⁸_D = +5.3 (c = 0.2, CHCl₃); HPLC analysis: ee = 49%; CHIRALPAK®IG (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 21.1 min, t_{major} = 22.2 min.

$(S) \hbox{-} N \hbox{-} (4 \hbox{-} Formyl \hbox{-} 3 \hbox{-} ((trimethyl silyl) methyl) \hbox{-} 2, 3 \hbox{-} dihydrobenzo furan-5-yl) benzamide }$

By following a modified procedure at 70 °C for 24 h, the reaction of **1p** (36.8 mg, 0.15 mmol) with **2a** (62.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.9 mg, 0.0075 mmol), KH₂PO₄ (31.1 mg, 0.225 mmol), AgSbF₆ (12.6 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3pa** (21.2 mg, 40% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1H), 10.22 (s, 1H), 8.77 (d, J = 9.0 Hz, 1H), 8.05 (dd, J = 8.1, 1.7 Hz, 2H), 7.60–7.50 (m, 3H), 7.11 (d, J = 9.0 Hz, 1H), 4.59 (t, J = 8.2 Hz, 1H), 4.35 (dd, J = 8.7, 2.5 Hz, 1H), 4.01–3.93 (m, 1H), 1.26–1.19 (m, 1H), 0.93–0.87 (m, 1H), 0.07 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 165.8, 155.2, 138.9, 135.2, 134.9, 132.1, 129.0 (2C), 127.5 (2C), 120.6, 117.9, 117.7, 78.3, 37.3, 27.0, -0.9 (3C); HRMS (ESI) Calcd for C₂₀H₂₄NO₃Si [M+H]⁺ 354.1520; found 354.1522; [α]¹⁸_D = +8.4 (c = 0.2, CHCl₃); HPLC analysis: ee = 70%; CHIRALPAK®AD-H (90% hexanes: 10% isopropanol, 1 mL/min) t_{minor} = 8.4 min, t_{major} = 9.9 min.

(S)-N-(3-((Benzyloxy)methyl)-4-formyl-3-methyl-2, 3-dihydrobenzofuran-5-vl) benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1q** (43.5 mg, 0.15 mmol) with **2a** (61.7 mg, 0.375 mmol), [Cp*RhCl₂]₂ (5.2 mg, 0.0075 mmol), AgSbF₆ (11.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.6 mg, 0.075 mmol) afforded **3qa** (38.7 mg, 64% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 12.14 (s, 1H), 10.42 (s, 1H), 8.82 (d, J = 9.1 Hz, 1H), 8.06 (dd, J = 8.0, 1.7 Hz, 2H), 7.58–7.52 (m, 3H), 7.35–7.27 (m, 3H), 7.25–7.20 (m, 2H), 7.12 (d, J = 9.0 Hz, 1H), 4.55 (d, J = 12.2 Hz, 1H), 4.51–4.46 (m, 2H), 4.19 (d, J = 8.8 Hz, 1H), 3.60 (s, 2H), 1.61 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 194.5, 166.0, 156.4, 137.5, 135.8, 135.4, 135.0, 132.0, 129.0 (2C), 128.6 (2C), 128.1, 127.8 (2C), 127.6 (2C), 121.7, 120.5, 117.9, 81.2, 76.0, 73.7, 48.9, 24.3; **HRMS** (ESI) Calcd for C₂₅H₂₃NO₄ [M+H]⁺ 402.1700; found 402.1701; [α]¹⁸_D = +21.4 (c = 0.2, CHCl₃); HPLC analysis: ee = 86%; CHIRALPAK®IG (80% hexanes: 20% isopropanol, 1 mL/min) t_{major} = 14.7 min, t_{minor} = 15.4 min.

(S)-N-(3-(([1,1'-Biphenyl]-4-ylmethoxy)methyl)-4-formyl-3-methyl-2,3-dihydrobenzofuran-5-yl) benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1r** (54.2 mg, 0.15 mmol) with **2a** (61.2 mg, 0.375 mmol), [Cp*RhCl₂]₂ (5.0 mg, 0.0075 mmol), AgSbF₆ (10.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.4 mg, 0.075 mmol) afforded **3ra** (30.9 mg, 43% yield). Yellow solid; ¹H **NMR** (400 MHz, CDCl₃) δ 12.14 (s, 1H), 10.44 (s, 1H), 8.84 (d, J = 9.0 Hz, 1H), 8.07–8.02 (m, 2H), 7.59–7.49 (m, 7H), 7.45–7.39 (m, 2H), 7.36–7.31 (m, 1H), 7.28 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 9.1 Hz, 1H), 4.59 (d, J = 12.2 Hz, 1H), 4.52 (dd, J = 10.7, 1.8 Hz, 2H), 4.20 (d, J = 8.8 Hz, 1H), 3.64 (s, 2H), 1.62 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 194.4, 165.9, 156.4, 140.9, 140.8, 136.5, 135.7, 135.4, 134.9, 132.0, 128.92 (2C), 128.88 (2C), 128.3 (2C), 127.51 (2C), 127.47, 127.3 (2C), 127.2 (2C), 121.7, 120.5, 117.9, 81.1, 76.0, 73.4, 48.9, 24.3; **HRMS** (ESI) Calcd for C₃₁H₂₈NO₄ [M+H]⁺ 478.2013; found 478.2016; [α]¹⁸D = +37.5 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IG (70% hexanes: 30% isopropanol, 1 mL/min) t_{major} = 14.3 min, t_{minor} = 16.4 min.

(S)-N-(3-(((4-Bromobenzyl)oxy)methyl)-4-formyl-3-methyl-2,3-dihydrobenzofuran-5-yl) benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1s** (53.6 mg, 0.15 mmol) with **2a** (61.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (5.1 mg, 0.0075 mmol), AgSbF₆ (11.1 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.6 mg, 0.075 mmol) afforded **3sa** (36.5 mg, 51% yield). Yellow solid; ¹H **NMR** (400 MHz, CDCl₃) δ 12.13 (s, 1H), 10.41 (s, 1H), 8.83 (d, J = 9.0 Hz, 1H), 8.08–8.03 (m, 2H), 7.58–7.50 (m, 3H), 7.45 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 9.1 Hz, 1H), 7.11–7.07 (m, 2H), 4.49–4.40 (m, 3H), 4.19 (d, J = 8.9 Hz, 1H), 3.59 (s, 2H), 1.61 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 194.3, 165.9, 156.4, 136.5, 135.5, 135.4, 134.9, 132.0, 131.7 (2C), 129.4 (2C), 128.9 (2C), 127.5 (2C), 121.9, 121.7, 120.5, 117.9, 81.0, 76.2, 72.9, 48.8, 24.2; **HRMS** (ESI) Calcd for C₂₅H₂₃BrNO₄ [M+H]⁺ 480.0805; found 480.0809; [α]¹⁸_D = +20.8 (c = 0.2, CHCl₃); HPLC analysis: ee = 87%; CHIRALPAK®IG (80% hexanes: 20% isopropanol, 1 mL/min) t_{major} = 13.1 min, t_{minor} = 13.8 min.

(S)-*N*-(4-Formyl-3-methyl-3-((naphthalen-2-ylmethoxy)methyl)-2,3-dihydrobenzofuran-5-yl)benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1t** (49.2 mg, 0.15 mmol) with **2a** (61.3 mg, 0.375 mmol), [Cp*RhCl₂]₂ (5.3 mg, 0.0075 mmol), AgSbF₆ (11.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.6 mg, 0.075 mmol) afforded **3ta** (31.4 mg, 46% yield). Yellow solid; ¹H **NMR** (400 MHz, CDCl₃) δ 12.12 (s, 1H), 10.42 (s, 1H), 8.83 (d, J = 9.0 Hz, 1H), 8.07–8.01 (m, 2H), 7.82–7.74 (m, 3H), 7.63 (s, 1H), 7.60–7.50 (m, 3H), 7.48–7.42 (m, 2H), 7.32 (dd, J = 8.4, 1.7 Hz, 1H), 7.12 (d, J = 9.0 Hz, 1H), 4.70 (d, J = 12.3 Hz, 1H), 4.63 (d, J = 12.3 Hz, 1H), 4.50 (d, J = 8.8 Hz, 1H), 4.19 (d, J = 8.8 Hz, 1H), 3.63 (s, 2H), 1.61 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 194.4, 165.9, 156.4, 135.7, 135.4, 134.9 (2C), 133.2, 133.1, 132.0, 128.9 (2C), 128.5, 127.9, 127.8, 127.5 (2C), 126.8, 126.4, 126.2, 125.6, 121.7, 120.5, 117.8, 81.1, 76.0, 73.7, 48.9, 24.3; **HRMS** (ESI) Calcd for C₂₉H₂₆NO₄ [M+H]⁺ 452.1856; found 452.1859; [α]¹⁸D = +19.8 (c = 0.2, CHCl₃); HPLC analysis: ee = 88%; CHIRALPAK®IG (70% hexanes: 30% isopropanol, 1 mL/min) t_{major} = 13.9 min, t_{minor} = 15.2 min.

(S)-N-(4-Formyl-3-methyl-3-((thiophen-2-ylmethoxy)methyl)-2, 3-dihydrobenzofuran-5-yl) benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1u** (43.2 mg, 0.15 mmol) with **2a** (61.3 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), AgSbF₆ (10.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.1 mg, 0.075 mmol) afforded **3ua** (34.0 mg, 56% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 12.16 (s, 1H), 10.42 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.08–8.02 (m, 2H), 7.59–7.50 (m, 3H), 7.28 (dd, J = 4.9, 1.4 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H), 6.97–6.91 (m, 2H), 4.70 (d, J = 12.8 Hz, 1H), 4.65 (d, J = 12.8 Hz, 1H), 4.47 (d, J = 8.9 Hz, 1H), 4.17 (d, J = 8.9 Hz, 1H), 3.61 (s, 2H), 1.59 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 194.5, 165.9, 156.4, 140.3, 135.7, 135.5, 135.0, 132.0, 128.9 (2C), 127.6 (2C), 126.8 (2C), 126.4, 121.7, 120.5, 117.9, 81.1, 75.5, 68.0, 48.8, 24.2; **HRMS** (ESI) Calcd for C₂₃H₂₂NO₄S [M+H]⁺ 408.1264; found 408.1266; [α]¹⁸_D = +16.2 (c = 0.2, CHCl₃); HPLC analysis: ee = 87%; CHIRALPAK®IG (70% hexanes: 30% isopropanol, 1 mL/min) t_{major} = 12.6 min, t_{minor} = 13.5 min.

(S)-N-(3-((Cyclobutylmethoxy)methyl)-4-formyl-3-methyl-2, 3-dihydrobenzofuran-5-yl) benzamide

By following a modified procedure at 50 °C for 36 h, the reaction of **1v** (39.2 mg, 0.15 mmol) with **2a** (61.3 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), AgSbF₆ (11.3 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and MesCO₂H (12.5 mg, 0.075 mmol) afforded **3va** (31.2 mg, 55% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 12.21 (s, 1H), 10.47 (s, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.06 (dd, J = 7.9, 1.7 Hz, 2H), 7.59–7.48 (m, 3H), 7.11 (d, J = 9.0 Hz, 1H), 4.42 (d, J = 8.9 Hz, 1H), 4.18 (d, J = 8.9 Hz, 1H), 3.60–3.49 (m, 2H), 3.44–3.32 (m, 2H), 2.59–2.46 (m, 1H), 2.05–1.93 (m, 2H), 1.93–1.76 (m, 2H), 1.73–1.63 (m, 2H), 1.61 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 195.3, 165.9, 156.3, 136.1, 135.4, 135.0, 131.9, 128.9 (2C), 127.5 (2C), 121.5, 120.7, 117.6, 81.1, 76.8, 76.2, 49.0, 35.0, 25.1, 25.0, 24.1, 18.7; **HRMS** (ESI) Calcd for C₂₃H₂₆NO₄ [M+H]⁺ 380.1856; found 380.1857; [α]¹⁸_D = +17.7 (c = 0.2, CHCl₃); HPLC analysis: ee = 83%; CHIRALPAK®IG (70% hexanes: 30% isopropanol, 1 mL/min) t_{major} = 9.8 min, t_{minor} = 10.7 min.

(S)-N-(3-Benzyl-7-fluoro-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1w** (37.6 mg, 0.15 mmol) with **2a** (62.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.9 mg, 0.0075 mmol), KH₂PO₄ (30.9 mg, 0.225 mmol), AgSbF₆ (11.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.7 mg, 0.045 mmol) afforded **3wa** (39.8 mg, 71% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 12.09 (s, 1H), 9.51 (s, 1H), 8.77 (d, J = 13.3 Hz, 1H), 8.02 (d, J = 6.8 Hz, 2H), 7.60–7.49 (m, 3H), 7.36–7.28 (m, 3H), 7.10–7.05 (m, 2H), 4.65 (dd, J = 9.0, 1.9 Hz, 1H), 4.60 (dd, J = 9.1, 7.1 Hz, 1H), 4.00 (q, J = 7.6 Hz, 1H), 3.02 (dd, J = 13.7, 8.0 Hz, 1H), 2.94 (dd, J = 13.7, 7.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.1, 165.9, 151.9 (d, J = 257.2 Hz), 142.5 (d, J = 12.0 Hz), 138.8 (d, J = 6.4 Hz), 137.5, 136.8 (d, J = 10.4 Hz), 134.3, 132.3, 129.4 (2C), 129.1 (2C), 129.0 (2C), 127.54 (2C), 127.45, 115.2 (d, J = 3.0 Hz), 108.7 (d, J = 24.2 Hz), 78.1, 43.7 (d, J = 1.9 Hz), 42.4; HRMS (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1344; [α]¹⁸_D = -22.1 (c = 0.4, CHCl₃); HPLC analysis: ee = 91%; CHIRALPAK®IG (50% hexanes: 50% isopropanol, 1 mL/min) t_{minor} = 13.5 min, t_{major} = 17.6 min.

(S)-N-(3-Benzyl-7-chloro-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1x** (41.1 mg, 0.15 mmol) with **2a** (61.4 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), KH₂PO₄ (31.0 mg, 0.225 mmol), AgSbF₆ (13.5 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3xa** (35.6 mg, 61% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 11.93 (s, 1H), 9.50 (s, 1H), 8.99 (s, 1H), 8.04–7.98 (m, 2H), 7.60–7.49 (m, 3H), 7.36–7.29 (m, 3H), 7.10–7.05 (m, 2H), 4.66 (dd, J = 9.1, 2.1 Hz, 1H), 4.61 (dd, J = 9.0, 7.0 Hz, 1H), 4.07–3.99 (m, 1H), 3.03 (dd, J = 13.7, 8.0 Hz, 1H), 2.94 (dd, J = 13.7, 7.6 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 191.5, 165.9, 151.7, 137.5, 136.0, 135.5, 134.4, 132.3, 129.5 (2C), 129.2 (2C), 129.0 (2C), 127.54 (2C), 127.50, 124.1, 121.0, 117.5, 77.6, 44.0, 42.5; **HRMS** (ESI) Calcd for C₂₃H₁₉CINO₃ [M+H]⁺ 392.1048; found 392.1050; [α]¹⁸_D = -20.8 (c = 0.2, CHCl₃); HPLC analysis: ee = 85%; CHIRALPAK®IG (90% hexanes: 10% isopropanol, 1 mL/min) t_{major} = 26.4 min, t_{minor} = 33.1 min.

(S)-N-(3-Benzyl-4-formyl-6-methoxy-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1y** (40.5 mg, 0.15 mmol) with **2a** (61.4 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.9 mg, 0.0075 mmol), KH₂PO₄ (31.2 mg, 0.225 mmol), AgSbF₆ (13.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.0 mg, 0.045 mmol) afforded **3ya** (25.0 mg, 43% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.08 (s, 1H), 7.97 (d, J = 7.5 Hz, 2H), 7.66–7.47 (m, 3H), 7.36–7.19 (m, 5H), 6.70 (s, 1H), 4.50 (d, J = 8.9 Hz, 1H), 4.35 (t, J = 8.5 Hz, 1H), 4.16–4.06 (m, 1H), 3.87 (s, 3H), 3.15 (dd, J = 13.2, 3.5 Hz, 1H), 2.63–2.51 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.1, 167.7, 159.4, 153.4, 139.8, 133.9, 132.4, 129.5 (2C), 129.0 (2C), 128.6 (2C), 127.6 (2C), 127.0, 126.4, 123.0, 121.0, 98.9, 76.8, 56.5, 43.9, 40.1; HRMS (ESI) Calcd for C₂₄H₂₂NO₄ [M+H]⁺ 388.1543; found 388.1542; [α]¹⁸_D = -18.2 (c = 0.2, CHCl₃); HPLC analysis: ee = 82%; CHIRALPAK®IG (50% hexanes: 50% isopropanol, 1 mL/min) t_{major} = 9.6 min, t_{minor} = 13.0 min.

(S)-N-(3-Benzyl-6-fluoro-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1z** (39.3 mg, 0.15 mmol) with **2a** (61.5 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.9 mg, 0.0075 mmol), KH₂PO₄ (30.5 mg, 0.225 mmol), AgSbF₆ (13.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (12.9 mg, 0.045 mmol) afforded **3za** (37.1 mg, 66% yield). Yellow solid; **¹H NMR** (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.62 (s, 1H), 7.96 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.3 Hz, 2H), 7.28–7.24 (m, 1H), 7.21 (d, J = 7.3 Hz, 2H), 6.88 (d, J = 9.8 Hz, 1H), 4.55 (dd, J = 9.0, 2.0 Hz, 1H), 4.44 (t, J = 8.3 Hz, 1H), 4.11–4.01 (m, 1H), 3.02 (dd, J = 13.5, 5.0 Hz, 1H), 2.71 (dd, J = 13.5, 9.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.7 (d, J = 3.2 Hz), 166.9, 159.3 (d, J = 12.4 Hz), 156.9 (d, J = 249.1 Hz), 138.7, 133.4, 132.6, 129.4 (2C), 128.98 (2C), 128.95 (d, J = 2.5 Hz), 128.9 (2C), 127.7 (2C), 126.9, 126.8 (d, J = 2.2 Hz), 119.2 (d, J = 14.5 Hz), 104.0 (d, J = 25.6 Hz), 77.4, 43.2, 40.9; **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1342; [α]¹⁸_D = -20.2 (c = 0.2, CHCl₃); HPLC analysis: ee = 81%; CHIRALPAK®IG (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 19.5 min, t_{major} = 21.1 min.

(S)-N-(3-Benzyl-6,7-difluoro-4-formyl-2,3-dihydrobenzofuran-5-yl)benzamide

By following the general procedure, the reaction of **1za** (41.9 mg, 0.15 mmol) with **2a** (61.8 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.8 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (13.7 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3zaa** (29.7 mg, 50% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.93 (s, 1H), 7.97 (d, J = 7.2 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.32 (d, J = 7.6 Hz, 2H), 7.30–7.25 (m, 1H), 7.19 (d, J = 6.8 Hz, 2H), 4.66 (dd, J = 9.1, 2.0 Hz, 1H), 4.55 (dd, J = 9.1, 7.5 Hz, 1H), 4.15–4.06 (m, 1H), 3.02 (dd, J = 13.5, 5.4 Hz, 1H), 2.77 (dd, J = 13.5, 9.3 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 188.9 (d, J = 2.8 Hz), 166.6, 146.4 (d, J = 8.1 Hz), 145.8 (dd, J = 252.5, 11.3 Hz), 140.7 (dd, J = 260.5, 15.6 Hz), 138.2, 133.1, 132.8, 131.4 (d, J = 3.1 Hz), 129.4 (2C), 129.1 (2C), 129.0 (2C), 127.8 (2C), 127.2, 121.42 (d, J = 7.0 Hz), 121.35, 78.7, 43.8, 40.9; **HRMS** (ESI) Calcd for C₂₃H₁₈F₂NO₃ [M+H]⁺ 394.1249; found 394.1250; [α]¹⁸_D = -38.4 (c = 0.2, CHCl₃); HPLC analysis: ee = 88%; CHIRALPAK®IG (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 8.2 min, t_{major} = 9.0 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-4-methoxybenzamide

By following the general procedure, the reaction of **1a** (35.3 mg, 0.15 mmol) with **2b** (72.6 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.8 mg, 0.0075 mmol), KH₂PO₄ (31.0 mg, 0.225 mmol), AgSbF₆ (11.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.4 mg, 0.045 mmol) afforded **3ab** (43.3 mg, 74% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.82 (s, 1H), 9.59 (s, 1H), 8.81 (d, J = 9.0 Hz, 1H), 8.03–7.97 (m, 2H), 7.35–7.28 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.07 (dd, J = 7.5, 1.9 Hz, 2H), 7.03–6.98 (m, 2H), 4.58–4.48 (m, 2H), 4.00–3.93 (m, 1H), 3.88 (s, 3H), 2.99 (dd, J = 13.6, 8.0 Hz, 1H), 2.92 (dd, J = 13.6, 7.4 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.4, 165.4, 162.7, 155.5, 138.0, 135.3, 134.9, 129.5 (2C), 129.4 (2C), 129.0 (2C), 127.3, 127.1, 120.9, 118.8, 117.8, 114.1 (2C), 76.9, 55.6, 43.0, 42.6; **HRMS** (ESI) Calcd for C₂₄H₂₂NO₄ [M+H]⁺ 388.1543; found 388.1548; [α]¹⁸_D = -10.4 (c = 0.4, CHCl₃); HPLC analysis: ee = 89%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 21.0 min, t_{major} = 27.3 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-4-methylbenzamide

By following the general procedure, the reaction of **1a** (36.0 mg, 0.15 mmol) with **2c** (67.5 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (12.1 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ac** (43.2 mg, 78% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.83 (s, 1H), 9.58 (s, 1H), 8.81 (d, J = 9.0 Hz, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.34–7.26 (m, 5H), 7.14 (d, J = 9.0 Hz, 1H), 7.09–7.03 (m, 2H), 4.56–4.46 (m, 2H), 4.00–3.91 (m, 1H), 2.98 (dd, J = 13.6, 8.1 Hz, 1H), 2.90 (dd, J = 13.6, 7.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 165.8, 155.5, 142.5, 137.9, 135.0, 134.9, 131.9, 129.6 (2C), 129.4 (2C), 129.0 (2C), 127.5 (2C), 127.2, 120.9, 118.8, 117.7, 76.9, 43.0, 42.6, 21.6; HRMS (ESI) Calcd for C₂4H₂2NO₃ [M+H]⁺ 372.1594; found 372.1575; [α]¹⁸_D = +17.3 (c = 0.4, CHCl₃); HPLC analysis: ee = 94%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 17.3 min, t_{major} = 22.5 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-4-fluorobenzamide

By following the general procedure, the reaction of 1a (36.0 mg, 0.15 mmol) with 2d (68.9 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (31.5 mg, 0.225 mmol), AgSbF₆ (11.7 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and N-Phthaloyl-L-Phenylalanine (13.3 mg, 0.045 mmol) afforded 3ad

(40.1 mg, 71% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.85 (s, 1H), 9.56 (s, 1H), 8.78 (d, J = 9.0 Hz, 1H), 8.03 (dd, J = 8.6, 5.3 Hz, 2H), 7.35–7.27 (m, 3H), 7.22–7.13 (m, 3H), 7.09–7.04 (m, 2H), 4.58–4.48 (m, 2H), 4.01–3.92 (m, 1H), 3.00 (dd, J = 13.6, 7.9 Hz, 1H), 2.91 (dd, J = 13.7, 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 165.1 (d, J = 253.7 Hz), 164.7, 155.8, 137.9, 135.0, 134.8, 131.0 (d, J = 3.1 Hz), 129.9 (d, J = 9.0 Hz, 2C), 129.5 (2C), 129.1 (2C), 127.3, 120.9, 118.9, 117.8, 116.0 (d, J = 22.0 Hz, 2C), 77.0, 43.0, 42.6; **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1355; [α]¹⁸D = -27.8 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 10.9 min, t_{major} = 12.6 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-4-chlorobenzamide

By following the general procedure, the reaction of **1a** (36.1 mg, 0.15 mmol) with **2e** (75.0 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.8 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (12.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ae** (49.6 mg, 84% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.88 (s, 1H), 9.55 (s, 1H), 8.79 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.35–7.28 (m, 3H), 7.16 (d, J = 9.0 Hz, 1H), 7.10–7.04 (m, 2H), 4.59–4.49 (m, 2H), 4.01–3.92 (m, 1H), 3.01 (dd, J = 13.6, 7.9 Hz, 1H), 2.91 (dd, J = 13.6, 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 164.7, 155.9, 138.4, 137.8, 135.1, 134.7, 133.2, 129.5 (2C), 129.2 (2C), 129.1 (2C), 129.0 (2C), 127.3, 121.0, 119.0, 117.8, 77.0, 43.0, 42.7; HRMS (ESI) Calcd for C₂₃H₁₉ClNO₃ [M+H]⁺ 392.1048; found 392.1045; [α]¹⁸_D = -40.3 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 12.9 min, t_{major} = 15.1 min.

(S)-Methyl-4-((3-benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl) carbamoyl) benzoate

By following the general procedure, the reaction of **1a** (35.7 mg, 0.15 mmol) with **2f** (83.4 mg, 0.375 mmol), $[Cp*RhCl_2]_2$ (4.5 mg, 0.0075 mmol), KH_2PO_4 (30.9 mg, 0.225 mmol), $AgSbF_6$ (12.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.9 mg, 0.045 mmol) afforded **3af** (26.7 mg, 43% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.96 (s, 1H), 9.56

(s, 1H), 8.81 (d, J = 9.0 Hz, 1H), 8.19–8.15 (m, 2H), 8.10–8.06 (m, 2H), 7.35–7.28 (m, 3H), 7.17 (d, J = 9.0 Hz, 1H), 7.07 (dd, J = 7.4, 2.0 Hz, 2H), 4.59–4.50 (m, 2H), 4.01–3.93 (m, 4H), 3.01 (dd, J = 13.6, 7.9 Hz, 1H), 2.91 (dd, J = 13.6, 7.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.5, 166.4, 164.8, 156.0, 138.6, 137.8, 135.1, 134.5, 133.1, 130.2 (2C), 129.5 (2C), 129.1 (2C), 127.5 (2C), 127.3, 121.0, 119.0, 117.7, 77.0, 52.6, 43.0, 42.6; **HRMS** (ESI) Calcd for C₂₅H₂₂NO₅ [M+H]⁺ 416.1492; found 416.1496; [α]¹⁸_D = +44.2 (c = 0.2, CHCl₃); HPLC analysis: ee = 93%; CHIRALPAK®IC (50% hexanes: 50% isopropanol, 1 mL/min) t_{minor} = 17.2 min, t_{major} = 22.0 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-3-methoxybenzamide

By following the general procedure, the reaction of **1a** (36.3 mg, 0.15 mmol) with **2g** (73.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.8 mg, 0.0075 mmol), KH₂PO₄ (30.8 mg, 0.225 mmol), AgSbF₆ (12.1 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.4 mg, 0.045 mmol) afforded **3ag** (48.7 mg, 87% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 11.87 (s, 1H), 9.59 (s, 1H), 8.80 (d, J = 9.0 Hz, 1H), 7.60–7.56 (m, 2H), 7.41 (t, J = 8.1 Hz, 1H), 7.34–7.26 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.11–7.04 (m, 3H), 4.57–4.48 (m, 2H), 4.00–3.92 (m, 1H), 3.89 (s, 3H), 2.98 (dd, J = 13.6, 8.0 Hz, 1H), 2.91 (dd, J = 13.6, 7.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 165.7, 160.1, 155.7, 137.9, 136.3, 135.0, 134.8, 129.9, 129.4 (2C), 129.0 (2C), 127.3, 120.9, 119.3, 118.9, 118.6, 117.7, 112.5, 76.9, 55.5, 43.0, 42.6; HRMS (ESI) Calcd for C₂₄H₂₂NO₄ [M+H]⁺ 388.1543; found 388.1569; [α]¹⁸_D = -37.7 (c = 0.4, CHCl₃); HPLC analysis: ee = 89%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 19.3 min, t_{major} = 26.2 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-3-methylbenzamide

By following the general procedure, the reaction of **1a** (35.7 mg, 0.15 mmol) with **2h** (68.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.9 mg, 0.225 mmol), AgSbF₆ (11.7 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ah** (39.7 mg, 71% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.83 (s, 1H), 9.61 (s, 1H), 8.81 (d, J = 9.0 Hz, 1H), 7.84 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.43–7.27 (m, 5H), 7.15 (d, J = 9.1 Hz, 1H), 7.10–7.04 (m, 2H), 4.58–4.47 (m, 2H), 4.01–3.92 (m, 1H), 3.04–2.87 (m, 2H), 2.45 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.3, 166.1, 155.7, 138.8, 137.9, 135.0, 134.9, 134.8, 132.8, 129.4 (2C), 129.0 (2C), 128.8, 128.4,

127.3, 124.4, 121.0, 118.9, 117.7, 76.9, 43.0, 42.6, 21.6; **HRMS** (ESI) Calcd for $C_{24}H_{22}NO_3$ [M+H]⁺ 372.1594; found 372.1618; [α]¹⁸_D = -20.8 (c = 0.4, CHCl₃); HPLC analysis: ee = 91%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 19.1 min, t_{major} = 23.6 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-3-fluorobenzamide

By following the general procedure, the reaction of **1a** (35.8 mg, 0.15 mmol) with **2i** (68.4 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.5 mg, 0.225 mmol), AgSbF₆ (11.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ai** (41.5 mg, 74% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.88 (s, 1H), 9.56 (s, 1H), 8.79 (d, J = 9.0 Hz, 1H), 7.81–7.76 (m, 1H), 7.73 (dt, J = 9.5, 2.1 Hz, 1H), 7.49 (td, J = 8.0, 5.6 Hz, 1H), 7.35–7.21 (m, 4H), 7.16 (d, J = 8.9 Hz, 1H), 7.09–7.04 (m, 2H), 4.59–4.49 (m, 2H), 4.01–3.93 (m, 1H), 3.00 (dd, J = 13.6, 7.9 Hz, 1H), 2.91 (dd, J = 13.6, 7.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.4, 164.4 (d, J = 2.7 Hz), 163.1 (d, J = 247.8 Hz), 155.9, 137.8, 137.1 (d, J = 6.8 Hz), 135.1, 134.6, 130.6 (d, J = 7.8 Hz), 129.5 (2C), 129.1 (2C), 127.4, 122.8 (d, J = 3.0 Hz), 121.0, 119.1 (d, J = 21.4 Hz), 119.0, 117.7, 115.0 (d, J = 23.1 Hz), 77.0, 43.0, 42.7; **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]⁺ 376.1343; found 376.1355; [α]¹⁸_D = -13.0 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (80% hexanes: 20% isopropanol, 1 mL/min) t_{minor} = 12.8 min, t_{major} = 16.6 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-3-chlorobenzamide

By following the general procedure, the reaction of **1a** (35.7 mg, 0.15 mmol) with **2j** (75.3 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.9 mg, 0.225 mmol), AgSbF₆ (11.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3aj** (39.8 mg, 68% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.87 (s, 1H), 9.55 (s, 1H), 8.77 (d, J = 8.9 Hz, 1H), 8.01 (t, J = 1.9 Hz, 1H), 7.87 (dt, J = 7.6, 1.5 Hz, 1H), 7.55–7.49 (m, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.35–7.28 (m, 3H), 7.16 (d, J = 9.0 Hz, 1H), 7.09–7.04 (m, 2H), 4.59–4.49 (m, 2H), 4.01–3.92 (m, 1H), 3.00 (dd, J = 13.6, 7.9 Hz, 1H), 2.91 (dd, J = 13.6, 7.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.4, 164.4, 155.9, 137.8, 136.6, 135.2, 135.1, 134.5, 132.0, 130.2, 129.4 (2C), 129.1 (2C), 128.1, 127.3, 125.2, 121.0, 119.0, 117.7, 77.0, 43.0, 42.6; **HRMS** (ESI) Calcd for

 $C_{23}H_{19}CINO_3$ [M+H]⁺ 392.1048; found 392.1053; [α]¹⁸_D = -29.5 (c = 0.4, CHCl₃); HPLC analysis: ee = 91%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 11.3 min, t_{major} = 13.2 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-2-fluorobenzamide

By following the general procedure, the reaction of **1a** (36.1 mg, 0.15 mmol) with **2k** (69.4 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.5 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (13.4 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.3 mg, 0.045 mmol) afforded **3ak** (49.5 mg, 88% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 11.64 (d, J = 7.8 Hz, 1H), 9.65 (s, 1H), 8.74 (d, J = 9.0 Hz, 1H), 8.03 (td, J = 7.7, 1.9 Hz, 1H), 7.53–7.46 (m, 1H), 7.33–7.23 (m, 4H), 7.21–7.15 (m, 1H), 7.12 (d, J = 9.0 Hz, 1H), 7.09–7.05 (m, 2H), 4.56–4.45 (m, 2H), 3.97 (qd, J = 7.4, 2.0 Hz, 1H), 2.99–2.87 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 191.5, 162.6 (d, J = 2.7 Hz), 160.3 (d, J = 250.8 Hz), 156.1, 137.9, 134.9, 133.8, 133.6 (d, J = 8.9 Hz), 131.7 (d, J = 2.1 Hz), 129.4 (2C), 129.0 (2C), 127.2, 124.8 (d, J = 3.5 Hz), 122.7 (d, J = 12.1 Hz), 122.0, 119.6, 117.1, 116.6 (d, J = 23.6 Hz), 76.8, 42.9, 42.5; **HRMS** (ESI) Calcd for C₂₃H₁₉FNO₃ [M+H]* 376.1343; found 376.1342; [α]¹⁸_D = +22.1 (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 13.8 min, t_{major} = 18.2 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-2-naphthamide

By following the general procedure, the reaction of **1a** (35.8 mg, 0.15 mmol) with **2l** (81.2 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.9 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (11.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μL, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3al** (51.1 mg, 84% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 12.04 (s, 1H), 9.62 (s, 1H), 8.87 (d, J = 9.0 Hz, 1H), 8.55 (s, 1H), 8.08 (dd, J = 8.6, 1.9 Hz, 1H), 8.01 (dd, J = 7.1, 2.2 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.92–7.87 (m, 1H), 7.62–7.52 (m, 2H), 7.35–7.26 (m, 3H), 7.17 (d, J = 9.0 Hz, 1H), 7.10–7.05 (m, 2H), 4.58–4.48 (m, 2H), 4.01–3.92 (m, 1H), 2.99 (dd, J = 13.7, 8.0 Hz, 1H), 2.92 (dd, J = 13.6, 7.4 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.4, 165.9, 155.7, 137.9, 135.1, 135.0 (2C), 132.8, 132.0, 129.47, 129.45 (2C), 129.1 (2C), 128.8, 128.5, 128.0, 127.9, 127.3, 126.9, 123.7, 121.0, 119.0, 117.8, 76.9, 43.0, 42.6; **HRMS** (ESI) Calcd for C₂₇H₂₂NO₃ [M+H]⁺ 408.1594;

found 408.1599; $[\alpha]^{18}_D = -33.8$ (c = 0.4, CHCl₃); HPLC analysis: ee = 90%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) $t_{minor} = 18.0$ min, $t_{major} = 19.8$ min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)-3-phenylpropanamide

By following the general procedure, the reaction of **1a** (35.9 mg, 0.15 mmol) with **2m** (66.1 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.7 mg, 0.0075 mmol), KH₂PO₄ (30.7 mg, 0.225 mmol), AgSbF₆ (12.8 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3am** (27.8 mg, 48% yield). Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 10.88 (s, 1H), 9.54 (s, 1H), 8.57 (d, J = 9.0 Hz, 1H), 7.33–7.23 (m, 7H), 7.22–7.17 (m, 1H), 7.09 (d, J = 9.0 Hz, 1H), 7.07–7.02 (m, 2H), 4.52 (dd, J = 9.0, 2.0 Hz, 1H), 4.47 (dd, J = 9.0, 7.1 Hz, 1H), 3.96–3.88 (m, 1H), 3.10–3.02 (m, 2H), 2.94 (dd, J = 13.6, 8.1 Hz, 1H), 2.87 (dd, J = 13.6, 7.3 Hz, 1H), 2.76–2.69 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 192.0, 171.2, 155.6, 140.7, 137.9, 134.7, 134.5, 129.4 (2C), 129.0 (2C), 128.6 (2C), 128.5 (2C), 127.2, 126.4, 121.0, 118.6, 117.5, 76.8, 42.9, 42.6, 40.1, 31.5; **HRMS** (ESI) Calcd for C₂₅H₂₄NO₃ [M+H]⁺ 386.1751; found 386.1784; [α]¹⁸_D = +114.4 (c = 0.2, CHCl₃); HPLC analysis: ee = 87%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 10.9 min, t_{major} = 15.9 min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)cyclohexanecarboxamide

By following the general procedure, the reaction of **1a** (36.3 mg, 0.15 mmol) with **2n** (63.9 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.6 mg, 0.0075 mmol), KH₂PO₄ (31.0 mg, 0.225 mmol), AgSbF₆ (13.2 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.5 mg, 0.045 mmol) afforded **3an** (28.4 mg, 52% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 10.93 (s, 1H), 9.59 (s, 1H), 8.62 (d, J = 9.0 Hz, 1H), 7.35–7.27 (m, 3H), 7.11–7.04 (m, 3H), 4.53 (dd, J = 9.0, 2.0 Hz, 1H), 4.48 (dd, J = 9.0, 7.1 Hz, 1H), 3.98–3.89 (m, 1H), 2.96 (dd, J = 13.6, 8.1 Hz, 1H), 2.89 (dd, J = 13.6, 7.3 Hz, 1H), 2.34–2.24 (m, 1H), 2.04–1.95 (m, 2H), 1.88–1.79 (m, 2H), 1.74–1.67 (m, 1H), 1.60–1.47 (m, 2H), 1.40–1.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 175.5, 155.4, 138.0, 134.9, 134.7, 129.4 (2C), 129.0 (2C), 127.3, 121.0, 118.7, 117.6, 76.8, 47.2, 43.0, 42.6, 29.8, 29.7, 25.87 (2C), 25.85; **HRMS** (ESI) Calcd for C₂₃H₂₆NO₃ [M+H]⁺ 364.1907; found 364.1928; [α]¹⁸D = +36.4

(c = 0.2, CHCl₃); HPLC analysis: ee = 88%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) $t_{minor} = 8.0$ min, $t_{major} = 12.5$ min.

(S)-N-(3-Benzyl-4-formyl-2,3-dihydrobenzofuran-5-yl)dodecanamide

By following the general procedure, the reaction of **1a** (35.9 mg, 0.15 mmol) with **2o** (85.2 mg, 0.375 mmol), [Cp*RhCl₂]₂ (4.8 mg, 0.0075 mmol), KH₂PO₄ (31.1 mg, 0.225 mmol), AgSbF₆ (12.9 mg, 0.03 mmol), (R)-(+)-1-(1-naphthyl)ethylamine (12.0 μ L, 0.075 mmol), and *N*-Phthaloyl-L-Phenylalanine (13.2 mg, 0.045 mmol) afforded **3ao** (39.4 mg, 60% yield). Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 9.58 (s, 1H), 8.59 (d, J = 9.0 Hz, 1H), 7.34–7.27 (m, 3H), 7.09 (d, J = 9.0 Hz, 1H), 7.08–7.04 (m, 2H), 4.55–4.44 (m, 2H), 3.97–3.89 (m, 1H), 2.99–2.85 (m, 2H), 2.40 (t, J = 7.6 Hz, 2H), 1.76–1.70 (m, 2H), 1.37–1.20 (m, 16H), 0.91–0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 172.5, 155.4, 138.0, 134.72, 134.66, 129.4 (2C), 129.0 (2C), 127.2, 120.9, 118.5, 117.6, 76.8, 43.0, 42.6, 38.7, 32.0, 29.7 (2C), 29.6, 29.5 (2C), 29.3, 25.7, 22.8, 14.3; HRMS (ESI) Calcd for C₂₈H₃₈NO₃ [M+H]⁺ 436.2846; found 436.2856; [α]¹⁸_D = +41.6 (c = 0.2, CHCl₃); HPLC analysis: ee = 86%; CHIRALPAK®IC (70% hexanes: 30% isopropanol, 1 mL/min) t_{minor} = 7.1 min, t_{major} = 8.4 min.

6. Procedure for the Synthesis of Int-1

To a 25 mL Schlenk tube equipped with a magnetic stirring bar were added substrate **1a** (0.15 mmol), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (0.375 mmol) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, amine (50 mol%), HFIP (0.9 mL) and DCE (0.9 mL) were added subsequently. After stirring at 60 °C for 24 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (50 : 1) as the eluent to give **Int-1**. ¹**H NMR** (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.45–7.16 (m, 7H), 7.05 (d, J = 7.1 Hz, 1H), 4.51 (d, J = 9.1 Hz, 1H), 4.36 (t, J = 8.5 Hz, 1H), 4.18–4.04 (m, 1H), 3.10 (dd, J = 13.4, 4.1 Hz, 1H), 2.59 (dd, J = 13.5, 10.0 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 192.3, 161.0, 139.4, 133.0, 131.7, 129.4 (2C), 129.2, 128.7 (2C), 126.6, 125.2, 115.6, 76.3, 43.6, 40.1; **HRMS** (ESI) Calcd for C₁₆H₁₄O₂ [M+H]⁺ 239.1067; found 239.1067.

7. Procedure for the Synthesis of Int-1'

To a 25 mL Schlenk flask equipped with a magnetic stirring bar were added substrate **S5** (0.75 mmol), **2a** (2.5 equiv.), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (1.5 equiv.) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, amine (50 mol%), HFIP (6 mL) and DCE (6 mL) were added subsequently. After stirring at 60 °C for 24 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give **S6**.

To a 20 mL vial were added S6 (0.5 mmol), TBAF (1.0 mmol) and THF (8 mL). The mixture was stirred at room temperature for 12 h. The solvent was removed and the reaction mixture was extracted with H_2O (8 mL) and ethyl acetate (8 mL). The organic phase was dried over anhydrous Na_2SO_4 , filtration and removed all of organic solvent. The crude S7 was directly used for the next step without any purification.

To a 10 mL round flask equipped with a stirring bar was added the crude **S7** (0.5 mmol) and K₂CO₃ (1.0 mmol) in acetone (5 mL), followed by allyl *br*omide (1.0 mmol). The mixture was stirred at 65 °C for 2 h. The solvent was removed and the reaction mixture was extracted with H₂O (6 mL) and ethyl acetate (6 mL). The organic phase was dried over anhydrous Na₂SO₄, filtration and removed all of organic solvent. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (10 : 1) as the eluent to give **Int-1'**. ¹**H NMR** (400 MHz, CDCl₃) δ 11.85 (s, 1H), 9.96 (s, 1H), 8.93 (d, J = 9.0 Hz, 1H), 8.08–8.03 (m, 2H), 7.60–7.50 (m, 3H), 7.45–7.40 (m, 2H), 7.38–7.27 (m, 5H), 6.77 (d, J = 16.0 Hz, 1H), 6.42 (dt, J = 16.0, 5.8 Hz, 1H), 4.78 (dd, J = 5.8, 1.5 Hz, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 195.7, 166.0, 154.3, 136.3, 135.3, 134.6, 133.8, 132.2, 129.0 (2C), 128.8 (2C), 128.3, 127.6 (2C), 126.8 (2C), 123.8, 123.3, 123.0, 121.9, 121.1, 69.4. **HRMS** (ESI) Calcd for C₂₃H₂₀NO₃ [M+H]⁺ 358.1438; found 358.1438.

8. Procedure for Rh-Catalyzed C-H Activation with Int-1

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added substrate

Int-1 (0.05 mmol), **2a** (0.125 mmol), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (0.075 mmol) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, chiral amine (50 mol%), HFIP (0.3 mL) and DCE (0.3 mL) were added subsequently. After stirring at 60 °C for 12 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10 : 1) as the eluent to give the corresponding product **3aa** (72%).

9. Procedure for Rh-Catalyzed C-H Activation with Int-1'

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added substrate **Int-1'** (0.05 mmol), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (0.075 mmol) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, chiral amine (50 mol%), HFIP (0.3 mL) and DCE (0.3 mL) were added subsequently. After stirring at 60 °C for 12 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give the corresponding product **3aa** (57%).

10. Crude ¹H NMR with 1,3,5-Trimethoxybenzene as Internal Standard

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added substrate 1a (0.05 mmol), 2a (0.125 mmol), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), KH₂PO₄ (0.075 mmol) and acid (0.3 equiv.) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, chiral amine (50 mol%), HFIP (0.3 mL) and DCE (0.3 mL) were added subsequently. After stirring at 60 °C for 2 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was filtered on silica gel with ethyl acetate as the eluent. The crude residue was added internal standard (1,3,5-trimethoxybenzene, 0.05 mmol) and checked ¹H NMR. The specific signals of these compounds (peak a for 1a, peak b for 3aa, peak c for Int-1, peak d for Int-1') and the crude ¹H NMR were labeled below.

Figure S1. Comparison of different components for 2 h.

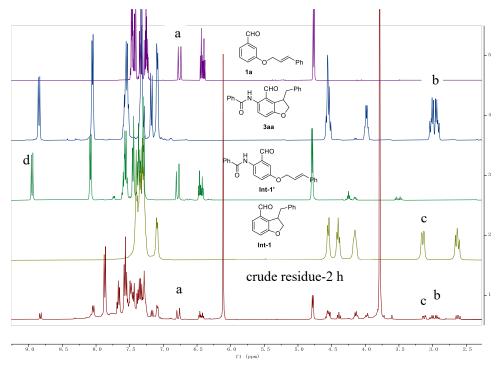
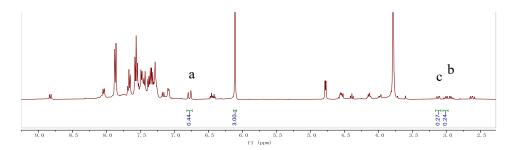



Figure S2. NMR yields for 2 h.

11. Procedure for the Synthesis of Int-2.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added imine **4** (29.4 mg, 0.1 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), NaOAc (8.3 mg, 0.1 mmol), 4-Clbenzaldehyde (7.2 mg, 0.05 mmol) and MeOH (1 mL). The mixture was stirred at 40 °C for 3 h. After removing all of the solvent, the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3 : 1) to get the pure compound **Int-2** (36.1 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 7.3 Hz, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 1.9 Hz, 1H), 7.61 (d, J = 3.2 Hz, 1H), 7.58–7.45 (m, 4H), 7.06 (d, J = 8.0 Hz, 1H), 6.89 (dd, J = 8.0, 1.9 Hz, 1H), 6.02 (q, J =

7.0 Hz, 1H), 2.09 (d, J = 7.0 Hz, 3H), 1.71 (s, 15H); ¹³C **NMR** (101 MHz, CDCl₃) δ 184.4 (d, J = 33.8 Hz), 170.7 (d, J = 1.5 Hz), 144.2, 136.3 (d, J = 1.9 Hz), 135.5, 135.4, 134.1, 131.3, 129.4, 129.30, 129.27, 126.8, 126.0, 125.8, 125.6, 123.4, 122.8, 96.5 (d, J = 6.2 Hz, 5C), 63.6, 21.8, 9.6 (5C); **HRMS** (ESI) Calcd for C₂₉H₃₀Cl₂NaNRh [M+Na]⁺ 588.0703; found 588.0704.

12. Procedure for the Synthesis of 5.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added **3aa** (35.7 mg, 0.1 mmol), 25% NH₃· H₂O (1.2 mL) and 2-propanol (0.8 mL). The reaction mixture was stirred at 100 °C for 12 h. After removing all of the solvent, the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10 : 1) to get the pure compound **5** (24.4 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.58–8.52 (m, 2H), 7.94 (d, J = 9.0 Hz, 1H), 7.56–7.44 (m, 4H), 7.33–7.23 (m, 3H), 7.16–7.10 (m, 2H), 4.70–4.61 (m, 2H), 4.20–4.10 (m, 1H), 3.24 (dd, J = 13.8, 5.6 Hz, 1H), 2.94 (dd, J = 13.8, 9.1 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.6, 158.4, 155.7, 147.2, 138.6, 138.3, 130.34, 130.26, 129.2 (2C), 129.0 (2C), 128.7 (2C), 128.2 (2C), 127.0, 122.2, 121.0, 120.3, 77.6, 43.1, 41.5; **HRMS** (ESI) Calcd for $C_{23}H_{19}N_2O$ [M+H]⁺ 339.1492; found 339.1488.

13. Procedure for the Synthesis of 6.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added **3aa** (35.8 mg, 0.1 mmol), 4Å molecular sieves (30.8 mg), ethylcyanoacetate (13 μL, 0.12 mmol, 1.2 equiv.), piperidine (0.2 μL, 2%, 2 μmol) and ethanol (1 mL). The reaction mixture was stirred under nitrogen at 80 °C for 24 h. After removing all of the solvent, the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5 : 1) to get the pure compound **6** (31.8 mg, 70% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 11.60 (s, 1H), 8.32 (s, 1H), 8.09 (d, J = 6.8 Hz, 2H), 7.98 (d, J = 9.0 Hz, 1H), 7.60–7.49 (m, 3H), 7.39 (d, J = 9.0 Hz, 1H), 7.28–7.17 (m, 3H), 7.06 (d, J = 5.8 Hz, 2H), 4.67 (t, J = 8.5 Hz, 1H), 4.61 (dd, J = 9.1, 2.8 Hz, 1H), 4.54–4.35 (m, 2H), 4.10–4.01 (m, 1H), 3.11 (dd, J = 13.7, 6.8 Hz, 1H), 2.97 (dd, J = 13.7, 7.9 Hz, 1H), 1.46 (t, J = 7.1 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 167.2, 164.7, 157.6, 147.0, 145.0, 138.9,

137.2, 135.1, 132.1, 130.1, 129.3 (2C), 128.9 (2C), 128.8 (2C), 127.7 (2C), 126.7, 123.5, 121.9, 118.5, 113.0, 77.8, 62.3, 43.6, 41.6, 14.4; **HRMS** (ESI) Calcd for C₂₈H₂₅N₂O₄ [M+H]⁺ 453.1809; found 453.1814.

14. Procedure for the Synthesis of 7.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added **3aa** (36.4 mg, 0.1 mmol), NaH (12.1 mg, 0.3 mmol) and THF (0.5 mL), and followed by the addition of MeI (12.5 μ L, 0.2 mmol). The reaction mixture was stirred at room temperature for 8 h. After quenching the reaction by water, the mixed solution was extracted with DCM (5 mL). The organic phase was dried over anhydrous Na₂SO₄, filtration and removed all of organic solvent. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5 : 1) to get the pure compound **7** (25.3 mg, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.09 (br, 1H), 7.34–7.28 (m, 2H), 7.28–7.22 (m, 1H), 7.16–7.11 (m, 2H), 7.02 (d, J = 9.0 Hz, 1H), 6.52 (d, J = 8.9 Hz, 1H), 4.43 (dd, J = 8.9, 1.9 Hz, 1H), 4.35 (dd, J = 8.9, 7.4 Hz, 1H), 3.93–3.86 (m, 1H), 3.00 (dd, J = 13.8, 5.5 Hz, 1H), 2.91 (d, J = 4.7 Hz, 3H), 2.84 (dd, J = 13.8, 9.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 149.7, 147.8, 138.9, 133.7, 129.3 (2C), 128.8 (2C), 126.9, 119.4, 113.8, 110.9, 75.8, 43.5, 42.1, 29.9; **HRMS** (ESI) Calcd for C₁₇H₁₈NO₂ [M+H]⁺ 268.1332; found 268.1333.

15. Procedure for the Synthesis of 8.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added **3aa** (35.6 mg, 0.1 mmol), NaH (24.3 mg, 0.6 mmol) and THF (0.5 mL), and followed by the addition of MeI (62 μ L, 1.0 mmol). The reaction mixture was stirred at room temperature for 8 h. After quenching the reaction by water, the mixed solution was extracted with DCM (5 mL). The organic phase was dried over anhydrous Na₂SO₄, filtration and removed all of organic solvent. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10 : 1) to get the pure compound **8** (22.6 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 7.36–7.29 (m, 4H), 7.25–7.20 (m, 1H), 7.01 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 4.44 (dd, J = 8.9, 2.0 Hz, 1H), 4.27 (t, J = 8.3 Hz, 1H), 4.10–4.03 (m, 1H), 3.11 (dd, J = 13.4, 3.2 Hz, 1H), 2.83 (s, 6H), 2.51 (dd, J = 13.4, 10.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 156.0, 151.9, 140.1, 132.8, 129.4 (2C), 128.6 (2C), 126.4, 125.8, 119.4,

115.6, 76.0, 47.1 (2C), 44.6, 39.8. **HRMS** (ESI) Calcd for $C_{18}H_{20}NO_2$ [M+H]⁺ 282.1489; found 282.1490.

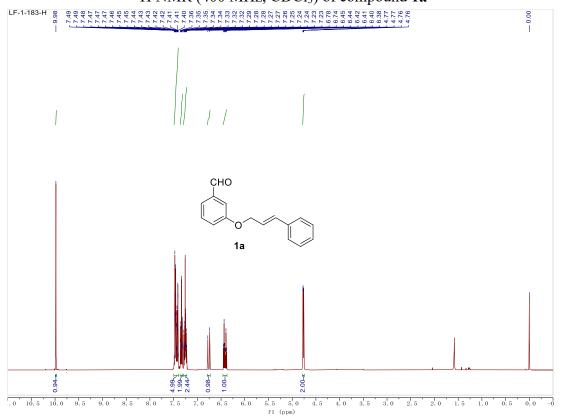
16. Procedure for the Synthesis of 9.

To a 10 mL of Schlenk tube equipped with a magnetic stirring bar were added **3aa** (36.0 mg, 0.1 mmol), CoCl₂ (2.0 mg, 15 mol%), TBHP (70% in H₂O, 70.5 μL, 5.0 equiv.) and MeCN (0.4 mL). The reaction mixture was stirred at 80 °C for 8 h. The mixed solution was extracted with H₂O (5 mL) and ethyl acetate (10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtration and removed all of organic solvent. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10 : 1) to get the pure compound **9** (26.2 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.32–8.26 (m, 2H), 7.59–7.48 (m, 4H), 7.36–7.31 (m, 4H), 7.29–7.23 (m, 2H), 4.62 (dd, J = 9.1, 2.3 Hz, 1H), 4.47 (t, J = 8.5 Hz, 1H), 4.30–4.21 (m, 1H), 3.34 (dd, J = 13.4, 3.2 Hz, 1H), 2.64 (dd, J = 13.4, 10.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.9, 154.8, 141.7, 139.4, 132.2, 131.9, 130.6, 129.4 (2C), 128.9 (2C), 128.7 (2C), 128.3, 128.0 (2C), 126.7, 118.7, 114.0, 76.9, 44.8, 40.0; HRMS (ESI) Calcd for C₂₃H₁₈NO₃ [M+H]⁺ 356.1281; found 356.1287.

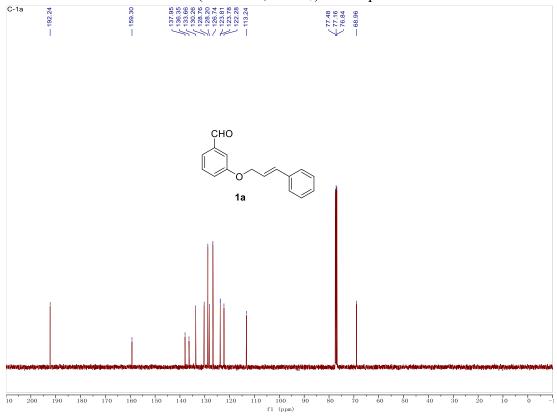
17. General Procedure for the Synthesis of 10.

To a 25 mL of Schlenk tube equipped with a magnetic stirring bar were added **2a** (0.45 mmol), [Cp*RhCl₂]₂ (1.5 mol%) and AgSbF₆ (6 mol%) under air. The mixture was then evacuated and backfilled with nitrogen for three times. After that, aldehyde (0.3 mmol), 4-trifluoromethyl aniline (10 mol%) and PhCl (1.5 mL) were added subsequently. After stirring at 120 °C for 20 h, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (5 : 1) as the eluent to give the corresponding products **10**. **10a–10c** are known compounds.³

Compound **10d** (74%): **¹H NMR** (400 MHz, CDCl₃) δ 12.27 (s, 1H), 10.56 (s, 1H), 8.79 (d, J = 9.3 Hz, 1H), 8.08–8.03 (m, 2H), 7.59–7.49 (m, 3H), 7.18 (d, J = 9.3 Hz, 1H), 3.87 (s, 3H), 2.57 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 195.4, 166.1, 153.2,

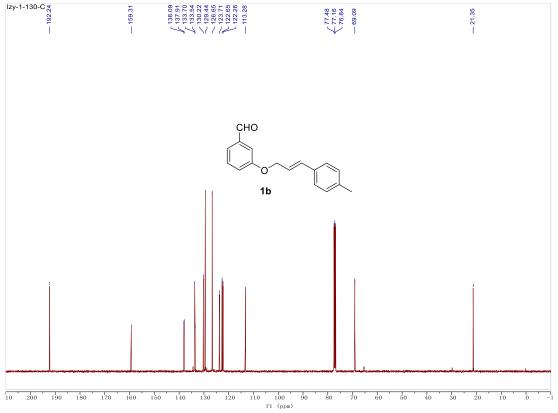

135.2, 135.0, 132.0, 131.8, 128.9 (2C), 127.6 (2C), 120.9, 118.8 (2C), 56.4, 10.4; **HRMS** (ESI) Calcd for $C_{16}H_{16}NO_3$ [M+H]⁺ 270.1225; found 270.1227.

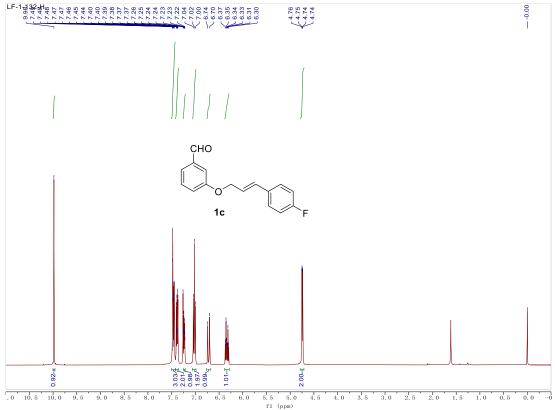
Compound **10e** (71%): **¹H NMR** (400 MHz, CDCl₃) δ 11.88 (s, 1H), 10.18 (s, 1H), 8.77 (d, J = 8.9 Hz, 1H), 8.05 (d, J = 7.9 Hz, 2H), 7.58–7.49 (m, 3H), 7.11 (d, J = 9.0 Hz, 1H), 4.70 (t, J = 8.8 Hz, 2H), 3.59 (t, J = 8.7 Hz, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 193.4, 165.8, 156.3, 134.9, 134.8, 132.1, 132.0, 129.0 (2C), 127.5 (2C), 120.6, 118.8, 117.5, 71.6, 28.4; **HRMS** (ESI) Calcd for C₁₆H₁₄NO₃ [M+H]⁺ 268.0968; found 268.0970.


18. Cellular studies of 3al and 3ao.

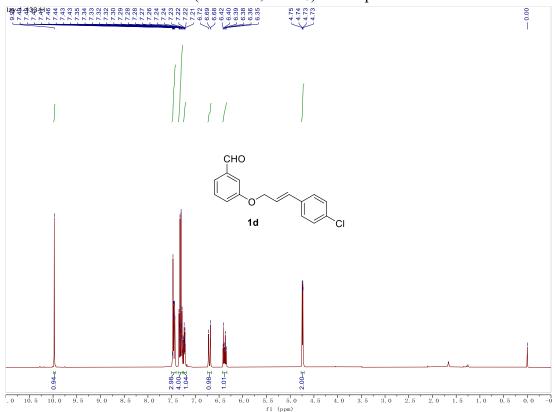
- **18.1 Cell culture:** Human cervical cancer cells (HeLa) were cultured in 25 cm³ culture flasks containing RMPI-1640 medium supplemented with heat-inactivated 10% fetal bovine serum, 100 units mL⁻¹ penicillin, and 100 μ g/mL streptomycin at 37 °C in a humidified incubator containing 5% CO₂.
- **18.2 Cytotoxicity:** The cytotoxicity of the **3al/3ao** was evaluated on HeLa cells. These cells were seeded into 96-well plates with a density of 5000 cells per well and cultured overnight. Then, **3al/3ao** solutions with a serious of concentrations were added and incubated with cells for 24 h. Each experiment was performed for six times. The working solutions were then removed, and the cells were washed with PBS buffer. A total of 10 μ L of CCK-8 (Cell Counting Kit-8, BIOMIKY) was added into each well (total 100 μ L), and the cells were further incubated at 37 °C for 2 h. Then the plate was shaken for 25 min (protection from light), and the absorbance at 450 nm was measured with a microplate reader (Multiskan Sky).
- **18.3 Colocalization imaging:** HeLa cells were seeded onto a confocal dish (Nest Scientific) at a density of 3×10^4 cells 24 h before the microscopy measurement. For LDs colocalization study, after removed of the culture medium, the HeLa cells were coincubated with **3al/3ao** (3 μ M) and Nile Red (1 μ M) in 1.0 mL of fresh culture medium for 1 h. Then, the morphologies of the cells were observed using a confocal fluorescence microscope (λ_{ex} : 405 nm, λ_{em} : 440-530 nm for **3al/3ao**; λ_{ex} : 552 nm, λ_{em} : 650-800 nm for Nile Red). No washing steps were performed.
- **18.4 Multicolor imaging:** HeLa cells were seeded onto a confocal dish (Nest Scientific) at a density of 3×10^4 cells 24 h before the microscopy measurement. After removed of the culture medium, the HeLa cells were co-incubated with **3al/3ao** (3 μ M) and DIR (1 μ M) in 1.0 mL of fresh culture medium for 1 h. Then, the morphologies of the cells were observed using a confocal fluorescence microscope (λ_{ex} : 405 nm, λ_{em} : 440-530 nm for **3al/3ao**; λ_{ex} : 638 nm, λ_{em} : 650-800 nm for DIR). No washing steps were performed.

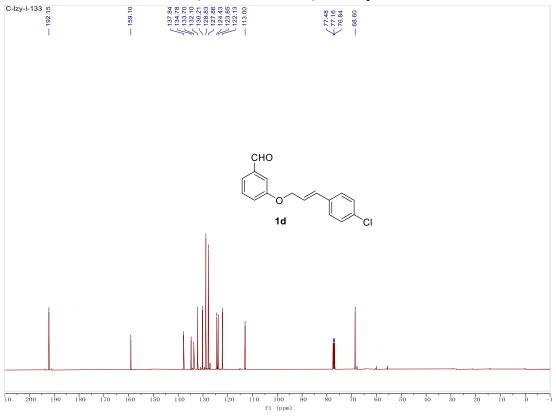
19. NMR and HPLC Spectra of 1a-1za, 3aa-3zaa, 3ab-3ao, Int-1-10e $^{1}\rm{H}$ NMR (400 MHz, CDCl3) of compound 1a

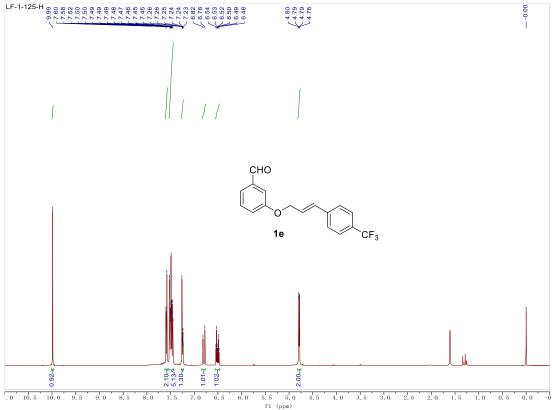

¹³C NMR (101 MHz, CDCl₃) of compound 1a

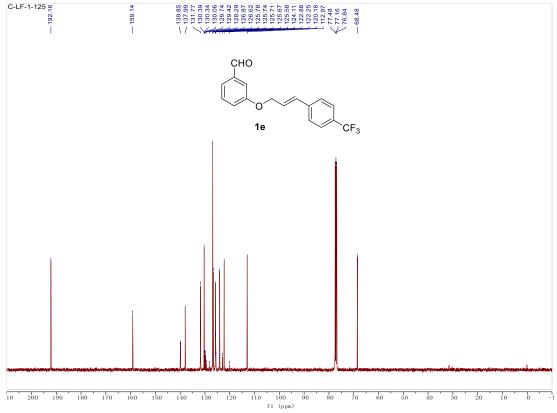

¹H NMR (400 MHz, CDCl₃) of compound **1b**

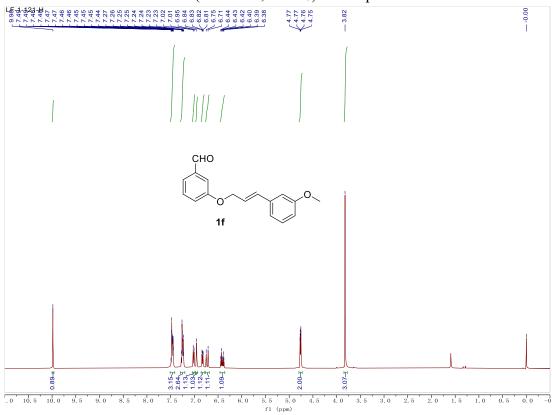
^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1b}$

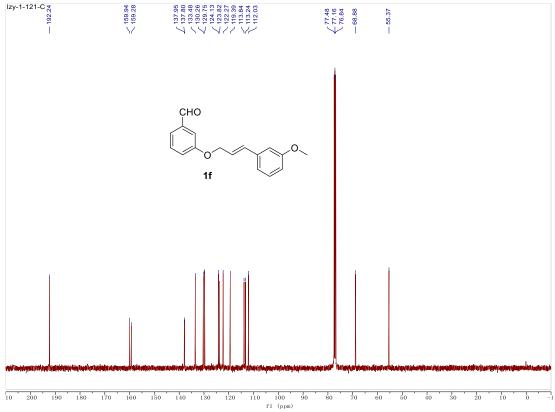

¹H NMR (400 MHz, CDCl₃) of compound **1c**

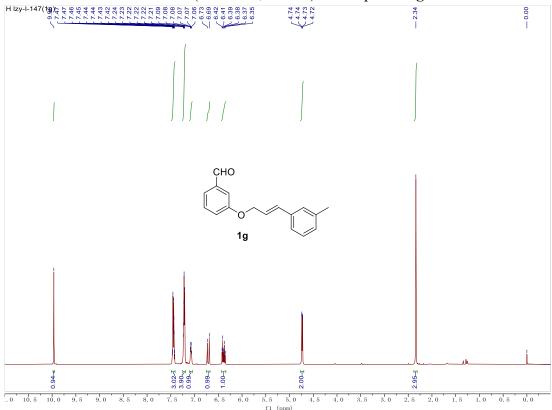

^{13}C NMR (101 MHz, CDCl₃) of compound 1c

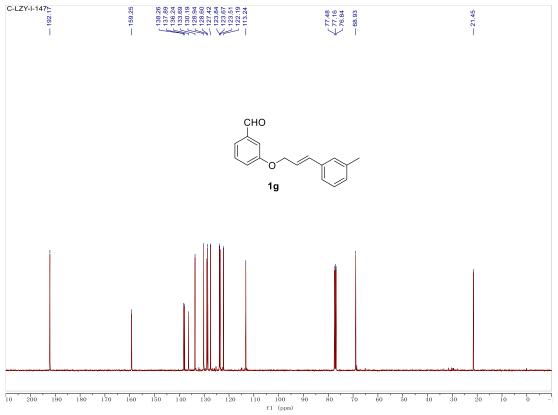

¹H NMR (400 MHz, CDCl₃) of compound **1d**

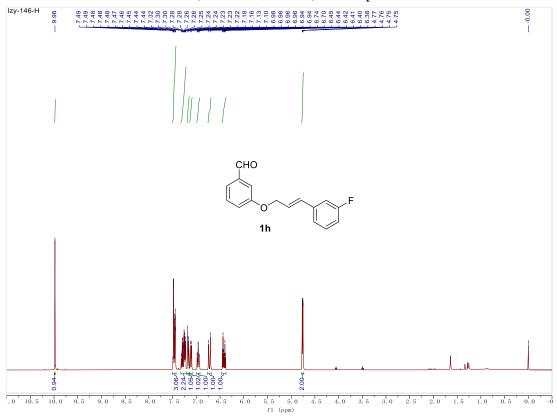

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1d}$

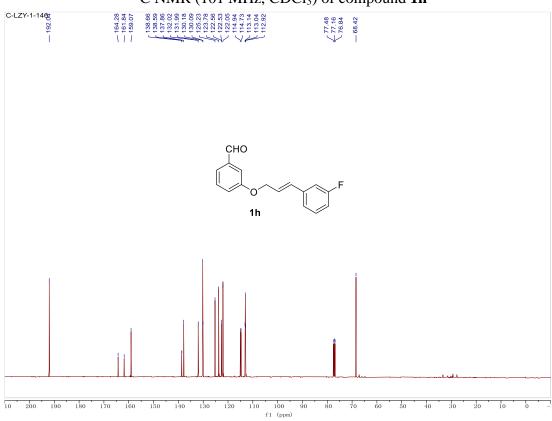

¹H NMR (400 MHz, CDCl₃) of compound 1e

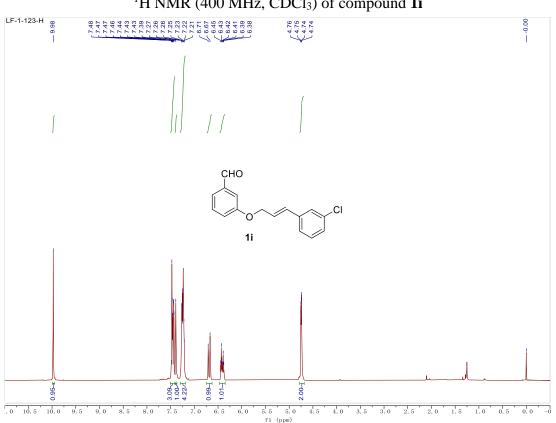

^{13}C NMR (101 MHz, CDCl₃) of compound 1e

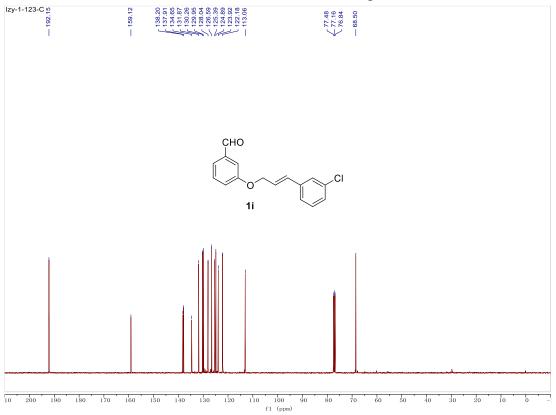

¹H NMR (400 MHz, CDCl₃) of compound **1f**

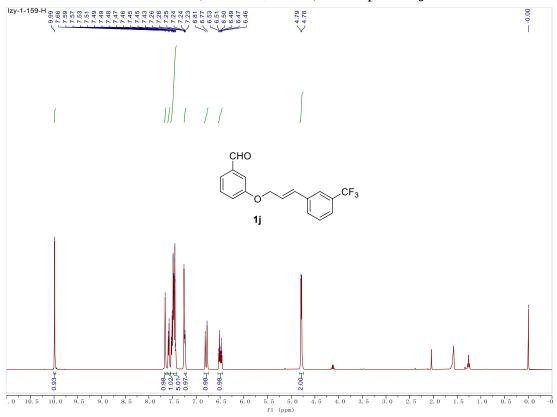

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1f}$

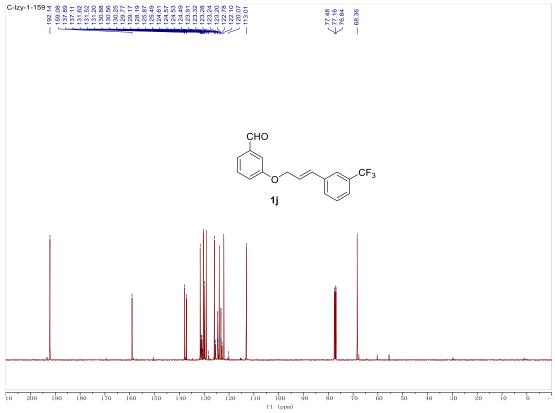

1H NMR (400 MHz, CDCl₃) of compound $\boldsymbol{1g}$

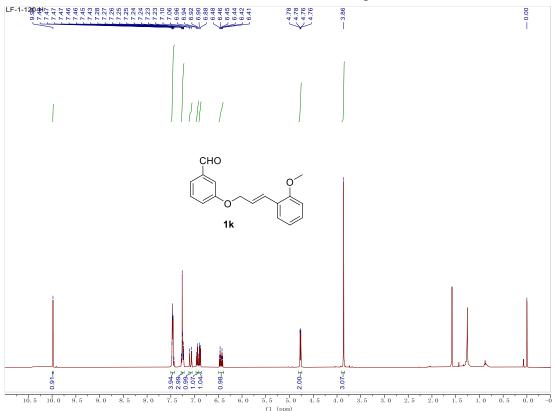

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1g}$

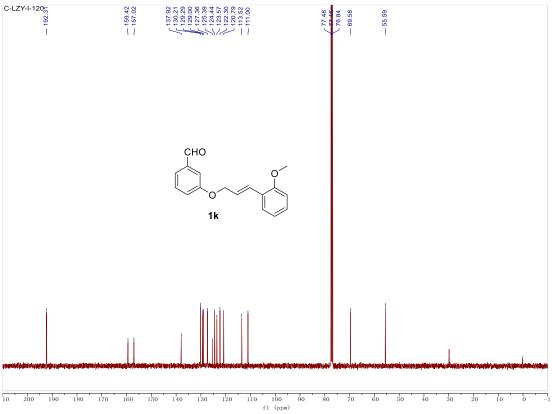

¹H NMR (400 MHz, CDCl₃) of compound **1h**

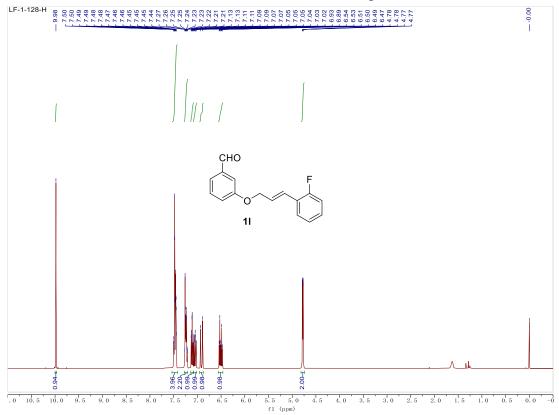

^{13}C NMR (101 MHz, CDCl₃) of compound ${f 1h}$

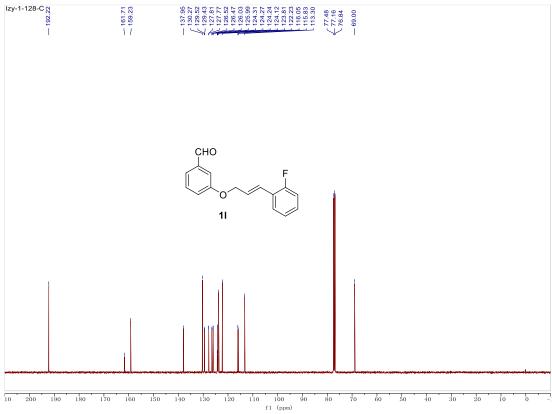

¹H NMR (400 MHz, CDCl₃) of compound **1i**

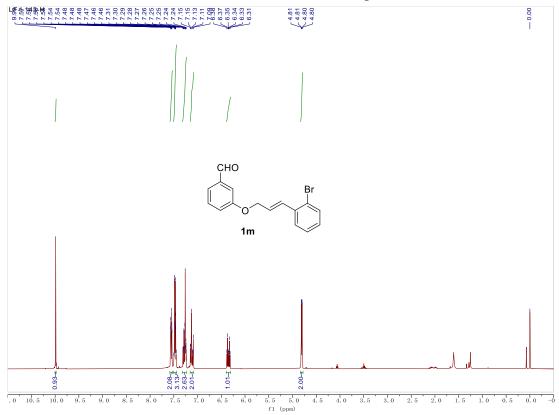

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1i}$

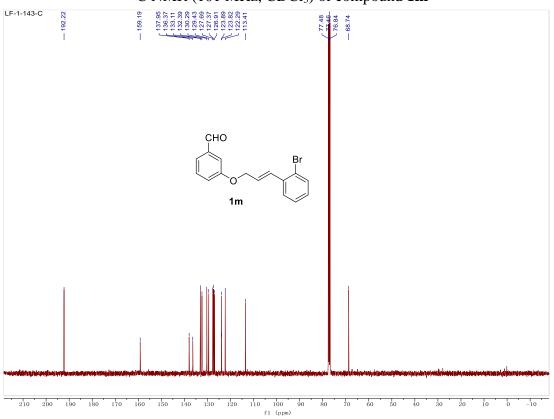

¹H NMR (400 MHz, CDCl₃) of compound **1j**

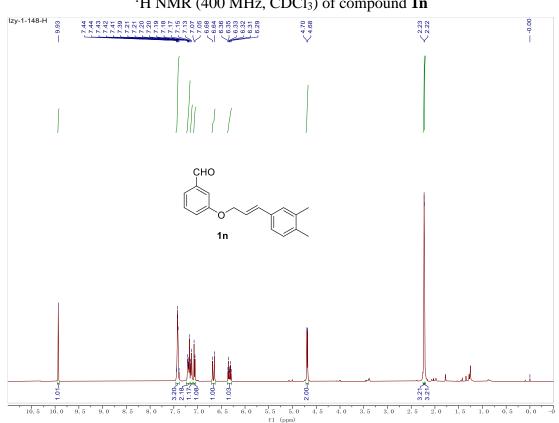

13 C NMR (101 MHz, CDCl₃) of compound 1j

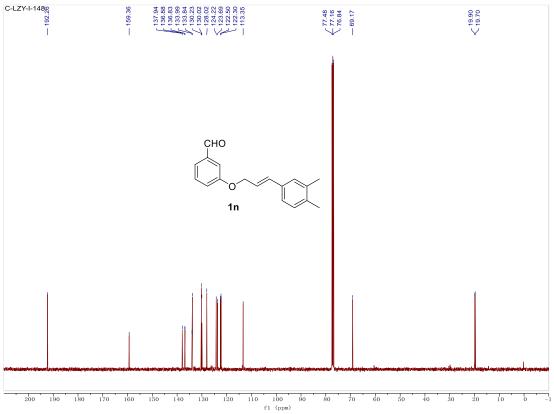

^{1}H NMR (400 MHz, CDCl₃) of compound 1k


^{13}C NMR (101 MHz, CDCl₃) of compound 1k

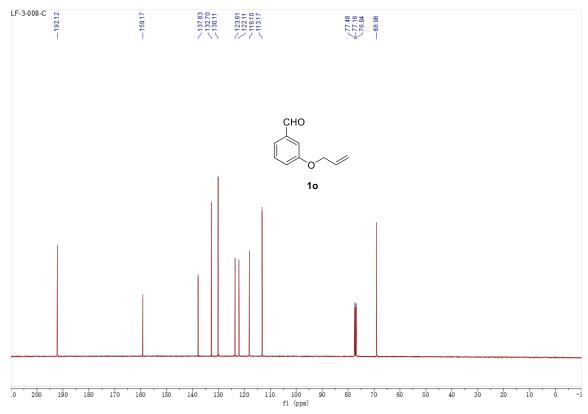

1H NMR (400 MHz, CDCl3) of compound $\boldsymbol{1l}$

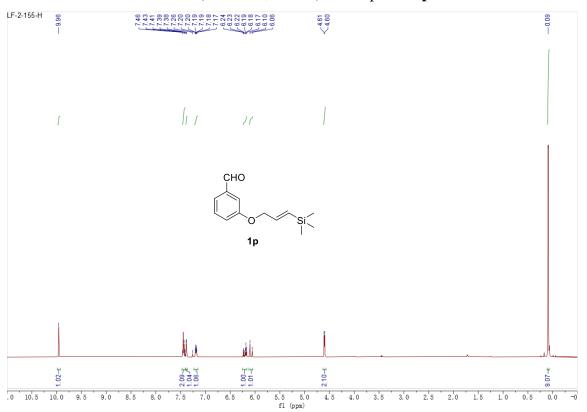

^{13}C NMR (101 MHz, CDCl₃) of compound 1l

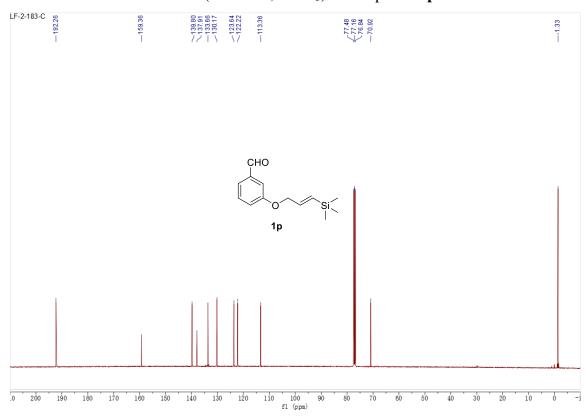

¹H NMR (400 MHz, CDCl₃) of compound **1m**

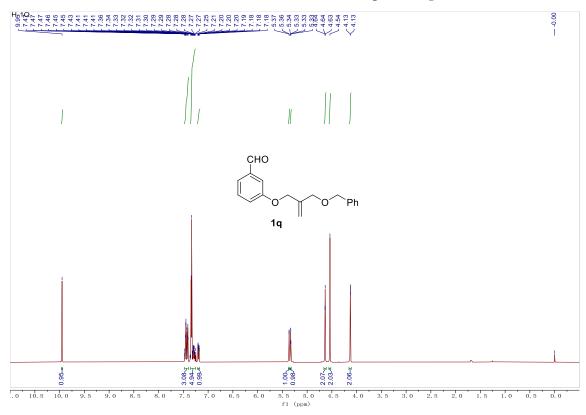

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1m}$

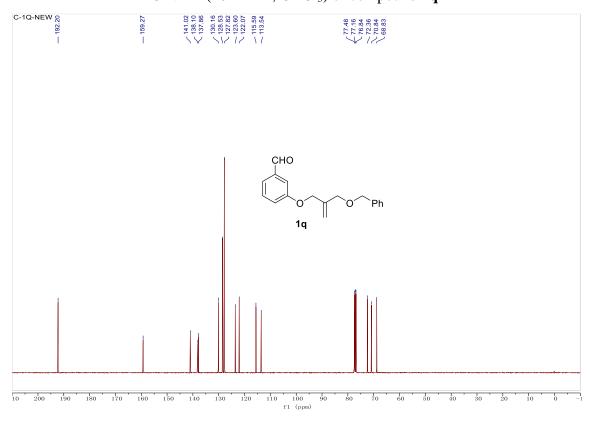
¹H NMR (400 MHz, CDCl₃) of compound **1n**

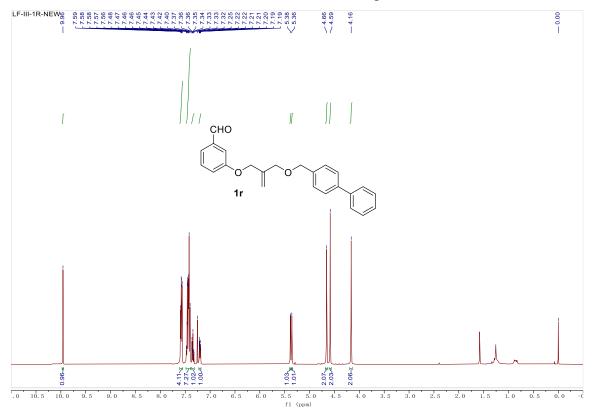

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1n}$

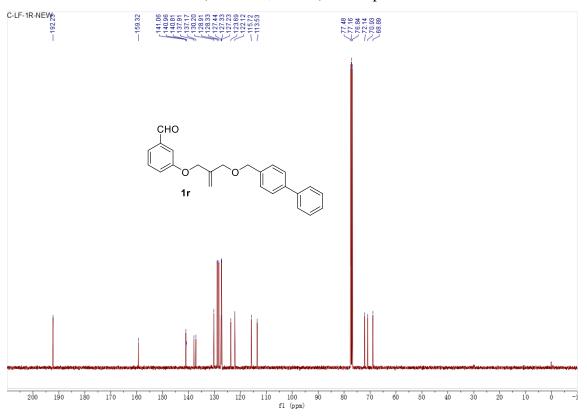

¹H NMR (400 MHz, CDCl₃) of compound **10**

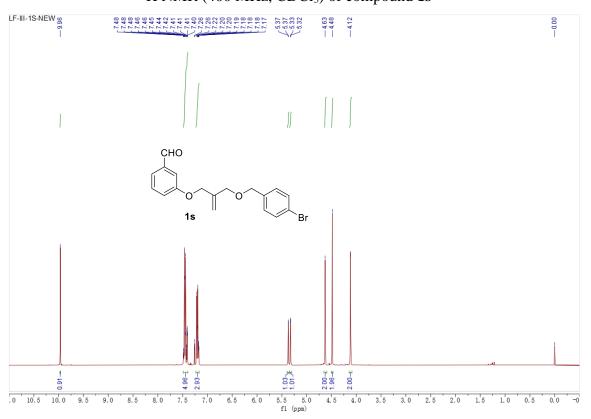

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1o}$

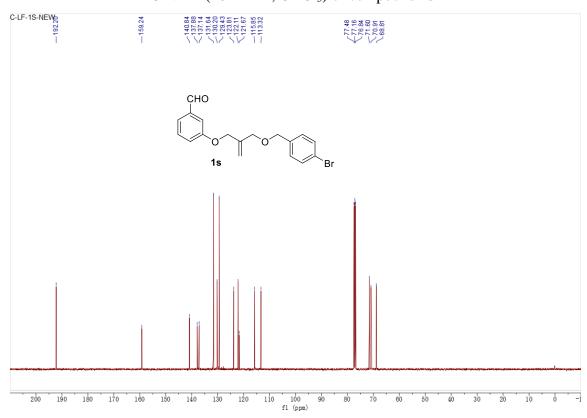

¹H NMR (400 MHz, CDCl₃) of compound **1p**

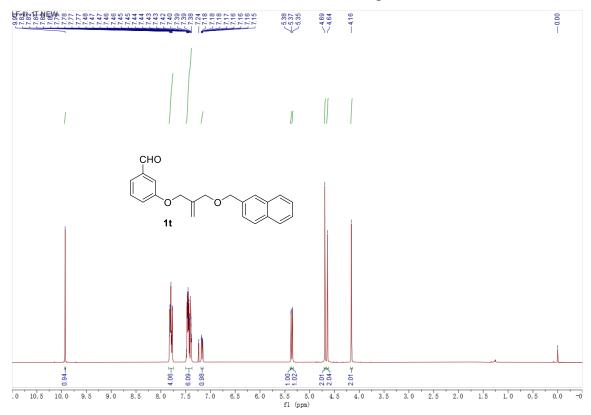

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1p}$

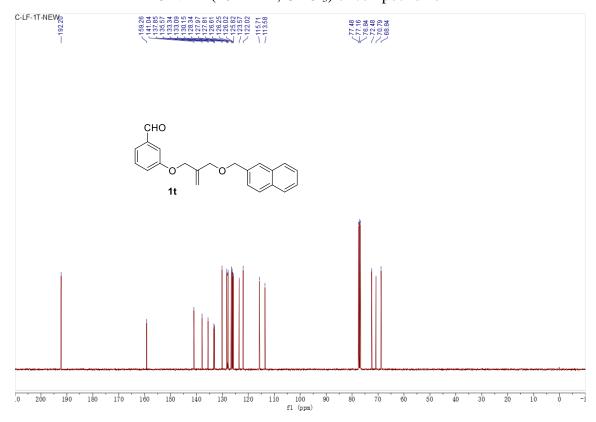

 1H NMR (400 MHz, CDCl $_3)$ of compound $\boldsymbol{1q}$


 $^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{1q}$

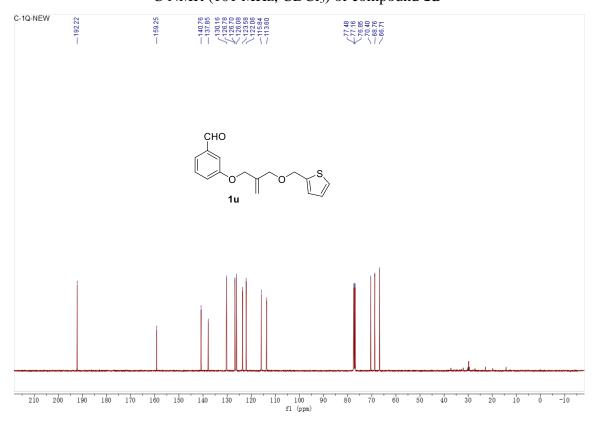

^{1}H NMR (400 MHz, CDCl₃) of compound 1r

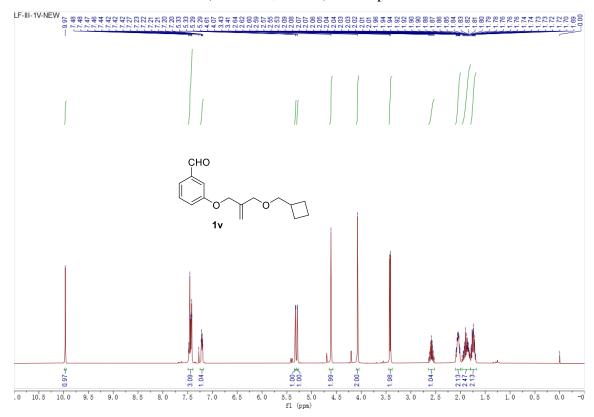

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1r}$

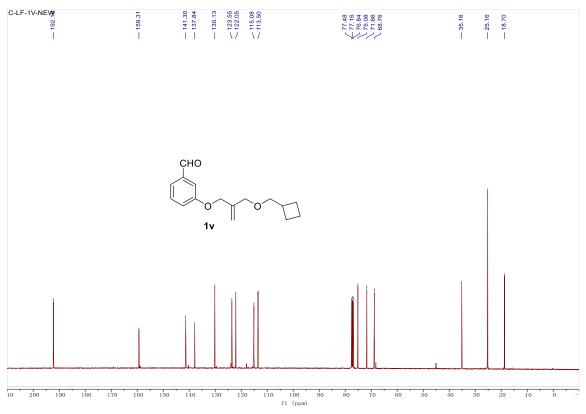

¹H NMR (400 MHz, CDCl₃) of compound **1s**

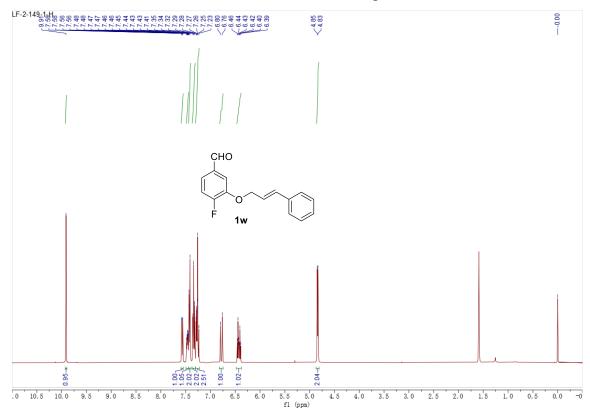

^{13}C NMR (101 MHz, CDCl₃) of compound 1s

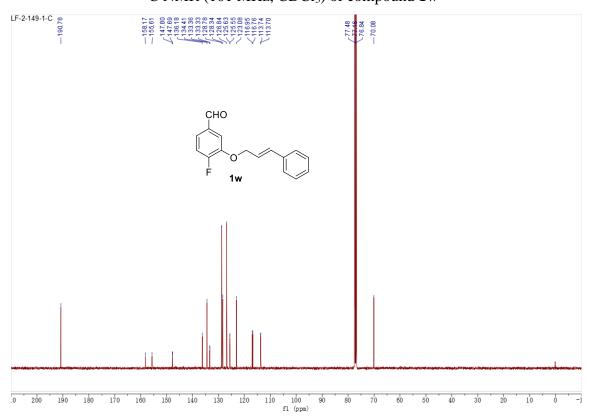
¹H NMR (400 MHz, CDCl₃) of compound **1t**

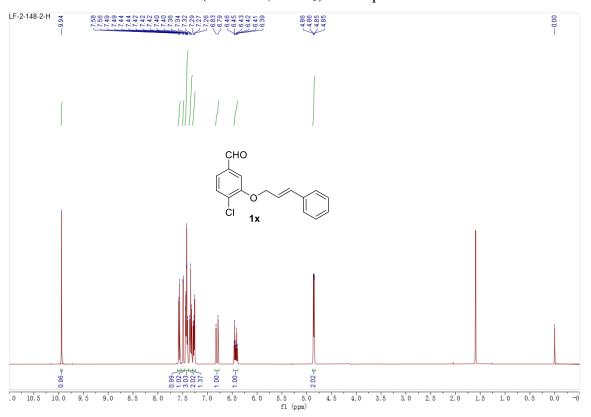

 13 C NMR (101 MHz, CDCl₃) of compound 1t

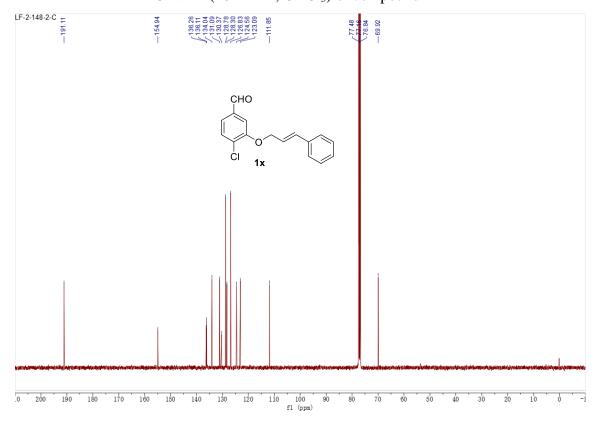

^{1}H NMR (400 MHz, CDCl₃) of compound 1u

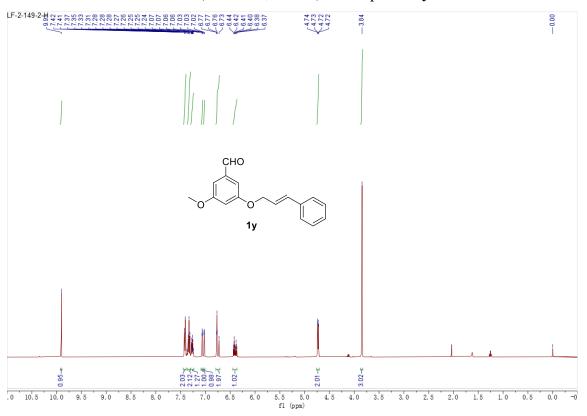

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1u}$

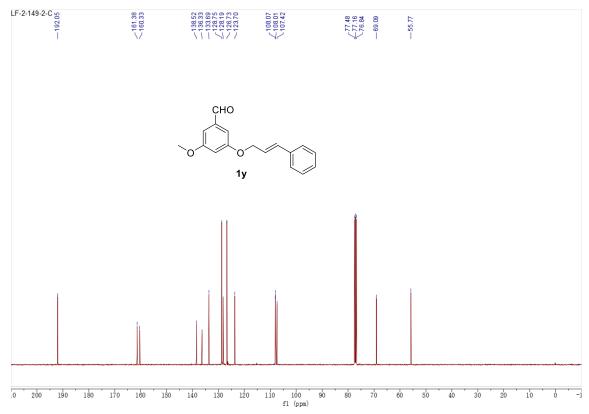

^{1}H NMR (400 MHz, CDCl₃) of compound 1v

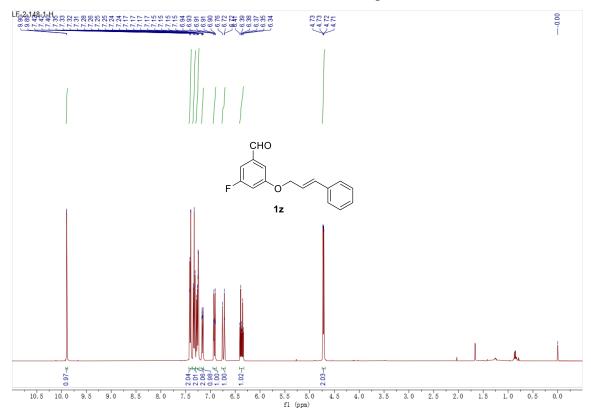

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1v}$

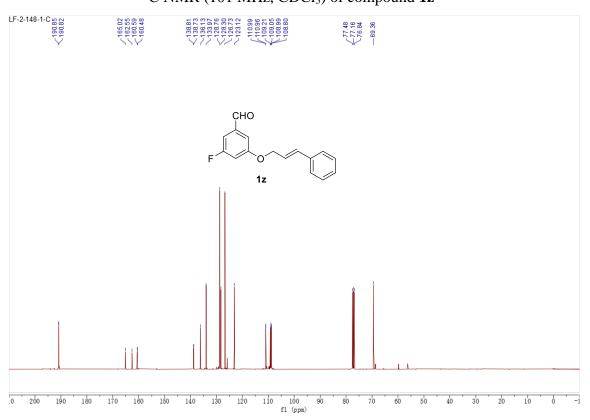

 ^{1}H NMR (400 MHz, CDCl₃) of compound 1w

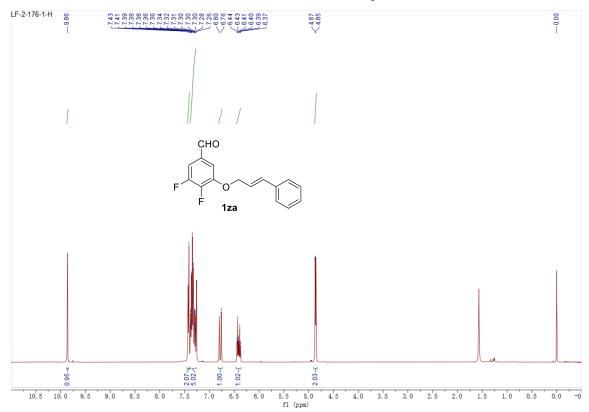

 ^{13}C NMR (101 MHz, CDCl₃) of compound 1w

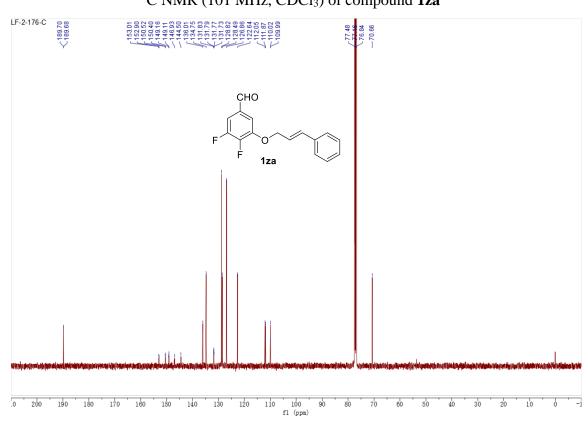

¹H NMR (400 MHz, CDCl₃) of compound **1x**

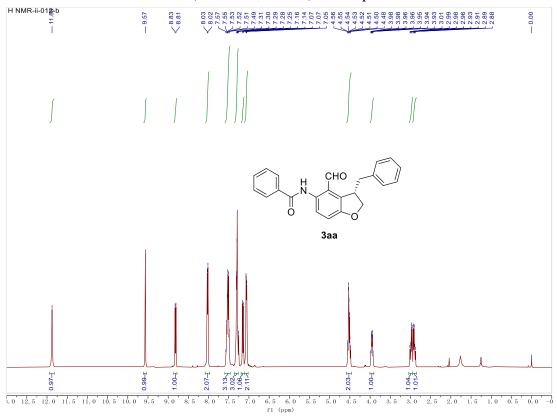

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1x}$

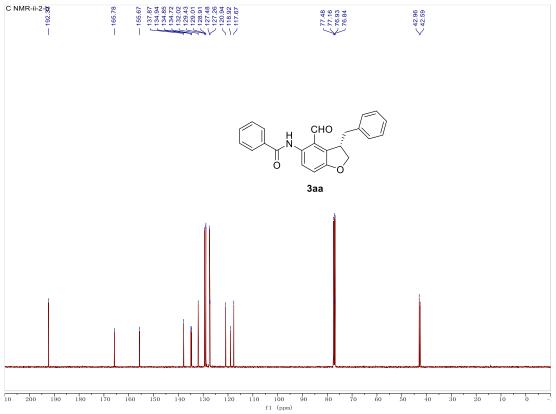

¹H NMR (400 MHz, CDCl₃) of compound **1y**

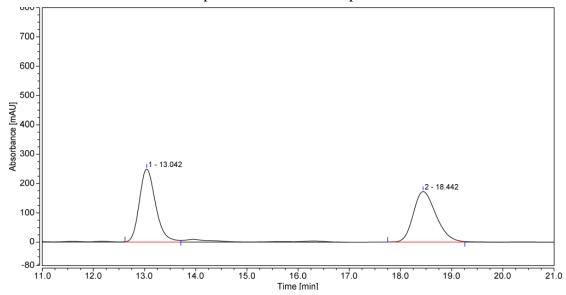

$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{1y}$

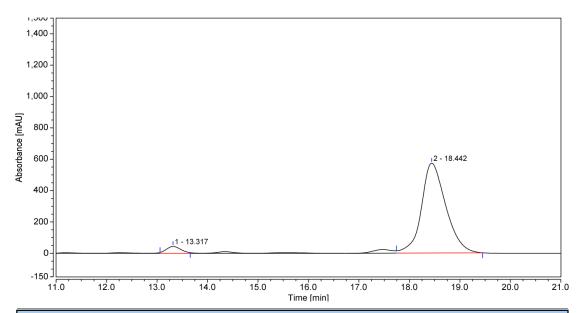

¹H NMR (400 MHz, CDCl₃) of compound **1z**


 ^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{1z}$

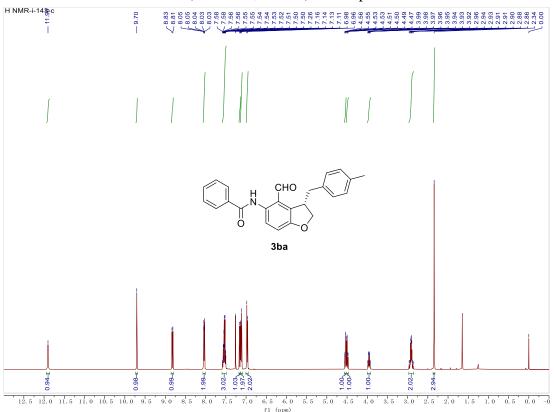

¹H NMR (400 MHz, CDCl₃) of compound **1za**


13 C NMR (101 MHz, CDCl₃) of compound **1za**

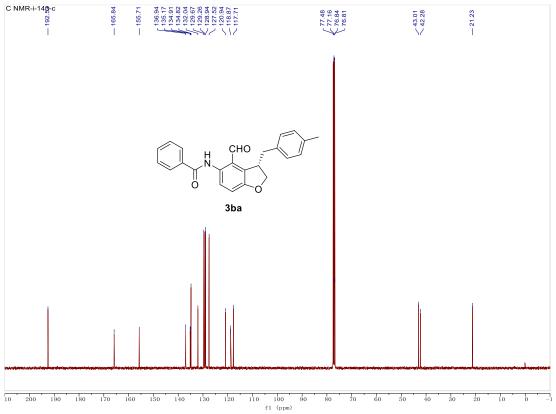

¹H NMR (400 MHz, CDCl₃) of compound **3aa**


13 C NMR (101 MHz, CDCl₃) of compound **3aa**

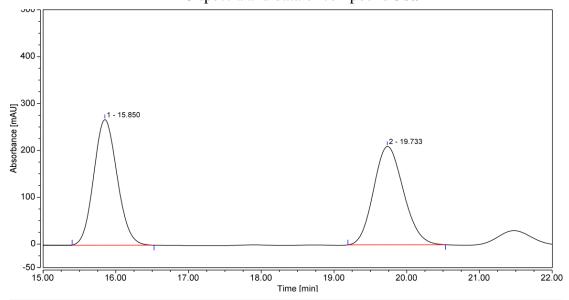
HPLC spectra and data of compound 3aa

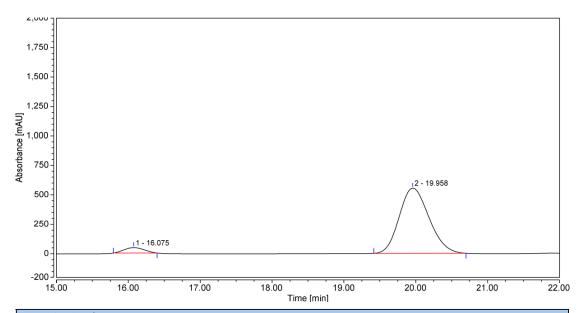


Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		13.042	91.917	249.015	50.95	59.11	n.a.	
2		18.442	88.487	172.269	49.05	40.89	n.a.	
Total:	Total:			421.285	100.00	100.00		

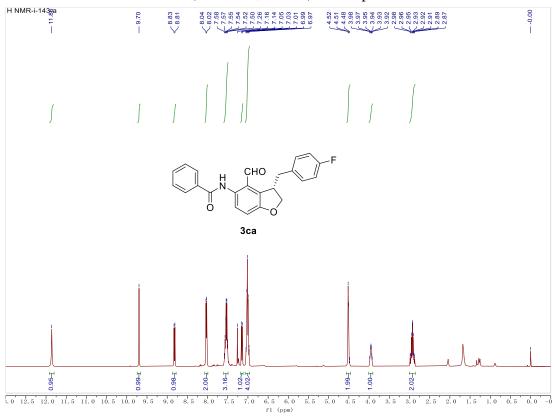


Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		13.317	14.646	43.730	4.37	7.10	n.a.	
2		18.442	320.692	572.615	95.63	92.90	n.a.	
Total:			335.337	616.346	100.00	100.00		

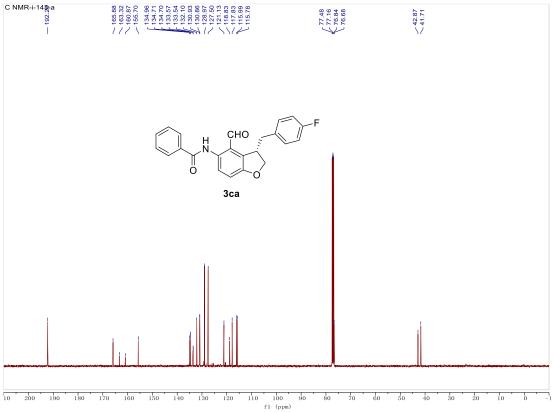

¹H NMR (400 MHz, CDCl₃) of compound **3ba**


13 C NMR (101 MHz, CDCl₃) of compound **3ba**

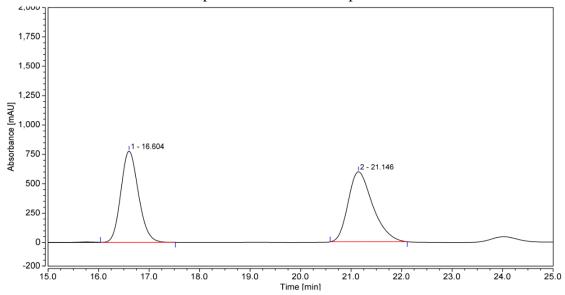
HPLC spectra and data of compound 3ba

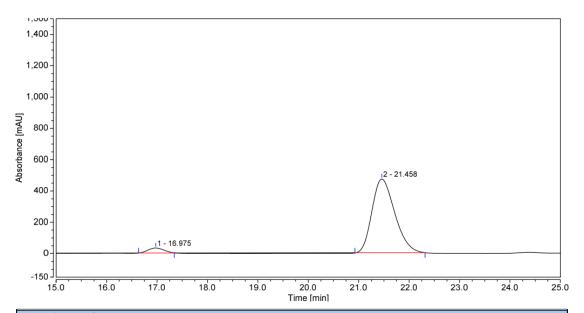


Integr	Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mAU	%	%	n.a.		
1		15.850	100.250	268.104	50.09	56.10	n.a.		
2		19.733	99.887	209.824	49.91	43.90	n.a.		
Total:	Total:			477.927	100.00	100.00			

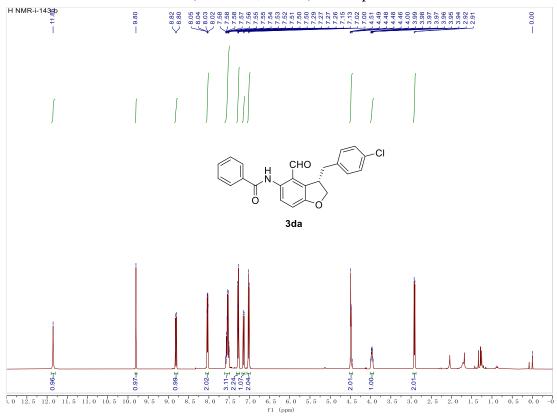


Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		16.075	14.722	45.821	5.25	7.64	n.a.	
2		19.958	265.460	553.658	94.75	92.36	n.a.	
Total:			280.182	599.479	100.00	100.00		

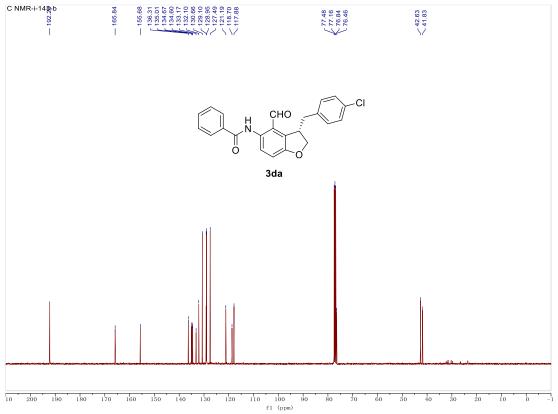

¹H NMR (400 MHz, CDCl₃) of compound **3ca**


¹³C NMR (101 MHz, CDCl₃) of compound **3ca**

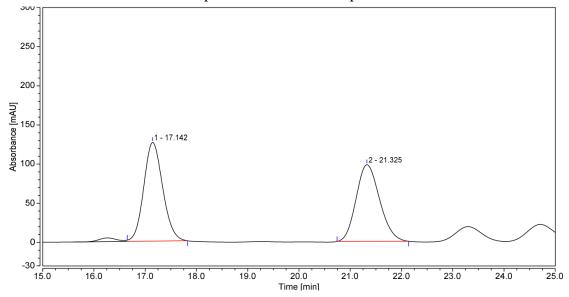
HPLC spectra and data of compound 3ca

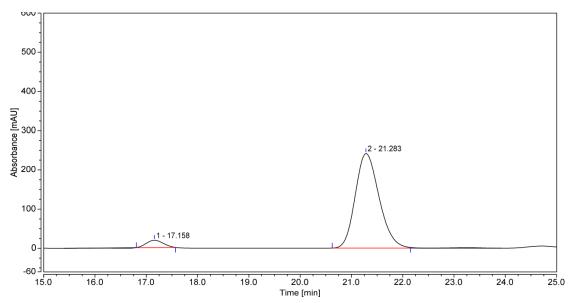


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		16.604	313.746	776.700	48.28	56.58	n.a.				
2		21.146	336.137	596.048	51.72	43.42	n.a.				
Total:			649.883	1372.748	100.00	100.00					

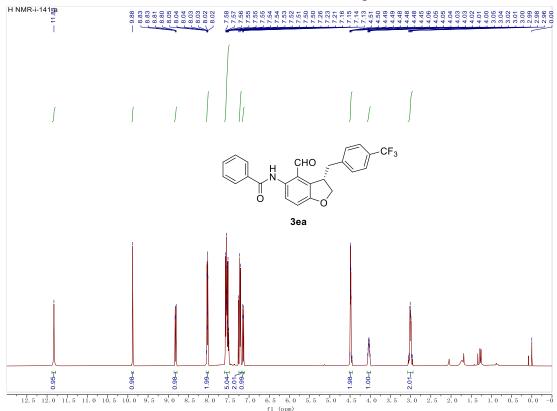


Integr	ntegration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		16.975	11.460	31.651	4.46	6.31	n.a.			
2		21.458	245.779	470.330	95.54	93.69	n.a.			
Total:			257.240	501.980	100.00	100.00				

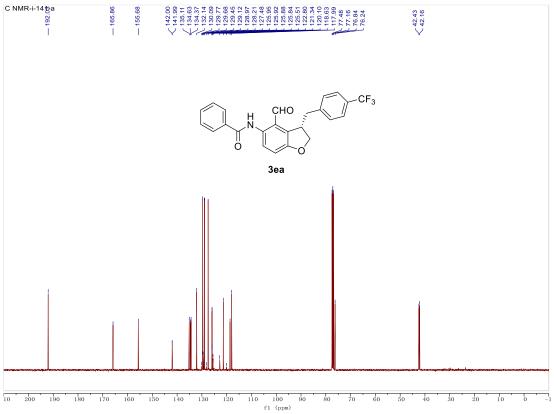

¹H NMR (400 MHz, CDCl₃) of compound **3da**


¹³C NMR (101 MHz, CDCl₃) of compound **3da**

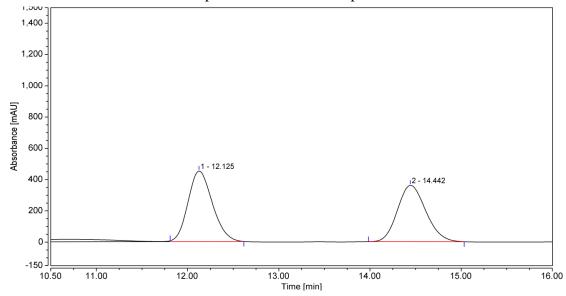
HPLC spectra and data of compound 3da

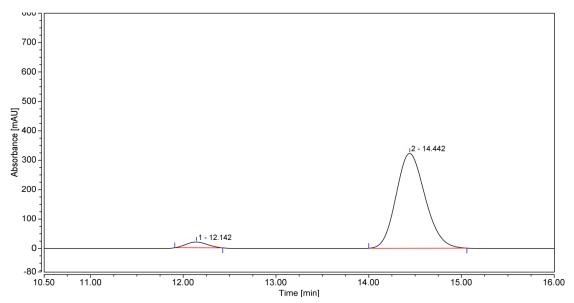


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		17.142	54.056	126.183	50.95	56.30	n.a.				
2		21.325	52.037	97.948	49.05	43.70	n.a.				
Total:			106.093	224.131	100.00	100.00					

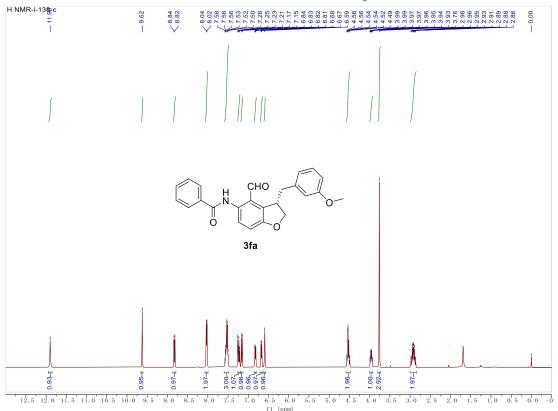


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		17.158	7.099	18.616	5.18	7.16	n.a.				
2		21.283	129.909	241.339	94.82	92.84	n.a.				
Total:			137.007	259.956	100.00	100.00					

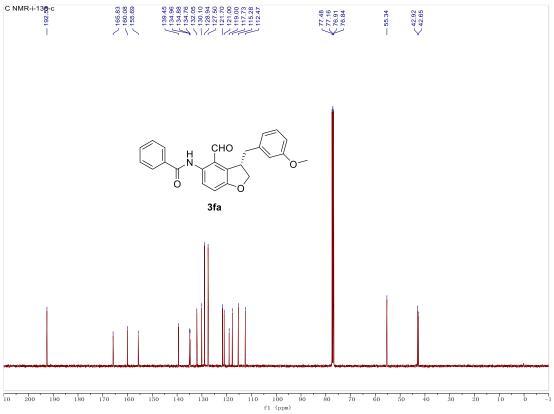

¹H NMR (400 MHz, CDCl₃) of compound **3ea**


13 C NMR (101 MHz, CDCl₃) of compound **3ea**

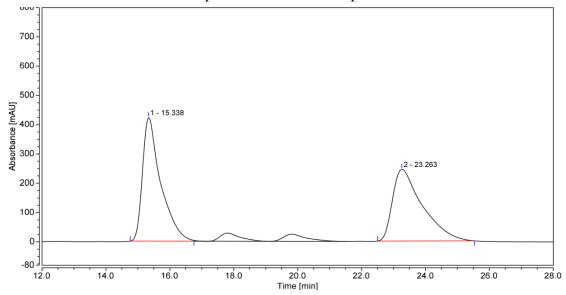
HPLC spectra and data of compound 3ea

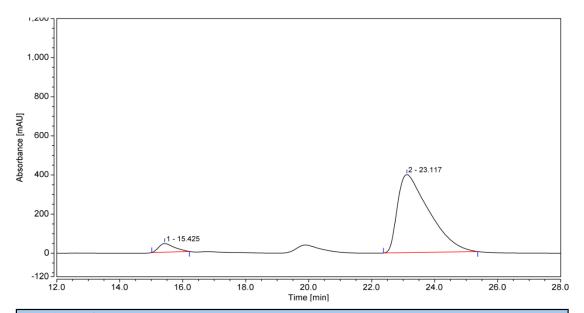


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.125	139.705	450.592	51.78	55.58	n.a.				
2		14.442	130.096	360.160	48.22	44.42	n.a.				
Total:			269.801	810.752	100.00	100.00					

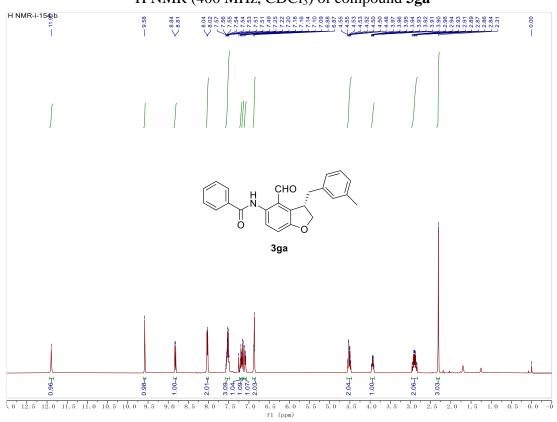


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.142	5.175	19.557	4.25	5.73	n.a.				
2		14.442	116.563	321.998	95.75	94.27	n.a.				
Total:			121.738	341.556	100.00	100.00					

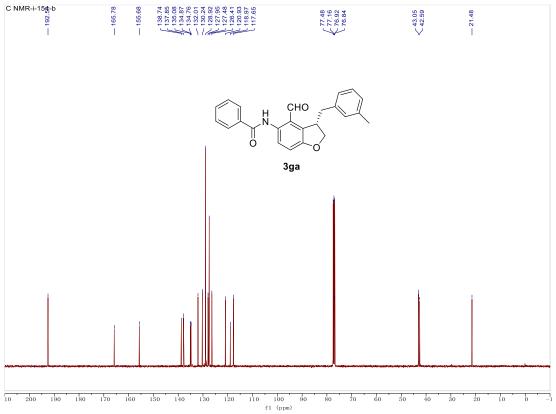

¹H NMR (400 MHz, CDCl₃) of compound **3fa**


$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound **3fa**

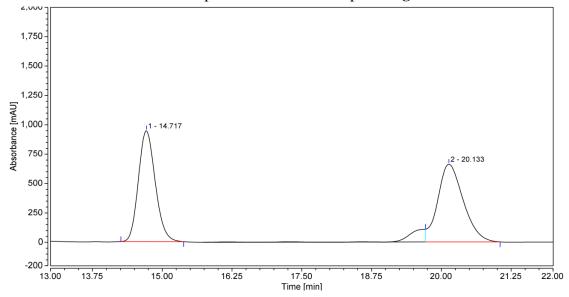
HPLC spectra and data of compound 3fa

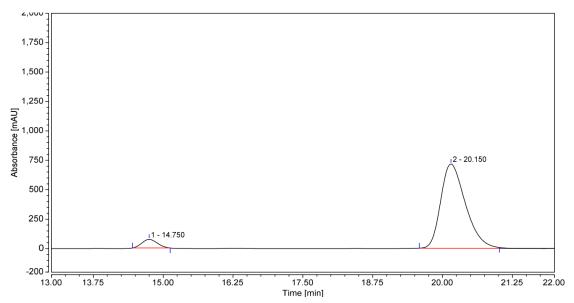


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		15.338	277.842	422.398	51.27	63.28	n.a.				
2		23.263	264.086	245.098	48.73	36.72	n.a.				
Total:			541.928	667.495	100.00	100.00					

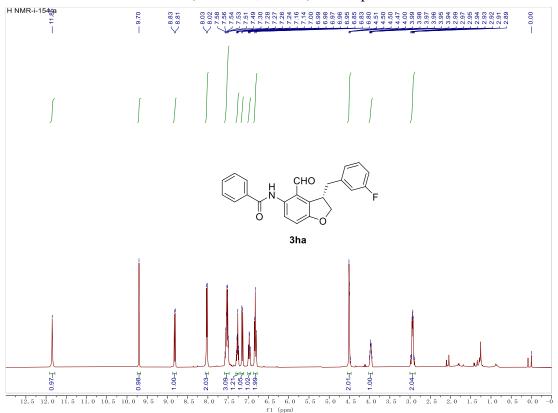


Integr	ntegration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		15.425	25.213	44.203	5.17	9.98	n.a.			
2		23.117	462.478	398.785	94.83	90.02	n.a.			
Total:			487.691	442.988	100.00	100.00				

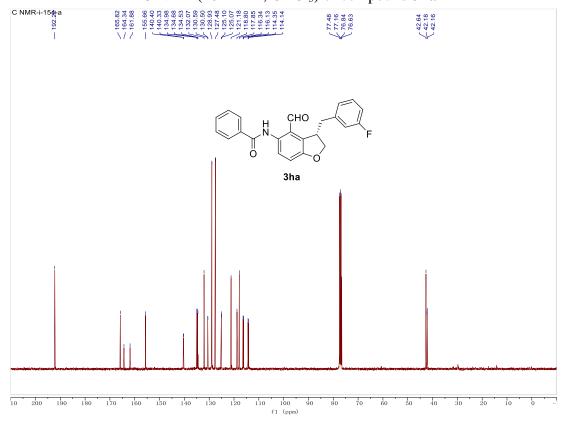

¹H NMR (400 MHz, CDCl₃) of compound **3ga**


13 C NMR (101 MHz, CDCl₃) of compound **3ga**

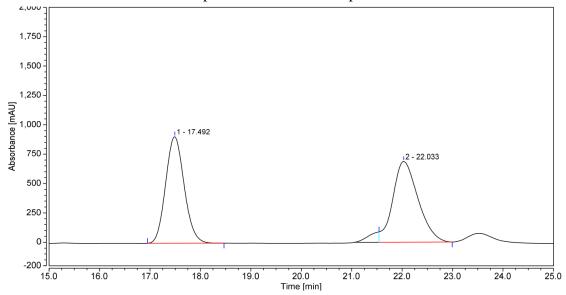
HPLC spectra and data of compound 3ga



Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		14.717	330.875	943.252	48.56	58.75	n.a.				
2		20.133	350.475	662.188	51.44	41.25	n.a.				
Total:			681.350	1605.441	100.00	100.00					

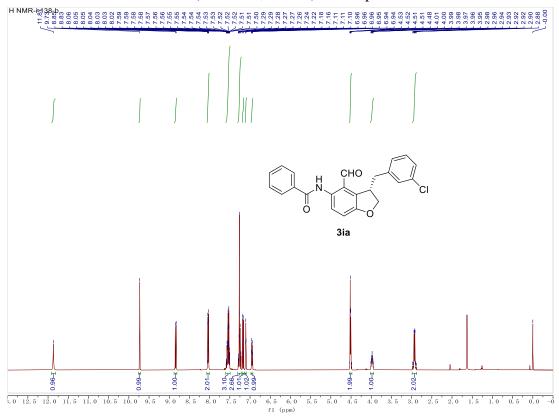


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		14.750	23.125	72.336	5.93	9.18	n.a.				
2		20.150	366.630	715.564	94.07	90.82	n.a.				
Total:			389.756	787.900	100.00	100.00					

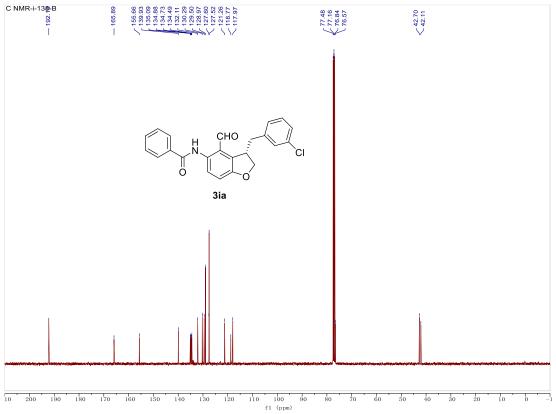

¹H NMR (400 MHz, CDCl₃) of compound **3ha**

¹³C NMR (101 MHz, CDCl₃) of compound **3ha**

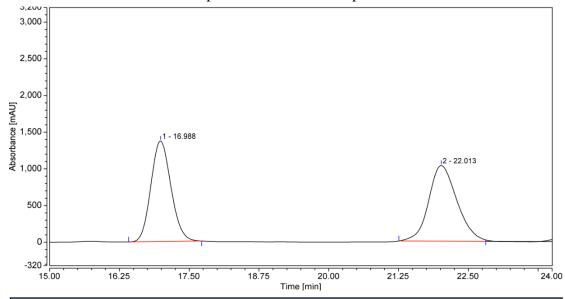
HPLC spectra and data of compound 3ha

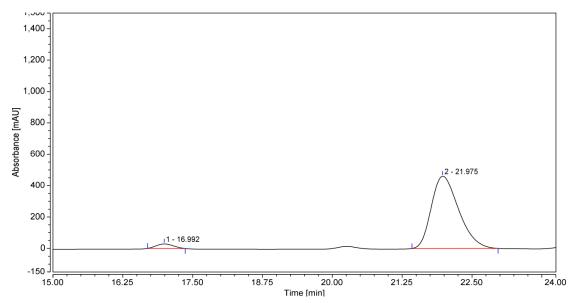


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		17.492	387.043	906.498	49.18	56.88	n.a.				
2		22.033	400.011	687.087	50.82	43.12	n.a.				
Total:			787.053	1593.585	100.00	100.00					

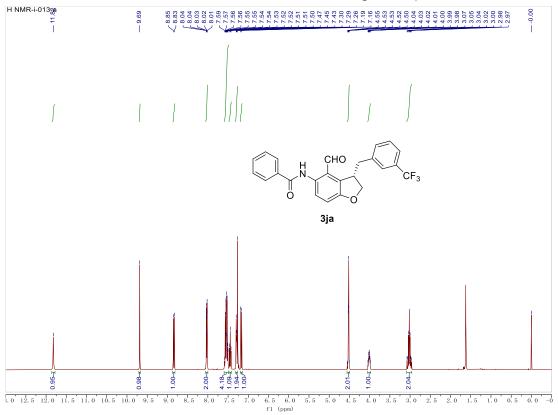


Integr	ntegration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		17.525	9.001	24.057	4.23	6.22	n.a.			
2		22.125	203.593	362.767	95.77	93.78	n.a.			
Total:			212.594	386.824	100.00	100.00				

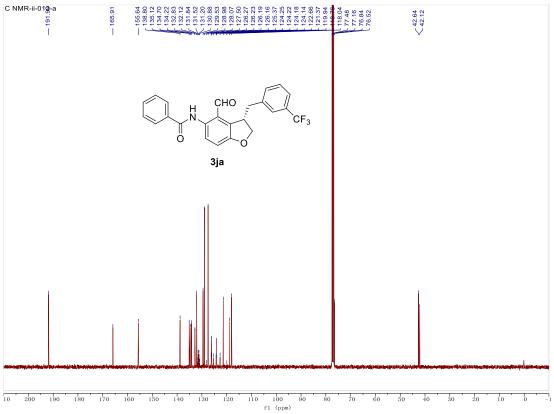

¹H NMR (400 MHz, CDCl₃) of compound **3ia**


$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound **3ia**

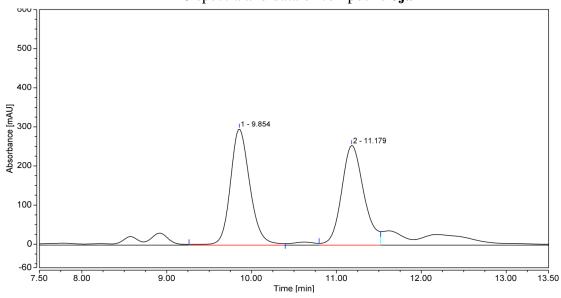
HPLC spectra and data of compound 3ia

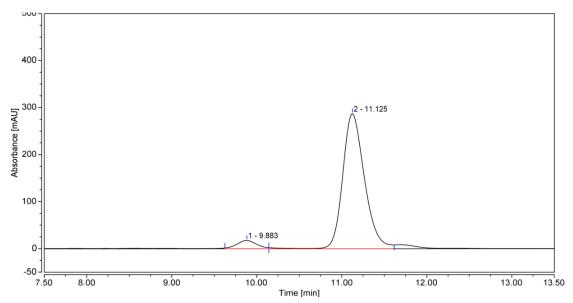


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		16.988	571.887	1370.680	48.63	57.07	n.a.				
2		22.013	604.078	1031.095	51.37	42.93	n.a.				
Total:			1175.965	2401.775	100.00	100.00					

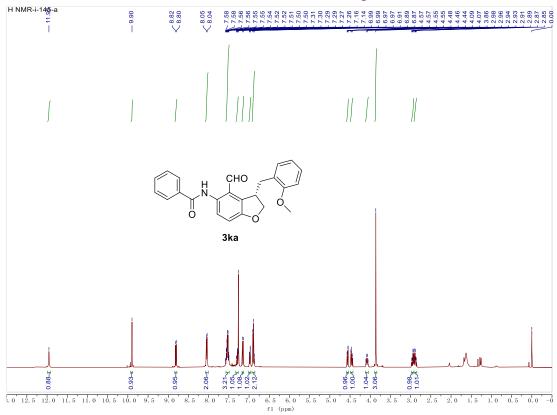


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		16.992	10.167	28.675	3.74	5.86	n.a.				
2		21.975	261.822	460.653	96.26	94.14	n.a.				
Total:			271.989	489.328	100.00	100.00					

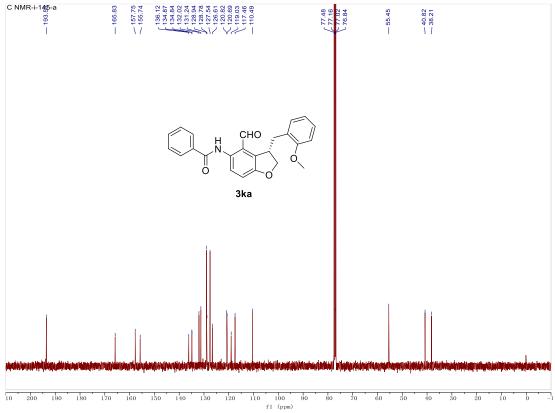

¹H NMR (400 MHz, CDCl₃) of compound **3ja**


^{13}C NMR (101 MHz, CDCl₃) of compound 3ja

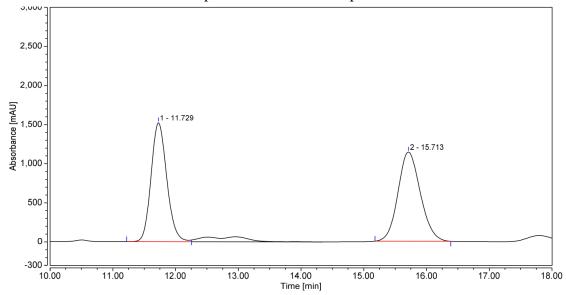
HPLC spectra and data of compound 3ja

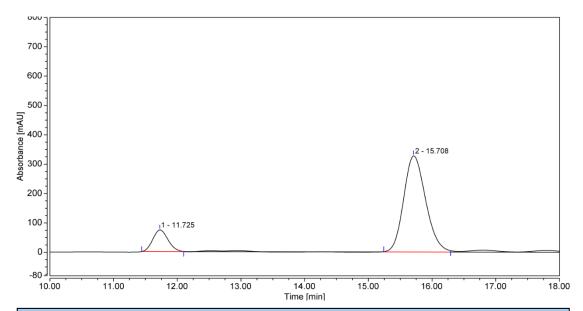


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		9.854	79.259	296.887	50.60	53.81	n.a.				
2		11.179	77.374	254.850	49.40	46.19	n.a.				
Total:			156.633	551.737	100.00	100.00					

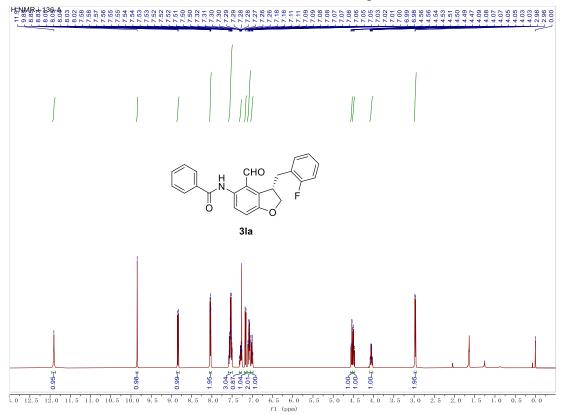


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		9.883	4.761	17.649	5.30	5.79	n.a.				
2		11.125	85.062	287.325	94.70	94.21	n.a.				
Total:			89.823	304.974	100.00	100.00					

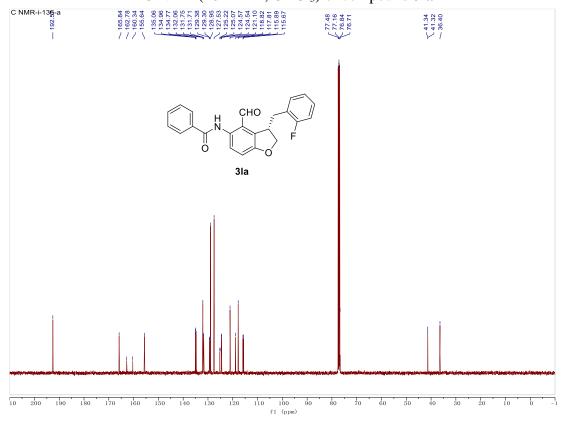

¹H NMR (400 MHz, CDCl₃) of compound **3ka**


13 C NMR (101 MHz, CDCl₃) of compound **3ka**

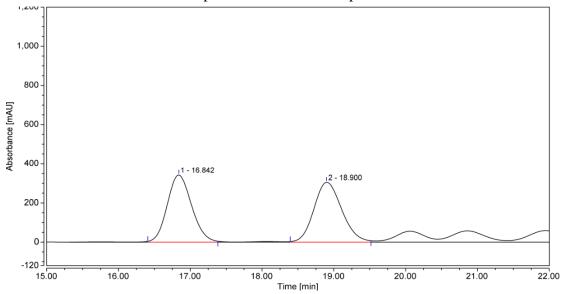
HPLC spectra and data of compound 3ka

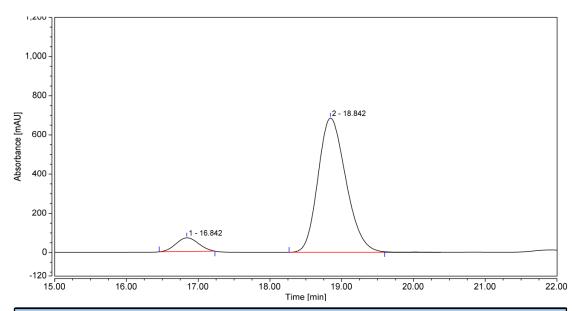


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		11.729	443.361	1522.172	48.45	57.14	n.a.				
2		15.713	471.786	1141.837	51.55	42.86	n.a.				
Total:			915.147	2664.009	100.00	100.00					

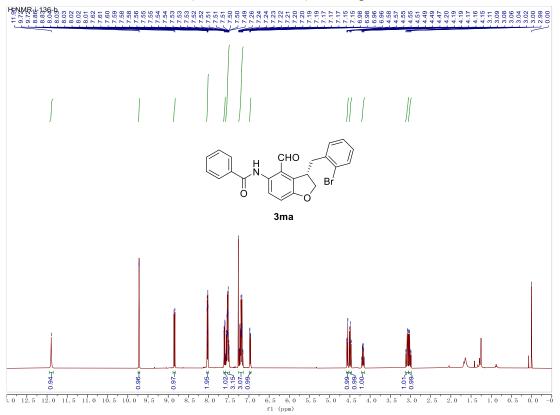


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		11.725	20.393	73.738	13.48	18.39	n.a.			
2		15.708	130.873	327.285	86.52	81.61	n.a.			
Total:			151.266	401.024	100.00	100.00				

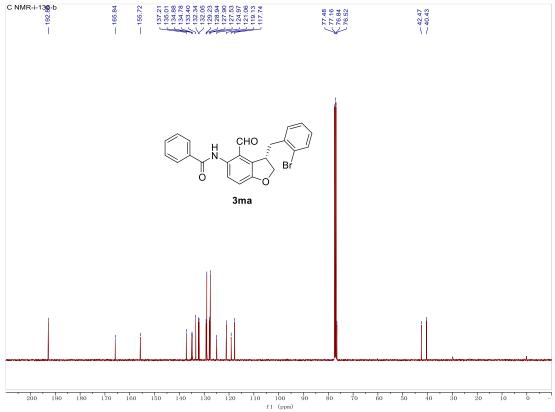

¹H NMR (400 MHz, CDCl₃) of compound **3la**


$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound **3la**

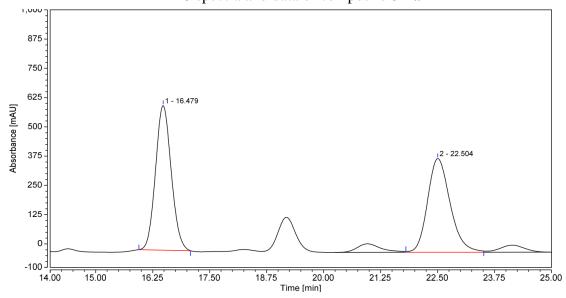
HPLC spectra and data of compound 3la

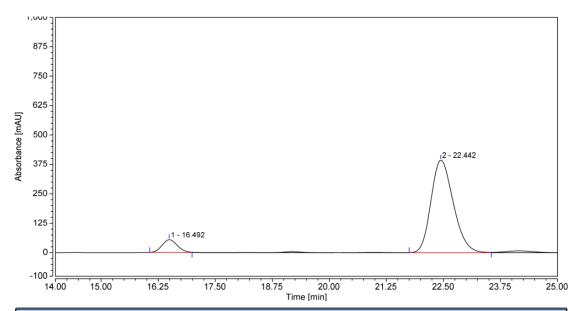


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		16.842	134.577	342.855	49.48	52.86	n.a.				
2		18.900	137.390	305.804	50.52	47.14	n.a.				
Total:			271.967	648.660	100.00	100.00					

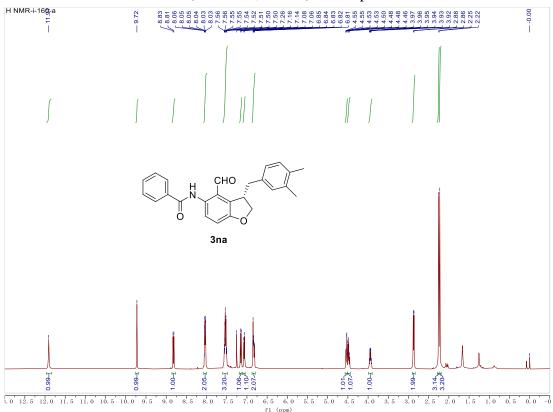


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		16.842	25.302	69.733	7.57	9.24	n.a.			
2		18.842	308.894	684.707	92.43	90.76	n.a.			
Total:			334.197	754.440	100.00	100.00				

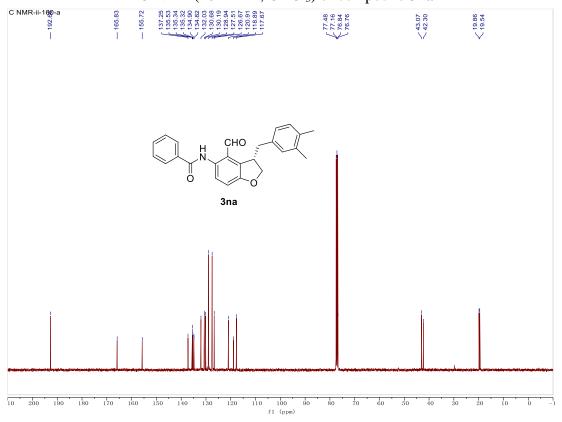

¹H NMR (400 MHz, CDCl₃) of compound **3ma**


^{13}C NMR (101 MHz, CDCl₃) of compound **3ma**

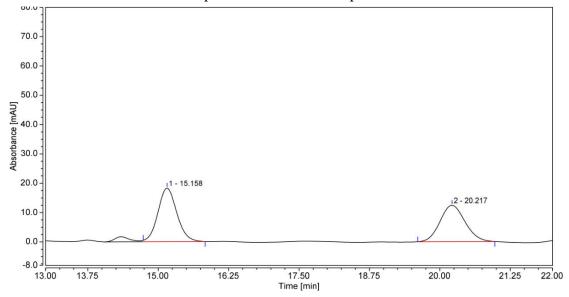
HPLC spectra and data of compound 3ma

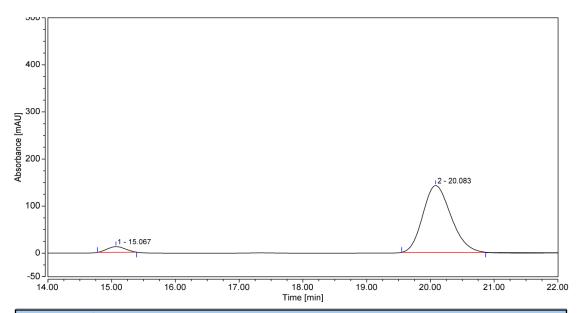


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		16.479	247.072	617.258	51.81	60.65	n.a.				
2		22.504	229.805	400.424	48.19	39.35	n.a.				
Total:			476.878	1017.681	100.00	100.00					

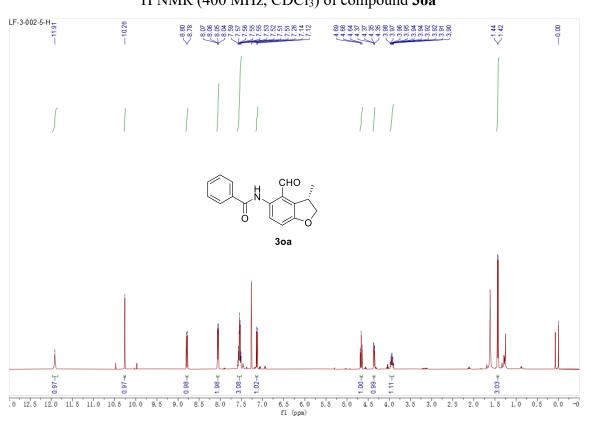


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		16.492	20.998	54.470	8.61	12.16	n.a.			
2		22.442	222.866	393.292	91.39	87.84	n.a.			
Total:			243.864	447.762	100.00	100.00				

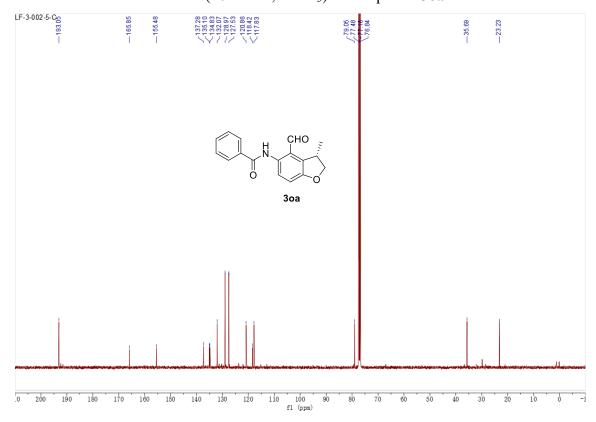

^{1}H NMR (400 MHz, CDCl₃) of compound **3na**


¹³C NMR (101 MHz, CDCl₃) of compound **3na**

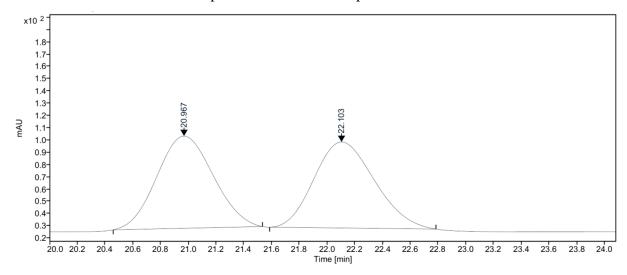
HPLC spectra and data of compound 3na



Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		15.158	7.114	18.246	52.70	59.52	n.a.				
2		20.217	6.386	12.409	47.30	40.48	n.a.				
Total:			13.500	30.655	100.00	100.00					

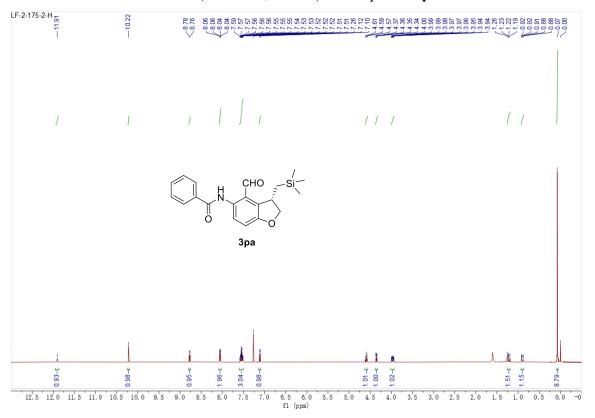


Integr	ntegration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		15.067	3.865	11.947	5.05	7.77	n.a.			
2		20.083	72.670	141.898	94.95	92.23	n.a.			
Total:			76.534	153.845	100.00	100.00				

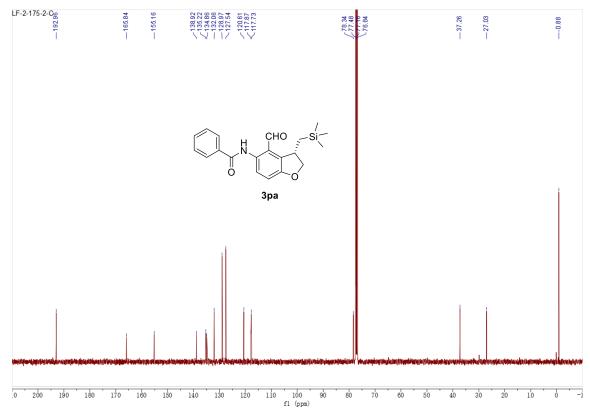

¹H NMR (400 MHz, CDCl₃) of compound **30a**


13 C NMR (101 MHz, CDCl₃) of compound **30a**

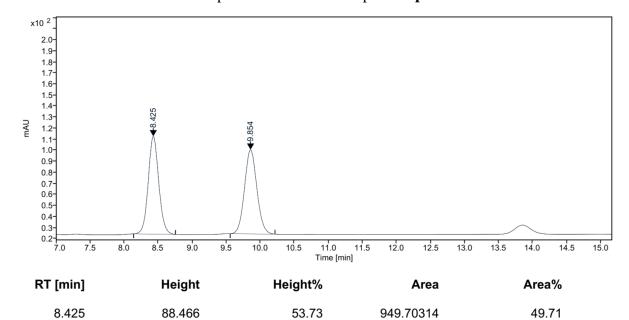
HPLC spectra and data of compound 30a



Area%	Area	Height%	Height	RT [min]
50.01	2124.55021	51.74	75.194	20.967
49.99	2123.67054	48.26	70.123	22.103

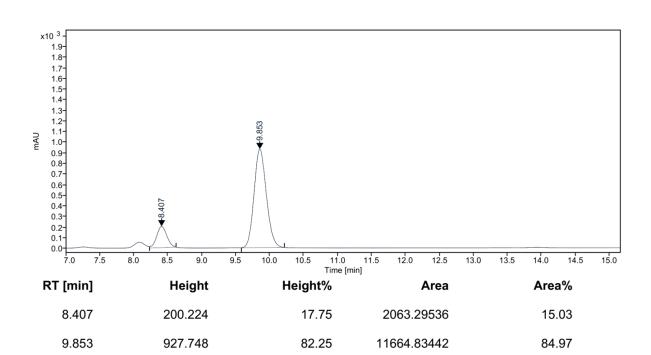


Area%	Area	Height%	Height	RT [min]
25.63	2662.33526	28.29	99.553	21.147
74.37	7723.34120	71.71	252.332	22.215

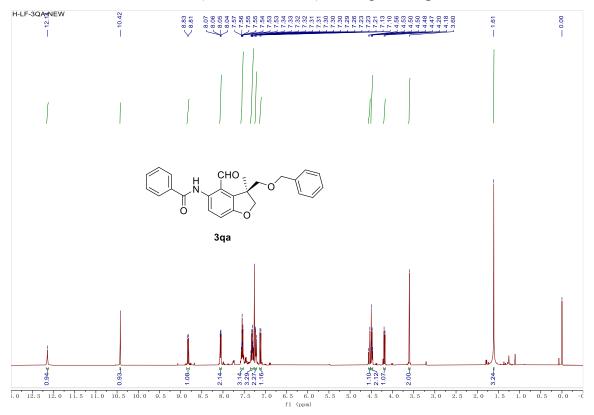

¹H NMR (400 MHz, CDCl₃) of compound **3pa**

13 C NMR (101 MHz, CDCl₃) of compound **3pa**

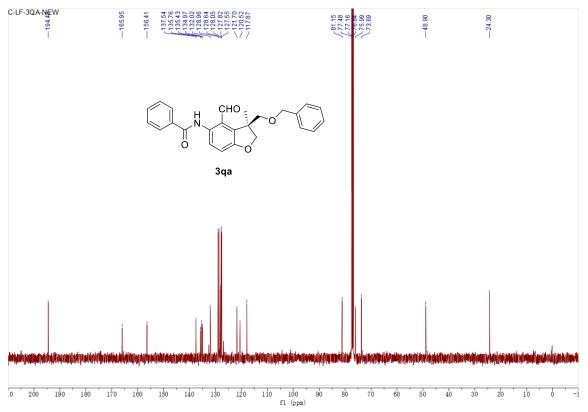
HPLC spectra and data of compound 3pa

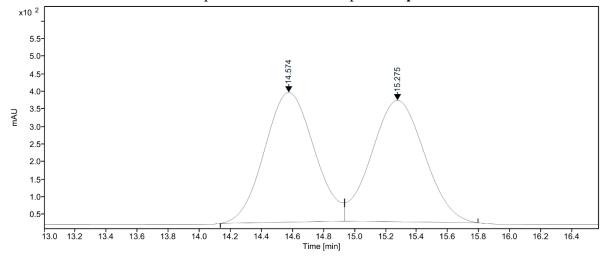

46.27

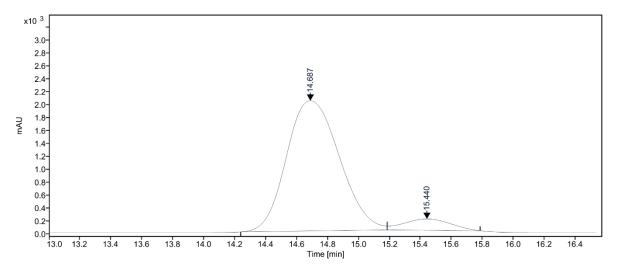
960.96245


50.29

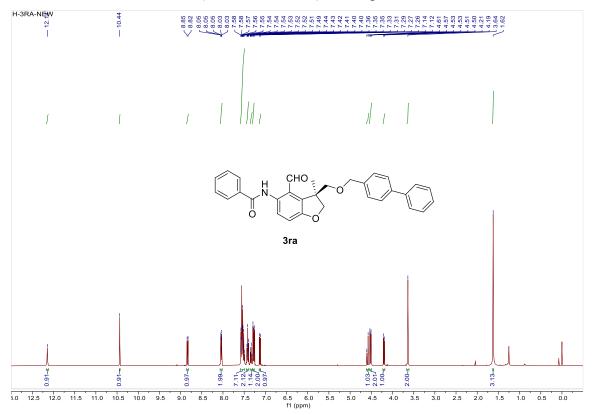
9.854


76.197

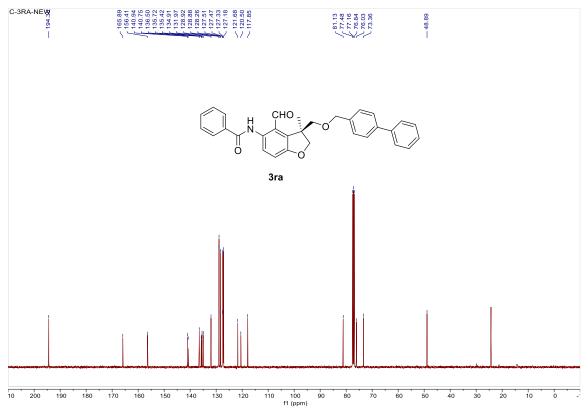

^{1}H NMR (400 MHz, CDCl₃) of compound $\mathbf{3qa}$


¹³C NMR (101 MHz, CDCl₃) of compound **3qa**

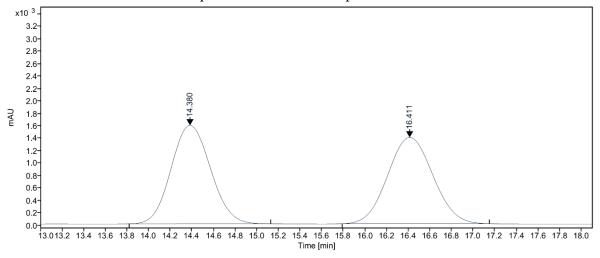
HPLC spectra and data of compound 3qa

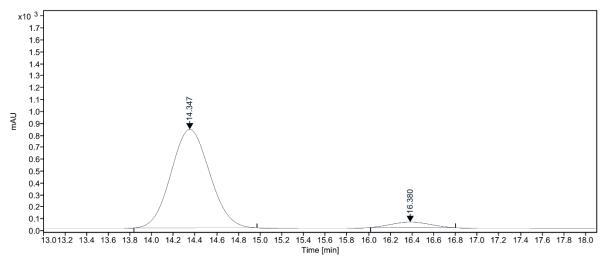


Area%	Area	Height%	Height	RT [min]
50.09	8214.09034	51.64	368.844	14.574
49.91	8185.59269	48.36	345.387	15.275

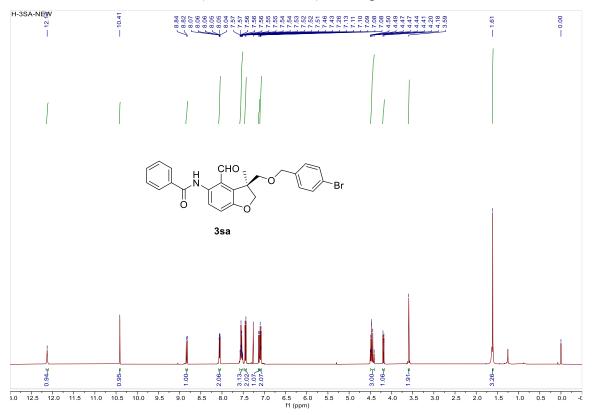


Area%	Area	Height%	Height	RT [min]
92.85	48075.82572	92.03	2023.190	14.687
7.15	3700.88422	7.97	175.164	15.440


¹H NMR (400 MHz, CDCl₃) of compound **3ra**

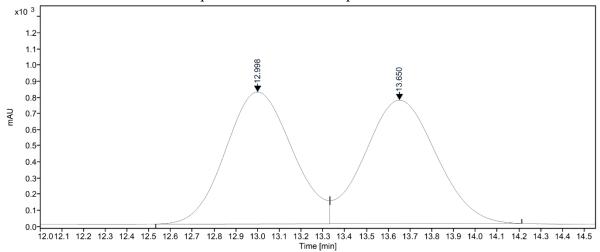

13 C NMR (101 MHz, CDCl₃) of compound 3ra

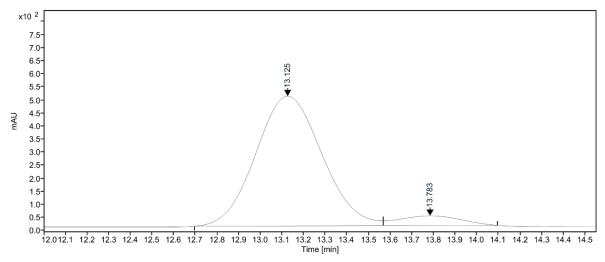
HPLC spectra and data of compound 3ra



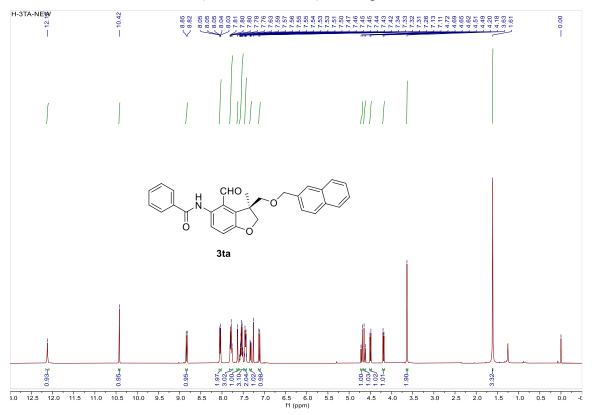
Area%	Area	Height%	Height	RT [min]
49.86	40282.68269	53.29	1584.672	14.380
50.14	40515.44733	46.71	1388.728	16.411

Area%	Area	Height%	Height	RT [min]
94.75	20424.59700	94.76	825.554	14.347
5.25	1130.61033	5.24	45.684	16.380

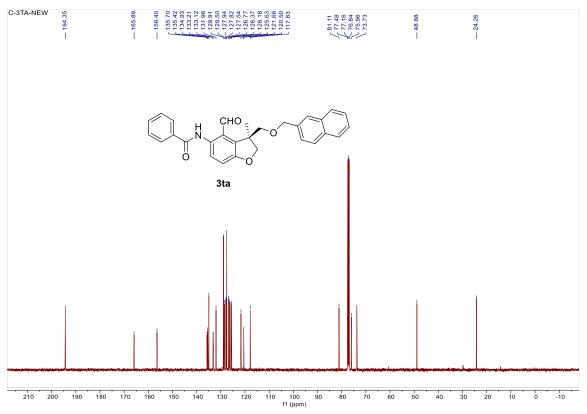

¹H NMR (400 MHz, CDCl₃) of compound **3sa**


13 C NMR (101 MHz, CDCl₃) of compound 3sa

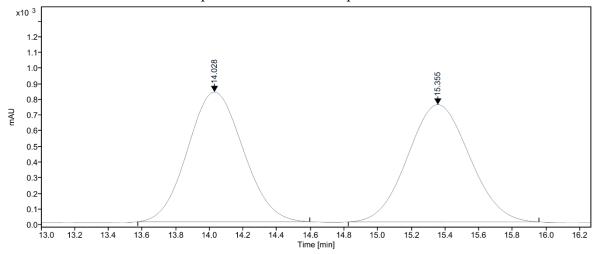
HPLC spectra and data of compound 3sa

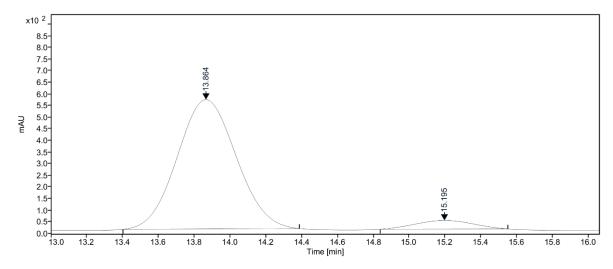


Area%	Area	Height%	Height	RT [min]
49.81	17484.81784	51.65	818.475	12.998
50.19	17617.69826	48.35	766.044	13.650

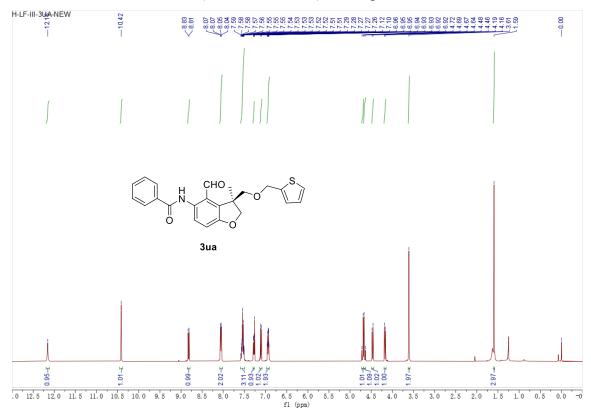


Area%	Area	Height%	Height	RT [min]
93.46	10560.05529	92.99	496.670	13.125
6.54	738.54995	7.01	37.455	13.783

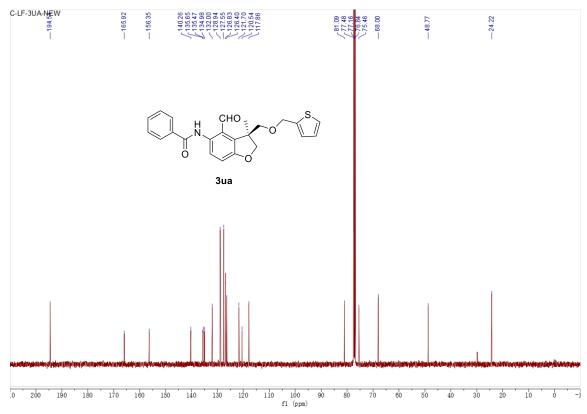

¹H NMR (400 MHz, CDCl₃) of compound 3ta


13 C NMR (101 MHz, CDCl₃) of compound 3ta

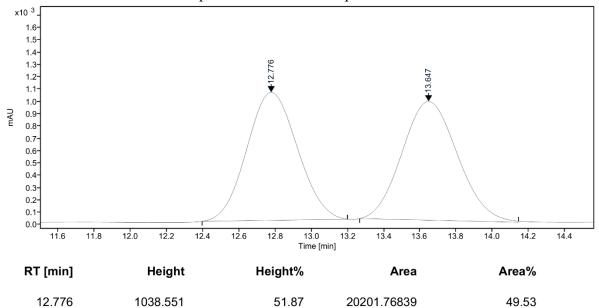
HPLC spectra and data of compound 3ta



Area%	Area	Height%	Height	RT [min]
49.79	18987.04679	52.50	827.989	14.028
50.21	19148.00343	47.50	749.137	15.355

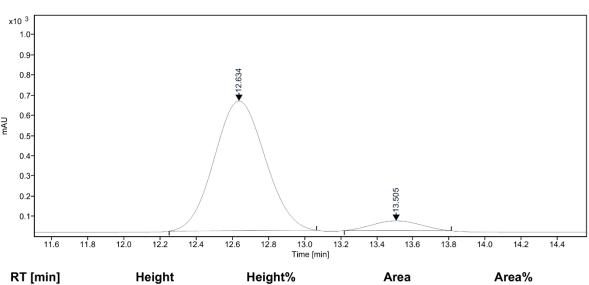


Area%	Area	Height%	Height	RT [min]
93.89	12737.52164	93.75	556.469	13.864
6.11	828.28386	6.25	37.073	15.195

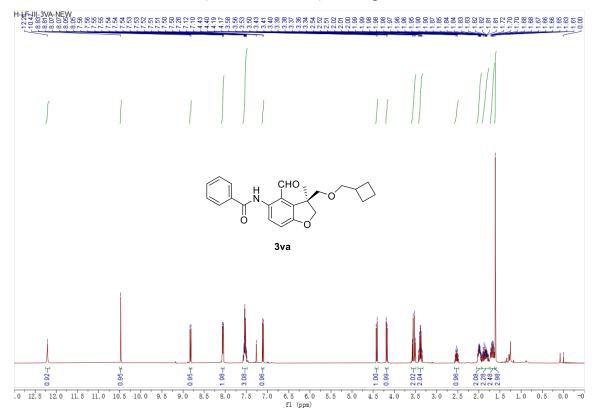

¹H NMR (400 MHz, CDCl₃) of compound **3ua**

13 C NMR (101 MHz, CDCl₃) of compound 3ua

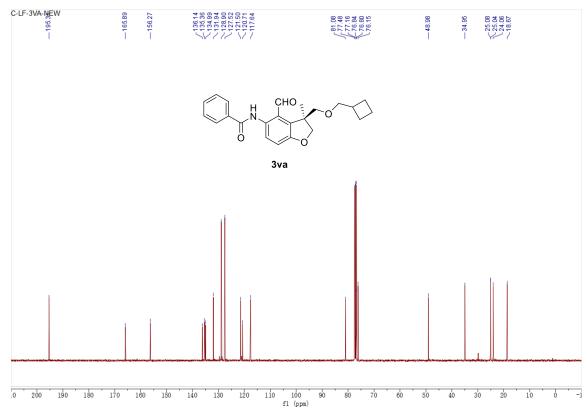
HPLC spectra and data of compound 3ua

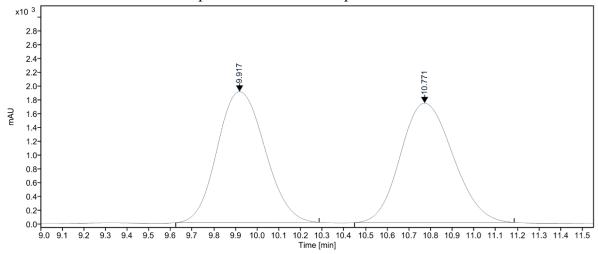

48.13

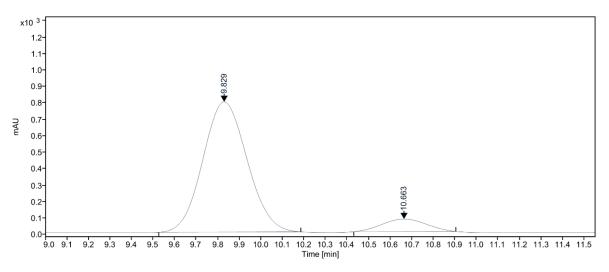
20581.33836


50.47

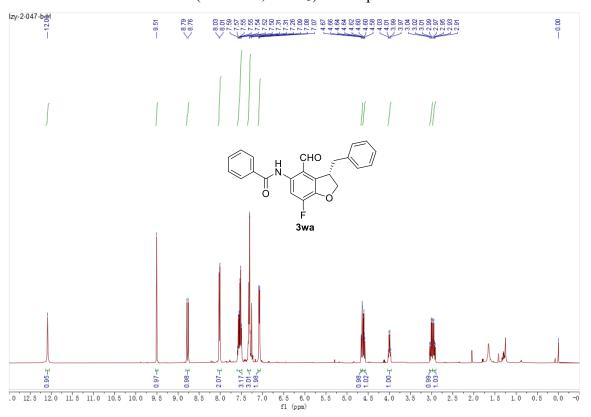
13.647


963.668

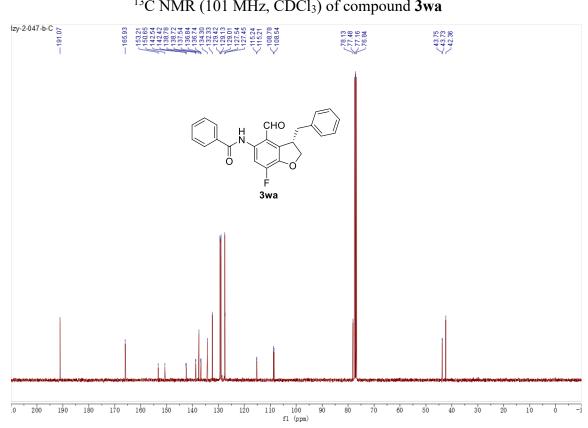

$^{1}\text{H NMR}$ (400 MHz, CDCl₃) of compound 3va


13 C NMR (101 MHz, CDCl₃) of compound 3va

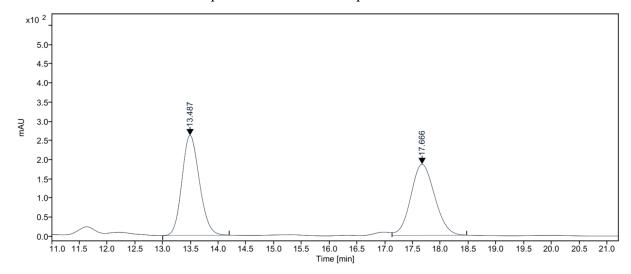
HPLC spectra and data of compound 3va

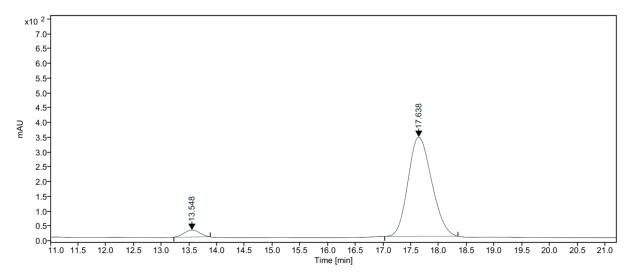


Area%	Area	Height%	Height	RT [min]
49.78	29003.41422	52.30	1901.956	9.917
50.22	29259.35333	47.70	1734.871	10.771

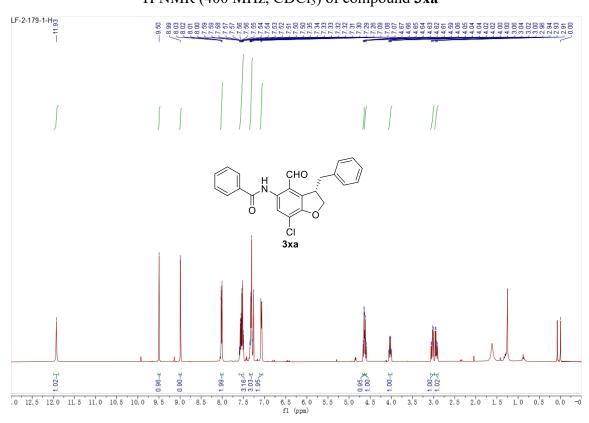


Area%	Area	Height%	Height	RT [min]
91.26	11316.13086	91.23	792.165	9.829
8.74	1084.28134	8.77	76.147	10.663

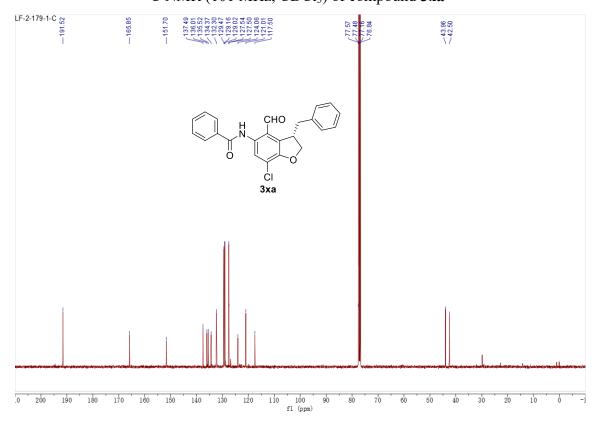

¹H NMR (400 MHz, CDCl₃) of compound **3wa**


13 C NMR (101 MHz, CDCl₃) of compound 3wa

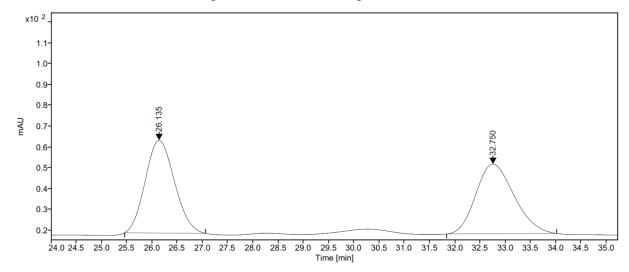
HPLC spectra and data of compound 3wa

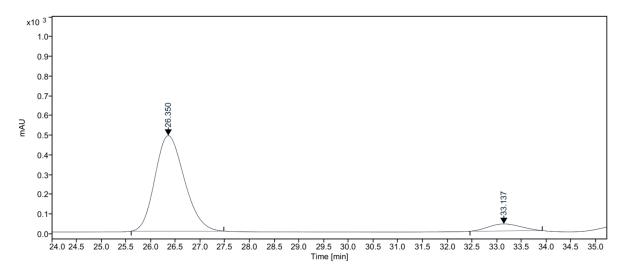


Height% Area	Height	RT [min]
58.39 5688.90916	260.464	13.487
41.61 5563.85477	185.625	17.666

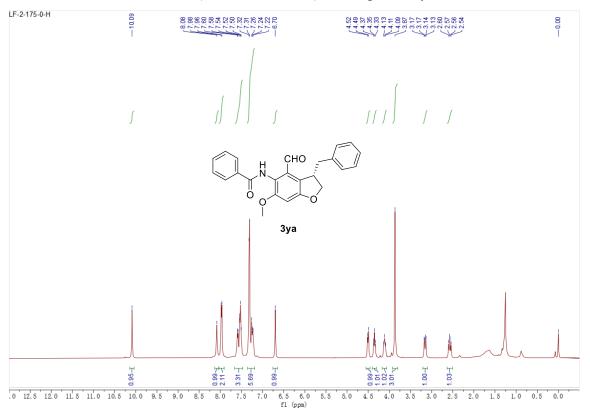


Area%	Area	Height%	Height	RT [min]
4.43	460.32897	6.54	23.461	13.548
95.57	9939.02292	93.46	335.505	17.638

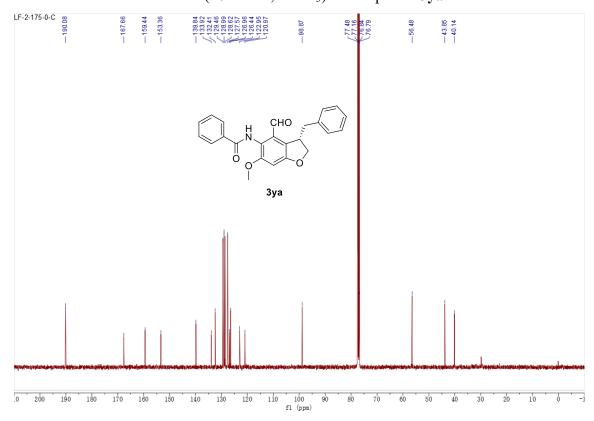

¹H NMR (400 MHz, CDCl₃) of compound 3xa


13 C NMR (101 MHz, CDCl₃) of compound 3xa

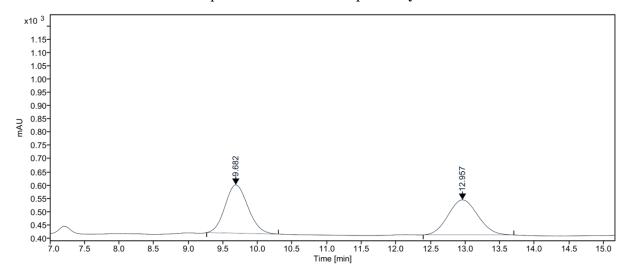
HPLC spectra and data of compound 3xa

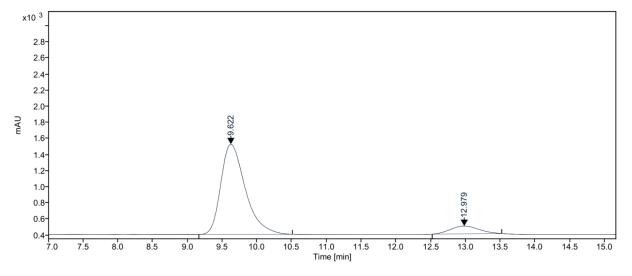


Area%	Area	Height%	Height	RT [min]
50.40	1790.07065	57.09	44.498	26.135
49.60	1761.55989	42.91	33.446	32.750

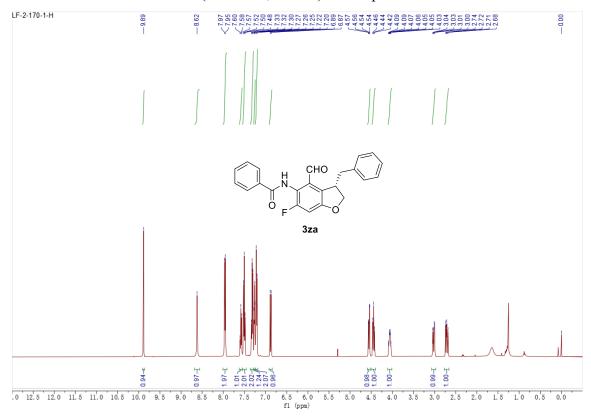


Area%	Area	Height%	Height	RT [min]
92.52	19989.82508	93.19	484.660	26.350
7.48	1616.67913	6.81	35.429	33.137

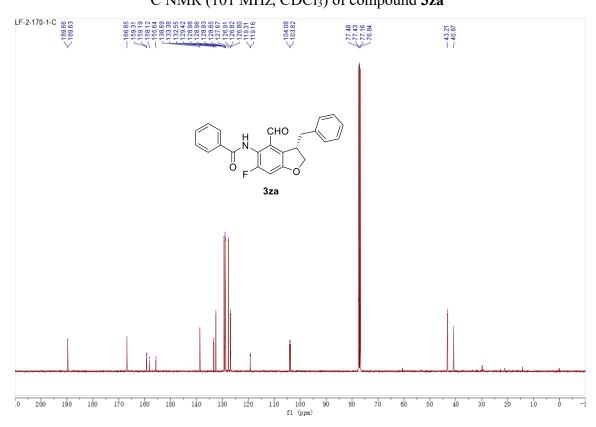

¹H NMR (400 MHz, CDCl₃) of compound **3ya**


13 C NMR (101 MHz, CDCl₃) of compound 3ya

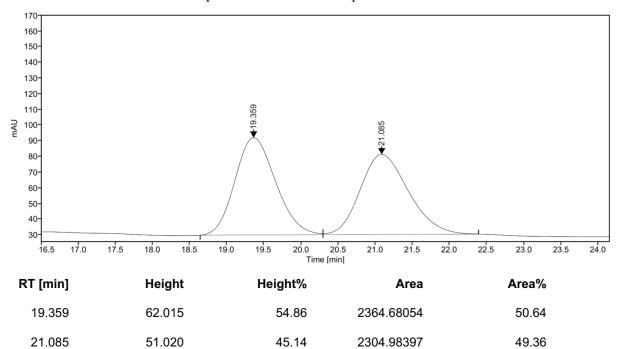
HPLC spectra and data of compound 3ya

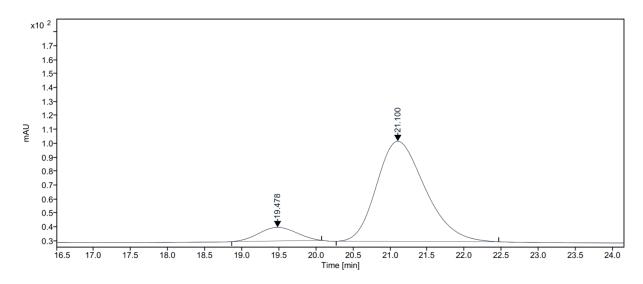


RT [min]	Height	Height%	Area	Area%
9.682	182.063	57.98	4192.78467	51.53
12.957	131.961	42.02	3943.31139	48.47



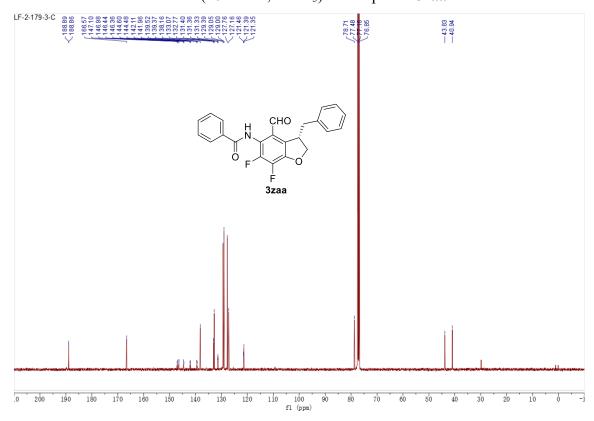
Area%	Area	Height%	Height	RT [min]
90.86	27448.25459	92.00	1120.270	9.622
9.14	2761.96801	8.00	97.430	12.979


¹H NMR (400 MHz, CDCl₃) of compound **3za**

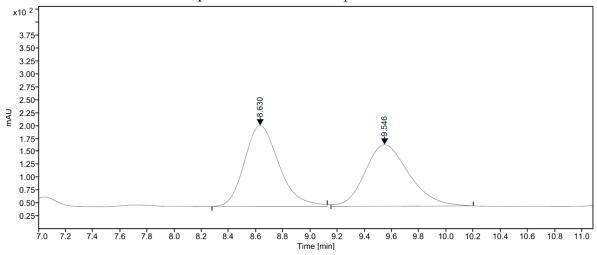


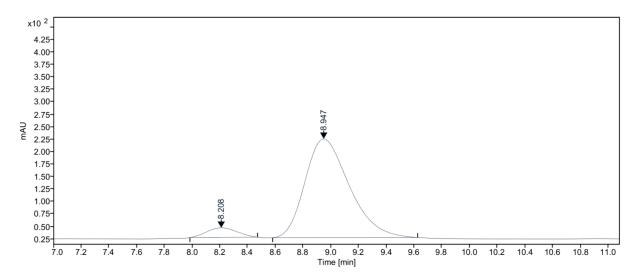
13 C NMR (101 MHz, CDCl₃) of compound 3za

HPLC spectra and data of compound 3za

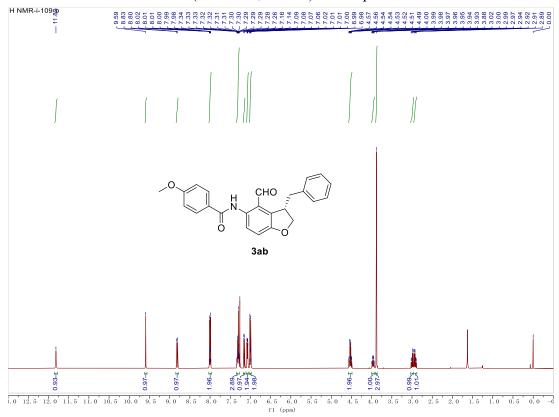


Area%	Area	Height%	Height	RT [min]
9.54	344.04322	11.93	9.733	19.478
90.46	3263.70923	88.07	71.859	21.100

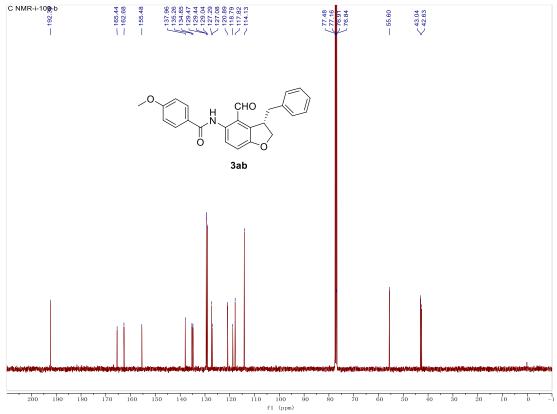

¹H NMR (400 MHz, CDCl₃) of compound **3zaa**


^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{3zaa}$

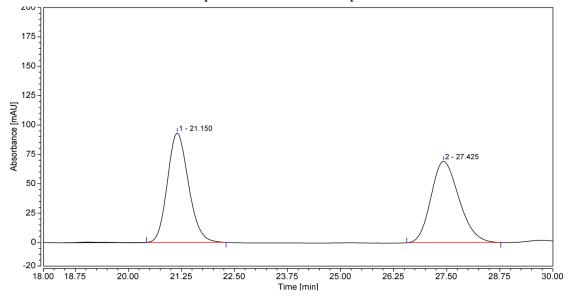
HPLC spectra and data of compound 3zaa

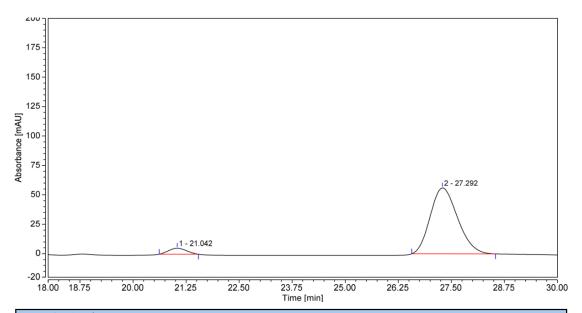


RT [min]	Height	Height%	Area	Area%
8.630	156.681	56.79	2776.59394	50.78
9.546	119.207	43.21	2690.79094	49.22

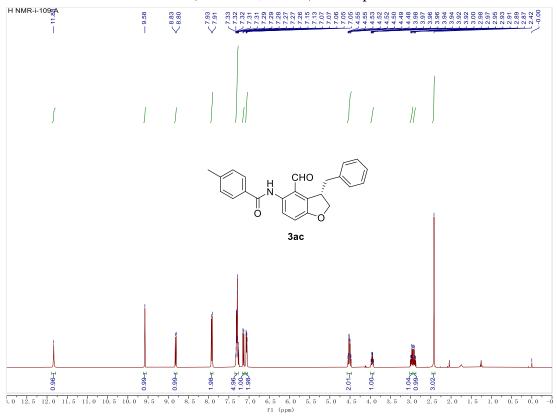


Area%	Area	Height%	Height	RT [min]
6.20	290.41814	8.83	19.178	8.208
93.80	4396.15056	91.17	198.090	8.947

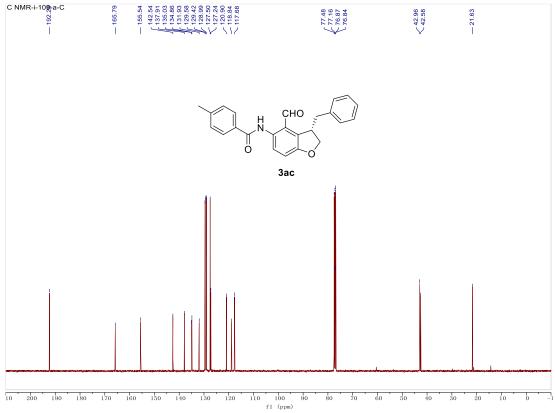

¹H NMR (400 MHz, CDCl₃) of compound **3ab**


13 C NMR (101 MHz, CDCl₃) of compound **3ab**

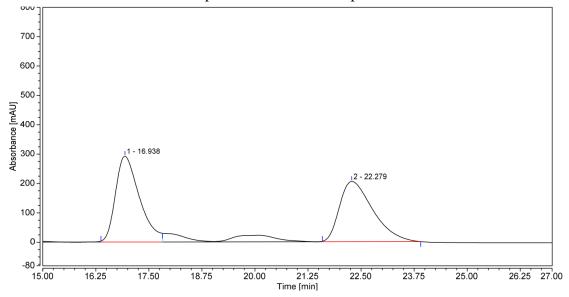
HPLC spectra and data of compound 3ab

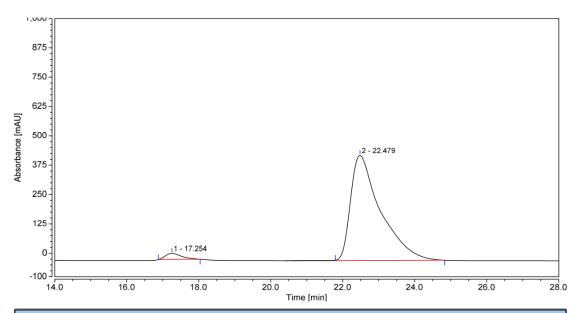


Integ	Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		21.150	53.775	93.035	50.32	57.36	n.a.	
2		27.425	53.084	69.159	49.68	42.64	n.a.	
Total:			106.859	162.194	100.00	100.00		

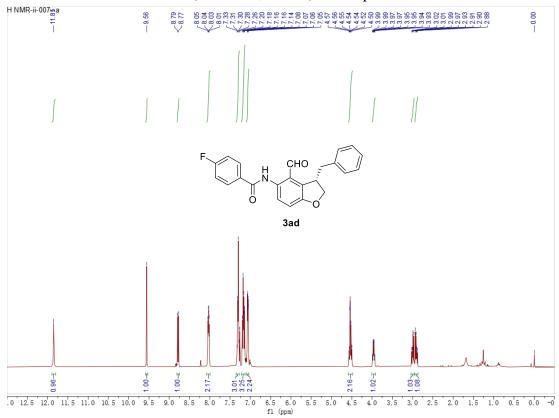


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		21.042	2.457	5.038	5.53	8.25	n.a.			
2		27.292	41.947	56.004	94.47	91.75	n.a.			
Total:			44.404	61.042	100.00	100.00				

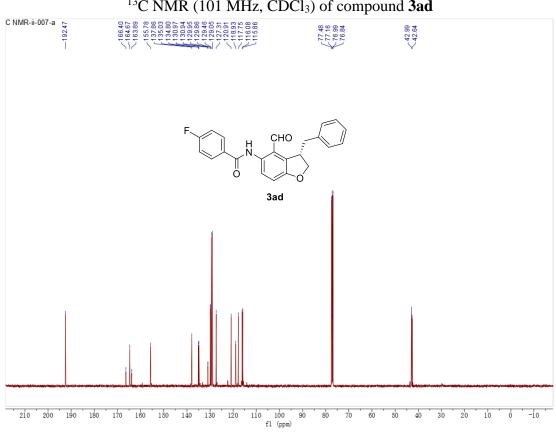

$^1\mbox{H}$ NMR (400 MHz, CDCl3) of compound 3ac


13 C NMR (101 MHz, CDCl₃) of compound **3ac**

HPLC spectra and data of compound 3ac

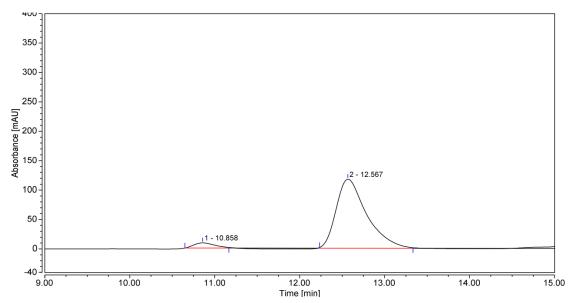


Integ	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		16.938	191.293	292.406	50.56	58.74	n.a.			
2		22.279	187.083	205.366	49.44	41.26	n.a.			
Total:	Total: 378.376 497.772 100.00 100.00									

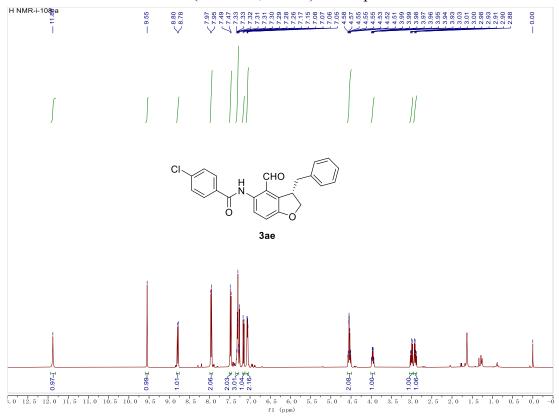


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		17.254	13.687	26.002	3.09	5.49	n.a.			
2		22.479	429.470	447.652	96.91	94.51	n.a.			
Total:			443.157	473.654	100.00	100.00				

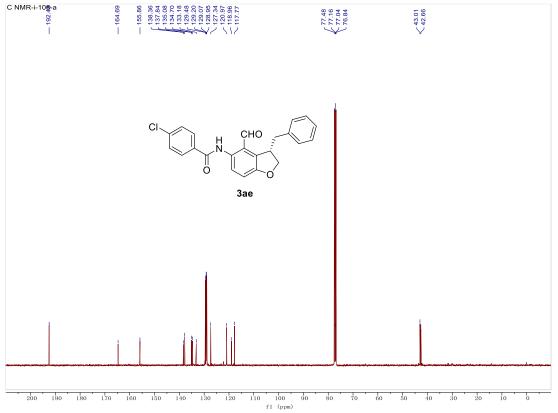
¹H NMR (400 MHz, CDCl₃) of compound **3ad**


13 C NMR (101 MHz, CDCl₃) of compound **3ad**

HPLC spectra and data of compound 3ad

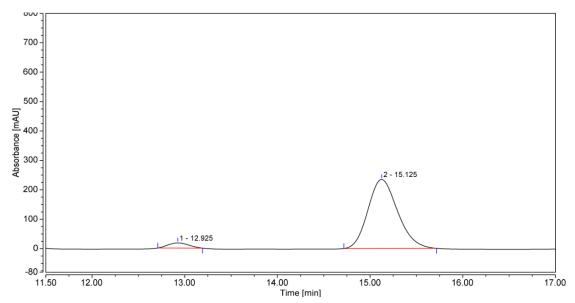


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		10.000	41.655	123.588	49.72	54.09	n.a.				
2		11.592	42.118	104.908	50.28	45.91	n.a.				
Total:			83.774	228.496	100.00	100.00					

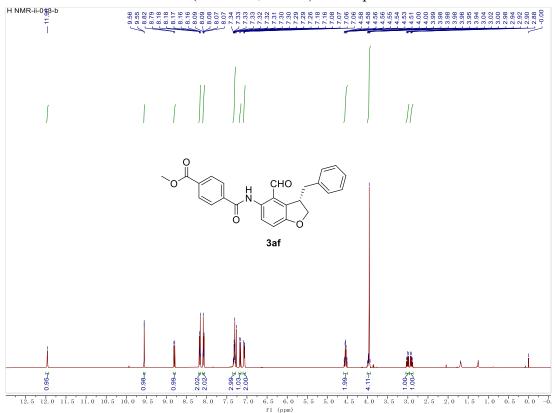


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		10.858	2.520	8.804	4.93	6.98	n.a.				
2		12.567	48.577	117.382	95.07	93.02	n.a.				
Total:			51.097	126.186	100.00	100.00					

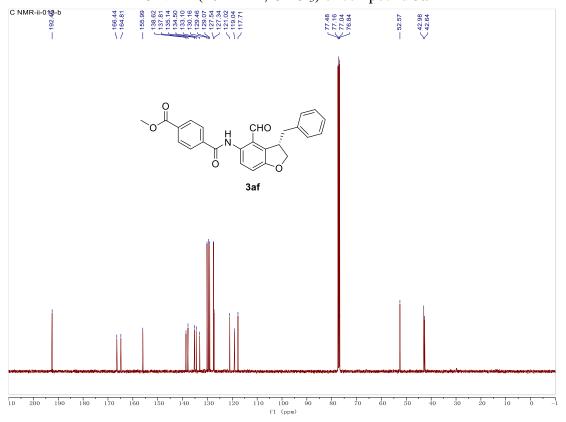
¹H NMR (400 MHz, CDCl₃) of compound **3ae**


^{13}C NMR (101 MHz, CDCl₃) of compound 3ae

HPLC spectra and data of compound 3ae

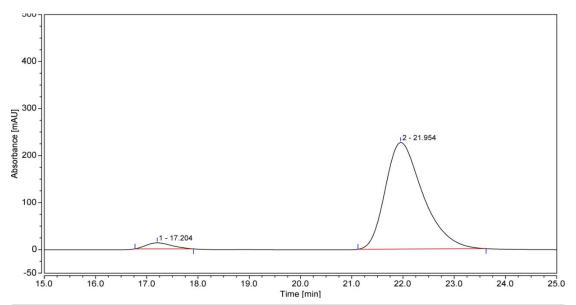


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		12.700	74.411	236.826	49.85	54.18	n.a.			
2		14.908	74.857	200.251	50.15	45.82	n.a.			
Total:			149.268	437.078	100.00	100.00				

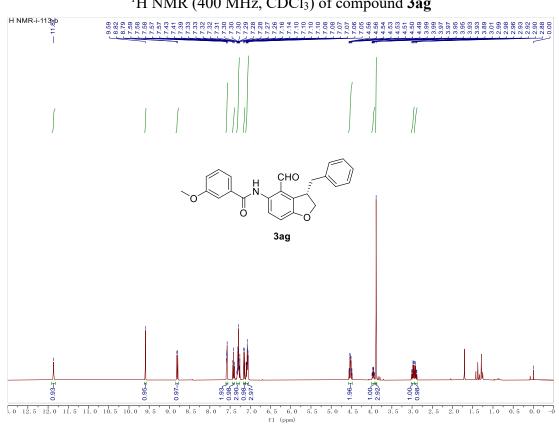


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.925	4.510	17.475	4.93	6.93	n.a.				
2		15.125	86.898	234.639	95.07	93.07	n.a.				
Total:			91.408	252.113	100.00	100.00					

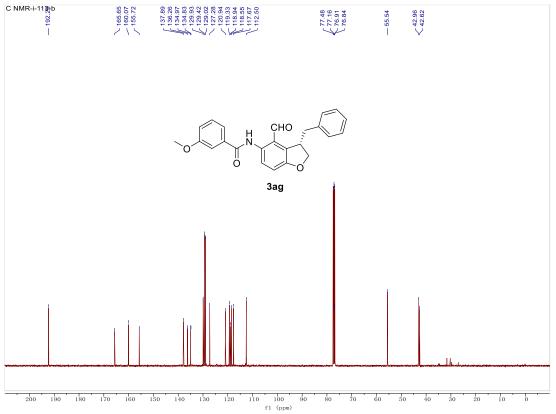
¹H NMR (400 MHz, CDCl₃) of compound **3af**


^{13}C NMR (101 MHz, CDCl₃) of compound **3af**

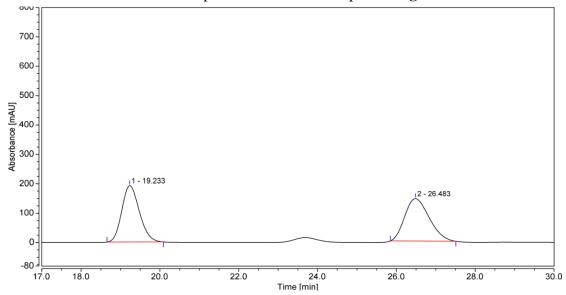
HPLC spectra and data of compound 3af

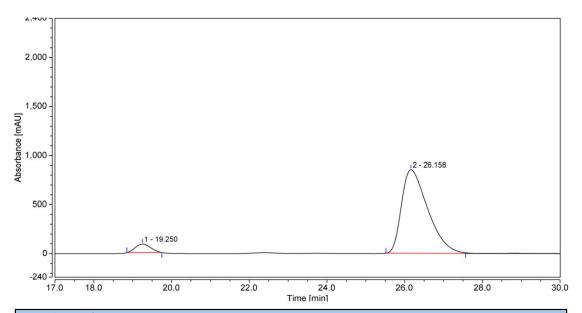


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		17.546	12.631	17.970	50.77	56.44	n.a.				
2		22.488	12.250	13.866	49.23	43.56	n.a.				
Total: 24.881 31.836 100.00 100.00											

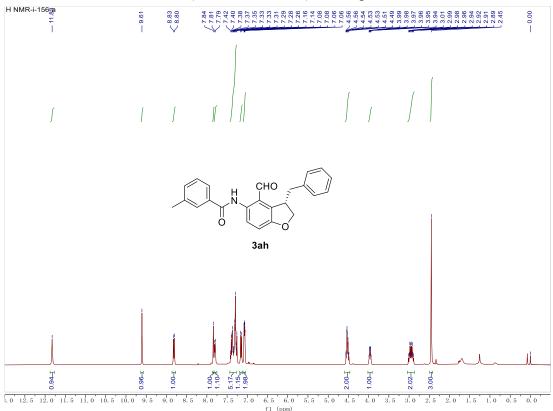


Integ	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		17.204	7.229	12.740	3.61	5.33	n.a.			
2		21.954	192.889	226.473	96.39	94.67	n.a.			
Total:			200.118	239.213	100.00	100.00				

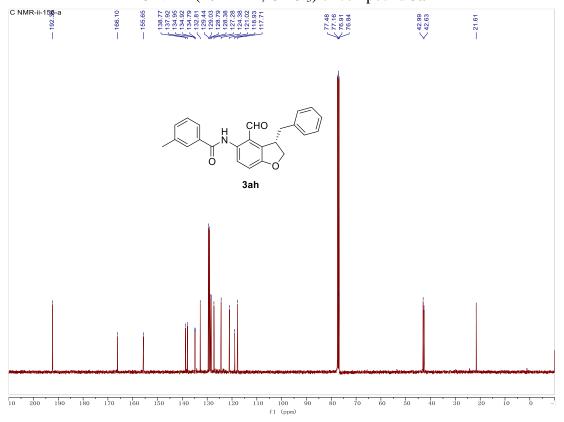

¹H NMR (400 MHz, CDCl₃) of compound **3ag**


¹³C NMR (101 MHz, CDCl₃) of compound **3ag**

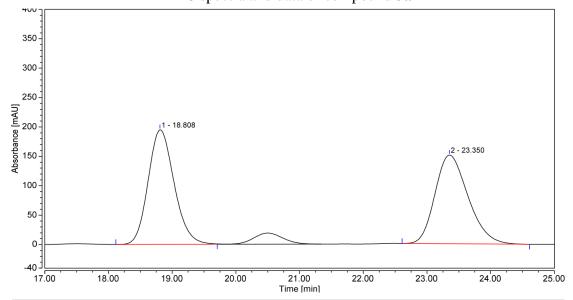
HPLC spectra and data of compound 3ag

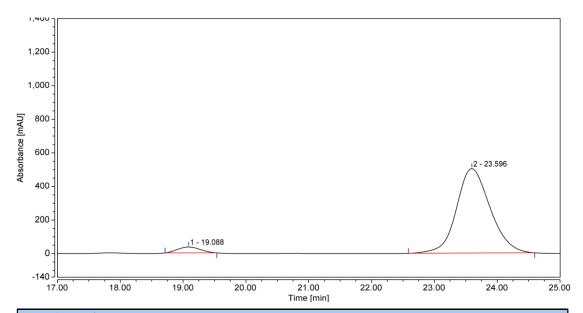


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		19.233	99.132	192.029	48.86	57.11	n.a.				
2		26.483	103.775	144.221	51.14	42.89	n.a.				
Total:			202.906	336.250	100.00	100.00					

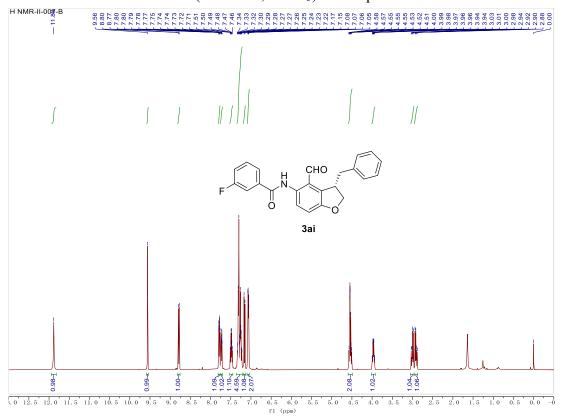


Integr	Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
		min	mAU*min	mAU	%	%	n.a.			
1		19.250	39.405	86.408	5.59	9.21	n.a.			
2		26.158	665.562	852.076	94.41	90.79	n.a.			
Total:			704.967	938.484	100.00	100.00				

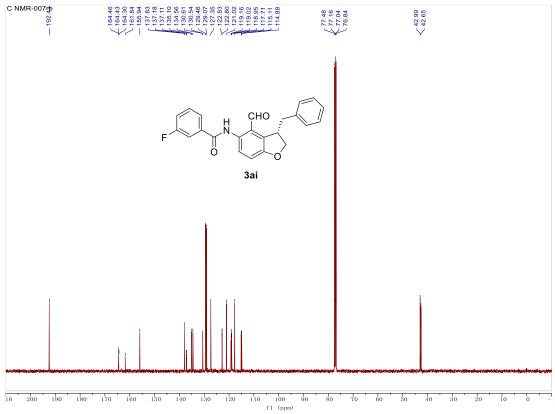

^{1}H NMR (400 MHz, CDCl₃) of compound **3ah**


13 C NMR (101 MHz, CDCl₃) of compound **3ah**

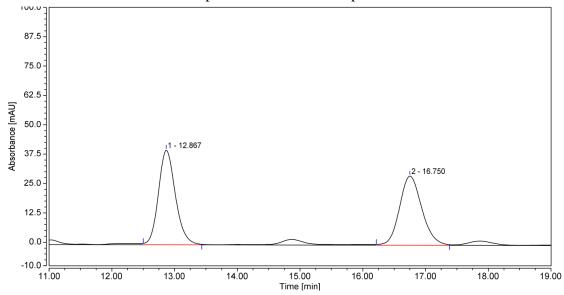
HPLC spectra and data of compound 3ah

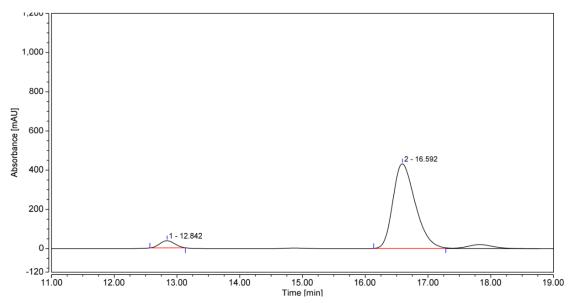


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		18.808	92.165	194.780	50.42	56.36	n.a.				
2		23.350	90.623	150.792	49.58	43.64	n.a.				
Total:			182.788	345.572	100.00	100.00					

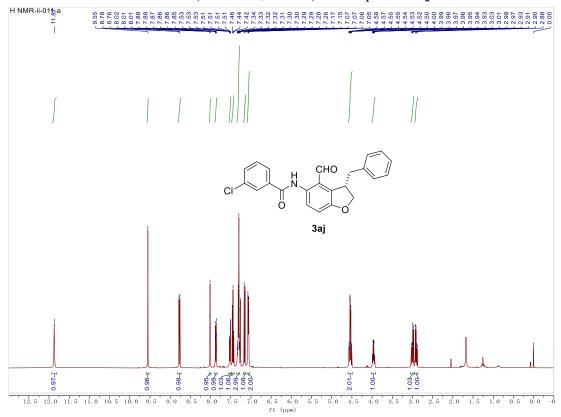


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		19.088	14.608	35.177	4.48	6.54	n.a.				
2		23.596	311.522	502.748	95.52	93.46	n.a.				
Total:			326.130	537.925	100.00	100.00					

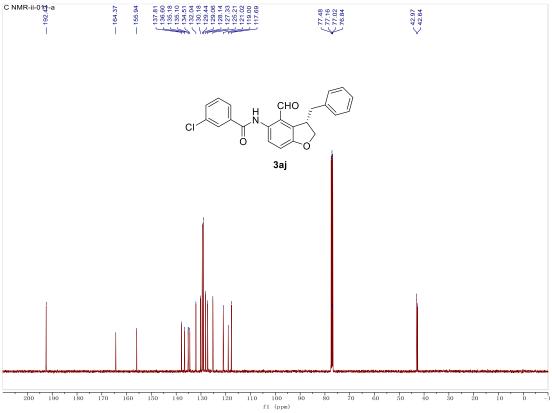

¹H NMR (400 MHz, CDCl₃) of compound 3ai


$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound 3ai

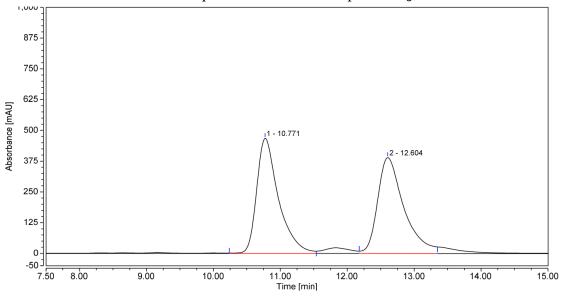
HPLC spectra and data of compound 3ai

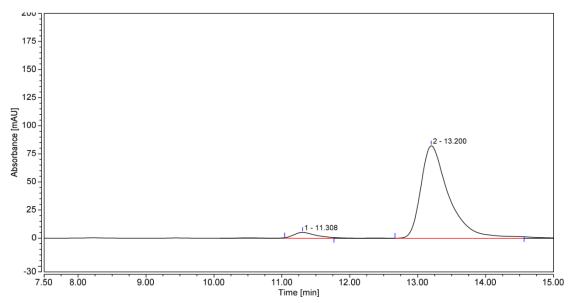


Integr	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.867	12.681	40.276	51.08	57.74	n.a.				
2		16.750	12.145	29.484	48.92	42.26	n.a.				
Total:	Total:			69.760	100.00	100.00					

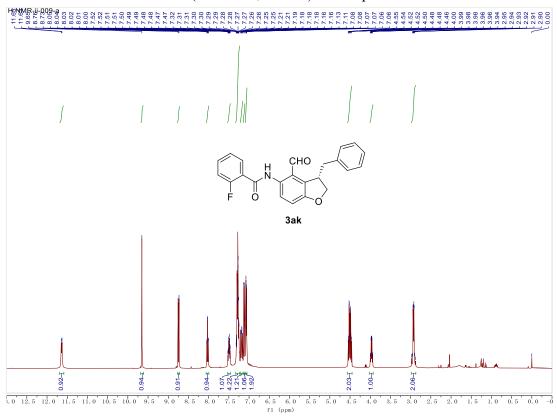


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		12.842	9.935	36.422	5.26	7.78	n.a.				
2		16.592	178.865	431.953	94.74	92.22	n.a.				
Total:			188.800	468.375	100.00	100.00					

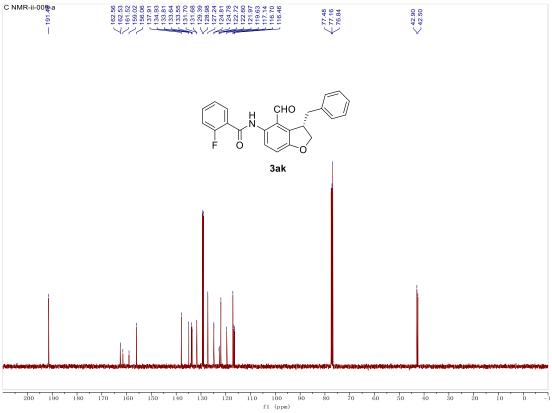

¹H NMR (400 MHz, CDCl₃) of compound **3aj**


13 C NMR (101 MHz, CDCl₃) of compound **3aj**

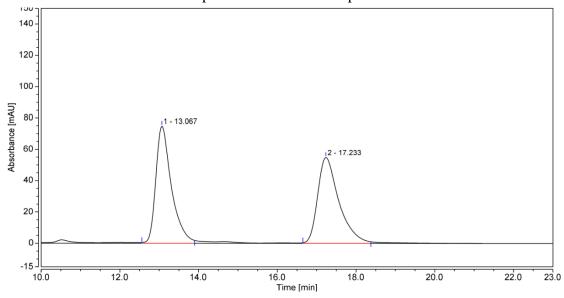
HPLC spectra and data of compound 3aj

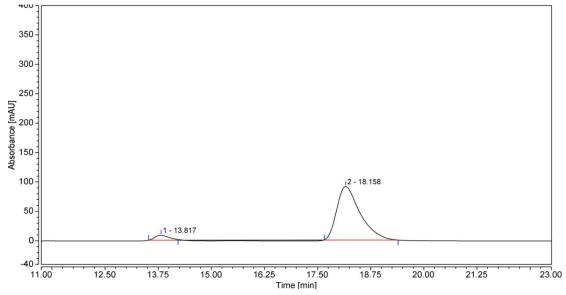


Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		10.771	177.317	468.253	50.00	54.55	n.a.				
2		12.604	177.300	390.089	50.00	45.45	n.a.				
Total:	Total:			858.342	100.00	100.00					

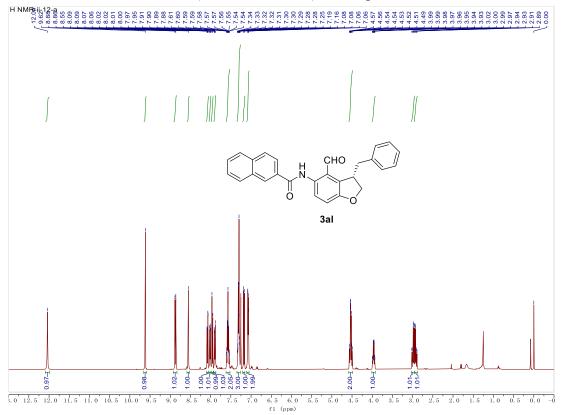


Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		11.308	1.956	5.165	4.75	5.91	n.a.				
2		13.200	39.180	82.243	95.25	94.09	n.a.				
Total:			41.136	87.409	100.00	100.00					

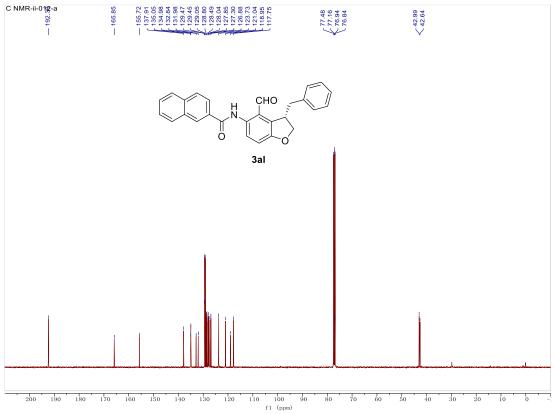

¹H NMR (400 MHz, CDCl₃) of compound 3ak


13 C NMR (101 MHz, CDCl₃) of compound **3ak**

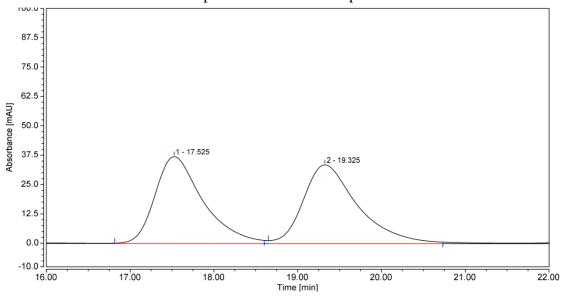
HPLC spectra and data of compound 3ak

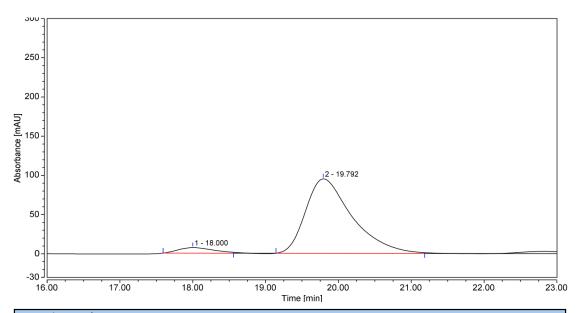


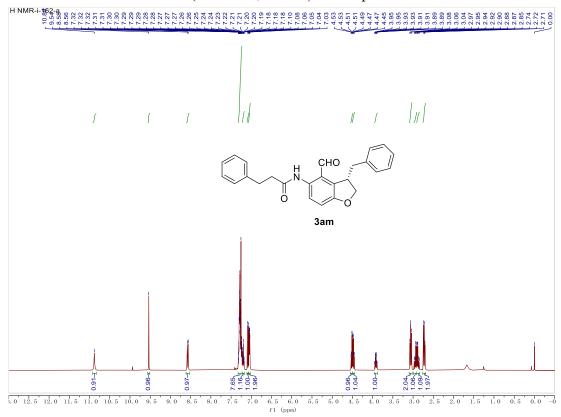
Integ	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		13.067	34.260	74.776	50.04	57.67	n.a.				
2		17.233	34.201	54.878	49.96	42.33	n.a.				
Total:			68.461	129.653	100.00	100.00					

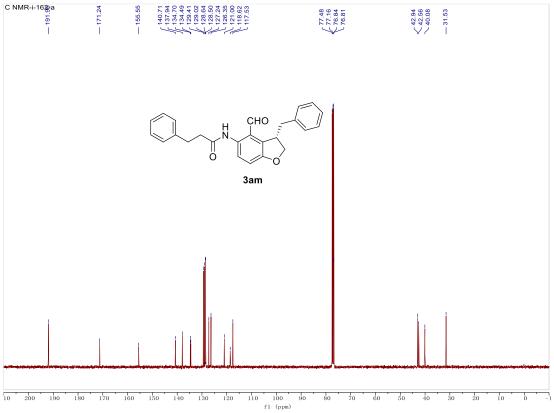


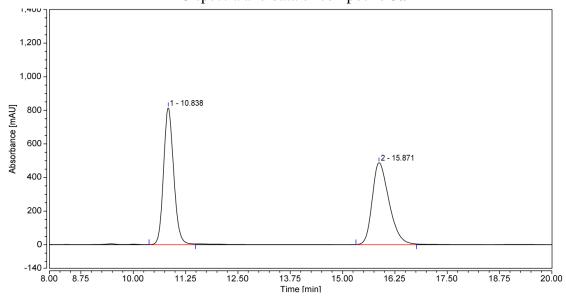
Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		13.817	3.196	8.290	5.22	8.34	n.a.				
2		18.158	58.016	91.162	94.78	91.66	n.a.				
Total:			61.213	99.452	100.00	100.00					

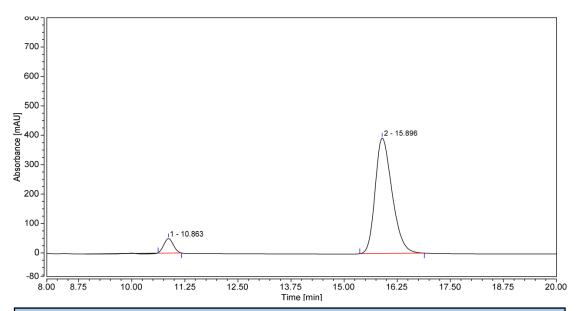

¹H NMR (400 MHz, CDCl₃) of compound 3al


^{13}C NMR (101 MHz, CDCl₃) of compound **3al**

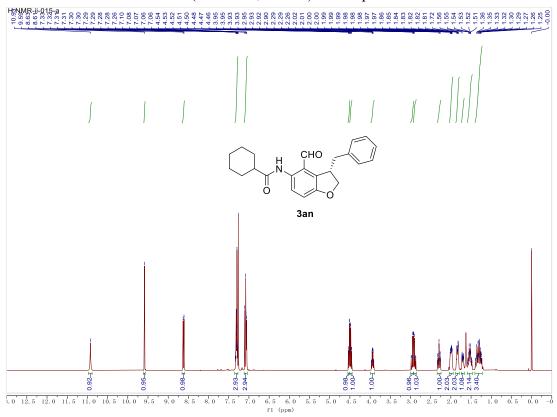

HPLC spectra and data of compound 3al


Integ	ntegration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		17.525	24.551	37.017	49.31	52.47	n.a.				
2		19.325	25.243	33.534	50.69	47.53	n.a.				
Total:			49.794	70.551	100.00	100.00					

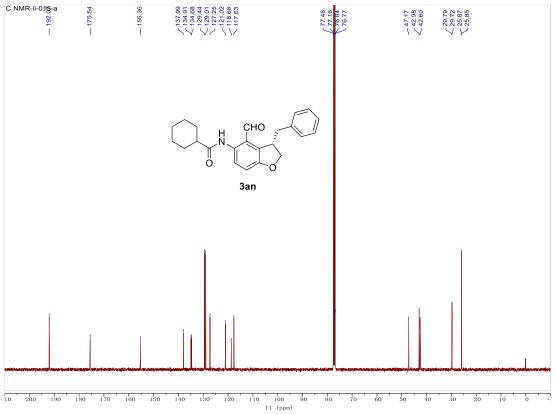

Integr	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount				
		min	mAU*min	mAU	%	%	n.a.				
1		18.000	3.874	7.010	5.24	6.88	n.a.				
2		19.792	70.103	94.877	94.76	93.12	n.a.				
Total:			73.978	101.887	100.00	100.00					


^{13}C NMR (101 MHz, CDCl₃) of compound 3am

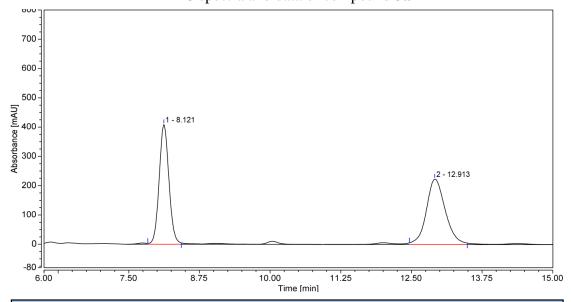
HPLC spectra and data of compound 3am

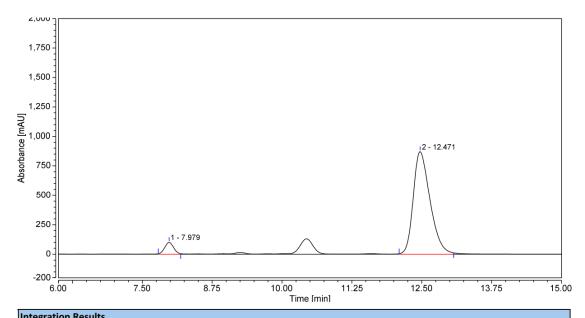


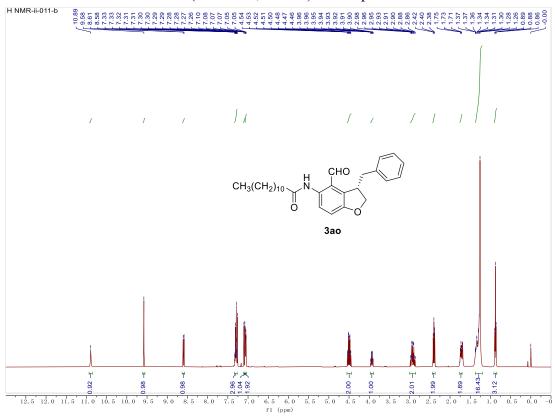
Integr	ntegration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mAU	%	%	n.a.		
1		10.838	229.109	815.419	50.06	62.54	n.a.		
2		15.871	228.597	488.469	49.94	37.46	n.a.		
Total:			457.705	1303.889	100.00	100.00			



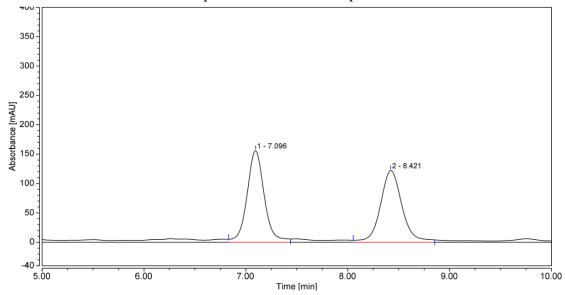
Integr	ation Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		10.863	12.885	49.541	6.63	11.20	n.a.
2		15.896	181.570	392.846	93.37	88.80	n.a.
Total:			194.455	442.386	100.00	100.00	

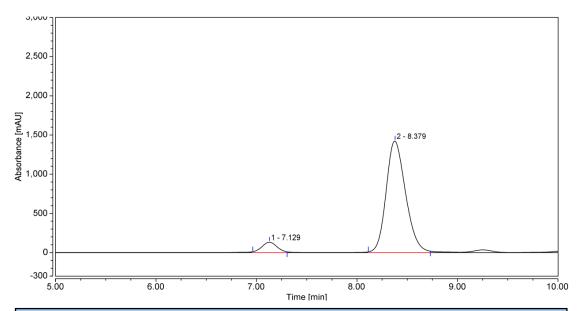

^{1}H NMR (400 MHz, CDCl₃) of compound **3an**

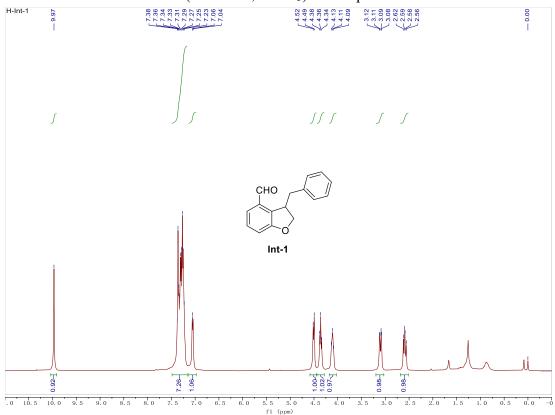

^{13}C NMR (101 MHz, CDCl₃) of compound $\boldsymbol{3an}$

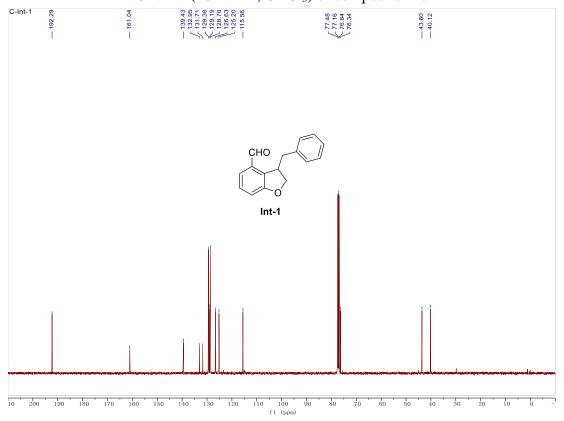

HPLC spectra and data of compound 3an

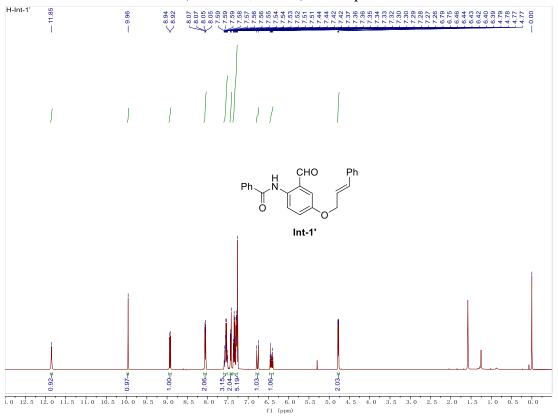
Integr	ntegration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mAU	%	%	n.a.		
1		8.121	82.036	409.033	48.66	64.64	n.a.		
2		12.913	86.558	223.792	51.34	35.36	n.a.		
Total:	Total: 168.594 632.825 100.00 100.00								


Integr	ation Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		7.979	18.809	100.355	5.84	10.33	n.a.
2		12.471	303.221	870.753	94.16	89.67	n.a.
Total:			322.030	971.108	100.00	100.00	

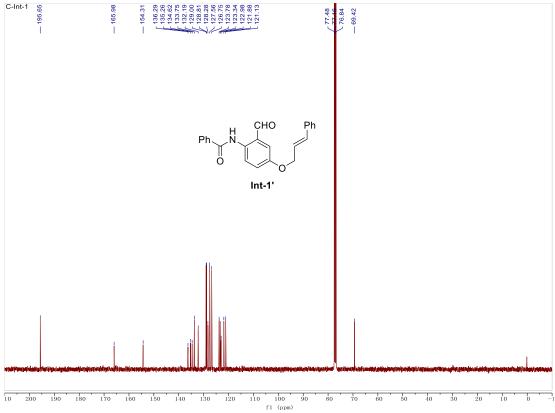

¹³C NMR (101 MHz, CDCl₃) of compound **3ao**

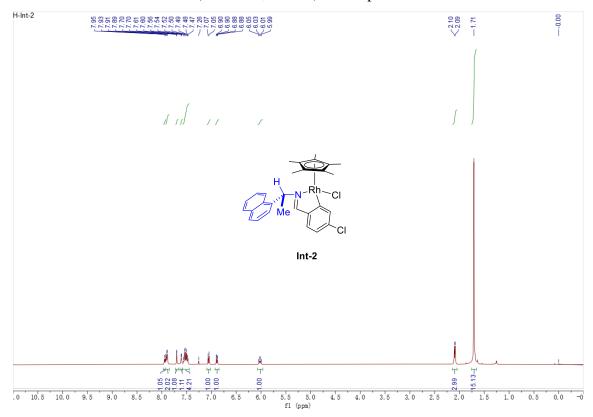

HPLC spectra and data of compound 3ao

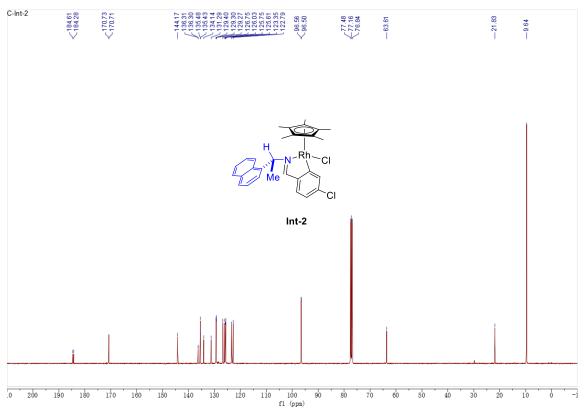

Integ	ntegration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mAU	%	%	n.a.		
1		7.096	30.620	155.910	50.44	56.08	n.a.		
2		8.421	30.086	122.113	49.56	43.92	n.a.		
Total:			60.706	278.023	100.00	100.00			

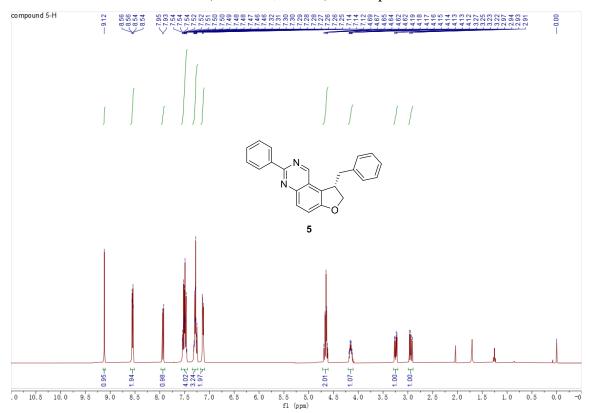


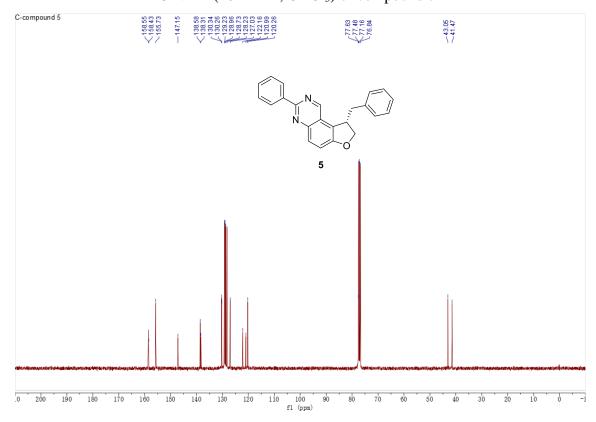
Integr	ation Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		7.129	23.426	132.621	6.83	8.53	n.a.
2		8.379	319.519	1422.083	93.17	91.47	n.a.
Total:	·	·	342.945	1554.704	100.00	100.00	·



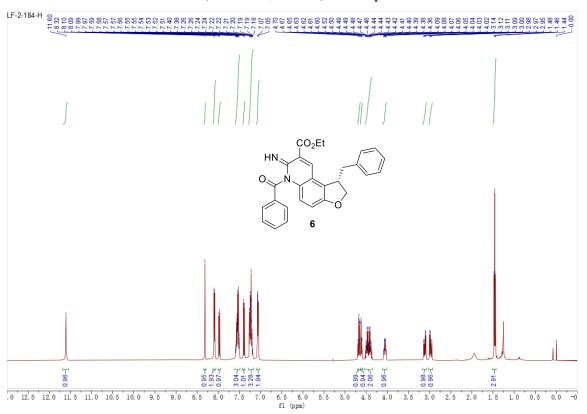

^{13}C NMR (101 MHz, CDCl₃) of compound Int-1

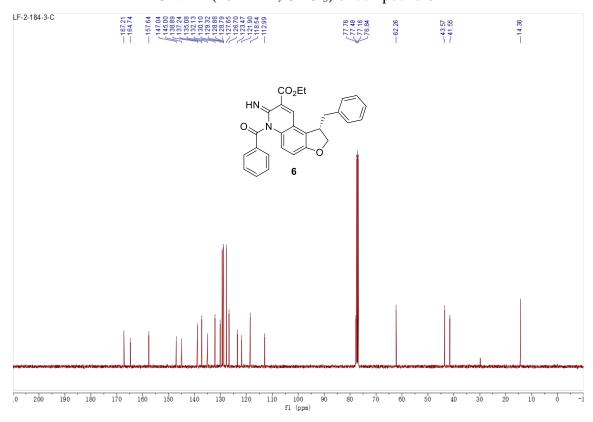


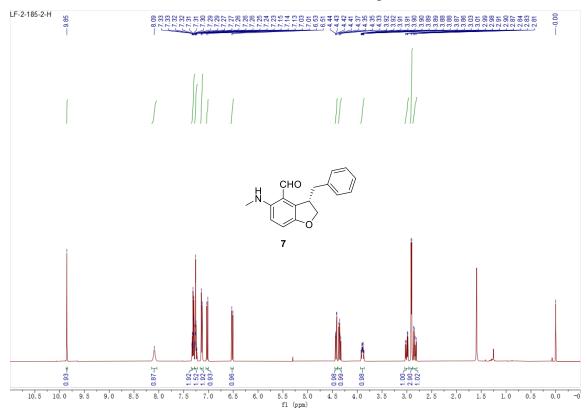

¹³C NMR (101 MHz, CDCl₃) of compound **Int-1**'



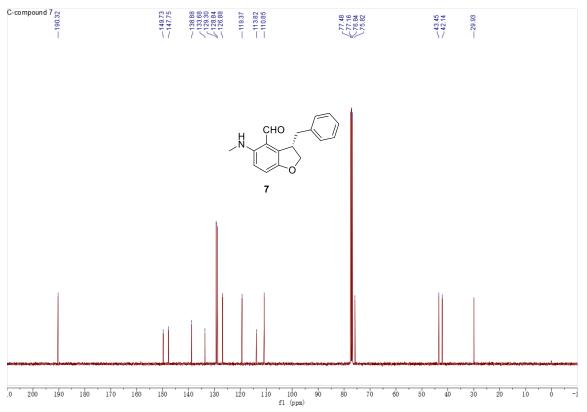
¹³C NMR (101 MHz, CDCl₃) of compound **Int-2**

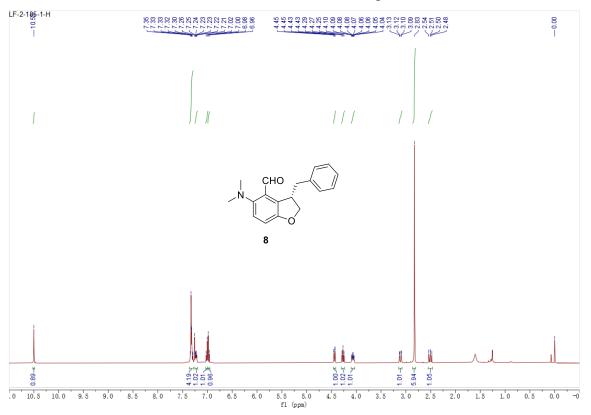


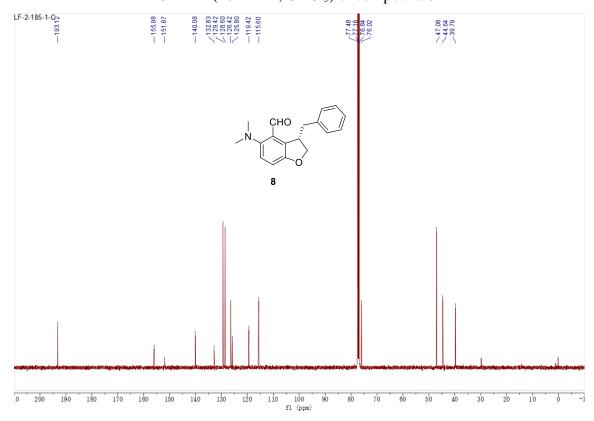

$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{5}$

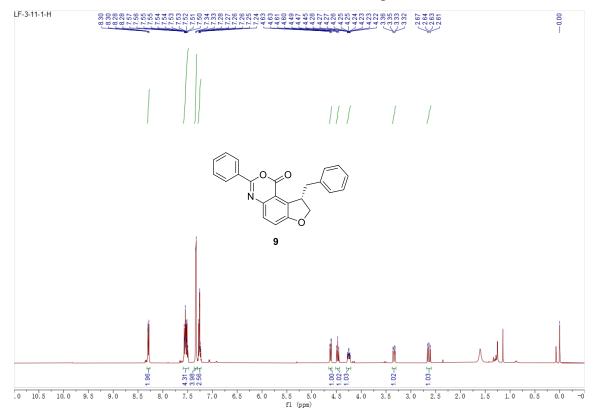


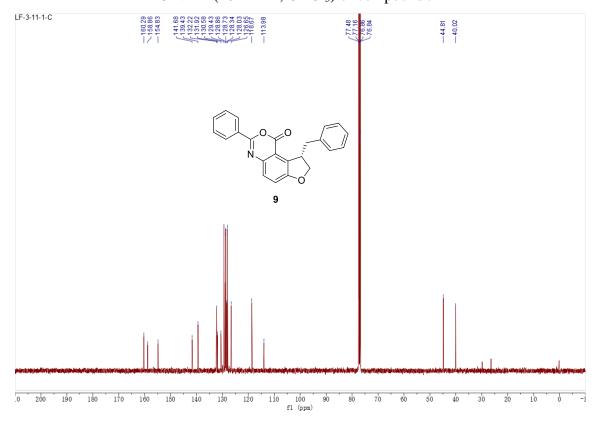
1 H NMR (400 MHz, CDCl₃) of compound $\boldsymbol{6}$

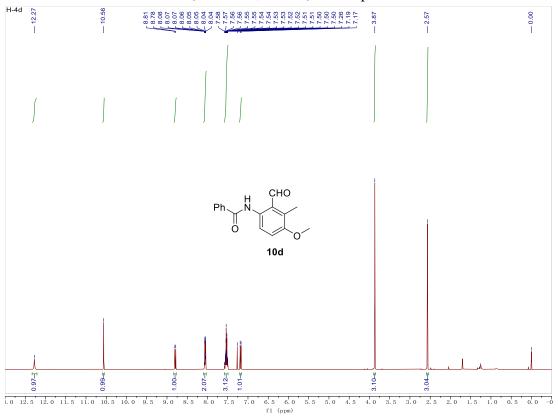


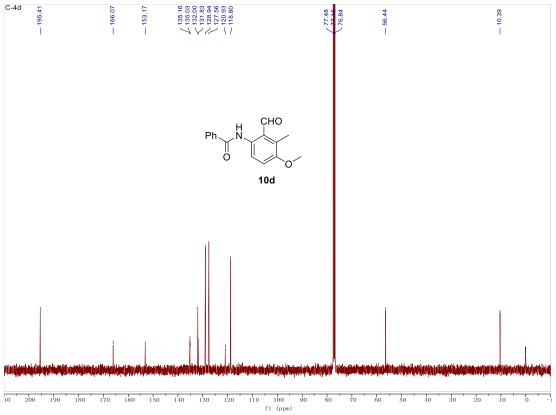

$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{6}$

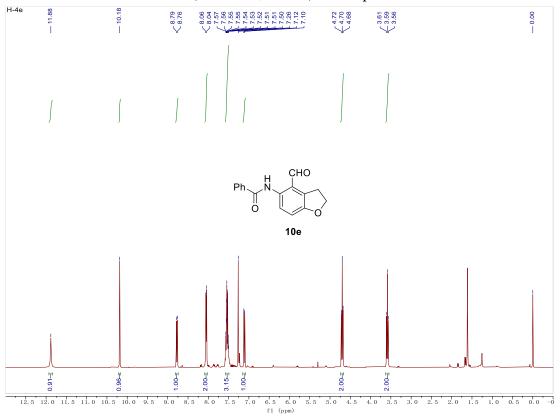


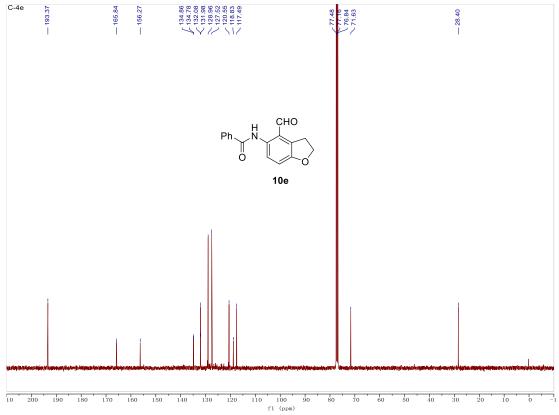

13 C NMR (101 MHz, CDCl₃) of compound **7**



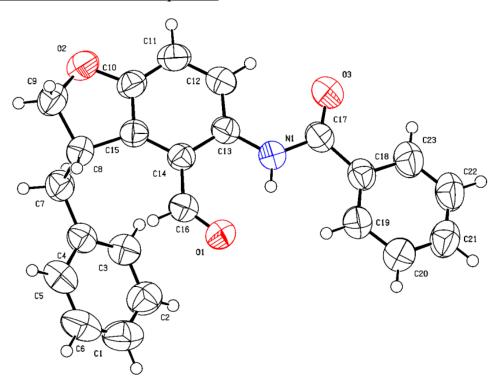

$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{8}$




$^{13}\text{C NMR}$ (101 MHz, CDCl₃) of compound $\boldsymbol{9}$



13 C NMR (101 MHz, CDCl₃) of compound **10d**



13 C NMR (101 MHz, CDCl₃) of compound **10e**

20. Crystallographic Data for 3aa

Crystals of 3aa (CCDC 2240386) suitable for X-ray analysis were obtained by slow evaporation of a concentrated solution of the compound in a mixture of DCM/Hexanes. Diffraction was performed on a Bruker SMART APEXII CCD area detector diffractometer using graphite-monochromated Cu-K α radiation ($\lambda = 1.5418$ Å) at 273 K, with φ and ω scan techniques. An empirical absorption correction was applied with the SADABS program. The structures were solved using Olex21 by direct methods using the ShelXT² structure solution program. Non-hydrogen atoms were anisotropically refined by full-matrix least-squares calculations based on F² using the ShelXL program.³ Hydrogen atom coordinates were calculated with SHELXTL by using an appropriate riding model with varied thermal parameters. The residual electron densities were not chemical significant. The corresponding data could be obtained from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

ORTEP diagram drawn with 50% ellipsoid probability of compound 3aa

Bond precision: C-C = 0.0057 A Wavelength = 1.54178

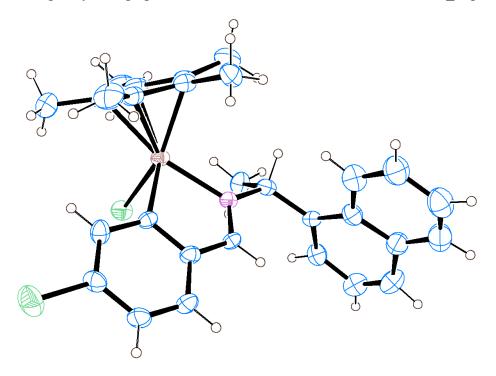
Cell: a = 5.0070 (1) b = 17.1218 (4) c = 21.1670 (4) alpha = 90 beta = 90 gamma = 90

Temperature: 273 K

	Calculated	Reported
Volume	1814.62 (7)	1814.62 (7)
Space group	P 21 21 21	P 21 21 21
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C23H19NO3	4 (C23H19NO3)
Sum formula	C23H19NO3	C92H76N4O12
Mr	357.39	1429.56
Dx,g cm-3	1.308	1.308
Z	4	1
Mu (mm-1)	0.698	0.698
F000	752.0	752.0
F000'	754.27	
h,k,lmax	5, 20, 25	5, 20, 25
Nref	3201 [1894]	3196
Tmin,Tmax		0.646, 0.753
Tmin'		

Correction method= # Reported T Limits: Tmin= 0.646 Tmax = 0.753

AbsCorr = NONE


Data completeness= 1.69/1.00 Theta (max) = 66.732

R (reflections)= 0.0584 (2311) wR2 (reflections) = 0.1415 (3196)

S = 1.011 Npar= 244

21. Crystallographic Data for Int-2

Crystals of Int-2 (CCDC 2279645) suitable for X-ray analysis were obtained by slow evaporation of a concentrated solution of the compound in a mixture of DCM/Hexanes. Diffraction was performed on a Bruker SMART APEXII CCD area detector diffractometer using graphite-monochromated Mo-K α radiation (λ = 0.71073 Å) at 297 K, with φ and ω scan techniques. An empirical absorption correction was applied with the SADABS program. The structures were solved using Olex2¹ by direct methods using the ShelXT² structure solution program. Non-hydrogen atoms were anisotropically refined by full-matrix least-squares calculations based on F² using the ShelXL program.³ Hydrogen atom coordinates were calculated with SHELXTL by using an appropriate riding model with varied thermal parameters. The residual electron densities were not chemical significant. The corresponding data could be obtained from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

ORTEP diagram drawn with 30% ellipsoid probability of compound Int-2

Bond precision: C-C = 0.0177 A Wavelength= 0.71073

Cell: a = 7.7412 (5) b = 15.9286 (16) c = 26.521 (3) alpha = 90 beta = 90 gamma = 90

Temperature: 297 K

	Calculated	Reported
Volume	3270.2 (5)	3270.2 (5)
Space group	P 21 21 21	P 21 21 21
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C29H30Cl2NRh[+solvent]	C29H30Cl2NRh
Sum formula	C29H30Cl2NRh[+solvent]	C29H30Cl2NRh
Mr	566.35	566.35
Dx,g cm-3	1.150	1.150
Z	4	4
Mu (mm-1)	0.699	0.699
F000	1160.0	1160.0
F000'	1157.01	
h,k,lmax	9, 19, 32	8, 19, 32
Nref	6099 [3469]	5886
Tmin,Tmax	0.857, 0.870	0.618, 0.746
Tmin'	0.857	

Correction method= # Reported T Limits: Tmin = 0.618 Tmax = 0.746

AbsCorr = NONE

Data completeness= 1.70/0.97 Theta (max) = 25.498

R (reflections)= 0.0713 (4478) wR2 (reflections) = 0.2188 (5886)

S = 1.067 Npar = 284

22. Photophysical Spectra of 3aa-3zaa, 3ab-3ao, 7, 8 and 10a-10e

Table S1. Photophysical properties of selected compounds in DCM.

compounds	λ^{abs}_{max} (nm)	$\lambda^{\text{em}}_{\text{max}}$ (nm)	ε_{\max}^a	Φ^b	Stokes shift (cm ⁻¹)
3aa	394	500	7500	0.223	5400
3ba	392	502	5700	0.203	5600
3ca	396	501	6400	0.223	5300
3da	394	500	5300	0.228	5400
3ea	396	500	6100	0.245	5300
3fa	394	502	6900	0.188	5500
3ga	396	499	6400	0.230	5200
3ha	396	496	7000	0.204	5100
3ia	392	502	5800	0.222	5600
3ja	394	498	7300	0.220	5300
3ka	392	498	6400	0.171	5400
3la	396	501	6100	0.212	5300
3ma	396	497	6800	0.199	5100
3na	396	502	7300	0.203	5300
3oa	395	501	3100	0.185	5400
3pa	398	505	6400	0.191	5300
3qa	394	501	8400	0.160	5400
3ra	394	501	3900	0.153	5400
3sa	392	501	3900	0.152	5600
3ta	394	501	3300	0.151	5400
3ua	390	502	4700	0.149	5700
3va	388	502	5900	0.143	5900
3wa	375	477	7500	0.225	5700
3xa	385	487	3900	0.233	5400
3ya	363	496	200	0.010	7400
3za	351	472	400	0.026	7300
3zaa	336	525	700	0.041	10700
3ab	398	504	6600	0.212	5300
3ac	396	504	8500	0.245	5400
3ad	394	500	6000	0.161	5400
3ae	394	502	600	0.165	5500
3af	394	499	7600	0.163	5300
3ag	396	503	6600	0.214	5400
3ah	394	498	6200	0.224	5300
3ai	394	499	6600	0.136	5300
3aj	392	499	6200	0.141	5500
3ak	388	495	6700	0.092	5600
3al	394	502	7200	0.178	5500
3am	390	498	5500	0.196	5600
3an	388	498	5400	0.258	5700
3ao	386	498	6200	0.248	5800
7	442	538	5100	0.056	3400
8	404	519	5400	0.366	5500
10a	340	418, 544	5200	0.323	11000

10b	355	432, 556	5600	0.019	10200	
10c	369	456	5500	0.287	5200	
10d	386	500	7600	0.045	5900	
10e	398	500	6800	0.232	5100	

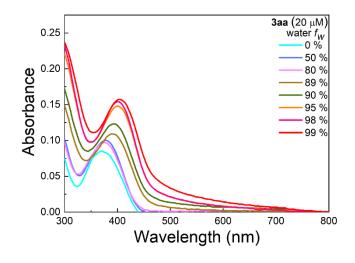

^a Corresponding to the strongest absorption maximum, the unit for ε is M^{-1} cm⁻¹. ^b Absolute fluorescence quantum yield.

Table S2. Photophysical properties of compound 3aa in different solvents.

	1 0 1				
solvent	λ^{abs}_{max} (nm)	λ^{em}_{max} (nm)	ε_{\max}^{a}	Φ^b	Stokes shift (cm ⁻¹)
hexanes	398	485	3900	0.204	4500
toluene	396	495	4600	0.217	5100
THF	394	498	4300	0.107	5300
DMSO	372	501	2000	0.063	6900

^a Corresponding to the strongest absorption maximum, the unit for ε is M⁻¹ cm⁻¹. ^b Absolute fluorescence quantum yield.

Figure S3. Absorption and emission spectra of 3aa in water/DMSO solution

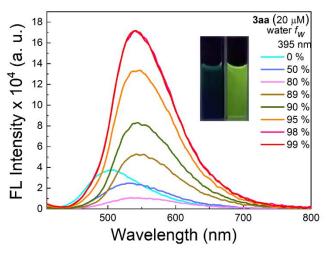
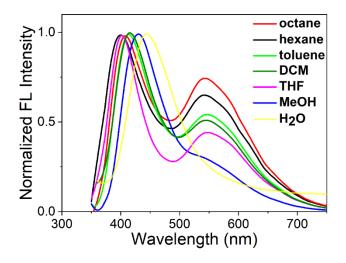
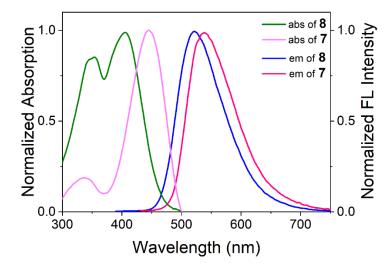
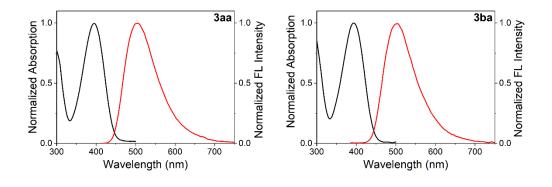
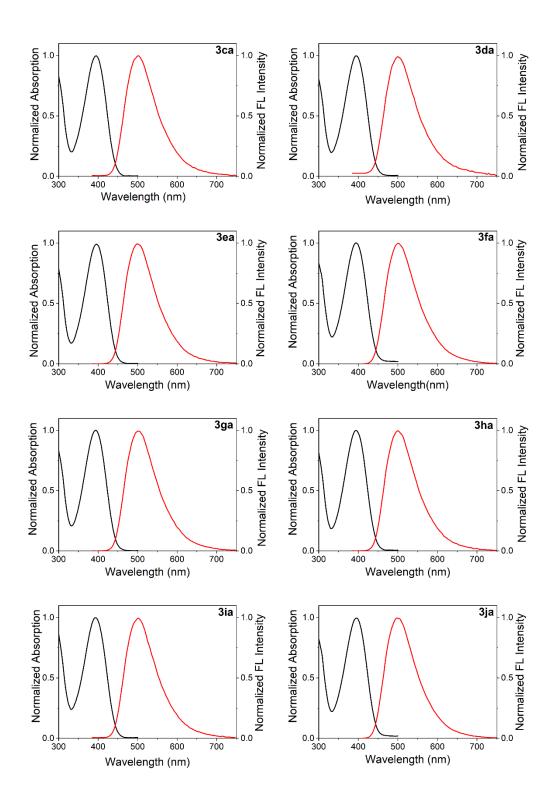
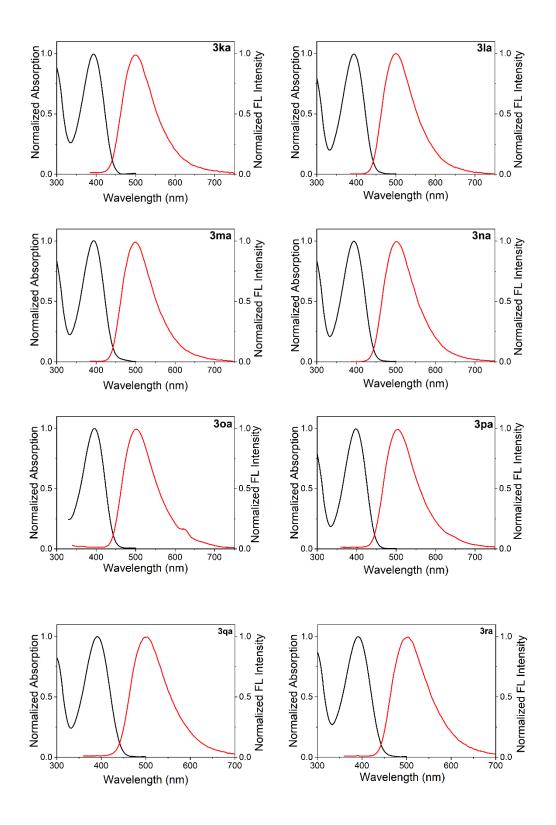
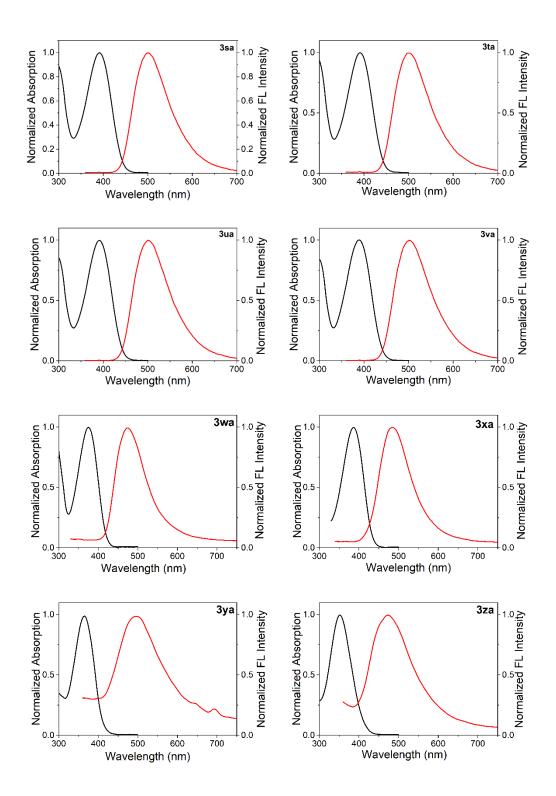
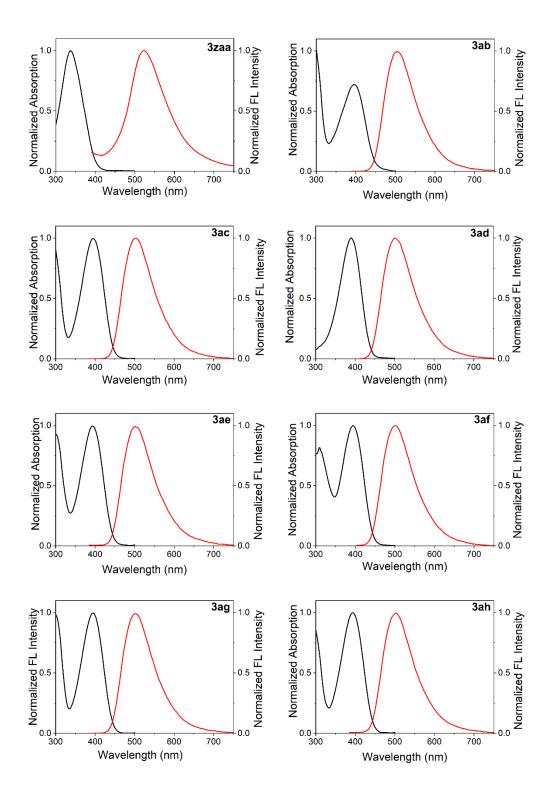


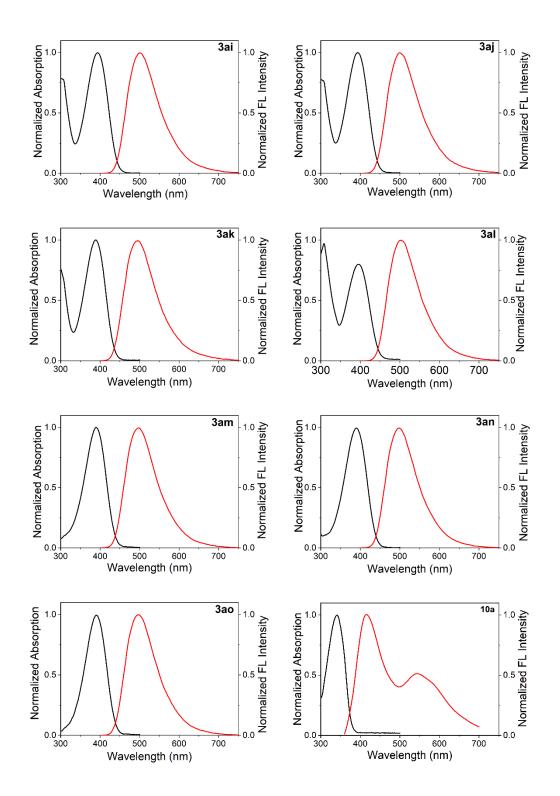
Figure S4. Emission spectra of 10a in different solvents

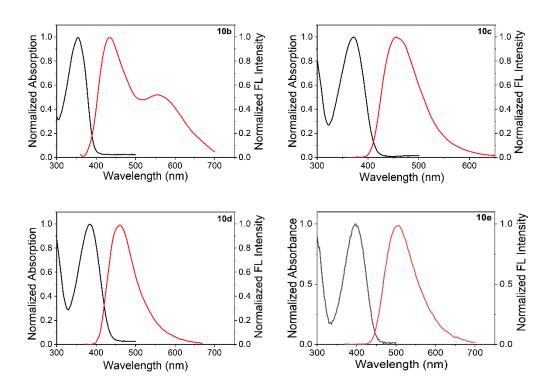






Figure S5. Absorption and emission spectra of 7 and 8 in DCM solution




Absorption and emission spectra of substrates





23. DFT Calculation of 10e.

The ground state geometry was optimized by using DFT method at B3LYP/6-31G(d,p) level. The same method was used for vibrational analysis to verify that the optimized structures correspond to local minima on the energy surface. TD-DFT computations were used the optimized ground state geometries under the B3LYP/6-31G(d,p) theoretical level. The calculated molecules in dichloromethane were done using the Self-Consistent Reaction Field (SCRF) method and Polarizable Continuum Model (PCM). The geometries of the lowest singlet (S1) excited states were also optimized at the TDB3LYP/6-31G(d,p) level of theory. All of the calculations were carried out by the methods implemented in Gaussian 09 package.⁴

Table S2. Main vertical singlet electronic energies, ΔE , oscillator strengths, f, and main transitions for molecule **10e** calculated by B3LYP/6-31G(d,p) level in dichloromethane solvent.

	Electronic	TI	D//B3LY	P/6-31G(d, p)	
Dye	transition[
	a]	ΔE (eV, nm)	$f^{[b]}$	Composition [c]	CI [d]
10e	$S_0 \rightarrow S_1$	3.0140 eV 411.37	0.190	HOMO → LUMO	0.701
		nm	3		3
	$S_0 \rightarrow S_2$	3.7466 eV 330.93	0.000	HOMO -5 →	0.397
		nm	3	LUMO	2
				HOMO -3 →	0.412
				LUMO	8
				HOMO -1 →	0.376
				LUMO	9
	$S_0 \rightarrow S_3$	4.0118 eV 309.05	0.216	HOMO -4 →	0.114
		nm	0	LUMO	5
				$HOMO \rightarrow LUMO$	0.693
				+1	4
	$S_0 \rightarrow S_7$	4.7706 eV 259.89	0.161	HOMO -4 →	0.625
		nm	7	LUMO	6
				$HOMO \rightarrow LUMO$	0.222
				+3	4
	$S_0 \rightarrow S_{12}$	5.2698 eV 235.27	0.333	$HOMO \rightarrow LUMO$	0.600
		nm	7	+3	0
				HOMO -4 →	0.236
				LUMO	0
				HOMO -2 →	0.131
				LUMO +1	4

[[]a] Only the selected low-lying excited states are presented. [b] Oscillator strength. [c] Only the main configurations are presented. [d] The CI coefficients are in absolute values.

Optimized Geometries of the Compounds.

10e, optimized S_0 state Geometry.

```
O
             -0.03982100
                           2.48212500
                                         0.25719200
O
            -4.87468600
                         -0.94321300
                                        -0.05231500
N
             0.61728900
                                        0.05328900
                          -0.12454600
Η
             0.81563900
                          0.86746700
                                        0.17755600
O
             1.55797600
                          -2.22257600
                                        -0.06503800
\mathbf{C}
            -1.65645600
                          0.70766700
                                        0.09397900
C
            -0.75417400
                          -0.40354900
                                        0.02877100
C
            -3.03808800
                          0.45319800
                                        0.05353500
\mathbf{C}
            -1.20958200
                          2.09562100
                                        0.19806500
Η
            -2.02077300
                          2.84450000
                                        0.22507300
\mathbf{C}
             1.67744000
                          -0.99663800
                                        -0.02249800
\mathbf{C}
            -4.23627300
                           1.37486600
                                        0.15352100
Η
            -4.20535500
                          2.21924300
                                        -0.53999500
C
            -3.51283400
                          -0.84937400
                                        -0.03931200
\mathbf{C}
             3.03404300
                          -0.34979100
                                        -0.03911100
C
            -1.27019100
                          -1.70748400
                                        -0.06228300
Η
            -0.57835500
                          -2.53487600
                                        -0.10644400
\mathbf{C}
            -5.39637600
                          0.40913600
                                        -0.18791000
Η
            -6.25399100
                           0.50205500
                                        0.47987800
Η
            -5.73225700
                           0.53648000
                                        -1.22251300
C
            -2.64601400
                          -1.93697100
                                        -0.09808800
Η
            -3.03291200
                          -2.94781200
                                        -0.17016200
\mathbf{C}
            4.13042100
                          -1.15515200
                                        0.30274100
Η
             3.94863900
                          -2.19042000
                                        0.56926000
C
             3.25517600
                          0.98719600
                                        -0.40537400
Η
                                        -0.70869000
             2.43200100
                          1.62634100
\mathbf{C}
             5.63317000
                          0.70262000
                                       -0.05730600
Η
             6.63905200
                          1.11157700
                                       -0.06333400
C
             4.54934000
                          1.50758800
                                       -0.41372300
Η
             4.71029500
                          2.54079400
                                        -0.70548800
\mathbf{C}
             5.42080600
                          -0.63155600
                                        0.30025000
Η
             6.26064300
                          -1.26228500
                                        0.57543200
Η
            -4.33384400
                           1.78379800
                                         1.16614900
SCF
                     done:
                                            -899.20368434
                                                                           Hartree
No imaginary Frequency.
10e, optimized S<sub>1</sub> state Geometry.
```

O	-0.09752400	2.43377000	-0.18170300
O	4.83271800	-0.91191700	0.08515300
N	-0.57185300	-0.13930000	-0.04606500
Н	-0.72851700	0.89052000	-0.12879300
O	-1.52602900	-2.23668400	-0.02472300
C	1.63988600	0.75279100	-0.06059100
\mathbf{C}	0.77725400	-0.41353300	-0.01747700

```
\mathbf{C}
                          0.47804700
                                      -0.02131700
            3.00514200
C
            1.14106000
                          2.11421600
                                      -0.13655800
Η
            1.90083500
                          2.90664100
                                      -0.16169800
\mathbf{C}
            -1.65350600
                         -1.00877500 -0.01946500
C
            4.18466000
                          1.40640900
                                       -0.04114900
Η
            4.17414900
                          2.09827000
                                       0.81011300
C
            3.49660400
                         -0.85470100
                                        0.05646600
C
                         -0.35610700
            -2.99574300
                                        0.00999200
C
            1.30304600
                         -1.73407900
                                        0.06106000
Η
            0.59427000
                         -2.54896700
                                        0.08671400
\mathbf{C}
            5.38466800
                          0.44199000
                                       0.02150300
Η
            6.02170700
                          0.47693700
                                       -0.86447500
Η
            6.00365100
                          0.56777900
                                       0.91184600
\mathbf{C}
                         -1.98261700
                                        0.09914100
            2.67027200
Η
            3.07655500
                         -2.98385200
                                        0.15749700
C
            -4.11171400
                         -1.18981900
                                       -0.18270400
Η
            -3.94210900
                         -2.24745800
                                       -0.35022700
\mathbf{C}
            -3.20142100
                          1.01693700
                                        0.24270300
Η
            -2.36875800
                          1.69007900
                                        0.41839500
\mathbf{C}
            -5.59650300
                          0.69994200
                                        0.06661300
Η
            -6.60165400
                          1.11025300
                                        0.08619000
\mathbf{C}
            -4.49542100
                          1.53486800
                                        0.27041800
Η
            -4.64297800
                          2.59445700
                                        0.45528300
C
            -5.40003000
                         -0.66625600
                                       -0.15937900
Η
                                       -0.31626800
            -6.25225200
                         -1.32053200
Η
            4.20522900
                          2.02372800
                                       -0.94745500
SCF
                     done:
                                           -897.89939488
                                                                          Hartree
No imaginary Frequency.
```

24. References

- 1. a) U. Kroesen, L. Knauer, C. Strohmann, *Angew. Chem. Int. Ed.* **2017**, *56*, 6232; b) M.-Y. Chang, M.-H. Wu, *Tetrahedron Lett.* **2012**, *53*, 3173; c) G. Li, Q. Liu, L. Vasamsetty, W. Guo, J. Wang, *Angew. Chem. Int. Ed.* **2020**, *59*, 3475.
- 2. W. Liu, W. Yang, J. Zhu, Y. Guo, N. Wang, J. Ke, P. Yu, C. He, *ACS Catal.* **2020**, *10*, 7207.
- 3. a) X. Wang, S. Song, N. Jiao, *Chin. J. Chem.* **2018**, *36*, 213. b) J. Ding, W. Jiang, H.-Y. Bai, T.-M. Ding, D. Gao, X. Bao, S.-Y. Zhang, *Chem. Commun.* **2018**, *54*, 8889.
- 4. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr., Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013