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A.1 Derivation of the Posterior Distribution from a Poisson prior

Under the Poisson prior assumption of N ∼ Po(ν), Bayes' rule implies for the posterior
of N |Ft that

P[N = n|Ft] =
e−ν νn

n!
ℓ(x|n)∑∞

n=k e
−ν νn

n!
ℓ(x|n)

, (A.1)

where ℓ(x|n) is given in equation (3.13). Substituting l = n − k, the numerator can be
rearranged as follows

P[N − k = l|Ft] ∝ e−ν ν(k+l)

(k + l)!

(k + l)!

l!

k∏
i=1

fθ(xi)

ptr(θ)

xβi
bi

(� ∞

0

ϕθ(γk)
lgb(γk)dγk

)
= νk

k∏
i=1

fθ(xi)

ptr(θ)

xβi
bi

(� ∞

0

e−ν (νϕ(γk))
l

l!
gb(γk)dγk

)
.

Hence, the posterior of the number of undiscovered �elds becomes

P[N − k = l|Ft] =

�∞
0

e−ν (νϕ(γk))
l

l!
gb(γk)dγk∑∞

l=0

�∞
0

e−ν (νϕ(γk))l

l!
gb(γk)dγk

.

By combining this distribution with the conditional distribution of Γk|(X, N − k), we
can derive a speci�c refactoring of the joint distribution of (Γk, N − k)|Ft, which shows
that (N − k)|Ft actually has a mixed Poisson posterior. The formulas we derive in
Lemma 3 for E[(N − k)1|Ft] and g

(1)(γk|Ft) have already been derived by Lee (2008) (see
equations (A.72)-(A.74) on pp. 195f.), while the refactoring in Lemma 2 has not been
stated explicitly in the literature, at least to our knowledge.

Lemma 1. It holds that
∞∑
l=0

� ∞

0

e−ν (νϕ(γk))
l

l!
gb(γk)dγk =

� ∞

0

eν(ϕ(γk)−1)gb(γk)dγk. (A.2)

Proof of Lemma 1: This follows directly from the de�nition of the exponential function.□

Lemma 2. The joint distribution g(0)(γk|x, l) · P[N − k = l|Ft] can be refactored as a
continuous mixture of Poisson distributions. In particular,

g(0)(γk|x, l) · P[N − k = l|Ft] = P[N − k = l|Γk = γk] · g(0)(γk|Ft),

where P[N − k = l|Γk = γk] =
(νϕ(γk))

l

l!
e−νϕ(γk),

and g(0)(γk|Ft) =
eν(ϕ(γk)−1)gb(γk)�∞

0
eν(ϕ(γk)−1)gb(γk)dγk

.

(A.3)

Proof of Lemma 2:

g(0)(γk|x, l)P[N − k = l|Ft] =

(
ϕ(γk)

lgb(γk)�∞
0
ϕ(γk)lgb(γk)dγk

)
·
(�∞

0
e−ν (νϕ(γk))

l

l!
gb(γk)dγk�∞

0
eν(ϕ(γk)−1)gb(γk)dγk

)
= ϕ(γk)

lgb(γk) ·
e−ν νl

l!�∞
0

eν(ϕ(γk)−1)gb(γk)dγk

=
(νϕ(γk))

l

l!
· e−νgb(γk)�∞

0
eν(ϕ(γk)−1)gb(γk)dγk

=

(
(νϕ(γk))

l

l!
e−νϕ(γk)

)
·
(

eν(ϕ(γk)−1)gb(γk)�∞
0

eν(ϕ(γk)−1)gb(γk)dγk

)
.

(A.4)
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The formula for g(0)(γk|x, n− k) is given in equation (3.14), and the posterior for N − k
was derived above. We then apply Lemma 1 in the denominator, cancel the integrals�∞
0
ϕ(γk)

lgb(γk)dγk, reorder the terms, and �nally expand by e−νϕ(γk). □

Lemma 3. For m = 1, 2, it holds for the posterior moments E[(N − k)m|Ft] that

E[(N − k)1|Ft] =

�∞
0
νϕ(γk)e

ν(ϕ(γk)−1)gb(γk)dγk�∞
0

eν(ϕ(γk)−1)gb(γk)dγk
,

E[(N − k)2|Ft] =

�∞
0
νϕ(γk)

(
1 + νϕ(γk)

)
eν(ϕ(γk)−1)gb(γk)dγk�∞

0
eν(ϕ(γk)−1)gb(γk)dγk

.

(A.5)

Also, for m = 1, 2, it holds for the densities

g(m)(γk|Ft) =
( ∞∑

l=0

lmP[N − k = l|Γk = γk]g
(0)(γk|Ft)

)/
E[(N − k)m|Ft]

that

g(1)(γk|Ft) =
νϕ(γk)e

ν(ϕ(γk)−1)gb(γk)�∞
0
νϕ(γk)eν(ϕ(γk)−1)gb(γk)dγk

,

g(2)(γk|Ft) =
νϕ(γk)

(
1 + νϕ(γk)

)
eν(ϕ(γk)−1)gb(γk)�∞

0
νϕ(γk)

(
1 + νϕ(γk)

)
eν(ϕ(γk)−1)gb(γk)dγk

.

(A.6)

Proof of Lemma 3: (A.5) follows from the properties of the Po(λ)-distribution which has
mean λ and second moment λ(1+λ), and then applying the law of iterated expectations.
For (A.6), note that integrating

∑∞
l=0 l

mP[N − k = l|Γk = γk]g
(0)(γk|Ft) over γk would

yield precisely the mth posterior moment as in (A.5). Hence the numerators in (A.6) are
just the numerators in (A.5) without the integral. Dividing by E[(N − k)m|Ft] is the
normalization required such that g(m)(γk|Ft) becomes a density. □

Lemma 4. Consider any continuous transformation of Γk, denoted by t∗(Γk). For m =
1, 2, provided that

�∞
0
t∗(γk)g

(m)(γk|Ft)dγk exists, it holds that

E[(N − k)mt∗(Γk)|Ft] = E[(N − k)m|Ft]

� ∞

0

t∗(γk)g
(m)(γk|Ft)dγk. (A.7)

Proof of Lemma 4: We write out the expectation with respect to (N − k)|Γk and
Γk|Ft as factored in (A.3), expand by E[(N − k)m|Ft], and then recognize the formula of
g(m)(γk|Ft). □

A.2 Numerical Calculation of the General Gamma Density

To simplify the notation in this section, we drop the index k in γk. A draw from the
general gamma distribution gb(γ) with parameters b = (b1, ..., bk) and support [0,∞) as
de�ned in section 3.2 is easily obtained by the sum

∑k
j=1 εj/bj, where εj are iid stan-

dard exponential variates. Thus, one can approximate the density gb(γ) by Monte Carlo
methods, and one could try to approximate the integrals of the type

�∞
0

eν(ϕ(γ)−1)gb(γ)dγ

or
�∞
0
ϕ(γ)n−kgb(γ)dγ by Monte Carlo integration. However, the integrands e−ν[1−ϕ(γ)] or

ϕ(γ)n−k exhibit a very sharp decline after zero due to the large exponents ν and n− k.1

1The Laplace transform ϕ(γ) ful�lls ϕ(0) = 1, is convex, and declines monotonously towards the
asymptote lim

γ→∞
ϕ(γ) = 0. This carries over to the integrand ϕ(γ)n−k. The integrand e−ν[1−ϕ(γ)] also

starts at 1, is convex, and declines monotonously towards the asymptote e−ν . Both integrands exhibit
an extremely sharp decline in the proximity of zero.
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Thus, a highly precise evaluation of gb(γ) is required at its left tail in the proximity of
zero. Since Monte Carlo methods do not perform well at approximating the tails of a
distribution, they have not been used in the literature here to our knowledge.

The pdf gb(γ) does have an analytical expression, which can be obtained via partial frac-
tions expansion from its real-valued Laplace transform as given by ψb(s) =

∏k
j=1 bj/(bj +

s). The resulting expression is (see McGill and Gibbon, 1965, pp. 4f.; Barouch and
Kaufman, 1976, p. 13)

gb(γ) =
k∑

j=1

Cjbje
−γbj

, where Cj =
k∏

l=1,l ̸=j

bl
bl − bj

for j = 1, . . . , k.

However, this expression is practically useless for accurately evaluating the density, in
particular at the important values near zero (Nair and Wang, 1989, pp. 430f.). The
problem with this formula is that already for modest values of k the coe�cients Cj,
j = 1, ..., k, become extremely large (and are always alternating in sign) so that each
coe�cient would need to be calculated with numerically infeasible precision.

The approach chosen in the size-biased sampling literature to calculate the general gamma
density is the Fourier-series method for numerically inverting the complex-valued Laplace
transform of gb(γ). Let i =

√
−1 denote the imaginary number, and let s = a + iω

be a complex number. The inversion integral ψb(s) → gb(γ) of the Laplace transform
gb(γ) → ψb(s) is given by the following formula (Durbin, 1974, p. 371; Abate and Whitt,
1995, p. 37):

gb(γ) =
eaγ

π

∞�

0

[
Re{ψb(a+ iω)}cosωγ − Im{ψb(a+ iω)}sinωγ

]
dω

=
2eaγ

π

∞�

0

Re{ψb(a+ iω)}cos(ωγ)dω, γ ≥ 0,

(A.8)

where a can be an arbitrary number greater than the real parts of all singularities of the
complex-valued Laplace transform, i.e. in this case a > −bk.
Inverting Laplace transforms via the Fourier-series method means essentially that a trape-
zoidal rule is applied to either of the integrals from (A.8). It can be shown that for these
integrals, certain trapezoidal rules are equivalent to Fourier-series approximations of the
density on a certain compact interval. This makes the method particular e�ective as a
numerical technique here (Durbin, 1974; Crump, 1976; Abate and Whitt, 1995).

The version of the Fourier-series method we found most useful and practical to implement
for the problem of evaluating the general gamma density is the �Euler method�, which
is described in the context of probability applications by Abate and Whitt (1995), and
which builds on earlier work by Dubner and Abate (1968) and Simon et al. (1972). In
particular, for the �Euler method� a trapezoidal rule with a step-size of h = π/2γ is
applied in the second line of (A.8) (or equivalently with a step-size of h = π/γ in the
�rst line). Denoting the Fourier-series approximation of gb(γ) by g̃b(γ), and also setting
a = A/2γ, this yields for g̃b(γ) at each γ the nearly alternating series (Abate and Whitt,
1995, pp. 37f.)

g̃b(γ) =
eA/2

γ

[1
2
Re
{
ψb

( A
2γ

)}
+

∞∑
m=1

(−1)mRe
{
ψb

(A+ i(2mπ)

2γ

)}]
. (A.9)
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In the case of the general gamma distribution, the real part of the complex-valued Laplace
transform is easily derived as

Re{ψb(a+ iω)} =
( k∏

j=1

bj√
(bj + a)2 + ω2

)
· cos

( k∑
j=1

atan
( ω

bj + a

))
. (A.10)

It can be shown generally that the discretization error of the approximation g̃b(γ), i.e.
the di�erence between the series in (A.9) and the exact integral in (A.8), equals (Abate
and Whitt, 1995, p. 38):

g̃b(γ)− gb(γ) =
∞∑

m=1

e−mAgb(γ(2m+ 1)). (A.11)

The crux of the method is that the free parameter A can always be chosen such that the
discretization error becomes as small as desired. For example, if we wanted a discretization
error of exactly 10−E at some γ, we would need to choose A such that the right-hand side
of (A.11) equals 10−E. Obviously, since gb(γ(2m+1)) is not known, this cannot be done.
What can be done is bounding (A.11) by using a function which envelopes gb(γ), and
calculate A based on this envelope so that the discretization error is forced to be less than
10−E.

However, the delicacy of the Fourier-series method is that there is a risk of setting A too
high, which can lead to large error. The reason is that the discretization error (A.11) is not
the only error, there is also always an error from truncating the series in (A.9). The term
eA/2 in (A.9) reveals that this truncation error grows exponentially with A. To mitigate
this problem, Euler summation for accelerating the convergence of the series in (A.9) has
been proposed in the literature (Simon et al., 1972), which allows to approximate the
limit of the nearly alternating series much more e�ciently (Abate and Whitt, 1995), and
which is where the name �Euler method� derives from. According to Abate and Whitt
(1992; 1995), Euler summation for an alternating series is equivalent to a simple weighted
average of the last ∆M partial sums, where the weights are from the binomial distribution
with parameters ∆M and p = 1/2. Put more clearly, Euler summation of (A.9) amounts
to calculating the terms inside the sum of (A.9) for m = M,M + 1, . . .,M + ∆M , then
calculating the corresponding partial sums while also adding the initial M terms, and
�nally averaging with the binomial probabilities.2

Note that one cannot evaluate (A.9) at multiple gridpoints at once, but can only evaluate
it iteratively. This may be seen as a disadvantage of the method, but there is also a
clear advantage of such an iterative evaluation: if we know that gb(γ − ∆γ) < gb(γ),
we can exploit this monotony in order to bound the relative discretization error using
g̃b(γ)−gb(γ)

gb(γ)
< g̃b(γ)−gb(γ)

gb(γ−∆γ)
, and replace the denominator by the approximation at the previous

gridpoint, g̃b(γ −∆γ), provided that it has been calculated without large error.

To further mitigate the problem of choosing A too high, the remainder of this section is
concerned with how to choose A as a function of the desired error E. The usual candidate
for bounding gb(γ) is its maximum. As discussed in McGill and Gibbon (1965) (pp. 6�.),
it is clear that gb(γ) behaves globally similar as a usual gamma density, in particular that
gb(0) = 0 (for k ≥ 2), gb(∞) = 0, and that it passes through a unique maximum. The

2Abate and Whitt (1995) (p. 38) propose to use ∆M = 11. In our applications we always use
∆M = 11, and use M = 100, increasing M to 500 for very small values of γ.
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maximum is not derivable analytically, but can be easily approximated by a Monte Carlo-
simulation.3

In the following, we propose our idea how to get an improved envelope for gb(γ) at very
small values of γ, so that at these values, the error parameter E need not be chosen with
as much care as when using the constant bound only.4 It is known about gb(γ) that the
�rst k − 2 derivatives vanish at zero, and that the Taylor expansion around zero equals
(Barouch and Kaufman, 1976, p. 13; Nair and Wang, 1989, p. 430)5

gb(γ) =
k∏

j=1

bj
γk−1

(k − 1)!
+O(γk). (A.12)

Combining the Taylor approximation with the maximum of the pdf (g) as an envelope
for gb(γ), we can bound the relative discretization error in (A.10) at γ as follows:

g̃b(γ)− gb(γ)

gb(γ)
=

∞∑
m=1

e−mA gb(γ(2m+ 1))

gb(γ)
≤

∞∑
m=1

e−mAmin
{
(2m+ 1)k−1,

g

g̃b(γ −∆γ)

}
.

If we let M∗ be the last index where the Taylor approximation yields the smaller bound
(and set M∗ to zero if this does not happen at all), we get that

M∗ = max
{
0,
⌊
− 1

2
+

1

2

( g

g̃b(γ −∆γ)

) 1
k−1

⌋}
,

and

g̃b(γ)− gb(γ)

gb(γ)
≤

{∑M∗

m=1 e
−mA(2m+ 1)k−1 + e−(M∗+1)A g

g̃b(γ−∆γ)
, M∗ ≥ 1,

e−A g
g̃b(γ−∆γ)

, M∗ = 0,
(A.13)

where we omit the factor 1/(1 − e−A) from summing the geometric series, which for all
practical purposes can be replaced by one since e−A will be small. For M∗ = 0, the right-
hand side of (A.13) is easily solved for A to achieve a relative error of 10−E. For M∗ ≥ 1,
we need a root-�nding algorithm to determine A.6 The issue we are left to discuss is
which lower and upper bounds Amin and Amax to feed into the root-�nding algorithm
so that the right-hand side of (A.13) is above 10−E at Amin and below 10−E at Amax.
Starting withAmin, the right-hand side of (A.13) is obviously larger than its �rst summand,
e−Amin+(k−1)ln3, which is greater or equal to 1 already if Amin ≤ (k − 1)ln3 ≈ k − 1.
For this reason we use Amin = k − 1 in our routine. Continuing with Amax, note that
0 > −1 ·Amax + (k − 1)ln(2 · 1 + 1) > −2 ·Amax + (k − 1)ln(2 · 2 + 1) > . . . holds already
if Amax > (k − 1)ln3 ≈ Amin. This implies that the sum over m = 1, . . . ,M∗ in (A.13) is
always less than M∗e−Amax+(k−1)ln3, and that the right-hand side of (A.13) is always less
than 2·max

{
M∗e−Amax+(k−1)ln3, e−(1+M∗)Amax g

g̃b(γ−∆γ)

}
. Hence, we know that the right-hand

side of (A.13) remains below 10−E if we choose Amax as

Amax = max
{
ln(2M∗) + (k − 1)ln3 + Eln10,

1

1 +M∗

(
ln(2g)− lng̃b(γ −∆γ) + Eln10

)}
.

3For example, one may compute a kernel estimate of the density at its median, which usually
is not far away from the mode since gb(γ) is su�ciently symmetric already for modest values of
k.

4In our calculations, we used a �ve-digit accuracy (i.e. E = 5) which worked well throughout all values
of γ.

5Note that this can be shown by evaluating k − 1 derivatives of equation (5c) in McGill and Gibbon
(1965) at zero.

6We use the R-method �uniroot�. We implement this by solving the natural logarithm of (A.13) for
−Eln10.
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A.3 Further Derivations for the Size-Biased Sampling Model

We now prepare a derivation of the induced order statistics representation of (X1, . . . , Xn)
with the following Lemma, whereby we also give a proof of the crucial property from
equation (3.12), which is the key equation that allows to use the general gamma density
in the size-biased sampling model. To give a concise notation for order statistics as in
equation (3.20), we introduce the following sets: let ∆n(c) be the unordered, and be
∆∗

n(a, b) the ordered, n-dimensional, open simplex over the intervals (0, c) and (a, b),
respectively:7

∆n(c) =
{
(ϵ1, . . . , ϵn) ∈ Rn

∣∣ϵ1, . . . , ϵn > 0,
n∑

i=1

ϵi < c
}
,

∆∗
n(a, b) =

{
(γ1, . . . , γn) ∈ Rn

∣∣a < γ1 < γ2 < . . . < γn < b
}
.

Note that with c = b−a, the latter set is a coordinate transform of the former set resulting
as the partial sums plus a shift by a.

Lemma 5. Let w1, . . . , wk > 0, and s ≥ 0. Upon de�ning the partial sums bi = wi+ . . .+
wk for each i = 1, . . . , k, the term

∏k
i=1(bi + s)−1 has the two integral representations

k∏
i=1

(bi + s)−1 =

∞�

0

∞�

γ1

· · ·
∞�

γk−1

e−γks

k∏
i=1

e−γiwidγi,

k∏
i=1

(bi + s)−1 =
k∏

i=1

b−1
i

∞�

0

e−γksgb(γk)dγk,

(A.14)

where gb(γk) is the general gamma density with parameters b = (b1, . . . , bk).

Proof of Lemma 5:

First, recall the straight-forward property of the exponential function that
�∞
0

e−ϵ(b+s)dϵ =
(b+ s)−1. Upon applying this for all i = 1, . . . , k, we get

k∏
i=1

(bi + s)−1 =
k∏

i=1

[ � ∞

0

e−ϵi(bi+s)dϵi

]
=

∞�

0

· · ·
∞�

0

e−(ϵ1+...+ϵk)se−(ϵ1b1+...+ϵkbk)dϵ1 · · · dϵk,
(A.15)

which follows directly from the distributive property.

To proceed, we rearrange the second exponent from (A.15) by applying a version of Abel's
summation by parts, which is the discrete analogue to integration by parts as applicable
to sequences.8 Upon de�ning γi = ϵ1 + . . . + ϵi for each i = 1, . . . , k, the summation by
parts formula is expressible as (see, e.g., Königsberger (2003), p. 305)

ϵ1(w1 + . . .+ wk) + ϵ2(w2 + . . .+ wk) + . . .+ ϵkwk

= γ1b1 + (γ2 − γ1)b2 + . . .+ (γk − γk−1)bk

= γ1(b1 − b2) + . . .+ γk−1(bk−1 − bk) + γkbk

= ϵ1w1 + . . .+ (ϵ1 + . . .+ ϵk−1)wk−1 + (ϵ1 + . . .+ ϵk)wk.

(A.16)

7Since in this paper all rvs are continuous, we restrict without loss of generality the sets to be open
and not closed, i.e. the inequalities to be strict instead of weak inequalities.

8For this case of �nite-dimensional vectors, the summation by parts formula is also easily derived by
simple matrix algebra: First, write the vector (b1, . . . , bk)

⊤ as the product of the upper triangular matrix

7



Then, the multivariate substitution (ϵ1, . . . , ϵk) → (γ1, . . . , γk) yields via the substitution
rule for multivariate mappings9

k∏
i=1

(bi + s)−1 =

∞�

0

· · ·
∞�

0

e−(ϵ1+...+ϵk)se−{ϵ1w1+...+(ϵ1+...+ϵk)wk}dϵ1 · · · dϵk

=

∞�

0

∞�

γ1

· · ·
∞�

γk−1

e−γkse−(γ1w1+...+γkwk)dγ1 · · · dγk.

To prove the second part, we proceed from (A.15) directly by substituting (ϵ1, . . . , ϵk−1, ϵk) →
(ϵ1, . . . , ϵk−1, γk), i.e. we substitute only γk = ϵ1 + . . .+ ϵk:

k∏
i=1

(bi + s)−1 =

∞�

0

∞�

0

· · ·
∞�

0

1(ϵ1 + . . .+ ϵk−1 < γk)e
−γkse−{ϵ1b1+...+(γk−ϵ1−...−ϵk−1)bk}dϵ1 · · · dϵk−1dγk

=
k∏

i=1

b−1
i

∞�

0

e−γks

{ �

∆k−1(γk)

( k−1∏
i=1

bie
−ϵibi

)
bke

−(γk−ϵ1−...−ϵk−1)bkdϵ1 · · · dϵk−1

}
dγk.

The proof is completed by noting that the integral in the curly brackets is precisely the
convolution of k exponential densities with parameters b1, . . . , bk. □

Both representations from Lemma 5 have probabilistic interpretations which are known in
the size-biased sampling literature. Starting with the second representation, multiplying
by
∏k

i=1 b
−1
i and setting s = x̃βk+1 + . . . + x̃βn proves the �rst line of equation (3.12). The

probabilistic derivation of equation (3.12) as found, for example, in Nair and Wang (1989)
(p. 427) and Lee (2008) (p. 179) is as follows: bi/(bi + s) is the Laplace transform of an
exp(bi)-distributed rv, expressible as εi/bi, where εi is standard exponential. The product∏k

i=1 bi/(bi+ s), then, is the Laplace transform of ε1/b1+ . . .+ εk/bk under independence,
i.e. of a rv which has the general gamma density with parameters b1, . . . , bk. We state the
probabilistic interpretation of the �rst representation in the next subsection after applying
it to rearrange the joint pdf of (X1, ..., XN)|N .

�lled with 1s and (w1, . . . , wk)
⊤. Then, rearrange the sum ϵ1b1 + . . .+ ϵkbk as

(ϵ1, . . . , ϵk) · (w1 + . . .+ wk, . . . , wk)
⊤

= (ϵ1, . . . , ϵk) ·

( 1 · · · 1
...

. . .
...

0 · · · 1

 ·

 w1

...
wk

) =

( 1 · · · 0
...

. . .
...

1 · · · 1

 ·

 ϵ1
...
ϵk

)⊤

·

 w1

...
wk


= (ϵ1, . . . , ϵ1 + . . .+ ϵk) · (w1, . . . , wk)

⊤.

9Note from the last footnote that the Jacobian of this mapping is the lower triangular matrix of 1s,
so that the Jacobian and its inverse have a constant determinant of 1.

8



A priori: the joint distribution of all �eld sizes in the order of discovery

We now use the �rst integral representation from Lemma 5 with wi = xβi , i = 1, . . . , n,
and s = 0 to rearrange equation (3.7). Factoring all terms inside the integrals, we get

P[X1 ∈ dx1, . . . , Xn ∈ dxn|N = n] = n!
n∏

i=1

xβi
xβi + . . .+ xβn

f(xi)dxi

=

∞�

0

∞�

γ1

· · ·
∞�

γn−1

n!
n∏

i=1

xβi e
−γix

β
i f(xi)dxidγi.

(A.17)

Following Pitman and Tran (2015) (pp. 2489�.), (A.17) can be summarized as follows: let
X̃1, . . . , X̃n be iid as in assumption (1), ε1, . . . , εn be iid standard exponential rvs, where
the εi are also independent of the X̃i, and de�ne Γ̃i = εi/X̃

β
i . By the fact that

(
(X̃i, Γ̃i),

i = 1, . . . , n
)
form n iid pairs from the joint pdf xβe−γxβ

f(x), and noting that n! = |In|,
we can restate (A.17) in probabilistic terms as

P[X1 ∈ dx1, . . . , Xn ∈ dxn|N = n]

=

∞�

0

∞�

γ1

· · ·
∞�

γn−1

∑
(i(1),...,i(n))∈In

P
[
Γ̃i(1) ∈ dγ1, X̃i(1) ∈ dx1, . . . , Γ̃i(n) ∈ dγn, X̃i(n) ∈ dxn

]
= P

[ ⋃
(i(1),...,i(n))∈In

{Γ̃i(1) < . . . < Γ̃i(n), X̃i(1) ∈ dx1, . . . , X̃i(n) ∈ dxn}
]
.

(A.18)

For a �xed set of size-measures, {x1, . . . , xn}, this interpretation was �rst proved by
Gordon (1983). (A.18) expresses the probability that the X̃i which becomes the �rst
size-biased pick has the smallest Γ̃i, the one which becomes the second size-biased pick
has the second smallest Γ̃i, etc., which means precisely that (X1, . . . , Xn) are the induced
order statistics or concomitants of (Γ̃1, . . . , Γ̃n) (Pitman and Tran, 2015, p. 2489).

We proceed by expanding in (A.17) each term by (minus one times) the derivative of the

Laplace transform.. Due to −ϕ′(γ) =
� x

x
xβe−γxβ

f(x)dx, this expansion is mathematically

equivalent to refactoring the joint density of (X̃i, Γ̃i) according to Bayes' rule. Then, the
joint pdf of (X1, . . . , Xn) given N = n can be restated as

∞�

0

∞�

γ1

· · ·
∞�

γn−1

{ n∏
i=1

xβi e
−γix

β
i f(xi)dxi

−ϕ′(γi)

}
·
{
n!

n∏
i=1

(−ϕ′(γi))dγi

}
. (A.19)

We denote the pdf from the �rst bracket by h(xi|γi) ∝ xβi e
−γix

β
i f(xi). The second bracket,

together with the integral boundaries, shows that (Γ1, . . . , Γn) are jointly distributed
as (increasing) order statistics from the pdf −ϕ′(γ) (with cdf 1 − ϕ(γ)). Pitman and
Tran (2015) (p. 2490) go further to express (A.19) in terms of decreasing uniform order
statistics, which immediately follows since ϕ(γ) is a complementary cdf. Making the
corresponding substitution ui = ϕ(γi), (A.19) becomes

1�

0

u1�

0

· · ·
un−1�

0

{ n∏
i=1

xβi e
−ϕ−1(ui)x

β
i f(xi)dxi

−ϕ′(ϕ−1(ui))

}
·
{
n!

n∏
i=1

dui

}
. (A.20)
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Overall, (A.17)-(A.20) imply two further procedures with which Monte Carlo draws for
(X1, . . . .Xn) can be obtained. The �rst one is to sample (X̃1, . . . , X̃n) randomly from f ,
then to draw Γ̃i|X̃i as Γ̃i = εi/X̃

β
i , and then to order the sequence as Γ̃i(1) < . . . < Γ̃i(n),

from which one obtainsX1 = X̃i(1), . . . , Xn = X̃i(n). The second one is to invert decreasing

uniform order statistics via u
!
= ϕ(γ), yielding (Γ1, . . . , Γn), and then draw each Xi|Γi

independently from the h-density. For the weight function w(x) = xβ we have found a
simple accept/reject procedure to draw from the h-density, which we will explain below
eq. (A.23).

A posteriori: the joint distribution of the remaining �eld sizes in the order of
discovery

We now derive a posterior version of these equations for the distribution of the remaining
�eld sizes (Xk+1, . . . , XN) given (X1, . . . , Xk, N). In (A.17-A.19), we interchange the order
of integration so that the integral over γk is the outermost integral, and the integrals over
γ1, . . . , γk and γk+1, . . . , γn are each pooled inside. Then, (A.17-A.19) becomes

n!

∞�

0

{
p(<)(x; γk)dx1 · · · dxk

}
·

�

∆∗
n−k(γk,∞)

{ n∏
i=k+1

xβi e
−γix

β
i f(xi)dxi

−ϕ′(γi)

}
·
{ n∏

i=k+1

(−ϕ′(γi))dγi

}
· dγk,

where we de�ne p(<)(x; γk) as the density of (X1, . . . , Xk) jointly with the probability that
the mixing rvs with index below k are smaller than the value γk, i.e.

p(<)(x; γk) =

�

∆∗
k−1(0,γk)

k∏
i=1

xβi e
−γix

β
i f(xi)dγi.

We rearrange the integral over the ordered set ∆∗
k−1(0, γk) by applying Abel's formula

(A.16) with bi = xβi +. . .+x
β
k , i = 1, . . . , k. That is, we substitute back (γ1, . . . , γk−1, γk) →

(ϵ1, . . . , ϵk−1, γk) to rearrange the p(<)-term as in the second integral representation of
Lemma 5 (with s = 0 and without the integral over γk which is kept �xed here):

p(<)(x; γk) =
{ k∏

i=1

xβi f(xi)
}
·
{ �

∆∗
k−1(0,γk)

e−(γ1x
β
1+...+γkx

β
k )dγ1 . . . dγk−1

}

=
{ k∏

i=1

xβi
bi
f(xi)

}
·
{ �

∆k−1(γk)

( k−1∏
i=1

bie
−ϵibi

)
bke

−(γk−ϵ1−...−ϵk−1)bkdϵ1 · · · dϵk−1

}

=
{ k∏

i=1

xβi
bi
f(xi)

}
· gb(γk).

This shows that the general gamma density expresses how the p(<)-term varies as a func-
tion of γk. Plugging this into the equation from above, and expanding by (n − k)! and
ϕ(γk)

n−k, yields

n!

(n− k)!

k∏
i=1

xβi
bi
f(xi)dxi ·

∞�

0

ϕ(γk)
n−kgb(γk)

·
( �

∆∗
n−k(γk,∞)

{ n∏
i=k+1

xβi e
−γix

β
i f(xi)dxi

−ϕ′(γi)

}
·
{
(n− k)!

n∏
i=k+1

−ϕ′(γi)

ϕ(γk)
dγi

})
· dγk

(A.21)
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Note that (A.21) expresses still the joint pdf of (X1, . . . , XN) given N = n. Dividing by
ℓ(x|n)dx1 · · · dxk to get the conditional pdf given (X1, . . . , Xk) = x, and dropping the
integral over γk so that this becomes a joint pdf for (Xk+1, . . . , XN , Γk), we get

P[Xk+1 ∈ dxk+1, . . . , Xn ∈ dxn, Γk ∈ dγk|(X1, . . . , Xk) = x, N = n]

=

(
ϕ(γk)

n−kgb(γk)dγk�∞
0
ϕ(γk)n−kgb(γk)dγk

)

·
∞�

γk

∞�

γk+1

· · ·
∞�

γn−1

{ n∏
i=k+1

xβi e
−γix

β
i f(xi)dxi

−ϕ′(γi)

}
·
{
(n− k)!

n∏
i=k+1

−ϕ′(γi)

ϕ(γk)
dγi

}
.

(A.22)

This shows that (Xk+1, . . . , Xn) depends on the observed data (X1, . . . , Xk) = x only via
its dependence on the mixing rv Γk, which has the data-dependent pdf g(0)(γk|x, n) ∝
ϕ(γk)

n−kgb(γk), as stated in equation (3.14). We also note from comparing (A.19) and
(A.22) that the h-density remains unchanged, while the n − k order statistics are now
from the truncated cdf 1− ϕ(γ)/ϕ(γk) de�ned on [γk,∞).

This shows that a Monte Carlo procedure based on inverting decreasing uniform order
statistics via the Laplace transform is almost the same as in the �a-priori case�, and
the h-density for drawing Xi|Γi remains unchanged. For the other procedure based on
exponential order statistics, it is now required that the (X̃k+1, . . . , X̃n) are drawn from the
remaining data pdf ρ(x|γk) (see equations (3.14 or 3.17) for a de�nition), before proceeding
as in the �a-priori case� to obtain Xk+1 = X̃i(k+1), . . . , Xn = X̃i(n).

An accept / reject procedure for drawing from the h-density

For the case of w(x) = xβ (with β ̸= 0), it is possible to make a rearrangement which
relates the h-density to the pdf of the Weibull distribution. Let us denote the sign of β
by d = signβ, so that w(x) = xd|β|. Then, the h-density is proportional to

h(x|γ) ∝ xd|β|e−γxd|β|
f(x)

∝ γ|β|xd(|β|−1)e−γxd|β| · xdf(x), ∀x ∈ [x, x].
(A.23)

Letting h
(Wei)
(|β|,γ)(s) = γ|β|s|β|−1e−γs|β| denote the pdf of the Weibull distribution with shape

parameter |β| and scale parameter γ, (A.23) shows that h(x|γ) ∝ h
(Wei)
(|β|,γ)(x

d) ·xdf(x). The
parameterization adopted here with the scale parameter γ is the one often encountered
in econometrics (e.g., Wooldridge, 2002, p. 689).10

Draws from the h-density for Xi|Γii are easily obtained by an accept / reject proce-
dure (see, e.g., Robert and Casella, 2010). Consider �rst the case of β > 0. Let X
denote repeated drawings from the truncated Wei(|β|, γi)-distribution on [x, x], and U

from the U(0, 1)-distribution. Then, since the function h
(Wei)
(|β|,γi)(x) · max

r∈[x,x]
{rf(r)} envelopes

h
(Wei)
(|β|,γi)(x) · xf(x), the rule for accepting becomes as follows: accept X as a draw for Xi

for the �rst pair (X,U) which ful�lls the inequality U · max
r∈[x,x]

{rf(r)} < Xf(X).11

10An alternative parameterization encountered in statistics is based on substituting ζ = γ−1/|β| as
the scale parameter, which is then directly proportional to the mean of the Weibull distribution. This
substitution might be impractical if |β| is very small.

11Note that for β > 0 and in the case of a log-uniform �eld-size distribution, which has density
f(x) ∝ 1/x on [x, x], the result is that Xi|Γi has the truncated Wei(|β|, γi)-distribution on [x, x].
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In the case of β < 0 we have d = −1, so that we get h
(Wei)
(|β|,γi)(x

−1)·x−1f(x) = h
(Wei)
(|β|,γi)(x

−1)x−2·
xf(x). In fact, integrating gives

� x

x
h
(Wei)
(|β|,γi)(r

−1)r−2dr =
� x−1

x−1 h
(Wei)
(|β|,γi)(s)ds, so that we can

make the repeated drawings X−1 from the truncated Wei(|β|, γi)-distribution on support
[x−1, x−1]. We then accept the inverse of the draw, X, as a draw for Xi for the �rst pair
(X−1, U) which ful�lls, as above, U · max

r∈[x,x]
{rf(r)} < Xf(X).

A.4 Maximum Likelihood Estimation

In this section we again show the parameter dependence and separate the truncation
factor in the �eld-size density as fθ/ptr(θ).

Point estimation

At �rst, we state the important relations which connect the log-derivatives of the pa-
rameter dependent function a(η) from a pdf from the exponential family to the mean
vector and covariance matrix of the su�cient statistics. If X is distributed with pdf
c(x)eη

⊤s(x)/a(η), then it holds that (see Dempster et al., 1977, p. 5)

a(η) =

�
c(x)eη

⊤s(x)dx,

⇒ ∂lna(η)

∂η
= Eη

[
s(X)

]
,

⇒ ∂2lna(η)

∂η∂η⊤ = Vη

[
s(X)

]
.

(A.24)

By truncating a pdf from the exponential family, the only change which occurs in the
exponential family form is that the parameter dependent function needs to be multiplied
by the truncation factor. Thus, the pdf of Ỹ1 has the parameter dependent function
a(η)(1− ptr(η)). Moreover, the density of the remaining �eld sizes, ρ, can be written in
exponential family form as

ρη(x|γ) =
[
e−γxβ

c(x)
]
eη

⊤s(x)
/[
a(η)ϕη(γ)ptr(η)

]
, (A.25)

which makes it clear that ρ has the parameter dependent function a(η)ϕη(γ)ptr(η). Table
A1 shows the exponential family form for the lognormal distribution.12

12The pdf of the Pareto distribution can be rearranged as fθ(x) = θxθ/xθ+1 = (1/x)e−θ(lnx−lnx)(1/θ−1),
hence η(θ) = −θ, s(x) = lnx − lnx, and lna(η) = −ln(−η). Taking derivatives with respect to η and
plugging in η(θ) yields ∂lna(θ)/∂η = 1/θ, ∂2lna(θ)/∂η2 = 1/θ2.
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Table A.1: Exponential family form for the lognormal distribution(
η1(µ, σ), η2(µ, σ)

)
=
(
µσ−2, (−2σ2)−1

)(
µ(η1, η2), σ(η1, η2)

)
=
(
η1(−2η2)

−1, (−2η2)
− 1

2

)
c(x) = 1√

2πx
, s1(x) = lnx, s2(x) = (lnx)2, lna(η) = −1

4

η21
η2

− 1
2
ln(−2η2)

Jacobian of η → θ: µ(η1, η2) σ(η1, η2)

Derivative w.r.t. η1 σ2 0

Derivative w.r.t. η2 2µσ2 σ3

Gradient of lna(η): ∂lna(θ)/∂η1 = µ, ∂lna(θ)/∂η2 = µ2 + σ2

Hessian of lna(η): ∂lna(θ)/∂η1 ∂lna(θ)/∂η2

Derivative w.r.t. η1 σ2 2µσ2

Derivative w.r.t. η2 2µσ2 4µ2σ2 + 2σ4

We continue from equation (3.16) by reparameterizing θ → η so that the exponential
family form of this equation becomes

F (η′, ν ′|η, ν) = k ·
(1
k

k∑
i=1

s(xi)
⊤η′
)
− klna(η′) + E(η,ν)

{( M∑
i=1

s(Ỹi)
⊤η′
)
−M lna(η′)

∣∣∣Ft

}
+ E(η,ν)

{( N∑
i=k+1

s(X̃i)
⊤η′
)
− (N − k)lna(η′)

∣∣∣Ft

}
− ν ′ + ln(ν ′)E(η,ν)

[
N
∣∣Ft

]
+ constant.

Thus, the necessary conditions for maximization with respect to (η′, ν ′) are obtained as

0
!
=
∂F (η′, ν ′|η, ν)

∂η′

⇔ E(η,ν)[N +M |Ft]
∂lna(η′)

∂η′ = k ·
(1
k

k∑
i=1

s(xi)
)
+ E(η,ν)[M |Ft]Eη

[
s(Ỹ1)

]
+ E(η,ν)

{ N∑
i=k+1

Eη

[
s(X̃i)

∣∣N,Γk,Ft

]∣∣∣Ft

}
⇔

E(η,ν)[N |Ft]

ptr(η)

∂lna(η′)

∂η′ = k ·
(1
k

k∑
i=1

s(xi)
)
+ E(η,ν)[N |Ft]

1− ptr(η)

ptr(η)
· Eη

[
s(Ỹ1)

]
+ E(η,ν)

{
(N − k) · Eη

[
s(X̃k+1)

∣∣Γk,Ft

]∣∣∣Ft

}
⇔ ∂lna(η′)

∂η′ = ptr(η)α(η, ν)
(1
k

k∑
i=1

s(xi)
)
+
(
1− ptr(η)

)
Eη

[
s(Ỹ1)

]
+ ptr(η)

(
1− α(η, ν)

) � ∞

0

Eη

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
g
(1)
(η,ν)(γ|Ft)dγ,

where α(η, ν) = k
/
E(η,ν)[N

∣∣Ft], and

0
!
=
∂F (η′, ν ′|η, ν)

∂ν ′
,

⇔ ν ′ = E(η,ν)[N |Ft].
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After taking derivatives, we evaluate the expectations stepwise by the law of iterated
expectations. To arrive at the second equality of the �rst order conditions for η, we pull
the constant Eη

[
s(Ỹi)|Ft

]
= Eη

[
s(Ỹ1)

]
out of the expectation. For the third equality, we

�rst use the fact that the NegBin(n, p)-distribution has the mean n(1− p)/p to arrive at
E(η,ν)[M |Ft] = E(η,ν)[N |Ft](1− ptr(η))/ptr(η). This also implies that the posterior mean
of N+M is the posterior mean of N scaled up by the inverse of the truncation probability.
Further, we use in the third equality the fact that

Eη

[
s(X̃i)

∣∣N,Γk,Ft

]
= Eη

[
s(X̃i)

∣∣Γk,Ft

]
= Eη

[
s(X̃k+1)

∣∣Γk,Ft

]
for all i = k + 1, . . . , N , as can be seen from equation (3.14). For the fourth equality, we
apply Corollary 1.3 (see A.7) to the outer expected value over the joint distribution of
(N,Γk)|Ft.

Finally, note that the necessary conditions are in fact su�cient for (η′, ν ′) to be a maxi-
mum given (η, ν). The function F (·|·) is globally concave in (η′, ν ′) since its hessian with
respect to (η′, ν ′) equals

∂2F (η′, ν ′|η, ν)
∂(η′, ν ′)∂(η′, ν ′)⊤

=

[
−E(η,ν)[N |Ft]

ptr(η)
∂2lna(η′)
∂η′η′⊤ 0

0 −E(η,ν)[N |Ft]

(ν′)2

]
,

where ∂2lna(η′)
∂η′η′⊤ is positive de�nite for each η′, as can be seen by its relation to a covari-

ance matrix from (A.24). Thus, independent of (η′, ν ′) all eigenvalues of the hessian are
negative, which implies that it is globally negative de�nite.

Interval estimation

By reparametrizing equation (3.13) into exponential family form, and then taking second-
order derivatives, we arrive at

∂2L(θ, ν)

∂η∂η⊤ =− k
(∂2lna(θ)
∂η∂η⊤ +

∂2lnptr(θ)

∂η∂η⊤

)
+

{ � ∞

0

∂2ϕθ(γ)

∂η∂η⊤
1

ϕθ(γ)
νϕθ(γ)e

ν(ϕθ(γ)−1)gb(γ)dγ

+

� ∞

0

∂lnϕθ(γ)

∂η

∂lnϕθ(γ)

∂η⊤

(
νϕθ(γ)

)2
eν(ϕθ(γ)−1)gb(γ)dγ

−
(� ∞

0

∂lnϕθ(γ)

∂η
νϕθ(γ)e

ν(ϕθ(γ)−1)gb(γ)dγ
)

·
(� ∞

0

∂lnϕθ(γ)

∂η⊤ νϕθ(γ)e
ν(ϕθ(γ)−1)gb(γ)dγ

)}/( � ∞

0

eν(ϕθ(γ)−1)gb(γ)dγ
)
.

Using ∂2ϕθ(γ)
∂η∂η⊤

1
ϕθ(γ)

= ∂2lnϕθ(γ)
∂η∂η⊤ + ∂lnϕθ(γ)

∂η
∂lnϕθ(γ)

∂η⊤ to split the second term, then combining

the resulting ∂lnϕθ(γ)
∂η

∂lnϕθ(γ)
∂η⊤ -term with the third term which also involves ∂lnϕθ(γ)

∂η
∂lnϕθ(γ)

∂η⊤ ,

and �nally using the formulas from (A.5) and (A.6) yields

∂2L(θ, ν)

∂η∂η⊤ =− k
(∂2lna(θ)
∂η∂η⊤ +

∂2lnptr(θ)

∂η∂η⊤

)
+ E(θ,ν)[N − k|Ft]

� ∞

0

∂2lnϕθ(γ)

∂η∂η⊤ g
(1)
(θ,ν)(γ|Ft)dγ

+ E(θ,ν)[(N − k)2|Ft]
{ � ∞

0

∂lnϕθ(γ)

∂η

∂lnϕθ(γ)

∂η⊤ g
(2)
(θ,ν)(γ|Ft)dγ

}
− E(θ,ν)[N − k|Ft]

2
{ � ∞

0

∂lnϕθ(γ)

∂η
g
(1)
(θ,ν)(γ|Ft)dγ

}{� ∞

0

∂lnϕθ(γ)

∂η⊤ g
(1)
(θ,ν)(γ|Ft)dγ

}
.

14



Moreover, the relations from (A.24-A.25) imply

∂lnϕθ(γ)

∂η
=
∂ln[a(θ)ptr(θ)ϕθ(γ)]

∂η
− ∂ln[a(θ)ptr(θ)]

∂η
= Eθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Eθ

[
s(X̃1)

]
,

∂2lnϕθ(γ)

∂η∂η⊤ =
∂2ln[a(θ)ptr(θ)ϕθ(γ)]

∂η∂η⊤ − ∂2ln[a(θ)ptr(θ)]

∂η∂η⊤ = Vθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Vθ

[
s(X̃1)

]
,(∂2lna(θ)

∂η∂η⊤ +
∂2lnptr(θ)

∂η∂η⊤

)
= Vθ

[
s(X̃1)

]
,

which �nally results for the Hessian of the log-likelihood w.r.t. η in the following formula

∂2L(θ, ν)

∂η∂η⊤ =− k · Vθ

[
s(X̃1)

]
+ E(θ,ν)[N − k|Ft] ·

{ ∞�

0

(
Vθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Vθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|Ft)dγ

}

+ E(θ,ν)[(N − k)2|Ft] ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Eθ

[
s(X̃1)

])
·
(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Eθ

[
s(X̃1)

])⊤
g
(2)
(θ,ν)(γ|Ft)dγ

}
− (E(θ,ν)[N − k|Ft])

2 ·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Eθ

[
s(X̃1)

])
g
(1)
(θ,ν)(γ|Ft)dγ

}

·
{ ∞�

0

(
Eθ

[
s(X̃k+1)

∣∣Γk = γ,Ft

]
− Eθ

[
s(X̃1)

])⊤
g
(1)
(θ,ν)(γ|Ft)dγ

}
.

A.5 Estimation of the Parameters of Ri under Assumption 4b

De�ne ek+1 = E
[
Xβ

k+1 + . . .+Xβ
N

∣∣Ft

]
, and ei = xβi + . . .+ xβk + ek+1 for each i = 1, . . . , k.

For the �rst k discovered �elds, we can use information about the number of exploratory
wells that had to be drilled to discover a �eld around the time of their discoveries. Let
this number be denoted by r−1

i , (such that ri is the success rate for �nding the ith �eld).
Extending equation (3.21) backwards to i = 1, . . . , k and replacing Xβ

i + . . . + Xβ
N with

its expected value given the data, ei, we can rearrange equation (3.21) into the linear
regression speci�cation

r−1
i = a0 + b0e

−1
i + ui, i = 1, . . . , k, (A.26)

where ui is an error term, and from which a0 and b0 can be readily estimated by OLS.13 If
instead the parameter b0 was replaced by a positive, non-linear function of the cumulative
exploratory wells z, e.g. b0(z) = c0 + c1e

−c2z, one could plug in the exploratory well data
for z and estimate eq. (A.26) by non-linear least squares.

13Setting a0 = 1, b0 could also be determined by interpolation of only the most recent value, i.e. using
only rk and ek. Solving eq. (A.26) with uk = 0 would give b0 = ek(r

−1
k − 1).
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