SparrKULee: A Speech-evoked Auditory Response Repository of the KU Leuven, containing EEG of 85 participants

Lies Bollens
lies.bollens@kuleuven.be

KU Leuven
Bernd Accou
KU Leuven
Marlies Gillis
KU Leuven
Wendy Verheijen
KU Leuven
Hugo Van hamme
KU Leuven
Tom Francart
KU Leuven

Research Article

Keywords: Auditory EEG, Dataset, Speech

Posted Date: October 11th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3397581/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: No competing interests reported.
SparrKULee: A Speech-evoked Auditory Response Repository of the KU Leuven, containing EEG of 85 participants

Bernd Accou+,1,2,\ast, Lies Bollens+,1,2,\ast, Marlies Gillis1, Wendy Verheijen1, Hugo Van hamme2, Tom Francart1,\ast

1ExpORL, Dept. Neurosciences KU Leuven, Leuven, Belgium.
2PSI, Dept. of Electrical engineering (ESAT) KU Leuven, Leuven, Belgium.

\ast{corresponding author(s): bernd.accou@kuleuven.be, lies.bollens@kuleuven.be, tom.francart@kuleuven.be.}

+{These authors contributed equally to this work.}

Abstract

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features.

Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial amount of data. We present SparrKULee: A Speech-evoked Auditory Repository of EEG, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90-150 minutes of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the amount of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.
Keywords: Auditory EEG, Dataset, Speech

1 Background

In order to study the neural processing of speech, recent studies have presented natural running speech to participants while the electroencephalogram (EEG) was recorded. Currently, regression is used to either decode features from the speech stimulus from the EEG (also known as a backward model) [1–5], to predict the EEG from the speech stimulus [1, 6] (forward model), or to transform both EEG and speech stimulus to a shared space [7, 8] (hybrid model). Deep neural networks have recently been proposed for auditory decoding and have obtained promising results [4, 5, 9–12].

All previously mentioned methods require EEG recordings of the participants with strict time alignment to the speech stimulus. This time alignment is necessary due to the time-locked neural tracking of the speech stimulus at a millisecond scale (e.g., auditory brainstem responses (ABR)), which can last up to 600 ms[13]. As this data is personal and expensive to collect, there is a need for more public datasets that researchers can use to benchmark and train their models.

Table 1 presents an overview of currently available public datasets of EEG recordings of people listening to natural speech. These studies have generated 87.7 hours of EEG data from 133 participants listening to clean speech and speech-in-noise in their native language. However, this amount of data is relatively small compared to datasets in other domains, such as automatic speech recognition, and needs to be increased for training models due to the low signal-to-noise ratio of auditory EEG. Additionally, combining the data from these studies for model training is challenging due to differences in the authors’ signal acquisition equipment, measurement protocols, and preprocessing methods.
Table 1
Overview of currently publicly available single-speaker datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ref</th>
<th>Speech material</th>
<th>Language</th>
<th>Participants</th>
<th>Time per participant (min)</th>
<th>Total time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broderick</td>
<td>[14]</td>
<td>clean speech</td>
<td>English</td>
<td>19</td>
<td>60</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>time-reversed speech</td>
<td></td>
<td>10</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speech-in-noise</td>
<td></td>
<td>21</td>
<td>30</td>
<td>630</td>
</tr>
<tr>
<td>DTU Fuglsang</td>
<td>[15]</td>
<td>clean speech</td>
<td>Danish</td>
<td>18</td>
<td>8.3</td>
<td>150</td>
</tr>
<tr>
<td>Etard</td>
<td>[16]</td>
<td>clean speech</td>
<td>English</td>
<td>18</td>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speech-in-noise</td>
<td></td>
<td>18</td>
<td>30</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>foreign language speech</td>
<td>Dutch</td>
<td>12</td>
<td>40</td>
<td>480</td>
</tr>
<tr>
<td>Weisshart</td>
<td>[17]</td>
<td>clean speech</td>
<td>English</td>
<td>13</td>
<td>40</td>
<td>520</td>
</tr>
<tr>
<td>Brennan</td>
<td>[18]</td>
<td>clean speech</td>
<td>English</td>
<td>13</td>
<td>12.4</td>
<td>610</td>
</tr>
<tr>
<td>Vanheusden</td>
<td>[19]</td>
<td>clean speech</td>
<td>English</td>
<td>17</td>
<td>24</td>
<td>410</td>
</tr>
<tr>
<td>SparrKULee</td>
<td></td>
<td>clean speech</td>
<td>Dutch</td>
<td>85</td>
<td>110</td>
<td>9320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speech-in-noise</td>
<td></td>
<td>26</td>
<td>28.5</td>
<td>740</td>
</tr>
</tbody>
</table>

Table 2
Detailed information about the dataset

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>85</td>
</tr>
<tr>
<td>Minutes data per participant</td>
<td>90 to 150</td>
</tr>
<tr>
<td>Number of sessions for each participant</td>
<td>1</td>
</tr>
<tr>
<td>Number of trials per session</td>
<td>6 to 10</td>
</tr>
<tr>
<td>Original sampling rate</td>
<td>8192 Hz</td>
</tr>
<tr>
<td>Provided sampling rate</td>
<td>1024 Hz</td>
</tr>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
</tbody>
</table>

2 Construction and content

For our dataset (SparrKULee), we conducted an EEG experiment in which 85 participants were recruited and presented with speech stimuli for a duration ranging between 90 and 150 minutes, divided into 6 to 10 recordings (i.e., an uninterrupted period in which a participant listens to a stimulus), totaling 168 hours of EEG data. A general summary can be found in table 2. To validate the obtained dataset, we employed state-of-the-art linear[2, 8, 20] and deep learning models [12], in participant-specific and participant-independent training scenarios. These models can serve as benchmarks for comparison in future research. Our dataset is publicly available on the RDR KU Leuven website.
We define a trial as an uninterrupted recording lasting around 15 minutes. We define a session as the complete set of trials and pre-screening activities that a participant underwent from the moment they entered the room until the moment they left. Stimulus, in our study, refers to the speech audio files that we presented to the participants during the experiment, which were designed to elicit specific responses from their brains. Figure 1 provides a high-level overview of the different parts of a session.

![Figure 1: Overview of a session. First, the participant underwent behavioral experiments: air conduction thresholds were measured using the Hughson-Westlake method and the Flemish MATRIX test estimated the Speech reception threshold (SRT). Following the Flemish MATRIX test, the EEG part of the study started, consisting of multiple trials of EEG recording. A trial is defined as an uninterrupted EEG measurement when a stimulus is playing. In this study, trials were approximately 15 minutes in length. After three trials, the participants were offered the option to take a short break.](image)

2.1 Participants

Between October 2018 and September 2022, data were collected from 85 participants (74 female/11 male, 21.4 ±1.9 years (sd)). Inclusion criteria for this study were young (18-30 years), normal-hearing adults (all hearing thresholds ≤ 30 dB HL, for 125-8000 Hz), with Dutch/Flemish as their native language. Before commencing the EEG experiments, participants read and signed an informed consent form approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven, Belgium) with reference S57102. All participants in this dataset explicitly consented to share their
pseudonymized data in a publicly accessible dataset. This dataset is a subset of our larger proprietary dataset containing data from participants who did not give consent to share their data. Additionally, the participants completed a questionnaire requesting general demographic information (age, sex, education level, handedness \cite{21}) and diagnoses of hearing loss and neurological pathologies. Participants indicating any neurological or hearing-related diagnosis were excluded from the study. Last, the medical history and the presence of learning disabilities were questioned as research has shown that serious concussions, the medication used to treat, for example, insomnia\cite{22}, and learning disabilities such as dyslexia can affect brain responses\cite{23, 24}. Therefore this information was used to screen out participants with possibly divergent brain responses.

2.2 Experimental procedure

In this section the experimental procedure for the behavioral screening and subsequent EEG measurement are explained.

Behavioral

First, we measured the air conduction thresholds using the Hughson-Westlake method\cite{25} for frequencies from 125 to 8000 Hz (see Figure 2). Participants with hearing thresholds > 30 dB HL were excluded.

Secondly, we used the Flemish Matrix test \cite{26} to determine each participant’s speech reception threshold (SRT, the signal-to-noise ratio (SNR) at which 50 % speech understanding is achieved). The test consisted of 3 lists (2 for training, 1 for evaluation) of 20 sentences following the adaptive procedure of Brand et al. \cite{27}. Each sentence has a fixed syntactic structure of 5 words: name, verb, numeral, color and object [e.g. "Lucas telt vijf gele sokken" ("Lucas counts five yellow socks")]. After each sentence, participants were asked to indicate the heard sentence using a 5x11
matrix containing ten possibilities for each word and a blank option. The order of
the three lists was randomized across participants. The last SNR value was used as
an estimate of the SRT. The lists were presented to the participants using electro-
magnetically shielded Ethymotic ER-3A insert phones, binaurally at 62 dBA for each
ear. Luts et al. [26] present the list to the participants monoaurally to the best ear
and obtain an average SRT of $-8.7dB_{SNR}$ when using the results of the third list of
the adaptive procedure. During the first repetitions, they report a significant training
effect, which disappears starting from the third repetition. In our setup, binaural
stimulation was chosen to be close to our EEG data acquisition setup. Figure 3 shows
the histogram of the obtained SRT over participants in our study. Participants scored
an average value of $-8.9dB \pm 0.6(sd)$, similar to results obtained by Luts et al. [26].
All participants listened to 6, 7, 8 or 10 trials, each of approximately 15 minutes. The order of all the trials was randomized per participant. After each trial, a question about the stimulus content was asked to determine attention to and comprehension of the story. As the questions were not calibrated, they merely motivated the participant to pay attention to the stimulus. After three trials, the participants were asked if they wanted to have a short break. Table 3 shows an overview of the experiment and timing.

We used different categories of stimuli:

- **Reference audiobook** to which all participants listened, made for children and narrated by a male speaker. The length of the audiobook is around 15 minutes.
<table>
<thead>
<tr>
<th>Experimental procedure</th>
<th>Required time (min)</th>
<th>Cumulative time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill in informed consent</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fill in questionnaire</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Pure tone audiometry</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Speech audiometry (matrix test)</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Fit EEG equipment</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Listen to 3 stimuli</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>First break</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Listen to 3 stimuli</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>Second break</td>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>Krios scan of EEG electrode positions</td>
<td>10</td>
<td>185</td>
</tr>
<tr>
<td>Listen to 3 stimuli</td>
<td>50</td>
<td>245</td>
</tr>
</tbody>
</table>

Table 3: Overview of the experimental procedure.

- **Audiobooks** made for children or adults. To keep the trial length around 15 minutes, some audiobooks were split into different parts when the length exceeded 15 minutes.

- **Audiobooks with noise** made for children to which speech-weighted noise was added, as explained below, to obtain an SNR of 5 dB.

- **Podcasts** from the series’ Universiteit van Vlaanderen’ (University of Flanders) [28]. Each episode of this podcast answers a scientific question, lasts around 15 minutes, and is narrated by a single speaker.

- **Podcasts with video** from the series’ Universiteit van Vlaanderen’ (University of Flanders) [28], while video material of the speaker was shown. The video material can be found on the website of Universiteit van Vlaanderen for each podcast separately.

The Podcasts and Podcasts with video were dynamically range compressed by the producers of the stimuli, while the audiobooks were not.

The dataset collection consists of two main session types: ses-shortstories01 and ses-varyingstories, differing in the presented stimuli. Each participant undertook one session. An overview of the experiment and timing can be found in table 3, while figure 4 summarizes which stimuli were used for each participant in each session.
Fig. 4 Overview of all the stimuli that were presented, per participant. AB=audiobook, P=podcast. Audiobooks and podcast are numbered. The subscript _1/2/3 indicate different parts of the same audiobook, each around 15 minutes in length.

Ses-shortstories01

For this session type, data from 26 participants is available. It includes ten different parts of audiobooks for children. Two audiobooks, audiobook_1 and audiobook_4, are narrated by male speakers, the other by female speakers. audiobook_3, audiobook_5 and audiobook_6 are narrated by the same speaker. Two out of ten trials were randomly chosen for each participant and presented in speech-weighted-noise (SNR = 5dB). Additionally, 3 subjects listened to a different version of audiobook_1. For this experiment, the audiobook was cut in 2 halves (audiobook_1_1, audiobook_1_2 respectively), and a pitch-shifted version was used created for each half (audiobook_1_1_shifted, audiobook_1_2_shifted, respectively). More information about the pitch shifting and additional experiments can be found in the work of Algoet et al.[29]. Finally, there was one control condition in which the first 5 minutes of audiobook_1 were presented to a subject who had no insertphones inserted (audiobook_1_artefact).

Ses-varyingstories

For the ses-varyingstories type, data from 59 participants are available. Ses-varyingstories had a fixed reference audiobook_1 (which was presented to all subjects),
an audiobook of around 30 minutes split into two parts, and three to five different podcasts per participant, chosen to keep an even distribution of the sex of the speaker. The stimuli were changed every 2 to 8 participants.

2.3 Data acquisition

EEG

All recording sessions were conducted at the research group ExpORL of KU Leuven, in a triple-walled, soundproof booth equipped with a Faraday cage to reduce external electromagnetic interference. Participants were instructed to listen to the speech while seated and minimize muscle movements. They were seated in a comfortable chair in the middle of the booth.

We recorded EEG using a BioSemi ActiveTwo system with 64 active Ag-AgCl electrodes and two additional electrodes for the common electrode (CMS) and current return path (DRL). In addition, two mastoid electrodes and the BioSemi head caps were used, containing electrode holders placed according to the 10-20 electrode system.

To ensure proper electrode placement for each participant, we first measured their head size (from nasion to inion to nasion) and selected an appropriate cap. Mastoid locations were scrubbed with Nuprep and cleaned with alcohol gel. The mastoid electrodes were then attached using stickers and held with tape.

The electrode cap was placed on the participant’s head from back to front, with ears placed through gaps in the cap. The closing tape at the bottom was secured, and a visual assessment was performed to ensure proper fit. The cap was adjusted so that the distance between the nasion and the electrode Cz, the inion and the electrode Cz were equal, and the distance between the left and right ears and the Cz electrode. Electrode gel was applied to the cap holes, and the electrodes were placed gently. The battery, electrode cables and mastoid electrodes were attached to the BioSemi AD-box. The participant was then instructed to sit still while EEG was recorded. The
subjects were told to keep their eyes open during the measurement. If necessary, the additional gel was applied to poorly behaving electrodes, and the electrode offset was checked to ensure proper connection. All offsets were ideally between +20 and -20 mV.

The EEG recordings were digitized at a sampling rate of 8192 Hz and stored on a hard disk using the BioSemi ActiView software.

Digitizer

We acquired a 3D-scan of the configuration of the EEG caps for all participants, using a Polaris Krios scanner (NDI, Canada), which scans all the electrodes, using a probe to mark three reference points: at the nasion and the height of the tragus at both sides. The Polaris Krios scanner is based on optical measurement technology and uses light reflected by markers to determine the position coordinates.

2.4 Stimulus preparation

All stimuli were stored at a sampling rate of 48kHz. For each stimulus file, a trigger file was generated. These triggers were sent from the stimulation equipment (RME soundcard) to the BioSemi. Triggers were generated every second in the form of a block wave. At every second and the beginning and end of the recording, a block pulse with a width of 1 ms is inserted. Based on the stimulus, speech-shaped noise was created at the same root-mean-square value (RMS) as the stimulus. The noise was created by taking white noise and changing the spectrum of the white noise to the spectrum of the speech, and then matching the RMS value of the original stimulus file.

Afterward, using one noise file for each RMS value, the stimuli were calibrated with a type 2260 sound-level pressure meter, a type 4189 0.5-in. microphone, and a 2-cm³ coupler (Bruel & Kjaer, Copenhagen, Denmark).

The auditory stimuli were presented using a laptop connected to an RME Hammerfall DSP Muliface II or RME Fireface UC soundcard, using the APEX software.
platform [30] and electromagnetically shielded Ethymotic ER-3A insert phones, binaurally at 62 dBA for each ear.

2.5 Preprocessed data

Besides the raw EEG recordings, we also provide EEG and speech stimuli with commonly used preprocessing steps applied. All steps were conducted in Python 3.6, and the code for preprocessing is available on our GitHub repository (https://github.com/exporl/auditory-eeg-dataset).

EEG

First, EEG data was high-pass filtered, using a 1st-order Butterworth filter with a cut-off frequency of 0.5 Hz. Zero-phase filtering was conducted by filtering the data forward and backward. Subsequently, the EEG was downsampled from 8192 Hz to 1024 Hz and eyeblink artifact removal was applied to the EEG, using a multichannel Wiener filter [31]. Afterward, the EEG was re-referenced to a common average, and finally, the EEG was downsampled to 64 Hz.

Speech stimuli

The initial sampling frequency of the stimuli was 48kHz. We provide a script to calculate the envelope using a gammatone filterbank [32] with 28 subbands. Each subband envelope was calculated by taking the absolute value of each sample, raised to the power of 0.6. A single envelope was obtained by averaging all these subbands [33]. Then, the envelope was downsampled to 64 Hz.

2.6 Folder structure

All data were organized according to EEG-BIDS[34], an extension to the Brain Imaging Directory Structure (BIDS)[35] for EEG data. EEG-BIDS allows storing EEG data with relevant extra information files, e.g., about the experiment, the stimuli.
and the triggers, enabling quick usage of the data and linking the auditory stimuli to the raw EEG files. A schematic overview of our repository is shown in Figure 5. The dataset consists of 3 parts: (1) raw data, in a folder per participant, (2) the auditory stimuli, in zipped Numpy (.npz) [36] format (3) the preprocessed data records, as described above, in the derivatives folder.

Raw data

The raw data was structured in a folder per participant. For each participant (1 to 85), a folder sub-xxx is available in the root folder. In this folder, there is a folder indicating the session, which can be either ses-shortstories01 or ses-varyingstoriesxx (xx = 01...09).

Each session folder contains a subfolder beh, containing the results of the behavioral matrix SRT estimation. These files were named according to the participant, the session, the task, which is always listeningActive, and the behavioral experiment run, which goes from 1 to 3.

The data of the EEG experiment was stored as a subfolder in the session folder, named eeg. The EEG experiment data were named according to the participant, the session, the task and the run. When the participant listened to a stimulus, the task was listeningActive. When the participant listened to silence, which happened at the start and end of the experiment, the task was restingState. The run suffix chronologically numbers the different trials starting at 01. Each trial has four corresponding files, differing only in their ending, after the run suffix: (1) raw gzipped file of EEG data in BioSemi Data Format (BDF), sampled at 8192 Hz, ending in eeg.bdf.gz, (2) a descriptive apr file eeg.apr, containing extra information about the experiment, such as the answers to the questions that were asked, (3) stimulation file to link EEG to the corresponding stimulus stimulation.tsv and (4) events.tsv, which describes which stimuli were presented to the participants at which time.
Stimuli

All the stimuli are saved in the folder `stimuli/eeg`. For each stimulus, we provide four corresponding files, stored in the `npz` format with additional gzipping to reduce storage, which is easily readable in Python: (1) the stimulus, stored at 48 kHz `stimulusName.npz.gz`, (2) the associated noise file `noise_stimulusName.npz.gz`, (3) the associated trigger file `t_stimulueName.npz.gz` and (4) the experiment description file `stimulusName.apx`.

The stimuli were named according to their type: either `audiobook_xx` or `podcast_xx`, where `xx` indexes unique stimuli. Whenever an audiobook was split into multiple consecutive parts, an extra suffix denotes which part of the audiobook is referred to.

Preprocessed data

For all data, we also provide a preprocessed, downsampled version of the data. These data can be found in the `derivatives/preprocessed_eeg` folder. Similar to the raw data, the preprocessed data was structured in a folder per participant, per session, which could be either `ses-shortstoriesxx` or `ses-varyingstoriesxx`. The preprocessed files derive their name from the raw EEG file used to create the preprocessed version. To avoid confusion, a suffix `desc-preproc` was added, such that no two files have the same name. After the `desc-preproc` suffix, the name of the stimulus the participant listened to was added to facilitate linking the EEG brain response to the auditory stimulus for downstream tasks.

3 Utility and Discussion

In order to demonstrate the validity of the data, we conducted several experiments on the preprocessed version of the proposed dataset, as explained in more detail.
in this section. All our results are reproducible using the code on our GitHub: https://github.com/exporl/auditory-eeg-dataset.

For all our experiments, we split each trial into a training, validation and test set, containing respectively 80%, 10% and 10% of each trial for each participant. The train, validate and test set do not overlap, so the test set remains unseen for all the models.

Before usage, we normalized each trial by computing the mean and standard deviation for each of the 64 EEG channels and the envelope stimulus on the training set. We then normalized the train, validation and test set by subtracting from each trial the mean and dividing by the standard deviation computed on the train set.

3.1 Linear forward/backward modeling

To show the validity of the data, we trained participant-specific linear forward and backward models [1, 2] (i.e., models that predict EEG from the stimulus envelope and the stimulus envelope from the EEG, respectively). The backward model was used to detect neural tracking in each recording, i.e., that the speech envelope can effectively be decoded for each participant/story compared to a null distribution of random predictions. The forward model was used to visualize the EEG channels for which the stimulus-related activity can be best predicted.

Model training

The models were trained based on the recommendations of Crosse et al. (2021)[20]. The backward model weights were obtained similarly by equation 1:

\[w_b = (R^T R + \lambda I)^{-1} R^T s \]

(1)
Where R is a matrix consisting of time-lagged versions of the EEG, s is the stimulus envelope and λ is the ridge regression parameter. In a similar fashion, equation 2 was used to obtain the forward model weights:

$$w_f = (S^T S + \lambda I)^{-1} S^T r$$

Where S is a matrix consisting of time-lagged versions of the stimulus envelope, r is a matrix containing the EEG response, and λ is the ridge regression parameter.

Both models had an integration window from -100ms to 400ms. Following the recommendations of Crosse et al. (2021)[20], leave-one-out cross-validation was performed on the recordings in the training set to determine the optimal ridge regression parameter (λ) from a list of values (10^x for $x = [-6, -4, -2, 0, 2, 4, 6]$). Correlations scores were averaged across folds and channels, after which the λ is chosen, corresponding to the highest correlation value.

To evaluate the performance of both models, the Pearson correlation between the predicted and true data was calculated on the test set. In order to detect neural tracking, we followed the procedure of Crosse et al. (2021) [20]. For each recording in the test-set, the predictions are (circularly) shifted in time by a random amount $N = 100$ times. By correlating these shifted predictions to the actual signal, a null distribution was constructed for each participant. The 95th percentile of this null distribution was compared to the mean of the obtained scores on the test sets.

The analysis of EEG neural responses is typically performed in specific filter bands. For auditory EEG, the research typically focuses on the Delta band (0.5 – 4 Hz) and the Theta band (4 – 8 Hz) [2, 37, 38]. We investigated the effect of filtering the EEG and envelope in different bands: Delta (0.5 – 4 Hz), Theta (4 – 8 Hz), Alpha (8 – 14 Hz), Beta (14 – 30 Hz) and Broadband (0.5 – 32 Hz). A 1st order Butterworth filter was chosen for each of the proposed filtering bands.
The model training and evaluation were performed in Python using Numpy\cite{36} and Scipy.

Analysis

Using the linear backward model, we were able to detect neural tracking for all participants. In 11 of the 666 recordings, we were not able to detect neural tracking in any frequency band with the linear decoder. These recordings are listed in Table 4. The results per frequency band are shown in Figure 6. As previously shown by Vanthornhout et al.\cite{2}, the optimal performance was reached when filtering in the delta-band (0.5 – 4 Hz). While correlations are hard to compare between studies because they are heavily influenced by the measurement paradigm, subject selection, preprocessing and modeling choices, the correlations we found for the delta band are roughly in line with previous studies (median correlation between 0.1-0.2 \cite{1, 2}).

We compared the linear backward model performance across all stimuli and stimuli types (audiobooks vs. podcast, excluding the audiobook_1 shifted and artifact versions) in the delta-band. The results are visualized in Figure 7 and Figure 8, respectively. Note that there is a large variability in decoding scores within and between stimuli. Additionally, a significant difference was found between the audiobook and podca
podcast stimuli (0.184 vs. 0.133 median Pearson correlation, MannWhitneyU test: $p < 10^{-9}$).

For the forward model, we show topomaps averaged across participants for each frequency band and stimulus type in Figure 9. As with the backward model, we observed the highest correlations between predicted and actual EEG signals in the delta band. The highest correlations were obtained for the channels in the temporal and occipital regions.

3.2 Non-linear models - Match-mismatch paradigm

For the non-linear models, we used the match-mismatch paradigm [7, 12]. In this paradigm, the models are given three inputs: a segment of the EEG recording, the time-matched stimulus envelope segment, and a mismatched (imposter) stimulus envelope segment. As specified by [10], the imposter was taken 1s after the matched stimulus envelope segment. If extracting an imposter (at the end of each set) was impossible, the segment was discarded from the dataset. We extracted overlapping windows with 80% overlap. We included an analysis using a dilated convolutional model [12] to show typical match-mismatch performance across different input segment lengths.

Model training

The dilated convolutional network consists of four steps. First, the EEG channels are combined, from 64 to 8, using a 1D convolutional layer with a kernel size of 1 and a filter size of 8. Second, there are N dilated convolutional layers with a kernel size of K and 16 filters. These N convolutional layers are applied to both EEG and envelope stimulus segments. After each convolutional layer, a rectified linear unit (ReLU) is applied. Both stimulus envelope segments share the weights for the convolutional
layers. After these non-linear transformations, the EEG is compared to both stimulus envelopes, using cosine similarity. Finally, the similarity scores are fed to a single neuron, with sigmoid non-linearity, to create a prediction of the matching stimulus segment.

The model was implemented in Tensorflow and used the Adam optimizer, with a learning rate of 0.001 and binary-cross entropy as the loss function. Models were trained for a maximum of 50 epochs, using early stopping based on the validation loss, with a patience factor of 5. We trained the models with an input segment length of 5 seconds and in a participant-independent way, i.e., all participant data was given simultaneously to the model. We report results for input testing lengths 1, 2, 3, 5, and 10 s. Since the trained dilation model does not have fixed input lengths, we used the same model with different input lengths.

Analysis

The results of this analysis can be seen in figure 10. The accuracy of the model increased with longer window lengths. We see the same trend as in [12]. In order to test the generalizability of the model, we also tested the model with an arbitrarily chosen mismatch segment, as opposed to the fixed 1 second. There was no significant difference between these two testing conditions, which is in line with the experiment as conducted in [39].

4 Conclusions

This work introduces SparrKULee, a Speech-evoked Auditory Response Repository of the KU Leuven, containing EEG of 85 participants, for a total of 167 hours of data. SparrKULee contains more speech-evoked EEG data than other public datasets combined, recorded in a standardized fashion. The database is stored in the standardized
BIDS format and is accessible for researchers online. We showed the validity of the dataset, by training state-of-the-art models, both linear and non-linear, and showing competitive results. This dataset can be used for auditory EEG analysis and to train/benchmark new machine learning models.

Declarations

Ethics approval

This study was approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven, Belgium) with reference S57102.

informed consent to participate

All participants read and signed an informed consent form approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven, Belgium) with reference S57102.

Consent for publication

All participants in this dataset explicitly consented to share their pseudonymized data inside and outside of the European Union.

Availability of data and materials

AB_1, AB_3, AB_{xp1} and AB_{xp2} for $x = 7...14$ originate from the Radioboeken project of deBuren (https://soundcloud.com/deburen-eu/). Podcasts were obtained from Universiteit van Vlaanderen (https://www.universiteitvandervlaanderen.be). All stimuli in the dataset can only be used/shared for non-commercial purposes. When republishing (adaptations of) the stimuli, explicit permission should be acquired from the original publishing organization(s) (i.e., deBuren or Universiteit van Vlaanderen).
The dataset is available on the RDR KU Leuven platform https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/K3VSND under an Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Due to privacy concerns, access to part of the data is restricted. Readers requesting access should mail the corresponding authors(sparrkulee@kuleuven.be), stating what they want to use the data for. Access will be granted to non-commercial users, complying with the CC-BY-NC-4.0 license.

All code used for the technical validation can be found online: https://github.com/exporl/auditory-eeg-dataset. We used the mne-python library [40].

For using the data, we recommend using the code on our GitHub repository to get started, which consists of two main parts: (1) code to create the preprocessed eeg and preprocessed stimuli from the raw data and (2) code to perform the experiments as discussed in the technical validation. The README file contains detailed technical instructions.

Competing interests

The authors declare no conflict of interest.

Funding

The research conducted in this paper is funded by KU Leuven Special Research Fund C24/18/099 (C2 project to Tom Francart and Hugo Van hamme), by two PhD grants (1S89622N,1SB1421N) of the Research Foundation Flanders (FWO) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 637424, ERC Starting Grant to Tom Francart).
Authors’ contributions

B.A., W.V., L.B., H.V.h and T.F conceived the experiments, B.A., L.B., M.G. and W.V. conducted/supervised the experiments, B.A. and L.B analysed the results. All authors reviewed the manuscript.

Acknowledgements

The authors thank Amelie Algoet, Jolien Smeulders, Lore Kerkhofs, Sara Peeters, Merel Dillen, Ilham Gamgami, Amber Verhoeven, Vitor Vasconselos, Jard Hendrickx, Lore Verbeke and Ana Carbajal Chavez for their help with data collection.

References

[27] Brand, T. & Kollmeier, B. Efficient adaptive procedures for threshold and con-
current slope estimates for psychophysics and speech intelligibility tests. *The

[29] Algoet, A. Invloed van het geslacht van de spreker en luisteraar en persoonlijke
appreciatie van het verhaal op de neurale tracking van de spraakomhullende.
(2020).

form for auditory psychophysical experiments. *Journal of neuroscience methods*

[31] Somers, B., Francart, T. & Bertrand, A. A generic EEG artifact removal algo-
ithm based on the multi-channel Wiener filter. *Journal of Neural Engineering*
aaac92.

[33] Biesmans, W., Das, N., Francart, T. & Bertrand, A. Auditory-inspired speech
envelope extraction methods for improved eeg-based auditory attention detec-
tion in a cocktail party scenario. *IEEE Transactions on Neural Systems and

[34] Pernet, C. R. et al. Eeg-bids, an extension to the brain imaging data structure

Fig. 5 Tree depicting the structure of our dataset. All data have been structured according to the EEG-BIDS standard.
Fig. 6 Results of the linear backward model for different frequency bands. Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one participant, averaged over recordings. Separate models were trained for each participant and frequency band (Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–14 Hz), Beta (14–30 Hz) and Broadband (0.5–32 Hz)). Highest correlations were obtained in the delta band and decreased when going to higher frequency bands. The dashed line represents the significance level ($\alpha = 0.05$).

Fig. 6 Linear decoder performance across frequency bands

![Linear decoder performance across frequency bands](image)

Pearson correlation

Delta [0.5-4], Theta [4-8], Alpha [8-14], Beta [14-30], Broadband [0.5-32]
There is high variability across participants and stimuli. Each participant’s predicted speech envelope was correlated with the presented speech envelope. Each point in the boxplot is the correlation between the predicted speech envelope and the presented speech envelope for one recording. Data was filtered in the delta band (0.5–4 Hz).
Fig. 8 Results of the linear backward model for the different stimuli in the dataset. One model is trained per participant. Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one participant, averaged across recordings. Significantly higher correlations were obtained for the audiobooks (0.184 vs. 0.133 median Pearson correlation, Mann-WhitneyU test: $p < 10^{-9}$).
Fig. 9 Results of the forward linear model for different stimuli types and frequency bands. For each channel, the correlation between actual and predicted EEG is shown and averaged across participants. One model is trained per participant. The highest correlations are obtained in the delta-band for the channels in the temporal and occipital region.
Fig. 10 Results of the non-linear dilation model, in the match-mismatch paradigm. Each point in the boxplot is the match-mismatch accuracy for one participant, averaged across recordings. The imposter envelope segment starts one second after the end of the true segment. One model was trained across all participants.