

Figure S1

a

b

C

d

Figure S1. (a) Effect of dietary iron levels on ovarian cancer progression. Isocaloric diets containing the indicated levels of iron were administered *ad libitum*, and overall survival was monitored. Kaplan-Meier survival curve comparison for each group of treatment ($n = 8$ mice/group). (b) Mice were implanted with ID8-*Defb29/Vegfa* ovarian cancer cells and 7 days later, mice were treated with increasing doses of deferiprone (50, 100, or 150 mg/Kg). Kaplan-Meier survival curves are shown ($n = 8-10$ mice/group). (c) Mice bearing ID8-*Defb29/Vegfa* tumors for 7 days were treated with 150 mg/kg of deferiprone administered either orally or intraperitoneally. The percentage increase in median survival compared with the vehicle group is presented as bar plots +/- SEM. Significance levels are indicated: * $p < 0.05$, ** $p < 0.01$, ns: not significant. (d-e) Weight of mice bearing ID8-*Defb29/Vegfa*- or PPNM-based ovarian cancer and treated as indicated.

Figure S2

Flow cytometry gating strategy

Figure S2. Flow cytometry gating strategy for the analysis of peritoneal cells from mice bearing ID8-*Defb29/Vegfa* tumors that were treated with deferiprone as single agent or in combination with cisplatin.

Figure S3

Figure S3. (a-f) Wild type female mice were implanted with ID8-*Defb29/Vegfa* tumors and treated as described in Fig 2e. At day 30, peritoneal lavage samples were obtained, and the cellular fraction was analyzed by FACS. Representative FACS plots and the proportion of the indicated immune cell types in all groups are shown. Violin plots display the distribution of all data points, including median and quartiles, with each point representing an independent mouse. Statistical comparisons were done using one-way ANOVA with Tukey's multiple comparison, and exact *P*-values are shown. **(g)** Kaplan-Meier survival curve for Rag2-deficient mice implanted with ID8-*Defb29/Vegfa* tumors and treated as described in Fig 2e. **(h)** Effects of treatment in wild type (WT) vs. Rag2-deficient mice, expressed as percent increase in median survival compared with intrinsic control groups. Log-Rank (Mantel-Cox) test was used and *P*-values are shown. **(i)** Splenic NK cell proportion in tumor-bearing mice receiving the indicated treatments.

Figure S4

Figure S4. Representative images of NKp46 staining on the entire omentum. The top sections illustrate an overlay of all channels, while the bottom sections show the deconvoluted NKp46 signal. Scale bar represents 400 μm .

Figure S5

Figure S5. (a) MTT assays for ID8-*Defb29/Vegfa*, MP, and PPNM cells treated with different concentrations of deferiprone for 12, 24, and 48 hours. (b) Bliss synergy scores for in vitro combinations of cisplatin and deferiprone across different concentrations for ID8-*Defb29/Vegfa*, PPNM, and MP cells. (c) ID8-*Defb29/Vegfa*, PPNM, and MP ovarian cancer cells were treated with 100 μ M deferiprone for 24 hours and surface expression of DR5 was assessed by FACS. Bar plots of mean fluorescence intensity (NFI) and representative histograms are shown. Unpaired Student's *t*-test was used, and exact *P*-values are shown ($n = 3$ technical replicates). (d and e) ID8-*Defb29/Vegfa*, PPNM, and MP cells were treated in vitro with increasing doses of deferiprone for the indicated times and MULT1 surface expression was analyzed by FACS. Representative histograms (d) and violin plots (e) are shown. ($n = 3$ technical replicates). (e) One-way ANOVA with Dunnet's comparison test against vehicle was applied. All experiments were repeated at least three independent times with similar results.

Figure S6

Figure S6. (a-b) Mitochondrial iron was traced using mito-ferrogreen in iron-overloaded ID8-*Defb29/Vegfa* cells that were exposed to deferiprone (100 μ M) or vehicle control. (a) Representative confocal microscopy images showing mito-ferrogreen (green) and nuclear DAPI (blue) staining. (b) Mean intensity of mito-ferrogreen quantified on a per cell basis. (c) Agarose gel image showing the presence of 12S mtDNA or 18S gDNA in parental (WT) or mtDNA-deficient (ρ^0) ID8-*Defb29/Vegfa* cancer cells. (d) WT and ρ^0 ID8-*Defb29/Vegfa* cells were treated with vehicle or deferiprone (100 μ M) for 6 and 12 hours, and the expression of *Ifnb1* and *Mx1* was assessed by RT-qPCR ($n = 3$ technical replicates per condition). (e) ID8-*Defb29/Vegfa* cells were treated with deferiprone (100 μ M) or vehicle for 0, 1, 3 or 6 hours, and the levels of the indicated proteins were analyzed by western blot. Representative images are shown, and protein loading was controlled by β -actin. (f) Western blot showing IRF3 levels in ID8-*Defb29/Vegfa* cells carrying control non-targeting sgRNA (sgCtrl, 3 clones), or IRF3-targeting sgRNA (sgIRF3, 5 clones). (g) sgCtrl or sgIRF3 ID8-*Defb29/Vegfa* cells were transfected with poly (I:C) and the expression of *Ifnb1* and *Mx1* was assessed ($n = 3$ technical replicates per condition). (h) Expression of the indicated genes in deferiprone-exposed ID8-*Defb29/Vegfa* cells pretreated with the STING inhibitor H-151 ($n = 6$ technical replicates per condition). (i) Surface expression of DR5 and MULT1 in deferiprone-exposed sgCtrl or sgIRF3 ID8-*Defb29/Vegfa* cells ($n = 6$ technical replicates per condition). (j-m) Role of the DDR in the induction of DR5 and MULT1 on ovarian cancer cells. ID8-*Defb29/Vegfa* cells were pre-treated for 1 hour with an ATR inhibitor (AZD6738, 1 μ M), ATM inhibitor (AZD0156, 100 nM), or CHK1/2 inhibitor (AZD7762, 300 nM). Then, aphidicolin or vehicle were added, and expression of DR5 (j-k) and MULT1 (l-m) was measured by FACS ($n = 3$ technical replicates per condition). Experiments were repeated at least three independent times with similar results. (b, d, h, i, k, m) Bar plots with mean \pm SEM are shown. (d) unpaired Student's *t*-test for each time point, comparing vehicle vs deferiprone; (b, g, h, i) one-way ANOVA with Tukey's multiple comparison test. (k, m) two-way ANOVA with Šídák's multiple comparisons test.

Figure S7

a**b****c****d**

Figure S7. **(a and b)** Schematic representation of treatment regimens under IFNAR1 blockade related to Fig. 6. **(c)** Bone marrow-derived dendritic cells (BMDCs) generated from IL-15^{2A-eGFP} female mice were stimulated with 100 pg/ml (500 U/ml) of recombinant IFN- β for 24 hours, and cells were then analyzed by FACS. **(c, left)** Representative histograms of eGFP/IL-15 expression. **(c, right)** Results presented as bar plots +/- SEM ($n = 3$ technical replicates per condition). Experiments were repeated twice with similar results. **(d)** Schematic representation of treatment regimens related to Fig. 6, f-k.