
 
 

 

 
 

 

Fig. S1. Sampling days. The planned and actual sampling day for the 960 samples presented in 
this study. Shown is the actual sampling day (x-axis, relative to start of antibiotics) and subject (y-
axis), colored by planned sampling day. Antibiotics were taken on days 0-4. When a planned 
sample was not available (not collected by subject or had technical issues in the extraction and 
sequencing process) all subject samples were shifted, while minimizing temporal changes. 76% of 
the actual samples were exactly as planned and 94.6% were up to 3 days away from the planned 
sampling day. 
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Supplementary Figure S1. Sampling days. The planned and actual sampling day for the 960 samples 
presented in this study. Shown is the actual sampling day (x-axis, relative to start of antibiotics) and 
subject (y-axis), colored by planned sampling day. Antibiotics were taken on days 0-4. When a planned 
sample was not available (not collected by subject or had technical issues in the extraction and 
sequencing process) all subject samples were shifted, while minimizing temporal changes. 76% of the 
actual samples were exactly as planned and 94.6% were up to 3 days away from the planned sampling 
day.
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Fig. S2. Overview of the PolyPanner workflow. Each community (i.e., subject) is processed 
independently. Assembler) Sequenced DNA libraries from temporal samples are pooled and 
assembled. Mapper) Each DNA library is mapped to the assembly, generating 1-nt coverage 
profiles. Breaker) Contigs are refined into segments with consistent coverage profiles. Binner) 
Refined contigs are binned into genome bins. Trimmer) Genome bins are trimmed based on 
coverage profiles. Caller) Alignment mismatches of reads are counted for each genomic position, 
sequencing errors are modeled and removed, and variants are called in the remaining segregating 
positions. Inspector) Variants are classified according to coverage profiles, outputting dynamic 
variants. Final output is a set of genomes, each associated with set of dynamic variants, i.e., 
genuine polymorphic sites. 
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Supplementary Figure S2. Overview of the PolyPanner workflow. Each community (i.e., subject) is 
processed independently. Assembler) Sequenced DNA libraries from temporal samples are pooled and 
assembled. Mapper) Each DNA library is mapped to the assembly, generating 1-nt coverage profiles. 
Breaker) Contigs are refined into segments with consistent coverage profiles. Binner) Refined contigs 
are binned into genome bins. Trimmer) Genome bins are trimmed based on coverage profiles. Caller) 
Alignment mismatches of reads are counted for each genomic position, sequencing errors are modeled 
and removed, and variants are called in the remaining segregating positions. Inspector) Variants are 
classified according to coverage profiles, outputting dynamic variants. Final output is a set of genomes, 
each associated with set of dynamic variants; i.e. genuine polymorphic sites.
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Fig. S3. Genome quality. Genome quality was assessed according to single-copy genes. An eCDF 
(empirical cumulative distribution function) is shown for genome completeness (top) and genome 
contamination (bottom). The completeness threshold (50%) and contamination threshold (10%) 
used to select the 5665 genomes presented in this study are depicted with black vertical lines. 
  

Supplementary Figure S3. Genome quality. Genome quality was assessed according to single-copy 
genes. An eCDF (empirical cumulative distribution function) is shown for genome completeness (top) and 
genome contamination (bottom). The completeness threshold (50%) and contamination threshold (10%) 
used to select the 5665 genomes presented in this study are depicted with black vertical lines.
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Fig. S4. Association between response trends and microbial taxonomy. Populations were 
clustered into 20 response trends (shown on top) and were associated with genera using GTDB-tk 
(shown on right). Only families associated with at least 10 populations are shown. The matrix 
(middle) is colored according to the enrichment of the number of populations, relative to an 
expected value assuming taxonomy and response trends are independent. Numbers in squares 
indicate the number of populations. Marginal number of populations colored in shades of red. 
Families differ in their response trends. For example, most Akkermansiaceae populations are 
blooming while most Enterobacteriaceae populations are dropping during the disturbance. 

Supplementary Figure S4. Association between response trends and microbial taxonomy. 
Populations were clustered into 20 response trends (shown on top) and were associated with genera 
using GTDB-tk (shown on right). Only families associated with at least 10 populations are shown. The 
matrix (middle) is colored according to the enrichment of the number of populations, relative to an 
expected value assuming taxonomy and response trends are independent. Numbers in squares indicate 
the number of populations. Marginal number of populations colored in shades of red. Families differ in 
their response trends. For example, most Akkermansiaceae populations are blooming while most 
Enterobacteriaceae populations are dropping during the disturbance.
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Fig. S5. Diverse response trends within the Lachnospiraceae family. Same as Figure S4, 
focusing on genera within the Lachnospiraceae family with at least 10 populations. Genera sorted 
according to hierarchical clustering of genera response enrichment vectors. Genera differ in their 
response to the disturbance. Note for example, how Lachnospira collapses and Eubacterium_I 
blooms. 
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Supplementary Figure S5. Diverse response trends within the Lachnospiraceae family. Same as 
Figure S4, focusing on genera within the Lachnospiraceae family with at least 10 populations. Genera 
sorted according to hierarchical clustering of genera response enrichment vectors. Genera differ in 
their response to the disturbance. Note for example, how Lachnospira collapses and Eubacterium_I 
blooms.
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Fig. S6. Classification of polymorphic variants. We compute for each variant site three temporal 
coverage vectors: 𝑴 (major allele, filled circles), 𝒎 (minor allele, empty circles) and 𝑹 (regional 
coverage, a proxy of the population coverage, colored lines). Each variant is classified in the 
following order. A variant is classified as a paralog if 𝑴 and 𝒎 are dependent (top). It is classified 
as an ortholog if 𝑴 and 𝑹 or 𝒎 and 𝑹 are dependent (middle). It is classified as dynamic if 𝑴+
𝒎 and 𝑹 are dependent (bottom). For each scenario we show a possible genome configuration 
(left) and the coverage vectors over time (right). Downstream analysis in this work is limited to 
dynamic variants. Dependency is assessed using a chi-square test, see methods for complete 
details.  
 
  

Supplementary Figure S6. Classification of polymorphic variants. We compute for each variant site 
three temporal coverage vectors: ! (major allele, filled circles), " (minor allele, empty circles) and # 
(regional coverage, a proxy of the population coverage, colored lines). Each variant is classified in the 
following order. A variant is classified as a paralog if ! and " are dependent (top). It is classified as an 
ortholog if ! and # or " and # are dependent (middle). It is classified as dynamic if ! +" and # are 
dependent (bottom). For each scenario we show a possible genome configuration (left) and the 
coverage vectors over time (right). Downstream analysis in this work is limited to dynamic variants. 
Dependency is assessed using a chi-square test, see methods for complete details.
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Fig. S7. Performance on simulated communities. Temporal sequencing data was simulated for 
40 communities, divided into 4 groups according to the density of introduced mutations (1,10,100 
or 1000 per genome), with 10 random communities per group. For each community, 30 genomes 
from the Bacteroidetes and Firmicutes phylum were randomly selected from the proGenomes 
database. For each genome, mutations were introduced into a simulated minor strain resulting in a 
ground truth of known genuine polymorphic variants. The mutation type was randomly selected 
among single nucleotide substitutions, short insertions and deletions (1-12bp), inversions with 
breakpoints that were 1000bp apart, and long insertions and deletions that involved 1000bp of 
DNA. Each community had 16 temporal samples, with the minor strain absent in samples 1-8 and 
at a frequency of 80% in samples 9-16. Genomes had a random x-coverage ranging 0-2000 reads 
per bp. In all panels, genomes are stratified by their x-coverage (x-axis) and the number of 
introduced mutations (colors). A) From left to right: Density of spurious variants (i.e., variants not 
associated with introduced mutations), percent of variants misclassified as dynamic out of all 
variants. B) Percent of introduced mutations that were correctly detected for substitutions, short 
insertions and deletions. C) Percent of introduced mutations that were correctly detected for 
inversion breakpoints, long insertions and long deletions.  
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Supplementary Figure S7. Performance on simulated communities. Temporal sequencing data was 
simulated for 40 communities, divided into 4 groups according the density of introduced mutations 
(1,10,100 or 1000 per genome), with 10 random communities per group. For each community, 30 
genomes from the Bacteroidetes and Firmicutes phylum were randomly selected from the proGenomes 
database. For each genome, mutations were introduced into a simulated minor strain resulting in a 
ground truth of known genuine polymorphic variants. The mutation type was randomly selected among 
single nucleotide substitutions, short insertions and deletions (1-12bp), inversions with breakpoints that 
were 1000bp apart, and long insertions and deletions that involved 1000bp of DNA. Each community had 
16 temporal samples, with the minor strain absent in samples 1-8 and at a frequency of 80% in samples 
9-16. Genomes had a random x-coverage ranging 0-2000 reads per bp. In all panels, genomes are 
stratified by their x-coverage (x-axis) and the number of introduced mutations (colors). A) From left to 
right: Density of spurious variants (i.e., variants not associated with introduced mutations), percent of 
variants misclassified as dynamic out of all variants. B) Percent of introduced mutations that were 
correctly detected for substitutions, short insertions and deletions. C) Percent of introduced mutations 
that were correctly detected for inversion breakpoints, long insertions and long deletions.
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Fig. S8. Genome crowding. The presence of closely related genomes exacerbates the density of 
spurious variants and lowers sensitivity for detecting spurious variants in a taxonomy-dependent 
manner. We compared 10 communities composed of genomes limited to a genus or family vs. 10 
communities sampled from the entire phylum for 3 cases: Bacteroides genus vs. the entire 
Bacteroidetes phylum (left), the Enterobacteriaceae family vs. the Proteobacteria phylum 
(middle), and the Clostridium genus vs. the Firmicutes phylum (right). Generation of minor strains 
and simulated reads as for Supp. Fig. 7, while introducing 100 mutations per genome. The density 
of spurious variants was elevated with genetic crowding for Bacteroides and Enterobacteriaceae, 
but not for Clostridium, a diverse genus. False discovery rate was  below 0.15% for cases. 
Sensitivity varied between clades.  
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Supplementary Figure S8. Genome crowding. The presence of closely related genomes exacerbates the 
density of spurious variants and lowers sensitivity for detecting spurious variants in a taxonomy-
dependent manner. We compared 10 communities composed of genomes limited to a genus or family vs. 
10 communities sampled from the entire phylum for 3 cases: Bacteroides genus vs. the entire 
Bacteroidetes phylum (left), the Enterobacteriaceae family vs. the Proteobacteria phylum (middle), and 
the Clostridium genus vs. the Firmicutes phylum (right). Generation of minor strains and simulated reads 
as for Supp. Fig. 7, while introducing 100 mutations per genome. The density of spurious variants was 
elevated with genetic crowding for Bacteroides and Enterobacteriaceae, but not for Clostridium, a diverse 
genus. False discovery rate was  below 0.15% for cases. Sensitivity varied between clades.



 
 

 

 

 
 
 
Fig. S9. Linkage group size. Histogram shows the distribution of sweeping dynamic variants by 
the size of their linkage group. 
  

Supplementary Figure S9. Linkage group size. Histogram shows the distribution of sweeping dynamic 
variants by the size of their linkage group.
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Fig. S10. Variants per gene. Histogram shows the percentage of 2016 genes that were in or 
adjacent to 1771 sweeping variants, according to the number of sweeping variants that were in or 
adjacent to them. These sweeping variants are associated with small linkage groups of no more 
than 100 variants, so the average density of variants across the genome is low. Nonetheless, 22.5% 
of genes associated with any variant were associated with more than one variant, indicating that 
horizontal gene transfer and recombination may have introduced multiple variants to these genes. 
  

Supplementary Figure S10. Variants per gene. Histogram shows the percentage of 2016 genes that 
were in or adjacent to 1771 sweeping variants, according to the number of sweeping variants that were 
in or adjacent to them. These sweeping variants are associated with small linkage groups of no more 
than 100 variants, so the average density of variants across the genome is low. Nonetheless, 22.5% of 
genes associated with any variant were associated with more than one variant, indicating that horizontal 
gene transfer and recombination may have introduced multiple variants to these genes.
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Fig. S11: Separating the homologs gyrA and parC.  Genes were clustered using mmseqs2, and 
cluster representatives were annotated using eggNOG. There were 936 topoisomerase IIa 
associated gene clusters (representing 21544 genes) initially annotated as K02469 (gyrA) and/or 
K02621 (parC). Genes were reclassified as K02469 if their eggNOG name was ‘gyrA’, the 
remaining genes were reclassified as K02621 if matching the PFAM entry ‘DNA_topoisoIV’, and 
genes meeting neither criterion were dropped. Topoisomerase IIa genes were analyzed alongside 
120 annotated reference genes downloaded from NCBI (Supplementary Table S3) to validate the 
annotation approach. Shown is a dendrogram of genes >100aa clustered based on amino acid 
sequence alignment identity and colored according to gene classification (reference genes shown 
with darker colors). Shown below, from top to bottom, are final classifications, original KO 
assignments, eggNOG names and the PFAM hits. There is a near-perfect correspondence between 
the new annotations and annotations of reference genes, validating our reclassification approach. 
Barplots shown below summarize the number of genes that kept or switched annotations (left: 
representative genes, right: all genes). After reclassification, there were 11777 genes annotated as 
gyrA with K02469 and 9727 annotated as parC with K02621. 
  

Supplementary Figure S11: Separating the homologs gyrA and parC.  Genes were clustered using 
mmseqs2, and cluster representatives were annotated using eggNOG. There were 936 topoisomerase IIa 
associated gene clusters (representing 21544 genes) initially annotated as K02469 (gyrA) and/or K02621 
(parC). Genes were reclassified as K02469 if their eggNOG name was ‘gyrA’, the remaining genes were 
reclassified as K02621 if matching the PFAM entry ‘DNA_topoisoIV’, and genes meeting neither criterion 
were dropped. Topoisomerase IIa genes were analyzed alongside 120 annotated reference genes 
downloaded from NCBI (Supplementary Table S3) to validate the annotation approach. Shown is a 
dendrogram of genes >100aa clustered based on amino acid sequence alignment identity and colored 
according to gene classification (reference genes shown with darker colors). Shown below, from top to 
bottom, are final classifications, original KO assignments, eggNOG names and the PFAM hits. There is a 
near-perfect correspondence between the new annotations and annotations of reference genes, 
validating our reclassification approach. Barplots shown below summarize the number of genes that kept 
or switched annotations (left: representative genes, right: all genes). After reclassification, there were 
11777 genes annotated as gyrA with K02469 and 9727 annotated as parC with K02621.
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Fig. S12. KEGG orthology table. All 20 KEGG orthology entries (KOs) significantly enriched 
in sweeping variants are shown. Columns describe attributes of the variants associated with the 
KO, from left to right: Observed over expected enrichment ratios (background model generated 
through shuffling of variants within their respective genomes. Enrichment p-values. Number of 
populations with one or more KO-associated variants. Average number of KO variants per 
population. Median size of linkage group. dN/dS ratios of assigned variants, calculated from 
intragenic substitution variants. Percent of intergenic variants. For visualization purposes dN/dS 
ratios were calculated using a pseudo count of 1: dN/dS=[(N+1)/(S+1)]/[(n+1)/(s+1)], where N 
and S are the observed number non-synonymous and synonymous, and n and s are the possible 
number non-synonymous and synonymous, respectively. 
  

Supplementary Figure S12. KEGG orthology table. All 20 KEGG orthology entries (KOs) significantly 
enriched in sweeping variants are shown. Columns describe attributes of the variants associated with the 
KO, from left to right: Observed over expected enrichment ratios (background model generated through 
shuffling of variants within their respective genomes. Enrichment P-values. Number of populations with 
one or more KO-associated variants. Average number of KO variants per population. Median size of 
linkage group. dN/dS ratios of assigned variants, calculated from intragenic substitution variants. Percent 
of intergenic variants. For visualization purposes dN/dS ratios were calculated using a pseudo count of 1: 
dN/dS=[(N+1)/(S+1)]/[(n+1)/(s+1)], where N and S are the observed number non-synonymous and 
synonymous, and n and s are the possible number non-synonymous and synonymous, respectively.
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Fig. S13. Examples of evolving populations associated with a mutation in gyrA. For each 
population shown from left to right are the the strain abundance plot, the strain phylogeny tree 
(number above each branch depicts the size of the associated linkage group, colored red if branch 
associated with a change in gyrA), and the variant-strain matrix (gyrA variants colored red). In the 
strain abundance plots, abundances of strains are stacked, background colors emphasizing baseline 
samples (days -2 to 0), disturbed samples (days 3-8) and post-exposure samples (days 10-28). 
Strains are colored in shades of slate gray and organized top to bottom in a consistent order. See 
Supp. Table S2 for variant details.  
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Supplementary Figure S13. Examples of evolving populations associated with a mutation in gyrA. For 
each population shown from left to right are the the strain abundance plot, the strain phylogeny tree 
(number above each branch depicts the size of the associated linkage group, colored red if branch 
associated with a change in gyrA), and the variant-strain matrix (gyrA variants colored red). In the strain 
abundance plots, abundances of strains are stacked, background colors emphasizing baseline samples 
(days -2 to 0), disturbed samples (days 3-8) and post-exposure samples (days 10-28). Strains are colored 
in shades of slate gray and organized top to bottom in a consistent order. See Supp. Table S2 for variant 
details.



 
 

 

 
 
Fig. S14. KEGG orthology and taxonomic identity. Variants associated with a significantly 
enriched KO were stratified by KO (y-axis) and by taxonomic family (x-axis). Shown for each KO 
(left to right) is the number of associated variants, number of populations, number of subjects, a 
log-transformed transformed p-value, and the enrichment ratio. Shown for each family (top to 
bottom) is the number of associated variants, the class and the phylum (color legends in top left). 
The matrix (middle) shows the observed number of variants for each KO-family combination, 
colored according to fold enrichment of the observed number of variants over the number expected 
if KOs and families were independent. 
  

Supplementary Figure S14. KEGG orthology and taxonomic identity. Variants associated with a 
significantly enriched KO were stratified by KO (y-axis) and by taxonomic family (x-axis). Shown for each 
KO (left to right) is the number of associated variants, number of populations, number of subjects, a log-
transformed transformed P-value, and the enrichment ratio. Shown for each family (top to bottom) is the 
number of associated variants, the class and the phylum (color legends in top left). The matrix (middle) 
shows the observed number of variants for each KO-family combination, colored according to fold 
enrichment of the observed number of variants over the number expected if KOs and families were 
independent.
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Fig. S15. Examples of evolving populations not associated with mutations in gyrA. We focused 
on populations that had a resolved gyrA gene without dynamic variants and sweeping variant 
associated with a non-synonymous substitution in genes other than gyrA. Shown are the 10 
populations with the smallest number of dynamic variants. See Supp. Figure S13 for a description 
of the figure components. Associated gene annotations, assessed through KO, Uniref100 and 
PFAMs, are above each example. All sweeping variants except for a non-synonymous substitution 
in a hyaluronoglucosaminidase (K01197) in population EBG_25 were idiosyncratic, i.e., their 
associated KO was not significantly associated with parallel evolution in our study. See Supp. 
Table S2 for a complete description of variants. 
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Fig. S16. gyrA:83 baseline amino acids and taxonomic identity. The amino acid at gyrA:83 of 
gyrA was resolved for 3896  genomes. Genomes were stratified by amino acid (top) and genera 
(right). The matrix (middle) shows the observed number of genomes with gyrA:83/genera 
combination, colored according to fold enrichment of the observed number of genomes over the 
number expected if taxa and amino acid identity were independent. Clostridia families are split 
between the use of serine (e.g., Lachnospiraceae) and adenine (e.g., Oscillospiraceae). 
Actinobacteria and Bacteroidota combine serine and other amino acids.  
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Supplementary Figure S16. gyrA:83 baseline amino acids and taxonomic identity. The amino acid at 
gyrA:83 of gyrA was resolved for 3896  genomes. Genomes were stratified by amino acid (top) and 
genera (right). The matrix (middle) shows the observed number of genomes with gyrA:83/genera 
combination, colored according to fold enrichment of the observed number of genomes over the 
number expected if taxa and amino acid identity were independent. Clostridia families are split between 
the use of serine (e.g., Lachnospiraceae) and adenine (e.g., Oscillospiraceae). Actinobacteria and 
Bacteroidota combine serine and other amino acids.
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Fig. S17. Substitutions and taxonomic identity. Shown are 56 substitutions at gyrA:83, stratified 
by source and target codons (left) and species (top). For each species, shown are the number of 
genomes with specific pre-exposure amino acids at gyrA:83, total number of genomes and number 
of genomes with a substitution. The matrix (bottom) shows the observed number of substitutions 
for gyrA:83/genera combinations, colored by enrichment (as in Supp. Figure S16). There were 26 
species in which the substituting amino acid (highlighted with a red rectangle) was present prior 
to the exposure (highlighted with blue rectangle). For example, Bifidobacterium bifidum had a 
single substitution to valine during exposure (A83V) and valine was also present before the 
exposure (1/9 genomes). The association between substituting and pre-existing amino acids 
indicate baseline amino acid distributions may reflect prior exposure and resistance. Colinsella sp. 
represents unclassified species of the Colinsella genus. 
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Supplementary Figure S17. Substitutions and taxonomic identity. Shown are 56 substitutions at 
gyrA:83, stratified by source and target codons (left) and species (top). For each species, shown are the 
number of genomes with specific pre-exposure amino acids at gyrA:83, total number of genomes and 
number of genomes with a substitution. The matrix (bottom) shows the observed number of 
substitutions for gyrA:83/genera combinations, colored by enrichment (as in Supp. Figure S16). There 
were 26 species in which the substituting amino acid (highlighted with a red rectangle) was present prior 
to the exposure (highlighted with blue rectangle). For example, Bifidobacterium bifidum had a single 
substitution to valine during exposure (A83V) and valine was also present before the exposure (1/9 
genomes). The association between substituting and pre-existing amino acids indicate baseline amino 
acid distributions may reflect prior exposure and resistance. Colinsella sp. represents unclassified species 
of the Colinsella genus.
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Fig. S18. Pre-exposure resistant strains across subjects. The number of resistant populations, 
defined as populations with a species-specific gyrA:83 resistant allele prior to the ciprofloxacin 
exposure, were counted per subject. Shown in orange is the number of subjects (y-axis), as a 
function of the number of resistant populations (x-axis). Shown in gray is a background model, 
generating through n=10,000 permutations of the data that randomly shuffled gyrA:83 alleles 
between subjects while respecting species. The Real and permutated distributions of the number 
of resistant populations per subject were not significantly different, based on an asymptotic two-
sample Kolmogorov-Smirnov test. 
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populations, defined as populations with a species-specific gyrA:83 resistant allele prior to the 
ciprofloxacin exposure, were counted per subject. Shown in orange is the number of subjects (y-axis), as a 
function of the number of resistant populations (x-axis). Shown in gray is a background model, generating 
through n=10,000 permutations of the data that randomly shuffled gyrA:83 alleles between subjects 
while respecting species. The Real and permutated distributions of the number of resistant populations 
per subject were not significantly different, based on an asymptotic two-sample Kolmogorov-Smirnov 
test.
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Fig. S19. GyrA evolvability models. Comparison of 9 logistic regression models with gyrA 
evolvability as the response variable. A) Coefficient values (y-axis, log10 scale) for all coefficients 
(x-axis). Exponentiated coefficient values depicted in red text. p-value significance represented 
with asterisks: P<0.001 (***), P<0.01 (**), P<0.05 (*). Confidence intervals (5% to 95%) depicted 
with vertical lines. B) Akaike information criterion (AIC, y-axis), for all models (x-axis). Values 
depicted in text above bars. C) The relative likelihood (y-axis, log-transformed) for all models (x-
axis). Values depicted in text above bars.  

Supplementary Figure S19. GyrA evolvability models. Comparison of 9 logistic regression models with 
gyrA evolvability as the response variable. A) Coefficient values (y-axis, log10 scale) for all coefficients (x-
axis). Exponentiated coefficient values depicted in red text. p-value significance represented with 
asterisks: P<0.001 (***), P<0.01 (**), P<0.05 (*). Confidence intervals (5% to 95%) depicted with vertical 
lines. B) Akaike information criterion (AIC, y-axis), for all models (x-axis). Values depicted in text above 
bars. C) The relative likelihood (y-axis, log-transformed) for all models (x-axis). Values depicted in text 
above bars.
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Fig. S20. Non-GyrA evolvability. The 9 models described in Supp. Figure S19 were fitted with 
non-gyrA evolvability as the response variable. Shown are 4 models for which the coefficients 
were significant (p-value below 0.05). A) Model coefficients. B) AIC comparison. C) Relative 
likelihood comparison. D) ROC curves and AUC values of significant models. See Supp. Figure 
S19 for the legends of panels A-C and Figure 4D for the legend of panel D. 
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Supplementary Figure S20. Non-GyrA evolvability. The 9 models described in Supp. Figure S19 were 
fitted with non-gyrA evolvability as the response variable. Shown are 4 models for which the coefficients 
were significant (p-value below 0.05). A) Model coefficients. B) AIC comparison. C) Relative likelihood 
comparison. D) ROC curves and AUC values of significant models. See Supp. Figure S19 for the legends of 
panels A-C and Figure 4D for the legend of panel D.
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Fig. S21. Evolving populations across subjects. The number of evolving populations (involving 
gyrA sweeps on top, any sweep on bottom) were counted per subject. Shown in orange is the 
number of subjects (y-axis, numbers above bars), as a function of the number of evolving 
populations (x-axis). Shown in gray is a background model, generating through n=1000 
permutations of the data that randomly shuffled populations between subjects while respecting 
genera. The Real and permutated distributions of the number of evolving populations per subject 
were not significantly different, based on an asymptotic two-sample Kolmogorov-Smirnov test. 
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Supplementary Figure S20. Non-GyrA evolvability. The 9 models described in Supp. Figure S19 were 
fitted with non-gyrA evolvability as the response variable. Shown are 4 models for which the coefficients 
were significant (p-value below 0.05). A) Model coefficients. B) AIC comparison. C) Relative likelihood 
comparison. D) ROC curves and AUC values of significant models. See Supp. Figure S19 for the legends of 
panels A-C and Figure 4D for the legend of panel D.
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