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METHODS

Human subjects, sample collection, basic processing

Sample collection and DNA sequencing. This study was approved by the Institutional Review
Board of Stanford University (protocol #25268). All participants provided written informed
consent before completing an enrollment questionnaire and providing biological samples. 60
heathy adults living in the U.S. took ciprofloxacin for 5 days (500mg orally, twice daily). Each
subject self-collected stool samples 9 weeks prior and for each of the 2 consecutive days
immediately prior to the start of ciprofloxacin, daily during antibiotic exposure (Days 0-4) and for
the following four days (Days 5-8), and then on Days 10, 18, 28, and 77, following the sampling
scheme described in Supp. Figure S1. Subjects had not taken any antibiotics for at least 6 months
prior to the start of sampling. Samples were kept temporarily at home at -20C, shipped to the
laboratory on dry ice and stored at -80C until processed. DNA was extracted using the AllPrep
DNA/RNA Mini Kit (Qiagen), sheared and size-selected (>300bp), and DNA libraries were
sequenced (2x150nt) at the Chan Zuckerberg Biohub using the NovaSeq 6000 platform.

Processing raw reads. Libraries were rarified to SOM read pairs if there were more than 5S0M read
pairs, resulting in 1.9M to 50M read pairs per library (median: 17.46M). Adapter removal and
quality filtering were performed using Trimmomatic®” (v0.38), with the parameters
“ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:1:true LEADING:20 TRAILING:3
MAXINFO:60:0.1 -phred33”. Duplicate read pairs (identical matches on both sides) were
removed. Read pairs that mapped to the human genome were discarded using DeconSeq®® (v0.4.3,

hg38 as reference).

Metagenome co-assembly and read alignment. Reads were pooled per subject and co-assembled
into subject-specific co-assemblies using MEGAHIT®® (v1.2.9) with parameters “--min-contig-
len 200 --k-min 27 --k-max 77 --k-step 10 --merge-level 20,0.95”. Contigs shorter than 1kb were
discarded. Read sides were mapped to their co-assembly using BWA-MEM?° (v0.7.17) resulting
in SAM (Sequence Alignment Map format) files. Reads with low-quality alignments (>20

mismatches, <50nt match length or mapping score <30) were removed.



30

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

MAGs and dvnamic variants

Approach overview. We developed PolyPanner, a program that leverages dense temporal
sampling to improve assembly quality and identify high confidence polymorphic variants.
PolyPanner receives as input a set of shotgun libraries that are aligned to their co-assembly in SAM
format. It transforms the alignments to single-nucleotide coverage vectors that represent library-
specific read counts of perfect and mismatch alignments at each base pair in the co-assembly.
Tasks performed by PolyPanner are (1) contig refinement; (2) genome trimming; (3) removal of

sequencing errors; and (4) identification of dynamic variants.

Read alignment representation. For each library, a library data structure was generated from the
SAM files and the subject-specific co-assembly as follows. Reads clipped on both sides were
discarded, based on having an ‘H’ or ‘S’ on start and end of the CIGAR string (Compact
Idiosyncratic Gapped Alignment Report). To ensure a margin of safety at the start and end of reads,
each read was trimmed by at least 20nt on both sides and trimmed further to avoid a possible
overlap between paired reads. Clipped reads were piled-up to generate single-nucleotide coverage
vectors that allowed a query as to how many reads covered a query position or a query genomic
interval. CIGAR strings were parsed to identify 4 types of variants: (1) a substitution was defined
by a source nucleotide (in the contig) and target nucleotide (in the read), as specified by the MD
field in the SAM file; (2) a deletion was defined by the number of deleted nucleotides; (3) an
insertion was defined by the sequence added between two adjacent positions; and (4) a
rearrangement was assigned to the left or right of the position at which the alignment of a clipped
read terminated, and was defined by the identity of the contig to which the paired read mapped, if
present. Variants were recorded within each library according to their complete identity (position
and associated fields). For example, 2 variants representing the insertion of AA and AAA at the

same position were counted separately.

Removing sequencing errors. Sequencing errors were removed following the rigorous approach
taken by Quince et al.*” We extended their test, which identifies bi-allelic positions that segregate
through substitutions, to identify multi-allelic positions that segregate through all types of variants.
We inferred 4 global error coefficients €gyp, €ingers €rearranger €Enone that represent single
nucleotide substitution errors, insertion/deletion errors, rearrangement errors, and no sequencing

errors respectively. All libraries of a subject were merged into a single library for this work. Error
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coefficients (except €,,n) Were seeded at 0.01 and summed to 1. The algorithm repeated the
following two steps until convergence: (1) inferring true variants while keeping error coefficients
constant, and (2) inferring error coefficients while keeping true variants constant. True variants at
a specific position were identified as follows. Let vy, v; ..., v,,_; denote the variants at the position
and their respective read support coverage t, t; ..., t,,_1, with read supports sorted high to low.
Hypothesis H; is that variants vy, ..., v; are true and the remaining variants are a result of

sequencing errors. The likelihood of the hypothesis is the multinomial H;(ty, t1 ..., th_1l€) =

T!

ti . . .
e Hj(Zk:o,...,i Wy X ek'j) / where T = Y.j tj, Wy is an approximation of the true frequency of
"]

variant v, that equals 1 ifi = 0, k = 0 and equals t?k otherwise, and € ; is the error coefficient that
represents a transition from variant vy, to v;. Coefficient €, ; was determined based on the first
condition met: (1) €y ; = €none if the variants were identical, (2) € j = €,earrange if €ither variant

was a rearrangement, (3) €y ; = €jnqe if €ither variant was an insertion or deletion, and (4)

otherwise €y ; = €. For each variant v; (i > 0, t; > 2) we applied the likelihood ratio test

Hi-1
Hi

—2log , which is approximately distributed as a chi-square distribution, and used the test to

assess p-values for the hypothesis that a variant is present at a specific position*’. A Benjamini-
Hochberg correction was applied with a false discovery rate (FDR) of 0.001 to account for multiple
testing, resulting in a list of true variants. In the second step, error coefficients were inferred while
keeping true variants fixed and enforcing a minimal error rate of 0.001% and a maximal error rate
of 5%. Each error coefficient was approximated by the average error rate for all positions that do
not contain a true variant. The two steps were repeated with variants reclassified and coefficients

re-estimated until the set of true variants converged.

Linkage test. We denote by 7;(x) the number of reads that cover position x in library i (also called
the x-coverage of the position). We denote by r(x) the position coverage vector across libraries
r(x) = (r;(x), ..., (x)) , where m is the number of libraries. We denote by 7;(x, y) the number
of reads fully contained in a sequence interval [x,y] in library i, and by r(x,y) the interval
coverage vector r(x,y) = (r;(x,y), ..., iy (x, ¥)). We handle variants at a position in a similar
fashion, with 7;(v) denoting the number of reads supporting the variant in library i, and with r (v)
denoting the variant coverage vector. A pair of sequences (either two positions, two intervals, or

two variants) are called separated (or non-linked) if their associated coverage vectors are
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independent, based on a Pearson's chi-squared test of independence (applied with a pseudo-count
of 0.1 and requiring P < 0.01). Note that two sequences for which the associated coverage vectors
were not significantly independent are either perfectly linked (i.e., co-occurring in all genomes),

or the coverage depth is not high enough to detect separation.

Co-assembly refinement. Given a genomic position p, we define the left and right intervals L, =
[p —D,p—d]and L, = [p + d,p + D], where d = 10 and initially D = 200. The interval [p —
D,p + D] is called the spanning interval of position p. The position is called a separating position
if the left and right intervals are separated as defined above. Each co-assembly contig was refined
as follows. We tested for separation all positions in the contig associated with a rearrangement
variant, and positions distributed across the contig (50bp apart). Separating positions (P<0.01) with
a spanning interval entirely contained in the contig were considered candidate breakpoints. The
contig was then processed recursively by selecting a single candidate breakpoint at each step. The
selected breakpoint was either the candidate breakpoint associated with a rearrangement variant
that was supported by the highest number of reads (if such a breakpoint existed), or the candidate
breakpoint with the highest chi-square statistic (if no candidate rearrangement breakpoint were
found). Only breakpoints with a spanning interval that did not contain any previously selected
breakpoints were considered. The contig was split into two segments at the selected candidate
breakpoint and the process continued recursively on both segments until no candidate breakpoints
were found. After the recursion ended, the induced segments were further refined using the same
procedure but with D = 400. Finally, a Benjamini-Hochberg correction was applied (FDR of 0.25)
to the p-values of the breakpoints used to separate the contig into segments, rejecting breaks above

that threshold. The result was a final list of breakpoints and the corresponding induced segments.

Genome binning and trimming. For each co-assembly, genomic segments were clustered based
on segment coverage vectors (mean and variance) using MetaBAT27! (version 2:v2.16-4-
g40efa2d) with parameters “-s 1500 -m 1500 --maxP 95 --minS 60 --maxEdges 200 --seed 1 -1 —
saveCls”. The output was treated as initial genomic bins and trimmed as follows: Coverage vectors
were computed separately for the two sides of each segment, over the interval starting 10bp away
from segment border and up to 2000bp into the segment (or less for segments shorter than 2000bp);
segment sides associated with a genomic bin were organized in a graph, where two sides were

connected by an edge if they were associated with the same segment or if a comparison of their
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coverage vectors failed to separate them; and each connected component in the graph was then
converted to a metagenome-assembled genome (MAG). In this manner some initial bins were split
into several final MAGs. Each genome was associated with a unique population of a species in a

specific subject.

Dynamic variant classification. The following procedure was applied to all true variants that
were at least 200bp away from any segment boundary. To test if a variant v is dynamic we
compared 4 coverage vectors. We used the variant coverage vector 1,4, = r(v), the local coverage
VeCtor 1jocq; = 7(p), and the complement vector 7.omp = Tocar — Tvar- Additionally, we defined
the regional coverage vector Ty.egion = (P — C,p + C), where C equaled 1000bp or less if near
an edge of the containing contig. If 73-¢g4ion and 7j,.q; Were separated (P<0.01) we rejected the
variant, since we require the regional and local coverage to be linked. We verified that r,,, and
Tocar Were separated (P<0.01); otherwise, we rejected the variant as non-dynamic, since it is either
a result of paralogs within a genome or a polymorphic variant with a negligible contribution to
fitness. We verified that 77, 4i0n and 7,4y, were separated (P<0.01); otherwise, we rejected the
variant as a possible result of ortholog sequences (sometimes referred to in the literature as
recruited reads). Variants that passed all three tests were classified as dynamic variants. A variant

was associated with a MAG if it was contained in one of the segments of the MAG.

Benchmarking the approach

Simulated communities. We generated 100 random communities as follows. Let a genome be
one or more sequences of nucleotides. Let G be a set of genomes representing a community and
let n,,,+ be the number of designated mutations. To generate a random community, each genome
g € G was associated with a population composed of two strains, where one strain s;; was g
(called the baseline strain) and the second strain s, , (called the mutated strain) was constructed
by introducing n,,,,; mutations to g as follows. At each step, a random mutation was selected with
a probability of 0.8 to be one of the 3 local mutations (substitution, insertion, or deletion) or
otherwise to be one of the 3 global mutations (inversion, large insertion, or large deletion). A
substitution was defined by a random position and a substituting nucleotide. A local insertion was

defined by a random position in which a random nucleotide sequence (1-12nt long) was inserted.
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A local deletion was defined by a random position at which 1-12nt were deleted. An inversion was
defined by two positions that were fixed to be 1000bp apart and involved reversing the orientation
of the sequence between the positions (i.e., transforming through a reverse-complement function).
A large deletion was defined by a random 1000bp interval that was deleted. A large insertion
involved the insertion of a mobile element randomly selected out of a pool of 4 randomly generated
1000bp mobile elements (same pool was used by entire community). To keep track of ground-
truth through this process every mutation was logged alongside the 24bp identifier sequence that
was upstream of the mutation (keeping a gap of 4bp), and the spanning interval of the mutation
and the identifier were marked in a bitmask. When selecting a random position for a new mutation
the bitmask representing previous mutations was used to make sure the new mutation that does not
alter previous mutations or their identifiers. To model sequence-specific sequencing biases, non-
overlapping genomic windows of 100bp were assigned random skew factors uniformly distributed
between 1 and 2. The skew factor f.4 (g, p) at position p was determined through interpolation in
the baseline genome. Factors were propagated in the mutated strain during the mutation process
such that the baseline and mutated strains had matching factor profiles in syntenic regions. Strain

genomes were then circularized, resulting in one circular chromosome per strain.

Community datasets. We generated 40 complex communities, each sampled with 30 genomes
that were randomly selected from the set of Bacteroides and Firmicutes genomes in
proGenomes2’?. To these communities we applied one of 4 different mutation rates, n,,,; =
1,10,100,1000 (10 communities per mutation rate, 40 communities in total). We also generated
60 communities to examine the effect of genome relatedness by including in each community
genomes from either a broad or a narrow taxonomic rank. We did so for 3 different cases:
Bacteroidetes vs. the Bacteroides genus, Firmicutes vs. the Clostridium genus, and Proteobacteria
vs. the Enterobacteriaceae family. For all cases, we generated 10 communities where 30 genomes
were randomly selected from the broad rank and 10 communities in which genomes were limited
to the narrow rank, while keeping the mutation rate fixed at 100 per genome (20 communities per

case, 60 communities in total).

Simulated abundance trajectories and sequencing factors. Sixteen longitudinal samples were
simulated for each community. For a community composed of genomes G, each genome g € G

was assigned an abundance weight 14, such that log;o (ug) was uniformly distributed between 0
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and 3. Sample-specific abundance weights u,; for i =1,..,16 were normally distributed
Ug,i~N (Ug, lg) and restricted to the interval [1,1000]. The abundance A, ; of genome g in library
[ was setto Ag; = Wy ;/ X Wp;. The abundance Ay ; ; of the baseline strain s, ; in sample i was
set to Ay; for 1 <i < 8 and otherwise set to 0.2 - Ay ;. Similarly, the abundance Ag;, of the

mutated strain s

9,2 in sample { was set to 0 for 1 < i < 8 and otherwise setto 0.8 X A ;.

Sequencing bias. Each strain s was assigned a replication ratio ug that was uniformly distributed
between 1 and 1.2, and the factor of library i was normally distributed ug;~N (us, 0.33). Each
position p was assigned a replication bias factor f,..,(s, p) based on a sinusoid that had a peak-to-

trough ratio of ug;. Each position p was assigned a final bias factor equal to f(s,p) =
fseq($:P) X frep(s, ). Read probability at position p was set to P(s,p) = f(s,p)/ 2q f (s, Q).

Simulated shotgun libraries. Random paired reads (2x150nt) were generated for a community as
follows. The total number of reads R; for the library of sample i was set such that mean x-coverage

across all genomes was 10x, taking into account differences in genome length. Each strain s, ; was

)

assigned A, ; ; X R; reads in library i. Each read was assigned a position f(s,p) by selecting a

gilj
random position with probability P (s, p). Sequenced molecule lengths were normally distributed
N(400,10), enforcing a minimal length of 200. Strand was assigned randomly, and read pairs

were generated from the strain genomes.

Running simulated data. The shotgun data of each simulated community were processed as
described above for the real data, while skipping over the steps described in the processing raw
reads section (adapter trimming, read quality filtering, removal of human reads). Briefly, reads
were pooled to construct a community co-assembly, mapped back to the co-assembly, PolyPanner
was applied, and the output was a set of MAGs and associated dynamic sites. For clarity, we
distinguish between strain genomes (which were simulated) and MAGs (which are the output of
PolyPanner). For each strain genome in the community, overlapping sequence intervals that were
100bp long (sliding windows with 10bp steps) were mapped to the co-assembly using BWA-
MEM. Low quality alignments (edit distance >20, score >30, or alignment length >50) were
discarded. Alignments were traversed to generate a 1bp mapping from co-assembly contig
coordinates to zero or more genome coordinates. The entire co-assembly was divided into maximal

alignment intervals by consolidating adjacent coordinates that are compatible, where each
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alignment interval s perfectly aligns to zero or more strain genomes G (s). For example, an interval
s that is a result of the assembly of two syntenic regions in strains g 1, Sg » is expected to align to
both of them, or formally: G(s) = {s,1,S,,2}. We define the alignment of a set of intervals S to a
set of genomes G to be I(S,G) = {s € S: G(s) = G}, or in other words, I(S,G) S S is the subset
of S that perfectly aligns to all the genomes in G.

Detection of assembly breakpoint. Alignment intervals longer than 100bp were traversed in order
along contigs, and pairs of intervals that aligned to a different set of genomes were marked as true
assembly breakpoints. A reported assembly breakpoint was classified as true if the coordinate at

which the breakpoint was identified was marked as a true breakpoint.

Genome completeness and contamination. Each MAG b, composed of alignment intervals Sj,
was associated with a set of strain genomes G, = argmax|I1(S,, G)|, or in other words, G}, is the

set of strain genomes that have the longest alignment to b. Completeness C(b) was defined as

|1(Sp,Gp)I

o where |G, | is the average length of the genomes in |G,|. In other words, C(b) is the
b

fraction of the genomes in G, which aligned to the MAG b. Contamination X (b) was defined as

|X(Sp)!

S where X (S,) € S, is the set of intervals in S that align to genomes outside the set G,,.
b

Variant detection. Each source genome and associated MAG were processed as follows. Let M
be the set of introduced mutations, defined by their type and sequence identifier. Let O be the set
of observed variants for this MAG (referred to as ‘true variants’ above) and let Oy, < O denote
the set of dynamic variants reported by the algorithm. For each mutation, we searched for the
mutation identifier in the contigs of the MAG, and when there was a unique exact match, the
mutation was associated with an expected variant that was generated based on the identity of the
mutation, and in the precise location based on the position and orientation of the identifier in the
co-assembly. This process resulted in a set of expected variants E. An observed and an expected
variant were matched if they were identical (e.g., both involved a substitution of A for G) and the
distance between their coordinates was zero for substitutions, up to 2 for indels and up to 4 for
rearrangements. Genuine variants Ogenyine & O were defined as observed variants that had a
matching expected variant. Spurious variants Ogpyrious & O Were defined as observed variants that
lacked a matching expected variant and were also at least 200bp away from any segment edge.

False variants Ofqise S Ogy, were dynamic variants that lacked a matching expected variant.

8
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Detected mutations Myeiecteq & M were mutations that had an associated expected variant that
matched a dynamic variant. The density of spurious variants was defined as |05pun-ou5 | /L, where
L is the total length of the contigs in the MAG. The percent of false detections was defined as
|0false|/ |0|, or in other words this was the percent of variants that were reported as dynamic

without a matching mutation. The percent of correctly reported variants (our measure of
sensitivity) was defined as |Mgetecteal/|IM|, and was similarly defined separately for each

mutation type.

Genome and variant annotation

Metagenome-assembled genomes and their annotation. All MAGs that were >500kb were
assessed using CheckM”® (v1.2.2, reference generated on 16/1/2015), which was run with the
lineage wf workflow using default parameters. The selected list of 5665 MAGs examined in this
study were MAGs that were >50% complete and <10% contaminated. MAGs were taxonomically
annotated using GTDB-Tk’* (v2.2.6, reference database version R207 v2), using the classify wf
workflow with default parameters. 73 MAGs (1.28%) were resolved by GTDB-Tk down to the
genus level (without reaching a species-level resolution) and were assigned a species by adding an
“sp.” suffix to the genus, e.g., “Collinsella sp.”. 30 MAGs (0.52%) for which GTDB-Tk did reach

a genus-level resolution were left without a species.

Inference of strains. To infer strains, Strain Finder*® was applied to all MAGs that had between
1 and 1000 dynamic variants. Since the input of Strain Finder is solely nucleotides and we have
additional types of variants (such as indels and rearrangements) we applied an encoding-decoding
scheme, where for each polymorphic site the 2-4 variants at the site were encoded using arbitrary
nucleotides (>99% sites were bi-allelic, no site had over 4 alleles), and site-specific conversion
tables were used to decode nucleotides back to variants after Strain Finder terminated. Strain
Finder (v1.0) was run with parameters “-e le-4 --n_keep 3 --max reps 10 --dtol 1 --ntol 3 —
converge”, separately testing 2-8 strains, and the number of strains was selected using the Akaike
information criterion (AIC). Each output strain was defined by a single variant per polymorphic
site and a temporal frequency trajectory, with the frequencies of all strains of a MAG summing to

1 at each time point.
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Strain phylogeny tree and linkage groups. For each MAG, strains were placed on a maximum
parsimony tree using the function pratchet in the phangorn R package’ (v2.11.1). The length of
each tree branch was set to the number of sites that were inferred to change their state along the
branch. Each variant v was associated with a single branch b(v) on which v changed states. In
case there were multiple branches on which v changed states, a single branch with the minimum

branch length was chosen. The set of variants associated with a branch is called the linkage group

(LG) of the branch V (b).

Genome abundance trajectories. The abundance of genome g in library i was defined to be
Ai(g) = 11(9)/Xgec 1i(g), where 1;(g) is the total number of reads covering genome g, and G is
the set of all genomes. The abundance trajectory of g was A(g) = (11.(9), ..., (g)), and the
normalized abundance trajectory was N(g) = A(g)/T(g), where T(g) = Xi=1..mAi(g). To
generate Fig. 1A, normalized abundance trajectories were clustered using k-means (k=100) and

sorted along the y-axis based on hierarchical clustering.

Genes. For each subject, genes were predicted with Prodigal’® (v2.6.3), using the parameters
“-p meta -g 11”. Genes were blasted against the Uniref100 database (downloaded July 2020) with
DIAMOND?7 (v2.0.15.153), using the ‘blastp’ command, assigning genes to top hits. Genes across
all subjects, alongside Escherichia coli genes (K-12 MG1655, assembly ASM584v2), were
clustered with MMseqs2’® (version bdd169b3e285299cab792e62d60eblfdeded34d2), using
parameters “--min-seq-id 0.5 -c 0.8 --cov-mode 0 --cluster-mode 0”. Genes representative of
clusters were annotated using the eggNOG-mapper’® (emapper-2.1.7-bfd73¢0, reference database
5.0.2), using parameters “--itype proteins”. We focused on the KEGG Orthology (KO) of genes,
as reported by eggNOG. Note that some genes were annotated by eggNOG with multiple KOs.
There were 936 gene clusters (representing 21544 genes) initially annotated as K02469 (gyrA4)
and/or K02621 (parC). These genes were reclassified as K02469 if their eggNOG name was
‘gyr4’, the remaining genes were reclassified as K02621 if they matched the PFAM entry
‘DNA_topoisolV’; genes meeting neither criterion were dropped from downstream analysis. After
the reclassification, there were 11777 genes annotated as gyr4 with K02469 and 9727 annotated
as parC with K02621. A gene was associated with a MAG if it was completely contained in one
of the segments of the MAG. Genes not associated with any of the 5665 MAGs were dropped from

downstream analysis. Variants were classified as intra-genic if contained within a gene and

10
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otherwise classified as inter-genic, and each was associated with the genes that were upstream and

downstream of the variant, if present.

Sweeping variants. The average frequency of variant v at position p over samples I was defined
to be Yie; 11 (V) /Xier 1i(p), where 1;(v) is the number of reads supporting the variant in sample i
and 7;(p) is the number of reads supporting position p (i.e., all variants) in sample i. Variants that
had a frequency above 50% in the baseline samples (days -2 to 0) were reversed (e.g., “A to T"
was transformed to “T to A”). A variant was classified as sweeping if it had an average frequency
<20% in the baseline samples and an average frequency >80% in the post-antibiotic samples (days
10-28). To determine if a genome had sufficient coverage to detect sweeps, an artificial variant
trajectory that sweeps from a frequency of 0% to 100% as of day 10 and with a total x-coverage
based on the genome x-coverage trajectory was tested using the same statistical tests that were
applied to all variants (namely the ortholog and paralog tests, defined above). All downstream

analysis was limited to sweeping variants that were part of small LGs (up to 100 variants/LG).

Analysis of evolutionary dvnamics

Parallel evolution analysis. We assigned every LG a weight of 1 and equally distributed the
weight between all genes associated with one or more variants in the linkage group. Gene weights
were distributed between all gene KOs (weight dropped if no KO was associated). KO total
weights were computed by summing over the LGs. A background weight distribution was
generated by creating 10° random sets of variants, by replacing the genes of an LG V with a random
set of |V| genes uniformly selected from the genes of the MAG associated with V. The p-value of
each KO was empirically calculated by embedding the observed weight in the distribution of
random weights. KO enrichment ratios were computed by dividing the observed weight and the
mean expected weight. We considered only KOs that had a p-value below 0.05, an enrichment
ratio of at least 2-fold, and for which the associated supporting variants were found in at least 3
different subjects. False discovery rates (g-values) were added using the Benjamini-Hochberg

approach.

GyrA analysis. Genes annotated as gyrd (K02469), including the E. coli reference gene, were
aligned with Clustal Omega® (v1.2.4), using default parameters. For each variant, the E. coli
coordinate was set to the closest E. coli coordinate according to the global alignment of all genes.

11
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There were 4987 MAGs that had a gyr4 gene. The amino acid at position gyr4:83 (as shown in
Fig. 3C) is shown for 698 MAGs that (1) had a single gyrA that aligned to the E. coli gyrd at
position #83, and (2) had sufficient coverage to detect sweeps, if present (defined in section
‘Sweeping variants’ above). There were 56 MAGs in which gyr4:83 changed identity due to a
sweeping substitution variant. Species-specific resistance alleles at position gyr4:83 were defined

based on the substituting amino acids of the 56 substitutions at gyr4:83.

Evolvability analysis. For this analysis we focused on 410 populations that had serine at gyr4:83
and had sufficient coverage for detection of sweeps, if present (defined in section ‘Sweeping
variants’ above). We trained models to predict two response variables: gyr4 evolvability, defined
as the probability of the population to undergo one or more sweeps involving gyrA, and non-gyr4
evolvability, defined as the probability of the population to undergo one or more sweeps involving
any gene except gyrAd. As predictor variables we used the baseline abundance (‘Base’, days -2 to
0), the abundance during antibiotics (‘Treated’, days 1-5), the abundance post-antibiotics (‘Post’,
days 10-28), and the abundance at last sample (‘Late’, day 77). All abundance values were log-
transformed after adding 0.001%. Additional variables were also considered: the fold-decrease in
abundance during antibiotics (‘Decline’, equal to logio(Base/Treatment)) and 2 phylum variables.
Separately for the two response variables, we trained 9 logistic regression models (Base, Treated,
Post, Late, Decline, Base+Decline, Base+Phylum, Decline+Phylum, Base+Decline+Phylum),
with k-fold validation using the caret package in R, with the ‘repeatedcv’ method (k=10 and 10
repeats). We rejected models if one of the coefficients was not significant (using a threshold p-
value of 0.05). Models were ranked based on their Akaike information criterion (AIC). The pROC
package in R was used to plot ROC curves (receiver operating characteristic curves) and compute

the area under the curve (AUC) for all models.

Recovery analysis. Analysis was performed on all 1771 sweeping variants. We inferred a
selection coefficient separately for each sweeping variant under the simplistic assumption that

selection coefficients are constant over time, and using a maximum likelihood approach as follows.

p(t)

J— . _ t .
1-p(t) ¢ (1 —s)" (equation 1), where

The relative frequency of the variant over time equals

p(t) is the frequency of the sweeping variant at generation t, and s > 0 is the selection coefficient,

representing the fitness advantage of the baseline variant state compared to the swept state 8. The

data are a sequence of triplets D = (k;, n;,d;)_,, where N = 4 is the number of post-antibiotic
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370
371
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376
377
378

samples (sampled on canonical days 10, 18, 28, 77), k; is the number of reads supporting the

variant, n; is the number of reads supporting the variant position, and d; is the actual sampling day

c-(1-s)di™

Tre (@™ where m = 10 is the number of

of sample i. Based on equation 1, we define p; =

generations per day. We model the probability of the observed data at sample i using a binomial
function: P(X; = k;) = (Zi) p;Xi(1 — p))™ %, where X; is a random variable representing the
number of reads supporting the variant at sample i. The selection coefficient s and the initial ratio
¢ were selected to maximize the likelihood function L(s,c|D) = I, P(X; = k;), using the L-
BFGS-B method in the optim function in R, constraining —0.4 < s < 0.4 and 107° < ¢ < 10°,
and initializing s, = 0 and ¢, = 1. The optimization converged for 1470 variants (61 of which
were associated with gyr4). Given optimized s and ¢, we calculated the number of days until the
frequency reached 1% using equation 1 above. Note that the number of generations per day m

scales the selection coefficients but does not affect the number of days until recovery.

Supplementary Text

_p—ts
Supplementary Note 1. The number of resistant cells is estimated to equal u X N X (1(;—),

where u is the mutation error rate (mutations per bp per generation), N is the total number of cells
(i.e., population size), t is the number of generations since the last sweep or colonization event,
and s is the selection coefficient representing the fitness cost of the resistant allele while there is
no antibiotic exposure (see Eq. 3.9 in ref.?? that deals with the case in which t = oo and and Eq. 7
in ref.>%). We assume s < 0.01 (in line with results in this work), t = 70 (indicating at least one
week passed since the last selective sweep), and that there are 10'? cells in the intestine of a subject.
Requiring at least one resistant cell results in an upper bound on the population abundance

threshold that equals 0.0002% and 0.002%, for u = 107° and u = 10710 respectively.
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Supplementary Table Legends

Supp. Table S1. Genome table. Information on the 5665 genomes described in this study. Table

columns:

gid: genome identifier.

aid: subject identifier.

bin: internal genome identifier.

xcoverage: mean x-coverage of genome.

length: genome length (bp).

n_strains: number of strains.

complete: genome completeness.

contam: genome contamination.

is.detected: does genome have enough x-coverage to detect sweeps.

strain.class: strain classification.

K02469 83 value: baseline value at gyr4:83.

K02469 83 mut: substitution at gyr4:83.

vars: number of dynamic variants.

var.genes: number of unique genes associated with dynamic variants.

sweep.vars: number of sweeping dynamic variants.

sweep.genes: number of unique genes associated with sweeping dynamic variants.
phylum/class/order/family/genus/species: taxonomic identity.

Supp. Table S2. Dynamic variant table. Description of dynamic variants. For intra-genic

variants gene 1 is the containing gene. For inter-genic variants gene 1 and gene 2 are the two

adjacent genes. Table columns:

gid: genome identifier.
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403  xid: variant identifier.

404  aid: subject identifier.

405  contig/coord: variant position.

406  variant: variant description.

407  edge_size: size of associated linkage group.

408  response: is variant sweeping.

409  K02469 83: coordinate within gene of gyr4:83, if gene is gyrA4.
410  gene 1/2: gene identifier.

411  orient 1/2: orientation relative to gene.

412 uniref 1/2: Uniref100 identifier.

413 identity 1/2: Uniref100 sequence identity.

414  prot _desc 1/2: Uniref100 protein description.

415  start dist 1/2: distance of variant from gene transcription start site (TSS).
416  mut class_1/2: type of mutation.

417  mut_label 1/2: mutation label.

418 KEGG ko 1/2: gene KO.

419 PFAMs_1/2: gene PFAM.

420  Supp. Table S3. Genomes used to annotate gyr4 and parC. Table with 120 annotated
421  reference genes that were used to validate the annotation approach of gyr4 and parC. Table

422 columns:
423  Index: running index.

424  accession: NCBI accession identifier.
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425

426

427

428

429

430

431

432

433
434

435

436

437

438

439

440

441

442

443

desc: gene description.
taxa: taxonomic identity.

class: gene class, based on description and paper describing gene, if present.

Supp. Table S4. Table of KOs that showed evidence of convergent evolution. Table columns:
feature: KO identifier.

description: KO description.

pvalue: p-value of KO.

qvalue: g-value of KO computed using the Benjamini Hochberg correction.

enrichment: weight enrichment ratio of observed weight over an expected weight derived

through permutations.

weight: observed total weight.

variant.count: number of variants associated with KO.

ve.count: number of unique linkage groups associated with KO.
bin.count: number of unique genomes associated with KO.
assemblies.count: number of unique subjects associated with KO.
median.vc.size: median linkage group size of associated variants.
genic.fraction: fraction of genic variants associated with KO.
Ns/Nn/Ks/Kn: statistics used to compute dN/dS ratios.

dNDs: dN/dS ratio of KO.

16



