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A.1 Derivation of the Posterior Distribution from a Poisson prior

Under the Poisson prior assumption of N ~ Po(r), Bayes’ rule implies for the posterior
of N|F; that
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where ¢(x|n) is given in equation (3.13). Substituting [ = n — k, the numerator can be
rearranged as follows
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Hence, the posterior of the number of undiscovered fields becomes
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By combining this distribution with the conditional distribution of I',|(X, N — k), we
can derive a specific refactoring of the joint distribution of (I, N — k)|F;, which shows
that (N — k)|F; actually has a mixed Poisson posterior. The formulas we derive in
Lemma 3 for E[(N — k)!|F] and gV (v4|F;) have already been derived by Lee (2008) (see
equations (A.72)-(A.74) on pp. 195f.), while the refactoring in Lemma 2 has not been
stated explicitly in the literature, at least to our knowledge.

Lemma 1. It holds that
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Proof of Lemma 1: This follows directly from the definition of the exponential function.[]

Lemma 2. The joint distribution g (y|lz, 1) - P[N — k = I|F;] can be refactored as a
continuous mixture of Poisson distributions. In particular,
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Proof of Lemma 2:
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The formula for ¢ (4|, n — k) is given in equation (3.14), and the posterior for N — k
was derived above. We then apply Lemma 1 in the denominator, cancel the integrals

fo (%) g (7% )dy, reorder the terms, and finally expand by e ”¢(W) 0
Lemma 3. For m = 1,2, it holds for the postemor moments E[(N — k)™|F] that
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Proof of Lemma 3: (A.5) follows from the properties of the Po(\)-distribution which has
mean A and second moment A(1+ ), and then applying the law of iterated expectations.
For (A.6), note that integrating >, I™P[N — k = |}, = ]9 (x| F;) over v would
vield precisely the m™ posterior moment as in (A.5). Hence the numerators in (A.6) are
just the numerators in (A.5) without the integral. Dividing by E[(N — k)™|F;] is the
normalization required such that g™ (4| F;) becomes a density. O

Lemma 4. Consider any continuous transformation of I'y, denoted by t*(I). For m =
1,2, provided that [~ t*(ve) g™ (| Fo)dys exists, it holds that

E[(N — k)™ (I%)|Fi] = E[(N — k)™|F] /Ooot*('Yk)g(m)('Vk|ft>d'Yk~ (A7)

Proof of Lemma 4: We write out the expectation with respect to (N — k)|[}, and
Iy |F; as factored in (A.3), expand by E[(N — k)™|F;], and then recognize the formula of

9™ (| Fo). O

A.2 Numerical Calculation of the General Gamma Density

To simplify the notation in this section, we drop the index £ in 7. A draw from the
general gamma distribution gp(y) with parameters b = (by, ..., bx) and support [0, c0) as
defined in section 3.2 is easily obtained by the sum Zle /b, where ¢; are iid stan-
dard exponential variates. Thus, one can approximate the density gy(y) by Monte Carlo
methods and one could try to approximate the integrals of the type foo e (@M=D gy (v)dry
or [[7¢ (7)d~y by Monte Carlo integration. However, the integrands e '~ or
() * eXhlblt a very sharp decline after zero due to the large exponents v and n — k.!

!The Laplace transform ¢(v) fulfills ¢(0) = 1, is convex, and declines monotonously towards the
asymptote lim ¢(y) = 0. This carries over to the integrand ¢(y)"~*. The integrand e *[1=¢(} also
Y—00

starts at 1, is convex, and declines monotonously towards the asymptote e™”. Both integrands exhibit
an extremely sharp decline in the proximity of zero.



Thus, a highly precise evaluation of gy(7) is required at its left tail in the proximity of
zero. Since Monte Carlo methods do not perform well at approximating the tails of a
distribution, they have not been used in the literature here to our knowledge.

The pdf gs(7y) does have an analytical expression, which can be obtained via partial frac-
tions expansion from its real-valued Laplace transform as given by (s) = H§:1 b;/(b; +
s). The resulting expression is (see McGill and Gibbon, 1965, pp. 4f.; Barouch and
Kaufman, 1976, p. 13)
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However, this expression is practically useless for accurately evaluating the density, in
particular at the important values near zero (Nair and Wang, 1989, pp. 430f.). The
problem with this formula is that already for modest values of £k the coefficients Cj,
j = 1,....k, become extremely large (and are always alternating in sign) so that each
coefficient would need to be calculated with numerically infeasible precision.

The approach chosen in the size-biased sampling literature to calculate the general gamma
density is the Fourier-series method for numerically inverting the complex-valued Laplace
transform of g,(y). Let i = \/—1 denote the imaginary number, and let s = a + iw
be a complex number. The inversion integral ¥p(s) — gp(7y) of the Laplace transform
gu(77) — Yp(s) is given by the following formula (Durbin, 1974, p. 371; Abate and Whitt,
1995, p. 37):
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0 (A.8)
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where a can be an arbitrary number greater than the real parts of all singularities of the
complex-valued Laplace transform, i.e. in this case a > —0by.

Inverting Laplace transforms via the Fourier-series method means essentially that a trape-
zoidal rule is applied to either of the integrals from (A.8). It can be shown that for these
integrals, certain trapezoidal rules are equivalent to Fourier-series approximations of the
density on a certain compact interval. This makes the method particular effective as a
numerical technique here (Durbin, 1974; Crump, 1976; Abate and Whitt, 1995).

The version of the Fourier-series method we found most useful and practical to implement
for the problem of evaluating the general gamma density is the “Euler method”, which
is described in the context of probability applications by Abate and Whitt (1995), and
which builds on earlier work by Dubner and Abate (1968) and Simon et al. (1972). In
particular, for the “Euler method” a trapezoidal rule with a step-size of h = 7/27 is
applied in the second line of (A.8) (or equivalently with a step-size of h = 7/v in the
first line). Denoting the Fourier-series approximation of g(y) by gp(7), and also setting
a = A/2~, this yields for gp(y) at each v the nearly alternating series (Abate and Whitt,
1995, pp. 37f.)

i) = [;Re{wb(;‘y)} " ;<—1>mRe{wb(“’;f"”)) 1. (A.9)
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In the case of the general gamma distribution, the real part of the complex-valued Laplace
transform is easily derived as

Re{ts(a + iw)} :(
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It can be shown generally that the discretization error of the approximation gy(7), i.e.
the difference between the series in (A.9) and the exact integral in (A.8), equals (Abate
and Whitt, 1995, p. 38):

Go(7) = g6(7) = > e gp(y(2m + 1)). (A.11)

m=1

The crux of the method is that the free parameter A can always be chosen such that the
discretization error becomes as small as desired. For example, if we wanted a discretization
error of exactly 10~ at some ~y, we would need to choose A such that the right-hand side
of (A.11) equals 107%. Obviously, since gp(y(2m + 1)) is not known, this cannot be done.
What can be done is bounding (A.11) by using a function which envelopes gp(y), and
calculate A based on this envelope so that the discretization error is forced to be less than
107E,

However, the delicacy of the Fourier-series method is that there is a risk of setting A too
high, which can lead to large error. The reason is that the discretization error (A.11) is not
the only error, there is also always an error from truncating the series in (A.9). The term
e/2 in (A.9) reveals that this truncation error grows exponentially with A. To mitigate
this problem, Euler summation for accelerating the convergence of the series in (A.9) has
been proposed in the literature (Simon et al., 1972), which allows to approximate the
limit of the nearly alternating series much more efficiently (Abate and Whitt, 1995), and
which is where the name “Euler method” derives from. According to Abate and Whitt
(1992; 1995), Euler summation for an alternating series is equivalent to a simple weighted
average of the last AM partial sums, where the weights are from the binomial distribution
with parameters AM and p = 1/2. Put more clearly, Euler summation of (A.9) amounts
to calculating the terms inside the sum of (A.9) for m = M, M +1,....M + AM, then
calculating the corresponding partial sums while also adding the initial M terms, and
finally averaging with the binomial probabilities.?

Note that one cannot evaluate (A.9) at multiple gridpoints at once, but can only evaluate
it iteratively. This may be seen as a disadvantage of the method, but there is also a
clear advantage of such an iterative evaluation: if we know that gp(y — Av) < gu(7),
we can exploit this monotony in order to bound the relative discretization error using
B9 =960 51 replace the denominator by the approximation at the previous

96(7) = g(y=Av) Y
gridpoint, gp(7 — A7), provided that it has been calculated without large error.

To further mitigate the problem of choosing A too high, the remainder of this section is
concerned with how to choose A as a function of the desired error E. The usual candidate
for bounding gp(7) is its maximum. As discussed in McGill and Gibbon (1965) (pp. 6ff.),
it is clear that gp(7) behaves globally similar as a usual gamma density, in particular that
g5(0) = 0 (for & > 2), gp(00) = 0, and that it passes through a unique maximum. The

2Abate and Whitt (1995) (p. 38) propose to use AM = 11. In our applications we always use
AM =11, and use M = 100, increasing M to 500 for very small values of ~.



maximum is not derivable analytically, but can be easily approximated by a Monte Carlo-
simulation.?

In the following, we propose our idea how to get an improved envelope for g(y) at very
small values of 7, so that at these values, the error parameter £ need not be chosen with
as much care as when using the constant bound only.? It is known about gy(7) that the
first £ — 2 derivatives vanish at zero, and that the Taylor expansion around zero equals
(Barouch and Kaufman, 1976, p. 13; Nair and Wang, 1989, p. 430)°

k k—1

a(7) = H bjﬁ +0(7h). (A.12)

Combining the Taylor approximation with the maximum of the pdf (g) as an envelope
for gu(7), we can bound the relative discretization error in (A.10) at v as follows:
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If we let M™ be the last index where the Taylor approximation yields the smaller bound
(and set M* to zero if this does not happen at all), we get that

M*:max{(),{—%—l—l(ig )ﬁJ},

gv(v — Ay)

and

_ M*  _mA _ (MDA 7 X
gb(’}/) _gb(ly) < {Z'm—le (2m+ ]‘)k ! +e (M*+1) §b(v€A7)’ M > ]-: (A13)

—A g *
gb(,Y) € gb(’Y—A"/)’ M - 07

where we omit the factor 1/(1 — e™*) from summing the geometric series, which for all
practical purposes can be replaced by one since e=* will be small. For M* = 0, the right-
hand side of (A.13) is easily solved for A to achieve a relative error of 10~¥. For M* > 1,
we need a root-finding algorithm to determine A.5 The issue we are left to discuss is
which lower and upper bounds A, and An.x to feed into the root-finding algorithm
so that the right-hand side of (A.13) is above 107 at Any, and below 107 at Apa.
Starting with Ay, the right-hand side of (A.13) is obviously larger than its first summand,
e~ Amint (k=13 " which is greater or equal to 1 already if Amin < (k — 1)In3 ~ k — 1.
For this reason we use Ay, = k — 1 in our routine. Continuing with A, note that
0>—1-Apax+(k—1DIn(2-1+1) > =2 Apax + (k— 1)In(2-2+ 1) > ... holds already
if Apax > (K — 1)In3 &~ An. This implies that the sum over m = 1,..., M* in (A.13) is
always less than M*e~Amaxt(k=1In3 “and that the right-hand side of (A.13) is always less

than 2-max{M*eAmaxt(k=DIn3 o=(1+M)Amax 9 -1 Hence, we know that the right-hand
go(Y—A7)

side of (A.13) remains below 1077 if we choose Apax as

Amax = max{ln(Z]W*) + (k — 1)In3 + EIn10, ﬁ(ln@g) —Ingp(y — Ay) + Elnl())}.

3For example, one may compute a kernel estimate of the density at its median, which usually
is not far away from the mode since gp(7y) is sufficiently symmetric already for modest values of
k.

*In our calculations, we used a five-digit accuracy (i.e. E = 5) which worked well throughout all values
of ~.

®Note that this can be shown by evaluating k — 1 derivatives of equation (5¢) in McGill and Gibbon
(1965) at zero.

SWe use the R-method “uniroot”. We implement this by solving the natural logarithm of (A.13) for
—FElIn10.



A.3 Further Derivations for the Size-Biased Sampling Model

We now prepare a derivation of the induced order statistics representation of (X, ..., X,)
with the following Lemma, whereby we also give a proof of the crucial property from
equation (3.12), which is the key equation that allows to use the general gamma density
in the size-biased sampling model. To give a concise notation for order statistics as in
equation (3.20), we introduce the following sets: let A,(c) be the unordered, and be
A’ (a,b) the ordered, n-dimensional, open simplex over the intervals (0,c) and (a,b),
respectively:”

An(e) ={(e1,- .., en) ER"|er,.. e >0, > e <c},

i=1
A (a,b) :{(71,...,%) € R”|a <M< P<. < TW< b}.

Note that with ¢ = b—a, the latter set is a coordinate transform of the former set resulting
as the partial sums plus a shift by a.

Lemma 5. Let wy,...,w, >0, and s > 0. Upon defining the partial sums b; = w; +. ..+
wy for each v =1,... k, the term Hle(bi + 8)~1 has the two integral representations

k o0 X o0 k
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where gp(7x) is the general gamma density with parameters b = (by,. .., by).
Proof of Lemma 5:

First, recall the straight-forward property of the exponential function that fooo e~cts)de =
(b+ s)~'. Upon applying this for all : = 1,...,k, we get

[ / ocilbits) del}
0

[
. / e*(61+--»+€k)Se*(€1b1+-~-+€kbk)d€1 L de,
0

k

[[®i+s)" =

i=1

(A.15)

ST I

which follows directly from the distributive property.

To proceed, we rearrange the second exponent from (A.15) by applying a version of Abel’s
summation by parts, which is the discrete analogue to integration by parts as applicable
to sequences.® Upon defining v; = €; + ... + ¢ for each i = 1,..., k, the summation by
parts formula is expressible as (see, e.g., Konigsberger (2003), p. 305)

e(wr + ... +wp) +e(we+ ...+ wi) + ...+ epwy
=yb1 + (72 —71)b2 + .+ (Ve — Ye—1)bi

=71(by —b2) + ... + Y1 (br—1 — bi) + Yibr
=quw+...+(e+ ...+ e)wp1+ (e1+ ...+ ep)wg

(A.16)

"Since in this paper all rvs are continuous, we restrict without loss of generality the sets to be open
and not closed, i.e. the inequalities to be strict instead of weak inequalities.

8For this case of finite-dimensional vectors, the summation by parts formula is also easily derived by
simple matrix algebra: First, write the vector (by,...,b;)" as the product of the upper triangular matrix



Then, the multivariate substitution (ey,...,€x) — (71,...,7) yields via the substitution
rule for multivariate mappings®

k

H(bi + 5)71 _ /.__/e(ﬁl“’m‘#fk)se{Elwl+~~~+(€1+~~+€k)wk}d€1 - dey,
0 0

i=1
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_ // .. / e*%se*(vlw1+...+vkwk)d,yl o dy
Ve—1

0 m

To prove the second part, we proceed from (A.15) directly by substituting (ey, ..., €x_1,€x) —
(€1,...,€k_1,7k), i.6. we substitute only v, =€ + ... + €:

k

H(b + )"

i=1

||
0\8

/ /]l €+ ..ot < ’yk)e_%se_{qb1+"'+(%_€1_"'_ek’l)bk}dq tee defld’}/k
0

|
’:];r

.
Il

0
* k-1
b 1 /e “/ks{ / ( H bieffibzﬂ) bke*(’kaél*»--*ﬂcfl)bkdel cdep g }d')/k-
1 0 i=1

Ag—1(7k)

The proof is completed by noting that the integral in the curly brackets is precisely the
convolution of k exponential densities with parameters by, ..., by. O

Both representations from Lemma 5 have probabilistic interpretations which are known in
the size-biased sampling literature. Starting with the second representation, multiplying
by T15, b;" and setting s = 55£+1 + ...+ 7 proves the first line of equation (3.12). The
probabilistic derivation of equation (3.12) as found, for example, in Nair and Wang (1989)
(p. 427) and Lee (2008) (p. 179) is as follows: b;/(b; 4+ s) is the Laplace transform of an
exp(b )-distributed rv, expressible as ¢;/b;, where ¢; is standard exponential. The product
15, b:/(b;+ ), then, is the Laplace transform of &, /by + ... + &4 /by, under independence,
i.e. of a rv which has the general gamma density with parameters by, ..., b,. We state the
probabilistic interpretation of the first representation in the next subsection after applying
it to rearrange the joint pdf of (X7, ..., Xy)| V.

filled with 1s and (w1, ..., w;) . Then, rearrange the sum e;by + ... + e,by as
(61,...,€k)-(wl—O—...—O—wk,...,wk)T
1 - 1 wq 1 -+ 0 €1 T w1
ST e
0o --- 1 Wy 1 -1 €k Wy
:(61,..4751+..4+Ek)-(wl,..l,wk)T.

9Note from the last footnote that the Jacobian of this mapping is the lower triangular matrix of 1s,
so that the Jacobian and its inverse have a constant determinant of 1.



A priori: the joint distribution of all field sizes in the order of discovery

We now use the first integral representation from Lemma 5 with w; = xf, t=1,...,n

and s = 0 to rearrange equation (3.7). Factoring all terms inside the integrals, we get

n 8
X
]P)[Xl S d.I'l,. ..,Xn S d.’En|N = n] = H'Hﬁf( )dlfz

+ xn

// /n'Hx el f(z;)dady;.

1 Tn—1

(A.17)

Fpllowing Pitman and Tran (2015) (pp. 2489ft.), (A.17) can be summarized as follows: let
X1,...,X, beiid as in assumption (1) €1,...,&, be iid standard exponential rvs, where

the g; are also independent of the X;, and deﬁne I, = &/XB By the fact that ((X'z, fl)

i=1,...,n) form n iid pairs from the joint pdf z’e~ 7" f(z), and noting that n! = |Z,|,
we can restate (A.17) in probabilistic terms as

P[X; € dxy, ..., X, € da,|N =n]

:/// Z IP)[ 1)€d’)/1, l(l)edxl,... zn)ed’}/n zn)den}
0 7 Yn—1 (i(1),...,i(n))ELn (A18)

= IP’|: U {fi(l) <... < fi(n), Xi(l) € dxy,... ,Xz-(n) € d:l?n} .
(

For a fixed set of size-measures, {z1,...,x,}, this interpretation was first proved by
Gordon (1983). (A.18) expresses the probability that the X; which becomes the first
size-biased pick has the smallest I, the one which becomes the second size-biased pick
has the second smallest I}, etc., which means precisely that (X,...,X,) are the induced
order statistics or Concomltants of (I',...,I},) (Pitman and Tran, 2015, p. 2489).

We proceed by expanding in (A. 17) each term by (minus one times) the derivative of the
Laplace transform.. Due to —¢'(~y f zPee’ f(x)dz, this expansion is mathematically

equivalent to refactoring the Jomt density of (XZ, I ) according to Bayes’ rule. Then, the
joint pdf of (X1,...,X,) given N = n can be restated as

// / { e i;'((l) )dxi}.{n!}i(gb'(%))d%}. (A.19)

71 Tn—1

We denote the pdf from the first bracket by h(x;|v;) x’fe‘”mff(xi). The second bracket,
together with the integral boundaries, shows that (I7,...,I,) are jointly distributed
as (increasing) order statistics from the pdf —¢'(y) (with cdf 1 — ¢(v)). Pitman and
Tran (2015) (p. 2490) go further to express (A.19) in terms of decreasing uniform order
statistics, which immediately follows since ¢(7) is a complementary cdf. Making the
corresponding substitution u; = ¢(7;), (A.19) becomes

/17 “/1{ lel xfejéi(;_l(];(l dez} {n'Hduz} (A.20)



Overall, (A.17)-(A.20) imply two further procedures with which Monte Carlo draws for
(X1,....X,) can be obtained. The first one is to sample (X1, ..., X,) randomly from f,
then to draw I |X as I, = gz/ ;, and then to order the sequence as fi(l) <... < fi(n),
from which one obtains X; = Xz(1)7 ey Xy = X’i(n). The second one is to invert decreasing

uniform order statistics via u = &(v), yielding (I1,...,1},), and then draw each X;|I;
independently from the h-density. For the weight function w(z) = 2° we have found a
simple accept/reject procedure to draw from the h-density, which we will explain below
eq. (A.23).

A posteriori: the joint distribution of the remaining field sizes in the order of
discovery

We now derive a posterior version of these equations for the distribution of the remaining
field sizes (Xyi1, ..., Xn) given (Xi, ..., Xk, N). In (A.17-A.19), we interchange the order
of integration so that the integral over 74 is the outermost integral, and the integrals over
My ooy Yk and Ygi1, ..., Vo are each pooled inside. Then, (A.17-A.19) becomes

n!/{P(<)($;%)d$1'“dIk}' / { ﬁ xfc_v_z,{%l)dxl} { ﬁ (—¢'(%‘))d%‘} ~d,

Afb_k(’WmOC) i=k+1 i=k+1

where we define p()(x; ;) as the density of (Xi,..., X}) jointly with the probability that
the mixing rvs with index below k are smaller than the value v, i.e.

Py (@) = / Hfre“f )i,

* 1
Ak—l(ovﬁﬁv) =

We rearrange the integral over the ordered set A; ;(0,7%) by applying Abel’s formula
(A.16) with b; = x’f—i—. ) .+wf, i =1,..., k. That is, we substitute back (71, ..., vk—1, V%) —
(€1,...,€x—1,7) to rearrange the p.)-term as in the second integral representation of
Lemma 5 (with s = 0 and without the integral over 7 which is kept fixed here):

w0 = {TTir@}-{ [ eobeban )
i=1

AL 1 (07k)
kB k—1
= { H ?lf(fz)} . { / (H bie—ﬁ,bi)bke—("/k—ﬂ—...—ek,l)bkdel . d€lc71}
=t NTRTCS B

7

{Hb’fﬂcz} 96(Vk)-

This shows that the general gamma density expresses how the p()-term varies as a func-
tion of .. Plugging this into the equation from above, and expanding by (n — k)! and

S()", yields

n! p
mii ;)dz; - /sb
no B 0 f(z:)d (A.Ql)
xhe “/zzi x\dx,
. 3 /e K 1 d’y
(A;kwk,oo) {igl —9') } { 1111 (. }> ’
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Note that (A.21) expresses still the joint pdf of (X3,..., Xy) given N = n. Dividing by
((x|n)dzy - - - dxyg to get the conditional pdf given (Xj,...,X;) = @, and dropping the
integral over ~y; so that this becomes a joint pdf for (Xy1,..., Xn, %), we get

P[Xkt1 € doggr, ..., Xy € day, Iy € dyi|(Xy, ..., Xi) =&, N =n]

< O(7)" " g6 (Y )d7k>
fo (3)" " go ()i (A.22)

ST T ) oo T 5]

Yk Yk+1 Yn—1 i=k+1

This shows that (Xx.1,...,X,) depends on the observed data (X,..., X}) = @ only via
its dependence on the mixing rv I}, which has the data-dependent pdf ¢(®(vy;|x,n) o
d(7)" *gp(k), as stated in equation (3.14). We also note from comparing (A.19) and
(A.22) that the h-density remains unchanged, while the n — k order statistics are now
from the truncated cdf 1 — ¢(y)/@d(yx) defined on [y, 00).

This shows that a Monte Carlo procedure based on inverting decreasing uniform order
statistics via the Laplace transform is almost the same as in the “a-priori case”, and
the h-density for drawing X;|T'; remains unchanged. For the other procedure based on

exponential order statistics, it is now required that the (Xk+1, e ») are drawn from the
remaining data pdf p(z|vx) (see equations (3.14 or 3.17) for a definition), before proceeding
as in the “a-priori case” to obtain X1 = Xjuq1),. .., Xy = Xjm).

An accept / reject procedure for drawing from the h-density

For the case of w(r) = 2 (with B # 0), it is possible to make a rearrangement which
relates the h-density to the pdf of the Weibull distribution. Let us denote the sign of
by d = signf3, so that w(z) = x¥°!. Then, the h-density is proportional to

h(zly) oc 21%e=1= f(z)

. (A.23)
o | B|zdIFI=De=re . -2 f(z), Vo € [z,7T).

Letting h(lb’\ ))( ) = 7|8]s81-te=7""! denote the pdf of the Weibull distribution with shape

parameter || and scale parameter +y, (A.23) shows that h(z|y) o< h rg‘el (@ z?)-2¢f(z). The
parameterization adopted here with the scale parameter 7 is the one often encountered

in econometrics (e.g., Wooldridge, 2002, p. 689).1°

Draws from the h-density for X;|I}; are easily obtained by an accept / reject proce-
dure (see, e.g., Robert and Casella, 2010). Consider first the case of § > 0. Let X
denote repeated drawings from the truncated Wei(|5],y;)-distribution on [z,Z]|, and U

from the U(0, 1)-distribution. Then, since the function h(lb’\ ))(az)- m[ax}{rf( )} envelopes
relz,T

hg?gle;z () - xf(x), the rule for accepting becomes as follows: accept X as a draw for X;

for the first pair (X, U) which fulfills the inequality U - m[ax}{rf(r)} < Xf(X)M
re|x,T

10An alternative parameterization encountered in statistics is based on substituting ¢ = v~ /I8l as
the scale parameter, which is then directly proportional to the mean of the Weibull distribution. This
substitution might be impractical if |§| is very small.

HUNote that for 8 > 0 and in the case of a log-uniform field-size distribution, which has density
f(z) o< 1/ on [z,T], the result is that X;|I; has the truncated Wei(|B|,y;)-distribution on [z, Z].
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In the case of 3 < 0 we have d = —1, so that we get h(lﬁl w) y@ ) f(x) =h rgf;)l)(x_l)x_z

2f(x). In fact, integrating gives [ h(l\g‘e;)( Hr2dre = 7 N hgrgfi/) (s)ds, so that we can

make the repeated drawings X ! from the truncated Wei(|3|, v;)-distribution on support
[z7!,27!]. We then accept the inverse of the draw, X, as a draw for X; for the first pair

(X1, U) which fulfills, as above, U - m[ax]{rf(r)} < X f(X).
r€lz,T

A.4 Maximum Likelihood Estimation

In this section we again show the parameter dependence and separate the truncation
factor in the field-size density as fo/pi:(0).

Point estimation

At first, we state the important relations which connect the log-derivatives of the pa-
rameter dependent function a(n) from a pdf from the exponential family to the mean
vector and covariance matrix of the sufficient statistics. If X is distributed with pdf
c¢(x)e #@) /a(n), then it holds that (see Dempster et al., 1977, p. 5)

aln) = / (2)en" e,
)

Jlna
L 67;’7 E, [s(X)], (A.24)
d’lna(n)

By truncating a pdf from the exponential family, the only change which occurs in the
exponential family form is that the parameter dependent function needs to be multiplied
by the truncation factor. Thus, the pdf of Y; has the parameter dependent function
a(n)(1 — pw(m)). Moreover, the density of the remaining field sizes, p, can be written in
exponential family form as

pa(ly) = [e7 c(@)]e *@) / [a(m)én(7)per(m)]. (A.25)

which makes it clear that p has the parameter dependent function a(n)¢.,(v)pw(n). Table
A1l shows the exponential family form for the lognormal distribution.!?

12The pdf of the Pareto distribution can be rearranged as fy(x) = 02 /z0*! = (1/z)e~0(nz—Inz)(1/9-1),
hence n(f) = —6, s(z) = lnz — lnz, and lna(n) = —In(—n). Taking derivatives with respect to n and
plugging in n(0) yields dlna(0)/0n = 1/6, 9*Ina(0)/on? = 1/62.

12



Table A.1: Exponential family form for the lognormal distribution

(m(p,0),m(p,0)) = (po=2,(=20%)71)
(#(m1,m2), 0(m,m2)) = —2m2)~ ’(727}2)7%)

(m(
c(z) = ﬁ, s1(x) = Inx, sy(z) = (Inz)?, Ina(n) = —i% — fln( 21))
)

Jacobian of n — 6: w(ni, mo (m1,m2)
Derivative w.r.t. m; o? 0
Derivative w.r.t. 1, 240 o3

Gradient of Ina(n): dlna(0)/0n = p, Olna(0)/0n, = p* + o

Hessian of Ina(n): Olna(0)/0m dlna(0)/0n,
Derivative w.r.t. n; o? 210>
Derivative w.r.t. 7, 2uo? 4p20? + 204

We continue from equation (3.16) by reparameterizing @ — 1 so that the exponential
family form of this equation becomes

F(n',V'nwv)=k- (;Xk:s )fklna( )+E(nu){(
i=1

+ Enn{ ( S s(X)T') = (N = k)na()

i=h+1
— V' + In(v)E () [N|F] + constant.

NE

s(V:)"n') — MIna(ry)

)

1

}

.
Il

Ny

Thus, the necessary conditions for maximization with respect to (n’,7’) are obtained as

L OF (1, V|n, v)
0
& B[N + M|F] almn( ) . (% > s(xi)) + Eya) [M|FJEy [s(V1)]
+IE(?W){ Z E,[s(X:)|N, I}, 7 .7:;}
i) [N17) Olal) (L Lopuln) g v
() om " (k; (@) + B V17 putn) =)
n IE(W){ N = k) - Ey[s(Xi11)| Th 2] ]-“i}
& ahgfr;?/) = pu(n)(n,v) (% > s(:ci)) + (1= pu(m)Ey [s(Y1)]

=1
+ pu(n) (1 — a(n, l/))/ By [s(Xis1) | T = 7, Fi] gl (V1 F)d,
0
where a(n, v) = k:/]E(W,) [N|}"d, and
oL OF (', vVin,v)
ov' ’
&V =Eq, [N|FA
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After taking derivatives, we evaluate the expectations stepwise by the law of iterated
expectations. To arrive at the second equality of the first order conditions for 1, we pull
the constant E,, [s(f/@)|}1} =E, [s(ffl)] out of the expectation. For the third equality, we
first use the fact that the NegBin(n, p)-distribution has the mean n(1 — p)/p to arrive at
E ) [M|Ft] = Eu)[N|FJ(1 = per(n))/per(n). This also implies that the posterior mean
of N+ M is the posterior mean of NV scaled up by the inverse of the truncation probability.
Further, we use in the third equality the fact that

Fi| =E, [s(Xi)

foralli =k+1,..., N, as can be seen from equation (3.14). For the fourth equality, we
apply Corollary 1.3 (see A.7) to the outer expected value over the joint distribution of
(N, I;)|F:.

Finally, note that the necessary conditions are in fact sufficient for (n’,7') to be a maxi-
mum given (n,v). The function F(:|-) is globally concave in (n’,2') since its hessian with
respect to (n',v') equals

Er [S(Xz)

Fi] = By [8(Xes) 13, 7]

E () [N 7] 6%Ina(n’)
OPFEm, Vnw) | == Gyt 0
8(77/7 V/)a(n/, V’)T 0 _W

021 JATEN o . . . . .
where 8751,0:’(,?) is positive definite for each n’, as can be seen by its relation to a covari-

ance matrix from (A.24). Thus, independent of (n’,7/) all eigenvalues of the hessian are
negative, which implies that it is globally negative definite.

Interval estimation

By reparametrizing equation (3.13) into exponential family form, and then taking second-
order derivatives, we arrive at

9’L(6,v) B k<821na(0) (92lnptr(0))
ononT onon™ ononT
= Ppo(1) 1 .
+ v ev(Pe(v)—1) d
{ . monT de(?) da(7) gu(7)dy

> 0l 2l
/0 ng:;(’}/) I;ie_r(’)/) (V¢9(7))2eu(¢8<7)—1)gb(fy)d’y

" Olnde() .
_ </0 TV@(V)Q (Po(7) 1)91)(7)(17)

. (/OOO 311;?;(7) vg(7)e” @D gy ( )d,y>}/(/ooo Cu(gﬁg(w),l)gb(v)d’y)'

Pgo(y) 1 _ 9%lnde(y) , Olnde(y) dnde(y)
monT ¢e(v) onom ™ on on'

the resulting 8ln¢9(7) al%"WLterm with the third term which also involves

and finally using the formulas from (A.5) and (A.6) yields
0?L(0,v) _ k(32lna(0) N 821nptr(9)>
onon™ onon’ onon’
*Inge(7y) |
+BanlV = k7] [T 1)

0l ol
T AL i e e

_E(G,V)[N_M]:LP{/ alngfl( ) (91/( |~7:t) }{/OOO é)h;?ﬁ?eT( ) ((é>,,)(’}/|]'—t)d7}

0

Using to split the second term, then combining

31Hd>9( ) Olngg (v)
on  oml

14



Moreover, the relations from (A.24-A.25) imply
dlnge(y) _Onfa(0)pi(0)¢e(v)]  Infa(6)pw ()]

=[Eq [S(Xk+1)|rk =7 ]:z] —Eq [S(Xl)}’

om on on
Lal) ol Qo) _ S eCIO g [s( ) I = 5. 5] — Vals(0),

9’Ina(0) ~ ’lnp,(0)\ -
( ononT ononT ) = Vo[s(X1)].
which finally results for the Hessian of the log-likelihood w.r.t. m in the following formula

O’L(0,v)

anom™ ~ - Vols(X)]

+ Eqg,)[N — k| F] - {/OO(VG (Xps1)| e =7, Fe] — Vos (Xl)]>9(9l,(7|}_t)d7}

+ Eou) (N — k)*|F] - { / (EG [S(Xk+1)}Fk 7 Fi] = )
’ (E" [s(Xsn) |l = 7. 1] = )Tg (v F) dy}
o <E(97V)[N - kl}—d)Q ) { <]E9[ Xk+1 |Fk =7 -7:t - )g |-7:t d’y}

1

A.5 Estimation of the Parameters of R; under Assumption 4b

(o [s(Xne)|Th = 7. 7] ~ Eo {soh)])ngé?mft)dv}.

0\8 0\8

Define ej 1 = E[X£+1+...+Xf,}}ﬂ, and e; = xf+...—|—x£+ek+1 foreachi=1,... k.
For the first k discovered fields, we can use information about the number of exploratory
wells that had to be drilled to discover a field around the time of their discoveries. Let
this number be denoted by 7; ', (such that r; is the success rate for finding the ' field).
Extending equation (3.21) backwards to i = 1,...,k and replacing Xf +...+ Xﬁ, with
its expected value given the data, e;, we can rearrange equation (3.21) into the linear
regression specification

r;1:a0+boe;1+ui, 1=1,...,k, (A.26)

where u; is an error term, and from which ag and by can be readily estimated by OLS.'3 If
instead the parameter by was replaced by a positive, non-linear function of the cumulative
exploratory wells z, e.g. by(z) = co + c1e~%%, one could plug in the exploratory well data
for z and estimate eq. (A.26) by non-linear least squares.

13Setting ag = 1, by could also be determined by interpolation of only the most recent value, i.e. using
only 7 and ey. Solving eq. (A.26) with ur = 0 would give by = ex(r,~ —1).
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