
METHODS 1 

 2 

Human subjects, sample collection, basic processing 3 

Sample collection and DNA sequencing. This study was approved by the Institutional Review 4 

Board of Stanford University (protocol #25268). All participants provided written informed 5 

consent before completing an enrollment questionnaire and providing biological samples. 60 6 

heathy adults living in the U.S. took ciprofloxacin for 5 days (500mg orally, twice daily). Each 7 

subject self-collected stool samples 9 weeks prior and for each of the 2 consecutive days 8 

immediately prior to the start of ciprofloxacin, daily during antibiotic exposure (Days 0-4) and for 9 

the following four days (Days 5-8), and then on Days 10, 18, 28, and 77, following the sampling 10 

scheme described in Supp. Figure S1. Subjects had not taken any antibiotics for at least 6 months 11 

prior to the start of sampling. Samples were kept temporarily at home at -20C, shipped to the 12 

laboratory on dry ice and stored at -80C until processed. DNA was extracted using the AllPrep 13 

DNA/RNA Mini Kit (Qiagen), sheared and size-selected (>300bp), and DNA libraries were 14 

sequenced (2x150nt) at the Chan Zuckerberg Biohub using the NovaSeq 6000 platform.  15 

Processing raw reads. Libraries were rarified to 50M read pairs if there were more than 50M read 16 

pairs, resulting in 1.9M to 50M read pairs per library (median: 17.46M). Adapter removal and 17 

quality filtering were performed using Trimmomatic67 (v0.38), with the parameters 18 

“ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:1:true LEADING:20 TRAILING:3 19 

MAXINFO:60:0.1 -phred33”. Duplicate read pairs (identical matches on both sides) were 20 

removed. Read pairs that mapped to the human genome were discarded using DeconSeq68 (v0.4.3, 21 

hg38 as reference). 22 

Metagenome co-assembly and read alignment. Reads were pooled per subject and co-assembled 23 

into subject-specific co-assemblies using MEGAHIT69 (v1.2.9)  with parameters “--min-contig-24 

len 200 --k-min 27 --k-max 77 --k-step 10 --merge-level 20,0.95”. Contigs shorter than 1kb were 25 

discarded. Read sides were mapped to their co-assembly using BWA-MEM70  (v0.7.17) resulting 26 

in SAM (Sequence Alignment Map format) files. Reads with low-quality alignments (>20 27 

mismatches, <50nt match length or mapping score <30) were removed.  28 
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MAGs and dynamic variants 30 

Approach overview. We developed PolyPanner, a program that leverages dense temporal 31 

sampling to improve assembly quality and identify high confidence polymorphic variants. 32 

PolyPanner receives as input a set of shotgun libraries that are aligned to their co-assembly in SAM 33 

format. It transforms the alignments to single-nucleotide coverage vectors that represent library-34 

specific read counts of perfect and mismatch alignments at each base pair in the co-assembly. 35 

Tasks performed by PolyPanner are (1) contig refinement; (2) genome trimming; (3) removal of 36 

sequencing errors; and (4) identification of dynamic variants. 37 

Read alignment representation. For each library, a library data structure was generated from the 38 

SAM files and the subject-specific co-assembly as follows. Reads clipped on both sides were 39 

discarded, based on having an ‘H’ or ‘S’ on start and end of the CIGAR string (Compact 40 

Idiosyncratic Gapped Alignment Report). To ensure a margin of safety at the start and end of reads, 41 

each read was trimmed by at least 20nt on both sides and trimmed further to avoid a possible 42 

overlap between paired reads. Clipped reads were piled-up to generate single-nucleotide coverage 43 

vectors that allowed a query as to how many reads covered a query position or a query genomic 44 

interval. CIGAR strings were parsed to identify 4 types of variants: (1) a substitution was defined 45 

by a source nucleotide (in the contig) and target nucleotide (in the read), as specified by the MD 46 

field in the SAM file; (2) a deletion was defined by the number of deleted nucleotides; (3) an 47 

insertion was defined by the sequence added between two adjacent positions; and (4) a 48 

rearrangement was assigned to the left or right of the position at which the alignment of a clipped 49 

read terminated, and was defined by the identity of the contig to which the paired read mapped, if 50 

present. Variants were recorded within each library according to their complete identity (position 51 

and associated fields). For example, 2 variants representing the insertion of AA and AAA at the 52 

same position were counted separately. 53 

Removing sequencing errors. Sequencing errors were removed following the rigorous approach 54 

taken by Quince et al.47 We extended their test, which identifies bi-allelic positions that segregate 55 

through substitutions, to identify multi-allelic positions that segregate through all types of variants. 56 

We inferred 4 global error coefficients 𝜖!"# , 𝜖$%&'( , 𝜖)'*))*%+' , 𝜖%,%' that represent single 57 

nucleotide substitution errors, insertion/deletion errors, rearrangement errors, and no sequencing 58 

errors respectively. All libraries of a subject were merged into a single library for this work. Error 59 
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coefficients (except 𝜖%,%') were seeded at 0.01 and summed to 1. The algorithm repeated the 60 

following two steps until convergence: (1) inferring true variants while keeping error coefficients 61 

constant, and (2) inferring error coefficients while keeping true variants constant. True variants at 62 

a specific position were identified as follows. Let 𝑣-, 𝑣.… , 𝑣%/. denote the variants at the position 63 

and their respective read support coverage 𝑡-, 𝑡.… , 𝑡%/., with read supports sorted high to low. 64 

Hypothesis ℋ$ is that variants 𝑣-, … , 𝑣$ are true and the remaining variants are a result of 65 

sequencing errors. The likelihood of the hypothesis is the multinomial ℋ$(𝑡-, 𝑡.… , 𝑡%/.|𝜖) =66 
0!

∏ 3!!!
∏ ,∑ 𝑤4 × 𝜖4,647-,…,$ 03!6 , where 𝑇 = ∑ 𝑡66 , 𝑤4 is an approximation of the true frequency of 67 

variant 𝑣4 that equals 1 if 𝑖 = 0, 𝑘 = 0 and equals 3"
0

 otherwise, and 𝜖4,6 is the error coefficient that 68 

represents a transition from variant 𝑣4 to 𝑣6. Coefficient 𝜖4,6 was determined based on the first 69 

condition met: (1) 𝜖4,6 = 𝜖%,%' if the variants were identical, (2) 𝜖4,6 = 𝜖)'*))*%+' if either variant 70 

was a rearrangement, (3) 𝜖4,6 = 𝜖$%&'( if either variant was an insertion or deletion, and (4) 71 

otherwise 𝜖4,6 = 𝜖!"#. For each variant 𝑣$ (𝑖 > 0, 𝑡$ > 2) we applied the likelihood ratio test 72 

−2𝑙𝑜𝑔ℋ#$%
ℋ#

, which is approximately distributed as a chi-square distribution, and used the test to 73 

assess p-values for the hypothesis that a variant is present at a specific position47. A Benjamini-74 

Hochberg correction was applied with a false discovery rate (FDR) of 0.001 to account for multiple 75 

testing, resulting in a list of true variants. In the second step, error coefficients were inferred while 76 

keeping true variants fixed and enforcing a minimal error rate of 0.001% and a maximal error rate 77 

of 5%. Each error coefficient was approximated by the average error rate for all positions that do 78 

not contain a true variant. The two steps were repeated with variants reclassified and coefficients 79 

re-estimated until the set of true variants converged. 80 

Linkage test. We denote by 𝑟$(𝑥) the number of reads that cover position 𝑥 in library 𝑖 (also called 81 

the x-coverage of the position). We denote by 𝑟(𝑥) the position coverage vector across libraries 82 

𝑟(𝑥) = (𝑟.(𝑥), … , 𝑟:(𝑥)) , where 𝑚 is the number of libraries. We denote by 𝑟$(𝑥, 𝑦) the number 83 

of reads fully contained in a sequence interval [𝑥, 𝑦] in library 𝑖, and by 𝑟(𝑥, 𝑦) the interval 84 

coverage vector 𝑟(𝑥, 𝑦) = (𝑟.(𝑥, 𝑦), … , 𝑟:(𝑥, 𝑦)). We handle variants at a position in a similar 85 

fashion, with 𝑟$(𝑣) denoting the number of reads supporting the variant in library 𝑖, and with 𝑟(𝑣) 86 

denoting the variant coverage vector. A pair of sequences (either two positions, two intervals, or 87 

two variants) are called separated (or non-linked) if their associated coverage vectors are 88 
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independent, based on a Pearson's chi-squared test of independence (applied with a pseudo-count 89 

of 0.1 and requiring 𝑃 < 0.01). Note that two sequences for which the associated coverage vectors 90 

were not significantly independent are either perfectly linked (i.e., co-occurring in all genomes), 91 

or the coverage depth is not high enough to detect separation. 92 

Co-assembly refinement. Given a genomic position 𝑝, we define the left and right intervals 𝐿; =93 

[𝑝 − 𝐷, 𝑝 − 𝑑] and 𝐿; = [𝑝 + 𝑑, 𝑝 + 𝐷], where 𝑑 = 10 and initially 𝐷 = 200. The interval [𝑝 −94 

𝐷, 𝑝 + 𝐷] is called the spanning interval of position 𝑝. The position is called a separating position 95 

if the left and right intervals are separated as defined above. Each co-assembly contig was refined 96 

as follows. We tested for separation all positions in the contig associated with a rearrangement 97 

variant, and positions distributed across the contig (50bp apart). Separating positions (P<0.01) with 98 

a spanning interval entirely contained in the contig were considered candidate breakpoints. The 99 

contig was then processed recursively by selecting a single candidate breakpoint at each step. The 100 

selected breakpoint was either the candidate breakpoint associated with a rearrangement variant 101 

that was supported by the highest number of reads (if such a breakpoint existed), or the candidate 102 

breakpoint with the highest chi-square statistic (if no candidate rearrangement breakpoint were 103 

found). Only breakpoints with a spanning interval that did not contain any previously selected 104 

breakpoints were considered. The contig was split into two segments at the selected candidate 105 

breakpoint and the process continued recursively on both segments until no candidate breakpoints 106 

were found. After the recursion ended, the induced segments were further refined using the same 107 

procedure but with 𝐷 = 400. Finally, a Benjamini-Hochberg correction was applied (FDR of 0.25) 108 

to the p-values of the breakpoints used to separate the contig into segments, rejecting breaks above 109 

that threshold. The result was a final list of breakpoints and the corresponding induced segments. 110 

Genome binning and trimming. For each co-assembly, genomic segments were clustered based 111 

on segment coverage vectors (mean and variance) using MetaBAT271 (version 2:v2.16-4-112 

g40efa2d) with parameters “-s 1500 -m 1500 --maxP 95 --minS 60 --maxEdges 200 --seed 1 -l –113 

saveCls”. The output was treated as initial genomic bins and trimmed as follows: Coverage vectors 114 

were computed separately for the two sides of each segment, over the interval starting 10bp away 115 

from segment border and up to 2000bp into the segment (or less for segments shorter than 2000bp); 116 

segment sides associated with a genomic bin were organized in a graph, where two sides were 117 

connected by an edge if they were associated with the same segment or if a comparison of their 118 
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coverage vectors failed to separate them; and each connected component in the graph was then 119 

converted to a metagenome-assembled genome (MAG). In this manner some initial bins were split 120 

into several final MAGs. Each genome was associated with a unique population of a species in a 121 

specific subject. 122 

Dynamic variant classification. The following procedure was applied to all true variants that 123 

were at least 200bp away from any segment boundary. To test if a variant 𝑣 is dynamic we 124 

compared 4 coverage vectors. We used the variant coverage vector 𝑟<*) = 𝑟(𝑣), the local coverage 125 

vector 𝑟(,=*( = 𝑟(𝑝), and the complement vector 𝑟=,:; = 𝑟(,=*( − 𝑟<*). Additionally, we defined 126 

the regional coverage vector 𝑟)'+$,% = 𝑟(𝑝 − 𝐶, 𝑝 + 𝐶), where 𝐶 equaled 1000bp or less if near 127 

an edge of the containing contig. If 𝑟)'+$,% and 𝑟(,=*( were separated (P<0.01) we rejected the 128 

variant, since we require the regional and local coverage to be linked. We verified that 𝑟<*) and 129 

𝑟(,=*( were separated (P<0.01); otherwise, we rejected the variant as non-dynamic, since it is either 130 

a result of paralogs within a genome or a polymorphic variant with a negligible contribution to 131 

fitness. We verified that 𝑟)'+$,% and 𝑟=,:; were separated (P<0.01); otherwise, we rejected the 132 

variant as a possible result of ortholog sequences (sometimes referred to in the literature as 133 

recruited reads). Variants that passed all three tests were classified as dynamic variants. A variant 134 

was associated with a MAG if it was contained in one of the segments of the MAG. 135 

 136 

Benchmarking the approach 137 

Simulated communities. We generated 100 random communities as follows. Let a genome be 138 

one or more sequences of nucleotides. Let 𝐺 be a set of genomes representing a community and 139 

let 𝑛:"3 be the number of designated mutations. To generate a random community, each genome 140 

𝑔 ∈ 𝐺 was associated with a population composed of two strains, where one strain 𝑠+,. was 𝑔 141 

(called the baseline strain) and the second strain 𝑠+,> (called the mutated strain) was constructed 142 

by introducing 𝑛:"3	mutations to 𝑔 as follows. At each step, a random mutation was selected with 143 

a probability of 0.8 to be one of the 3 local mutations (substitution, insertion, or deletion) or 144 

otherwise to be one of the 3 global mutations (inversion, large insertion, or large deletion). A 145 

substitution was defined by a random position and a substituting nucleotide. A local insertion was 146 

defined by a random position in which a random nucleotide sequence (1-12nt long) was inserted. 147 
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A local deletion was defined by a random position at which 1-12nt were deleted. An inversion was 148 

defined by two positions that were fixed to be 1000bp apart and involved reversing the orientation 149 

of the sequence between the positions (i.e., transforming through a reverse-complement function). 150 

A large deletion was defined by a random 1000bp interval that was deleted. A large insertion 151 

involved the insertion of a mobile element randomly selected out of a pool of 4 randomly generated 152 

1000bp mobile elements (same pool was used by entire community). To keep track of ground-153 

truth through this process every mutation was logged alongside the 24bp identifier sequence that 154 

was upstream of the mutation (keeping a gap of 4bp), and the spanning interval of the mutation 155 

and the identifier were marked in a bitmask. When selecting a random position for a new mutation 156 

the bitmask representing previous mutations was used to make sure the new mutation that does not 157 

alter previous mutations or their identifiers. To model sequence-specific sequencing biases, non-158 

overlapping genomic windows of 100bp were assigned random skew factors uniformly distributed 159 

between 1 and 2. The skew factor 𝑓!'?(𝑔, 𝑝) at position 𝑝 was determined through interpolation in 160 

the baseline genome. Factors were propagated in the mutated strain during the mutation process 161 

such that the baseline and mutated strains had matching factor profiles in syntenic regions. Strain 162 

genomes were then circularized, resulting in one circular chromosome per strain.  163 

Community datasets. We generated 40 complex communities, each sampled with 30 genomes 164 

that were randomly selected from the set of Bacteroides and Firmicutes genomes in 165 

proGenomes272. To these communities we applied one of 4 different mutation rates, 𝑛:"3 =166 

1, 10, 100, 1000 (10 communities per mutation rate, 40 communities in total). We also generated 167 

60 communities to examine the effect of genome relatedness by including in each community 168 

genomes from either a broad or a narrow taxonomic rank. We did so for 3 different cases: 169 

Bacteroidetes vs. the Bacteroides genus, Firmicutes vs. the Clostridium genus, and Proteobacteria 170 

vs. the Enterobacteriaceae family. For all cases, we generated 10 communities where 30 genomes 171 

were randomly selected from the broad rank and 10 communities in which genomes were limited 172 

to the narrow rank, while keeping the mutation rate fixed at 100 per genome (20 communities per 173 

case, 60 communities in total). 174 

Simulated abundance trajectories and sequencing factors. Sixteen longitudinal samples were 175 

simulated for each community. For a community composed of genomes 𝐺, each genome 𝑔 ∈ 𝐺 176 

was assigned an abundance weight 𝜇+, such that log.-	(𝜇+) was uniformly distributed between 0 177 
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and 3. Sample-specific abundance weights 𝜇+,$ for 𝑖 = 1,… ,16 were normally distributed 178 

𝜇+,$~𝒩(𝜇+, 𝜇+) and restricted to the interval [1,1000]. The abundance 𝐴+,$ of genome 𝑔 in library 179 

𝑖 was set to 𝐴+,$ = 𝑤+,$/∑ 𝑤@,$@ . The abundance 𝐴+,$,. of the baseline strain 𝑠+,. in sample 𝑖 was 180 

set to 𝐴+,$ for 1 ≤ 𝑖 ≤ 8 and otherwise set to 0.2 ∙ 𝐴+,$. Similarly, the abundance 𝐴+,$,> of the 181 

mutated strain 𝑠+,> in sample 𝑖 was set to 0 for 1 ≤ 𝑖 ≤ 8 and otherwise set to 0.8 × 𝐴+,$.  182 

Sequencing bias. Each strain 𝑠 was assigned a replication ratio 𝑢! that was uniformly distributed 183 

between 1 and 1.2, and the factor of library 𝑖 was normally distributed 𝑢!,$~𝒩(𝑢!, 0.33). Each 184 

position 𝑝 was assigned a replication bias factor 𝑓)';(𝑠, 𝑝) based on a sinusoid that had a peak-to-185 

trough ratio of 𝑢!,$. Each position 𝑝 was assigned a final bias factor equal to 𝑓(𝑠, 𝑝) =186 

𝑓!'?(𝑠, 𝑝) × 𝑓)';(𝑠, 𝑝). Read probability at position 𝑝 was set to 𝑃(𝑠, 𝑝) = 𝑓(𝑠, 𝑝)/∑ 𝑓(𝑠, 𝑞)? . 187 

Simulated shotgun libraries. Random paired reads (2x150nt) were generated for a community as 188 

follows. The total number of reads 𝑅$ for the library of sample 𝑖 was set such that mean x-coverage 189 

across all genomes was 10x, taking into account differences in genome length. Each strain 𝑠+,6 was 190 

assigned 𝐴+,$,6 × 𝑅$ reads in library 𝑖. Each read was assigned a position 𝑓(𝑠, 𝑝) by selecting a 191 

random position with probability 𝑃(𝑠, 𝑝). Sequenced molecule lengths were normally distributed 192 

𝒩(400,10), enforcing a minimal length of 200. Strand was assigned randomly, and read pairs 193 

were generated from the strain genomes.  194 

Running simulated data. The shotgun data of each simulated community were processed as 195 

described above for the real data, while skipping over the steps described in the processing raw 196 

reads section (adapter trimming, read quality filtering, removal of human reads). Briefly, reads 197 

were pooled to construct a community co-assembly, mapped back to the co-assembly, PolyPanner 198 

was applied, and the output was a set of MAGs and associated dynamic sites. For clarity, we 199 

distinguish between strain genomes (which were simulated) and MAGs (which are the output of 200 

PolyPanner). For each strain genome in the community, overlapping sequence intervals that were 201 

100bp long (sliding windows with 10bp steps) were mapped to the co-assembly using BWA-202 

MEM. Low quality alignments (edit distance >20, score >30, or alignment length >50) were 203 

discarded. Alignments were traversed to generate a 1bp mapping from co-assembly contig 204 

coordinates to zero or more genome coordinates. The entire co-assembly was divided into maximal 205 

alignment intervals by consolidating adjacent coordinates that are compatible, where each 206 
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alignment interval 𝑠 perfectly aligns to zero or more strain genomes 𝐺(𝑠). For example, an interval 207 

𝑠 that is a result of the assembly of two syntenic regions in strains 𝑠+,., 𝑠+,> is expected to align to 208 

both of them, or formally: 𝐺(𝑠) = {𝑠+,., 𝑠+,>}. We define the alignment of a set of intervals 𝑆 to a 209 

set of genomes 𝐺 to be 𝐼(𝑆, 𝐺) = {𝑠 ∈ 𝑆: 𝐺(𝑠) = 𝐺}, or in other words, 𝐼(𝑆, 𝐺) ⊆ 𝑆 is the subset 210 

of 𝑆 that perfectly aligns to all the genomes in 𝐺. 211 

Detection of assembly breakpoint. Alignment intervals longer than 100bp were traversed in order 212 

along contigs, and pairs of intervals that aligned to a different set of genomes were marked as true 213 

assembly breakpoints. A reported assembly breakpoint was classified as true if the coordinate at 214 

which the breakpoint was identified was marked as a true breakpoint. 215 

Genome completeness and contamination. Each MAG 𝑏, composed of alignment intervals 𝑆#, 216 

was associated with a set of strain genomes 𝐺# = 𝑎𝑟𝑔𝑚𝑎𝑥A|𝐼(𝑆# , 𝐺)|, or in other words, 𝐺# is the 217 

set of strain genomes that have the longest alignment to 𝑏. Completeness 𝐶(𝑏) was defined as 218 
|C(E&,A&)|
|A&|

, where |𝐺#| is the average length of the genomes in |𝐺#|. In other words, 𝐶(𝑏) is the 219 

fraction of the genomes in 𝐺# which aligned to the MAG 𝑏. Contamination 𝑋(𝑏) was defined as 220 
|G(E&)|
|E&|

, where 𝑋(𝑆#) ⊆ 𝑆# is the set of intervals in 𝑆 that align to genomes outside the set 𝐺#. 221 

Variant detection. Each source genome and associated MAG were processed as follows. Let 𝑀 222 

be the set of introduced mutations, defined by their type and sequence identifier. Let 𝑂 be the set 223 

of observed variants for this MAG (referred to as ‘true variants’ above) and let 𝑂&H% ⊆ 𝑂 denote 224 

the set of dynamic variants reported by the algorithm. For each mutation, we searched for the 225 

mutation identifier in the contigs of the MAG, and when there was a unique exact match, the 226 

mutation was associated with an expected variant that was generated based on the identity of the 227 

mutation, and in the precise location based on the position and orientation of the identifier in the 228 

co-assembly. This process resulted in a set of expected variants 𝐸. An observed and an expected 229 

variant were matched if they were identical (e.g., both involved a substitution of A for G) and the 230 

distance between their coordinates was zero for substitutions, up to 2 for indels and up to 4 for 231 

rearrangements. Genuine variants 𝑂+'%"$%' ⊆ 𝑂 were defined as observed variants that had a 232 

matching expected variant. Spurious variants 𝑂!;")$,"! ⊆ 𝑂 were defined as observed variants that 233 

lacked a matching expected variant and were also at least 200bp away from any segment edge. 234 

False variants 𝑂I*(!' ⊆ 𝑂&H% were dynamic variants that lacked a matching expected variant. 235 
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Detected mutations 𝑀&'3'=3'& ⊆ 𝑀 were mutations that had an associated expected variant that 236 

matched a dynamic variant. The density of spurious variants was defined as n𝑂!;")$,"!n/𝐿, where 237 

𝐿 is the total length of the contigs in the MAG. The percent of false detections was defined as 238 

n𝑂I*(!'n |𝑂|⁄ , or in other words this was the percent of variants that were reported as dynamic 239 

without a matching mutation. The percent of correctly reported variants (our measure of 240 

sensitivity) was defined as |𝑀&'3'=3'&| |𝑀|⁄ , and was similarly defined separately for each 241 

mutation type. 242 

 243 

Genome and variant annotation 244 

Metagenome-assembled genomes and their annotation. All MAGs that were >500kb were 245 

assessed using CheckM73 (v1.2.2, reference generated on 16/1/2015), which was run with the 246 

lineage_wf workflow using default parameters. The selected list of 5665 MAGs examined in this 247 

study were MAGs that were >50% complete and <10% contaminated. MAGs were taxonomically 248 

annotated using GTDB-Tk74 (v2.2.6, reference database version R207_v2), using the classify_wf 249 

workflow with default parameters. 73 MAGs (1.28%) were resolved by GTDB-Tk down to the 250 

genus level (without reaching a species-level resolution) and were assigned a species by adding an 251 

“sp.” suffix to the genus, e.g., “Collinsella sp.”. 30 MAGs (0.52%) for which GTDB-Tk did reach 252 

a genus-level resolution were left without a species.  253 

Inference of strains. To infer strains, Strain Finder48 was applied to all MAGs that had between 254 

1 and 1000 dynamic variants. Since the input of Strain Finder is solely nucleotides and we have 255 

additional types of variants (such as indels and rearrangements) we applied an encoding-decoding 256 

scheme, where for each polymorphic site the 2-4 variants at the site were encoded using arbitrary 257 

nucleotides (>99% sites were bi-allelic, no site had over 4 alleles), and site-specific conversion 258 

tables were used to decode nucleotides back to variants after Strain Finder terminated. Strain 259 

Finder (v1.0) was run with parameters “-e 1e-4 --n_keep 3 --max_reps 10 --dtol 1 --ntol 3 –260 

converge”, separately testing 2-8 strains, and the number of strains was selected using the Akaike 261 

information criterion (AIC). Each output strain was defined by a single variant per polymorphic 262 

site and a temporal frequency trajectory, with the frequencies of all strains of a MAG summing to 263 

1 at each time point. 264 
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Strain phylogeny tree and linkage groups. For each MAG, strains were placed on a maximum 265 

parsimony tree using the function pratchet in the phangorn R package75 (v2.11.1). The length of 266 

each tree branch was set to the number of sites that were inferred to change their state along the 267 

branch. Each variant 𝑣 was associated with a single branch 𝑏(𝑣) on which 𝑣 changed states. In 268 

case there were multiple branches on which 𝑣 changed states, a single branch with the minimum 269 

branch length was chosen. The set of variants associated with a branch is called the linkage group 270 

(LG) of the branch 𝑉(𝑏). 271 

Genome abundance trajectories. The abundance of genome 𝑔 in library 𝑖 was defined to be 272 

𝐴$(𝑔) = 𝑟$(𝑔) ∑ 𝑟$(𝑔)+∈A⁄ , where 𝑟$(𝑔) is the total number of reads covering genome 𝑔, and 𝐺 is 273 

the set of all genomes. The abundance trajectory of 𝑔 was 𝐴(𝑔) = (𝑟.(𝑔), … , 𝑟:(𝑔)), and the 274 

normalized abundance trajectory was 𝑁(𝑔) = 𝐴(𝑔) 𝑇(𝑔)⁄ , where 𝑇(𝑔) = ∑ 𝐴$(𝑔)$7.,…,: . To 275 

generate Fig. 1A, normalized abundance trajectories were clustered using k-means (k=100) and 276 

sorted along the y-axis based on hierarchical clustering.  277 

Genes. For each subject, genes were predicted with Prodigal76 (v2.6.3), using the parameters  278 

“-p meta -g 11”. Genes were blasted against the Uniref100 database (downloaded July 2020) with 279 

DIAMOND77 (v2.0.15.153), using the ‘blastp’ command, assigning genes to top hits. Genes across 280 

all subjects, alongside Escherichia coli genes (K-12 MG1655, assembly ASM584v2), were 281 

clustered with MMseqs278 (version bdd169b3e285299cab792e62d60eb1f4e4e434d2), using 282 

parameters “--min-seq-id 0.5 -c 0.8 --cov-mode 0 --cluster-mode 0”. Genes representative of 283 

clusters were annotated using the eggNOG-mapper79 (emapper-2.1.7-bfd73c0, reference database 284 

5.0.2), using parameters “--itype proteins”. We focused on the KEGG Orthology (KO) of genes, 285 

as reported by eggNOG. Note that some genes were annotated by eggNOG with multiple KOs. 286 

There were 936 gene clusters (representing 21544 genes) initially annotated as K02469 (gyrA) 287 

and/or K02621 (parC). These genes were reclassified as K02469 if their eggNOG name was 288 

‘gyrA’, the remaining genes were reclassified as K02621 if they matched the PFAM entry 289 

‘DNA_topoisoIV’; genes meeting neither criterion were dropped from downstream analysis. After 290 

the reclassification, there were 11777 genes annotated as gyrA with K02469 and 9727 annotated 291 

as parC with K02621. A gene was associated with a MAG if it was completely contained in one 292 

of the segments of the MAG. Genes not associated with any of the 5665 MAGs were dropped from 293 

downstream analysis. Variants were classified as intra-genic if contained within a gene and 294 



 
 

 
 

11 

otherwise classified as inter-genic, and each was associated with the genes that were upstream and 295 

downstream of the variant, if present.  296 

Sweeping variants. The average frequency of variant 𝑣 at position 𝑝 over samples 𝐼 was defined 297 

to be ∑ 𝑟$(𝑣)$∈C ∑ 𝑟$(𝑝)$∈C⁄ , where 𝑟$(𝑣) is the number of reads supporting the variant in sample 𝑖 298 

and 𝑟$(𝑝) is the number of reads supporting position 𝑝 (i.e., all variants) in sample 𝑖.  Variants that 299 

had a frequency above 50% in the baseline samples (days -2 to 0) were reversed (e.g., “A to T" 300 

was transformed to “T to A”). A variant was classified as sweeping if it had an average frequency 301 

<20% in the baseline samples and an average frequency >80% in the post-antibiotic samples (days 302 

10-28). To determine if a genome had sufficient coverage to detect sweeps, an artificial variant 303 

trajectory that sweeps from a frequency of 0% to 100% as of day 10 and with a total x-coverage 304 

based on the genome x-coverage trajectory was tested using the same statistical tests that were 305 

applied to all variants (namely the ortholog and paralog tests, defined above). All downstream 306 

analysis was limited to sweeping variants that were part of small LGs (up to 100 variants/LG). 307 

 308 

Analysis of evolutionary dynamics 309 

Parallel evolution analysis. We assigned every LG a weight of 1 and equally distributed the 310 

weight between all genes associated with one or more variants in the linkage group. Gene weights 311 

were distributed between all gene KOs (weight dropped if no KO was associated). KO total 312 

weights were computed by summing over the LGs. A background weight distribution was 313 

generated by creating 106 random sets of variants, by replacing the genes of an LG 𝑉 with a random 314 

set of |𝑉| genes uniformly selected from the genes of the MAG associated with 𝑉. The p-value of 315 

each KO was empirically calculated by embedding the observed weight in the distribution of 316 

random weights. KO enrichment ratios were computed by dividing the observed weight and the 317 

mean expected weight. We considered only KOs that had a p-value below 0.05, an enrichment 318 

ratio of at least 2-fold, and for which the associated supporting variants were found in at least 3 319 

different subjects. False discovery rates (q-values) were added using the Benjamini-Hochberg 320 

approach.  321 

GyrA analysis. Genes annotated as gyrA (K02469), including the E. coli reference gene, were 322 

aligned with Clustal Omega80 (v1.2.4), using default parameters. For each variant, the E. coli 323 

coordinate was set to the closest E. coli coordinate according to the global alignment of all genes. 324 
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There were 4987 MAGs that had a gyrA gene. The amino acid at position gyrA:83 (as shown in 325 

Fig. 3C) is shown for 698 MAGs that (1) had a single gyrA that aligned to the E. coli gyrA at 326 

position #83, and (2) had sufficient coverage to detect sweeps, if present (defined in section 327 

‘Sweeping variants’ above). There were 56 MAGs in which gyrA:83 changed identity due to a 328 

sweeping substitution variant. Species-specific resistance alleles at position gyrA:83 were defined 329 

based on the substituting amino acids of the 56 substitutions at gyrA:83. 330 

Evolvability analysis. For this analysis we focused on 410 populations that had serine at gyrA:83 331 

and had sufficient coverage for detection of sweeps, if present (defined in section ‘Sweeping 332 

variants’ above). We trained models to predict two response variables: gyrA evolvability, defined 333 

as the probability of the population to undergo one or more sweeps involving gyrA, and non-gyrA 334 

evolvability, defined as the probability of the population to undergo one or more sweeps involving 335 

any gene except gyrA. As predictor variables we used the baseline abundance (‘Base’, days -2 to 336 

0), the abundance during antibiotics (‘Treated’, days 1-5), the abundance post-antibiotics (‘Post’, 337 

days 10-28), and the abundance at last sample (‘Late’, day 77). All abundance values were log-338 

transformed after adding 0.001%. Additional variables were also considered: the fold-decrease in 339 

abundance during antibiotics (‘Decline’, equal to log10(Base/Treatment)) and 2 phylum variables. 340 

Separately for the two response variables, we trained 9 logistic regression models (Base, Treated, 341 

Post, Late, Decline, Base+Decline, Base+Phylum, Decline+Phylum, Base+Decline+Phylum), 342 

with k-fold validation using the caret package in R, with the ‘repeatedcv’ method (k=10 and 10 343 

repeats). We rejected models if one of the coefficients was not significant (using a threshold p-344 

value of 0.05). Models were ranked based on their Akaike information criterion (AIC). The pROC 345 

package in R was used to plot ROC curves (receiver operating characteristic curves) and compute 346 

the area under the curve (AUC) for all models.  347 

Recovery analysis. Analysis was performed on all 1771 sweeping variants. We inferred a 348 

selection coefficient separately for each sweeping variant under the simplistic assumption that 349 

selection coefficients are constant over time, and using a maximum likelihood approach as follows. 350 

The relative frequency of the variant over time equals ;(3)
./;(3)

= 𝑐 ∙ (1 − 𝑠)3 (equation 1), where 351 

𝑝(𝑡) is the frequency of the sweeping variant at generation 𝑡, and 𝑠 > 0 is the selection coefficient, 352 

representing the fitness advantage of the baseline variant state compared to the swept state 81. The 353 

data are a sequence of triplets 𝐷 = (𝑘$ , 𝑛$ , 𝑑$)$7.K , where 𝑁 = 4 is the number of post-antibiotic 354 
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samples (sampled on canonical days 10, 18, 28, 77), 𝑘$ is the number of reads supporting the 355 

variant, 𝑛$ is the number of reads supporting the variant position, and 𝑑$ is the actual sampling day 356 

of sample 𝑖. Based on equation 1, we define 𝑝$ =
=∙(./!)'#∙)

.M=∙(./!)'#∙)
, where 𝑚 = 10 is the number of 357 

generations per day. We model the probability of the observed data at sample 𝑖 using a binomial 358 

function: 𝑃(𝑋$ = 𝑘$) = s%#4#t 𝑝$
4#(1 − 𝑝$)%#/4#, where 𝑋$ is a random variable representing the 359 

number of reads supporting the variant at sample 𝑖. The selection coefficient 𝑠 and the initial ratio 360 

𝑐 were selected to maximize the likelihood function 𝐿(𝑠, 𝑐|𝐷) = ∏ 𝑃(𝑋$ = 𝑘$)K
$7. , using the L-361 

BFGS-B method in the optim function in R, constraining −0.4 < 𝑠 < 0.4 and 10/N < 𝑐 < 10N, 362 

and initializing 𝑠- = 0 and 𝑐- = 1. The optimization converged for 1470 variants (61 of which 363 

were associated with gyrA). Given optimized 𝑠 and 𝑐, we calculated the number of days until the 364 

frequency reached 1% using equation 1 above. Note that the number of generations per day 𝑚 365 

scales the selection coefficients but does not affect the number of days until recovery. 366 

 367 

Supplementary Text 368 

Supplementary Note 1. The number of resistant cells is estimated to equal 𝜇 × 𝑁 × (./'$*+)
!

, 369 

where 𝜇 is the mutation error rate (mutations per bp per generation), 𝑁 is the total number of cells 370 

(i.e., population size), 𝑡 is the number of generations since the last sweep or colonization event, 371 

and 𝑠 is the selection coefficient representing the fitness cost of the resistant allele while there is 372 

no antibiotic exposure (see Eq. 3.9 in ref.82 that deals with the case in which 𝑡 = ∞ and and Eq. 7 373 

in ref.50). We assume 𝑠 ≤ 0.01 (in line with results in this work), 𝑡 ≥ 70 (indicating at least one 374 

week passed since the last selective sweep), and that there are 1013 cells in the intestine of a subject. 375 

Requiring at least one resistant cell results in an upper bound on the population abundance 376 

threshold that equals 0.0002% and 0.002%, for 𝜇 = 10/O and 𝜇 = 10/.- respectively. 377 

 378 
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Supplementary Table Legends 379 

Supp. Table S1. Genome table. Information on the 5665 genomes described in this study. Table 380 

columns: 381 

gid: genome identifier. 382 

aid: subject identifier. 383 

bin: internal genome identifier. 384 

xcoverage: mean x-coverage of genome. 385 

length: genome length (bp). 386 

n_strains: number of strains. 387 

complete: genome completeness. 388 

contam: genome contamination. 389 

is.detected: does genome have enough x-coverage to detect sweeps. 390 

strain.class: strain classification. 391 

K02469_83_value: baseline value at gyrA:83. 392 

K02469_83_mut: substitution at gyrA:83. 393 

vars: number of dynamic variants. 394 

var.genes: number of unique genes associated with dynamic variants. 395 

sweep.vars: number of sweeping dynamic variants. 396 

sweep.genes: number of unique genes associated with sweeping dynamic variants. 397 

phylum/class/order/family/genus/species: taxonomic identity. 398 

Supp. Table S2. Dynamic variant table. Description of dynamic variants. For intra-genic 399 

variants gene_1 is the containing gene. For inter-genic variants gene_1 and gene_2 are the two 400 

adjacent genes. Table columns: 401 

gid: genome identifier. 402 
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xid: variant identifier. 403 

aid: subject identifier. 404 

contig/coord: variant position. 405 

variant: variant description. 406 

edge_size: size of associated linkage group. 407 

response: is variant sweeping. 408 

K02469_83: coordinate within gene of gyrA:83, if gene is gyrA. 409 

gene_1/2: gene identifier. 410 

orient_1/2: orientation relative to gene. 411 

uniref_1/2: Uniref100 identifier. 412 

identity_1/2: Uniref100 sequence identity. 413 

prot_desc_1/2: Uniref100 protein description. 414 

start_dist_1/2: distance of variant from gene transcription start site (TSS). 415 

mut_class_1/2: type of mutation. 416 

mut_label_1/2: mutation label. 417 

KEGG_ko_1/2: gene KO. 418 

PFAMs_1/2: gene PFAM. 419 

Supp. Table S3. Genomes used to annotate gyrA and parC. Table with 120 annotated 420 

reference genes that were used to validate the annotation approach of gyrA and parC. Table 421 

columns: 422 

Index: running index. 423 

accession: NCBI accession identifier. 424 
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desc: gene description. 425 

taxa: taxonomic identity. 426 

class: gene class, based on description and paper describing gene, if present. 427 

Supp. Table S4. Table of KOs that showed evidence of convergent evolution. Table columns: 428 

feature: KO identifier.  429 

description: KO description. 430 

pvalue: p-value of KO. 431 

qvalue: q-value of KO computed using the Benjamini Hochberg correction. 432 

enrichment: weight enrichment ratio of observed weight over an expected weight derived 433 

through permutations. 434 

weight: observed total weight. 435 

variant.count: number of variants associated with KO. 436 

vc.count: number of unique linkage groups associated with KO. 437 

bin.count: number of unique genomes associated with KO. 438 

assemblies.count: number of unique subjects associated with KO. 439 

median.vc.size: median linkage group size of associated variants. 440 

genic.fraction: fraction of genic variants associated with KO. 441 

Ns/Nn/Ks/Kn: statistics used to compute dN/dS ratios. 442 

dNDs: dN/dS ratio of KO. 443 


