
 

Supplementary Figure 1: State-of-the-art Atlantic Meridional Overturning Circulation 

(AMOC) index calculation. Subpolar gyre AMOC index (AMOCSPG, green) calculated as Global 

Mean SST anomalies (GMST, red, multiplied by -1) subtracted from area-averaged subpolar 

gyre SST (SPGSS, blue), see Methods. All time series are normalized for graphical 

representation. 



 

Supplementary Figure 2: Machine learning framework of the study. a. Scheme of the 

evaluation of the machine learning methods (Fig. 2-3). The scheme here shows the evaluation 

for the first historical simulation member. This evaluation is done for all four historical 

simulation members. b. Scheme of the final Atlantic Meridional Overturning Circulation 

reconstruction from sea surface temperature observations. 

  



Supplementary Figure 3: Comparison of Atlantic Meridional Overturning Circulation 

(AMOC) in 4 historical HADGEM3 runs and direct measurements.  Red line is the timeseries 

of direct AMOC observations from RAPID4,6, and blue, green, purple, and orange lines indicate 

historical AMOC timeseries as simulated by the HadGEM3 Earth System Model 

(Supplementary Fig. 2). 

  



 

Supplementary Figure 4: Sensitivity analysis of the Convolutional Neural Network (CNN) 

method applied to real observations. Purple line:  The Atlantic Meridional Overturning 

Circulation (AMOC) index reconstructed as the median from 500 CNN reconstructions 

(AMOCCNN, Methods).  Grey shaded. area: 5-95% envelop from the same 500 CNN 

reconstructions (Methods). 

  



 
Supplementary Figure 5: Distribution of out-of-range years in historical Earth System Model 

(ESM) simulations. Each dot represents the number of times (x-axis, in years) a timeseries 

from Fig. 5a. lies outside of the CMIP6 ESM range described by 28 single-member simulations 

(Supplementary Table 4). We used random values on the y-axis to ease the graphical 

representation. Grey dots:  ESM values. Green dot: value obtained for the subpolar gyre 

Atlantic Meridional Overturning Circulation (AMOC) index (AMOCSPG, Methods). Purple dot: 

value obtained for the AMOC reconstructed from convolutional neural network (AMOCCNN, 

Methods).   

 

  



Model name Modelling center (country) Experiment (period) Members 
BCC-CSM2-MR BCC (China) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
CESM2 NCAR (USA) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
CanESM5 CCCma (Canada) historical (1900-2014) r1i1p2f1, r2i1p2f1, r3i1p2f1 
E3SM-2-0 DOE (USA) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
FGOALS-f3-L CAS (China) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
GISS-E2-2-H NASA GISS (USA) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
HadGEM3-GC31-MM MOHC (UK) historical (1900-2014) r1i1p1f3, r2i1p1f3, r3i1p1f3 
INM-CM5-0 INM (Russia) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
IPSL-CM6A-LR IPSL (France) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
KACE-1-0-G NIMS-KMA (Korea) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
MIROC-ES2H JAMSTEC (Japan) historical (1900-2014) r1i1p4f1, r2i1p4f1, r3i1p4f1 
MIROC6 JAMSTEC (Japan) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
MPI-ESM1-2-HAM MPI (Germany) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
MPI-ESM1-2-HR MPI (Germany) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
NorCPM1 NCC (Norway) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
NorESM2-MM NCC (Norway) historical (1900-2014) r1i1p1f1, r2i1p1f1, r3i1p1f1 
UKESM1-0-LL MOHC (UK) historical (1900-2014) r1i1p1f2, r2i1p1f2, r3i1p1f2 

Supplementary Table 1: List of 51 historical simulations from 17 CMIP6 Earth System Models 

for the bias analysis presented in Fig. 1. 

  



Model name Modelling center (country) Experiment (period) Member 
HadGEM3-GC31-MM MOHC (UK) historical (1900-2014) r1i1p1f3 
HadGEM3-GC31-MM MOHC (UK) historical (1900-2014) r2i1p1f3 
HadGEM3-GC31-MM MOHC (UK) historical (1900-2014) r3i1p1f3 
HadGEM3-GC31-MM MOHC (UK) historical (1900-2014) r4i1p1f3 
HadGEM3-GC31-MM MOHC (UK) piControl (1850-2349) r1i1p1f1 
HadGEM3-GC31-MM MOHC (UK) ssp1-2.6 (2015-2100) r1i1p1f3 

Supplementary Table 2: List of the 6 HadGEM3 simulations used for training CNN (Figs. 2-4) 

and other machine learning methods (Figs. 2). 

  



CNN model Batch size Initial learning rate Number of epochs 

Historical 1 excluded 32 0.0005 4000 

Historical 2 excluded 128 0.0001 4000 

Historical 3 excluded 256 0.001 4000 

Historical 4 excluded 64 0.0005 3000 

All HadGEM3 
simulations 

64 0.0005 4000 

Supplementary Table 3: List of tuned parameters for the five CNN models of the study. 

  



 
Model name Modelling center (country) Experiment (period) Members 

ACCESS-CM2 MOHC (UK) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

ACCESS-ESM1-5 MOHC (UK) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1  
r1i1p1f1 

CESM2 NCAR (USA) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CESM2-WACCM NCAR (USA) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CIESM THU (China) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CMCC-CM2-SR5 CMCC (Italy) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CMCC-ESM2 CMCC (Italy) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CNRM-CM6-1 CNRM (France) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CNRM-CM6-1-HR CNRM (France) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CNRM-ESM2-1 CNRM (France) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CanESM5 CCCma (Canada) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

CanESM5-CanOE CCCma (Canada) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

EC-Earth3 EC-Earth Consortium (EU) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

EC-Earth3-Veg EC-Earth Consortium (EU) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

FGOALS-f3-L CAS (China) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

FGOALS-g3 CAS (China) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

GFDL-ESM4 NOAA GFDL (USA) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

GISS-E2-1-G NASA GISS (USA) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

HadGEM3-GC31-LL MOHC (UK) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

INM-CM4-8 INM (Russia) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

INM-CM5-0 INM (Russia) historical (1900-2014) 
ssp2-4.5 (2015-2022) 

r1i1p1f1 
r1i1p1f1 

IPSL-CM6A-LR IPSL (France) historical (1900-2014) 
ssp2-4.5 (2015-2022) 

r1i1p1f1 
r1i1p1f1 

MIROC-ES2L JAMSTEC (Japan) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

MIROC6 JAMSTEC (Japan) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

MPI-ESM1-2-HR MPI (Germany) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

MPI-ESM1-2-LR MPI (Germany) historical (1900-2014) 
ssp2-4.5 (2015-2021) 

r1i1p1f1 
r1i1p1f1 

MRI-ESM2-0 MRI (Japan) historical (1900-2014) r1i1p1f1 



ssp2-4.5 (2015-2021) r1i1p1f1 
UKESM-1-0 MOHC (UK) historical (1900-2014) 

ssp2-4.5 (2015-2021) 
r1i1p1f1 
r1i1p1f1 

Supplementary Table 4: List of 29 CMIP6 Earth System Model historical simulations (single 

members) for the ESM evaluation and estimated forced Atlantic Meridional Overturning 

Circulation component from Fig. 5. 

  



 
Model name Modelling center (country) Experiment (period) Member 

ACCESS-CM2 CSIRO-ARCCSS (Australia) piControl (1150-1449) r1i1p1f1 
CAS-ESM2-0 CAS (China) piControl (200-499) r1i1p1f1 
CMCC-CM2-SR5 CMCC (Italy piControl (2050-2349) r1i1p1f1 
CESM2 NCAR (USA) piControl (700-999)  r1i1p1f1 
CanESM5 CCCma (Canada) piControl (5901-6200) r1i1p1f1 
E3SM-1-0 DOE (USA) piControl (201-500) r1i1p1f1 
FGOALS-g3 CAS (China) piControl (400-699) r1i1p1f1 
HadGEM3-GC31-MM MOHC (UK) piControl (2050-2349) r1i1p1f1 
INM-CM5-0 INM (Russia) piControl (2897-3196) r1i1p1f1 
MIROC6 JAMSTEC (Japan) piControl (1900-2014) r1i1p1f1 
MPI-ESM1-2-HR MPI (Germany) piControl (2050-2349) r1i1p1f1 
UKESM1-0-LL MOHC (UK) piControl (2650-2949) r1i1p1f2 

Supplementary Table 5: List of 12 CMIP6 Earth System Model preindustrial control 

simulations (single members) for the EWS analysis presented in Fig. 6b. 

  



Supplementary Note 1: Other Machine learning (ML) methods compared with 

Convolutional Neural Network (CNN). 

1) Generalities 

As for the CNN, each machine learning (ML) method must be tuned (Methods). 

Compared to the CNN, the other ML methods require a pre-screening of the explainable data 

field (sea surface temperature, SST, here), here denoted by 𝐹 and described as a time-varying 

two-dimensional field (i.e, a three-dimensional data): 𝐹 = #𝑓!"#%, 𝑖	 ∈ 𝜑, 𝑗 ∈ Θ, 𝑡 ∈ 𝑇. Here,  

𝜑, Θ, and	𝑇 are longitude, latitude, and time spaces, with sizes denoted 𝑝,	 𝑞, and 𝑟, 

respectively. For each ML method, the longitude/latitude space is described by the regular 

1°x1° grid over the study area: [20°N-70°N, 80°W-0°]. 𝑇 depends on the different data 

considered in the study. The prescreening of 𝐹 consists in arranging all its time series of the 

two-dimensional spatial field as the columns of a same initial matrix, denoted 𝑋(!) ∈ ℝ&×(, 

where,  𝑟 = 𝑝 × 𝑞 is the number of grid points in the SST field. 

Because of the large computational efforts required to produce the results, we made 

the decision to apply the machine learning techniques on Principal Components (PCs) of 𝑋(!) 

to realize a finer tuning of the hyperparameters. PCs are computed as the projection of 𝑋(!) 

onto an optimal (in terms of explained variance) orthogonal basis of the correlation matrix of 

𝑋(!). Each PC from	𝑋(!) with eigenvalues (i.e., fraction of explained variance) higher than 1/𝑟 

are kept since 1/𝑟 is the theoretical weight all PCs would have under the hypothesis that all 

columns of 𝑋(!) are independent in the case of a standardized principal components. In the 

following, the matrix of PCs has dimension  ℝ&×). The target AMOC26 to model by ML methods 

is denoted 𝑌 ∈ ℝ&. A given AMOC reconstruction for 𝑘 time steps is denoted 𝑌< ∈ ℝ*, and is 

obtained using the first 𝑎 PCs from a new SST field projected on the eigenvectors of 𝑋(!), 

denoted 𝑋′ ∈ ℝ*×) 



The above principal component analysis prescreening was not necessary for the CNN, 

as it deals with 3-dimensional data directly. 

Methods are summarized, readers may refer to the associated references for more 

details51-59. 

 

2) Machine learning methods 

We here present the seven machine learning methods and identify the different 

control parameters that we tuned (Supplementary Fig. 2) to produce the comparisons with 

CNN performances from Fig. 2.  

 

a) (Principal Component) regression (PCR) 

Since we work on PCs for ML methods (see 1), what is called PC regression51 in the 

main text,  is a linear regression of 𝑋 that is the matrix of the first 𝑠 PCs from 𝑋(!) (see 1). The 

one difference is that 𝑋+, … , 𝑋) are sorted by their explained variance from the initial 𝑋(!) 

data, so there is a number 𝑎 ≤ 𝑠 of first PCs with highest explained variances that can be 

tuned using 10-fold cross-validation48 (Methods). Once this parameter is tuned (Methods), 

the PCR model is given by: 

𝑌 = 𝛽, + 𝛽+𝑋+ +⋯+ 𝛽-𝑋- + 𝜀 

The ordinary least squares estimator of beta is given by: 

𝛽F = arg min
.∈ℝ!"#

𝜀 = (𝕏1𝕏)2+𝕏1𝑌 

With 𝕏 = (𝕀&, 𝑋) ∈ ℝ&×(-3+), with 𝕀& a unique vector (only composed of ones) of size 

n. 𝛽 = (𝛽,, 𝛽+, … , 𝛽-) ∈ ℝ-3+ the vector of regression coefficients to estimated, 𝛽F =

(𝛽F,, 𝛽F+, … , 𝛽F-) ∈ ℝ-3+. 



 The obtained AMOC reconstruction is given by: 

𝑌< = (𝕀&, 𝑋4+, … , 𝑋′-)𝛽F  

  

b) Support Vector Machine 

Support Vector Machine (SVM) is a classical ML technique used in general for classification 

tasks55. However, a variant of it may be used for regression. It is called 𝜀-insensitive SVM 

regression (𝜀-SVR). We have inputs 𝑋 ∈ ℝ&×), the timeseries of length 𝑛 of the 𝑠 first PCs of 

the original SST fields (see 1) ; and target AMOC values 𝑌 ∈ ℝ&. The objective of 𝜀-SVR is to 

find a function	𝑓 that best maps the inputs to the outputs, an error 𝜀 being allowed. The test 

function 𝑓 is defined as55,56: 

𝑓(𝑋) =P(𝛼!∗ − 𝛼!)𝐺(𝑋! , 𝑋)
&

!6+

+ 𝑏, ∀𝑋 ∈ ℝ) 

 Where 𝐺(𝑢, 𝑣) =< 𝜑(𝑢), 𝜑(𝑣) > is the kernel function and 𝛼!∗, 𝛼!, 𝑏 are real 

parameters to be optimized. We will use a chose kernel function so that we don’t have to 

know the exact transformation	𝜑. Here, we use the radial basis functions kernel: 

𝐺(𝑢, 𝑣) = 𝑒2)‖829‖$ , ∀𝑢, 𝑣 ∈ ℝ) 

 Optimizing the function 𝑓 amounts to minimizing the following Lagrangian in dual 

space: 

𝐿(𝛼, 𝛼∗) =
1
2PP(𝛼! − 𝛼!∗)#𝛼" − 𝛼"∗%𝐺#𝑋! , 𝑋"% + 𝜀P(𝛼! − 𝛼!∗)

&

!6+

P𝑌!(𝛼! − 𝛼!∗)
&

!6+

&

"6+

&

!6+

 

Subject to the constraints: 

⎩
⎪
⎨

⎪
⎧
∀𝑖 = {1,… , 𝑛}, 0 ≤ 𝛼! ≤ 𝐶
∀𝑖 = {1,… , 𝑛}, 0 ≤ 𝛼!∗ ≤ 𝐶

P𝛼!

&

!6+

=P𝛼!∗
&

!6+

 



Where we have set 𝐶 = 1 and 𝜀 is the parameter on which the cross validation is 

applied. 

Once the tuned parameters have been obtained, we can apply the optimized 

function 𝑓F to obtain the reconstructed AMOC values. Given, 𝑋′ ∈ ℝ&×), the 𝜀-SVR 

reconstruction is obtained via: 

∀𝑗 ∈ {1, … , 𝑘}, 𝑌<" =P(𝛼! − 𝛼!∗)𝐺#𝑋! , 𝑋4"%
&

!6+

+ 𝑏 

 

c) Lasso, Ridge, and Elastic Net (ENet) 

The linear problem from 2) the ordinary least squares estimator is obtained solving 

the convex optimization of the 𝐿 cost function: 

𝐿(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

 

 

 The usual linear model, as well as PCR (a), are based on a heteroscedasticity 

assumption (i.e., normality of residuals), that is not always verified. This why so-calleed. 

regularized regression models, such as Lasso52, Ridge53, and Enet54 regressions have been 

developed. The Enet method combines Lasso and Ridge and may result as equivalent to one 

of these two regression models after parameter tuning54.  

 

In Lasso and Ridge, the regularization term acts as a threshold constraint, based on 

the 𝛽 𝑙* norm: ‖𝛽‖** = ∑ j𝛽"j
*:

"6+ , with 𝑘 = 1 for Lasso and 𝑘 = 2 for Ridge. Cost functions 

for the three approaches are given by: 



𝐿<!=>?(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆;P𝛽";
:

"6+

 

𝐿@-))A(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆+Pj𝛽"j
:

"6+

 

𝐿B&?#(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆+Pj𝛽"j
:

"6+

+ 𝜆;P𝛽";
:

"6+

 

With 𝜆+, 𝜆; > 0. 

Now let 𝜔 = (𝜔")+C"C: = (𝑠𝑔𝑛(𝛽"))+C"C:, where 𝑠𝑔𝑛 is the sign function. Costs 

functions can then be written: 

𝐿<!=>?(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆;𝛽1𝛽 

𝐿@-))A(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆+𝜔1𝛽 

𝐿B&?#(𝛽) = f𝑌 −P𝛽"𝑋"
:

"6+

f

;

+ 𝜆+𝜔1𝛽 + 𝜆;𝛽1𝛽 

 

Estimates obtained from resolving the above convex problems54 are given by: 

𝛽F@-))A = (𝑋1𝑋)2+(𝑋1𝑌 −
𝜆+
2 𝜔) 

𝛽F<!=>? = (𝑋1𝑋 + 𝜆;𝐼)2+𝑋1𝑌 

𝛽FB&?# = (𝑋1𝑋 + 𝜆;𝐼)2+𝑋1𝑌 

The 𝛽FB&?# estimator can also be written54: 

𝛽FB&?# = (𝑋1𝑋 + (1 − 𝛼)𝐼)2+(𝑋1𝑌 −
𝛼𝜆
2 𝜔) 



Where 𝛼 ∈ [0,1]. Thus if 𝛼 = 1, 𝛽FB&?# is effectively a Ridge regression estimator, 

whereas if 𝛼 = 0, it is a Lasso regression estimator. For Enet, 𝛼 and 𝜆 > 0 are both tuned 

(Methods). For Lasso (resp. Ridge) the tuning (Methods) is only made for 𝜆+ (resp. 𝜆;).   

The AMOC predictions for the three methods are respectively given by: 

𝑌<B&?# = (𝑋4+, … , 𝑋′-)𝛽FB&?# 

𝑌<@-))A = (𝑋4+, … , 𝑋′-)𝛽F@-))A 

𝑌<<!=>? = (𝑋4+, … , 𝑋′-)𝛽F<!=>? 

 

d)  Random Forest (RF) and Extremely randomized trees (EXT) 

Both RF57 and EXT58 are bootstrap aggregating methods that consist in aggregating 

reconstructions obtained from several Regression Trees57 (RTs), where RTs differ for some 

aspects for RF and EXT (see below). 

i) Original RT 

We not the learning sample composed of pairs of AMOC index values (𝑌) and first PCs 

of SST values (𝑋), organized year by year, and denoted {(𝑌! , 𝑋!)+C!C&}. Hence (𝑋!
")+C"C) is the 

𝑖#D values of the 𝑗#D from 𝑋(!), modeled with the associated with the AMOC values for the 

same 𝑖#D value.  

RT is a recursive algorithm consisting of several steps each depending on the former 

one. The initial node of a given tree 𝒯 to which the learning sample {(𝑌! , 𝑋!)+C!C&} is assigned, 

is called the root of the RT and is denoted 𝜂. In the following notation, we consider that each 

pair of direct branches from a given node goes to two child nodes (left and right). A node 

without subsequent child node is named a leaf57. 

The first step of the algorithm consists in finding the optimal cut of 𝜂 for which the 

sum of variances of 𝑌 in child nodes is minimized. This procedure where a not is separated in 



two son-nodes is called a cut55. Any cut of the  𝑗#D variable (here, PC, see 1), 1 ≤ 𝑗 ≤ 𝑠, is 

denoted: 

s𝑋" < 𝑑u	⋃s𝑋" > 𝑑u	 

Where 𝑑 is the threshold value for which each value from 𝑋"  that are lower (resp. 

higher) are set in the left (resp. right) child node. 

Finding the optimal cut of the root is equivalent to solving the following bivariate 

convex problem: 

(𝑗, 𝑑) = arg min
=∈ℝ
+C"C:

P (𝑌! −
1

#(s𝑖: 𝑋!
" < 𝑑u)

P 𝑌!
!:F%

&G=

);

!:F%
&G=

+ P (𝑌! −
1

#(s𝑖: 𝑋!
" > 𝑑u)

P 𝑌!
!:F%

&H=

);

!:F%
&H=

 

Where # is the cardinal operator. 

After this first step, we obtain two child nodes 𝜂+,	𝜂; of the root. In the next step, the 

best cut among all existing child nodes is selected, meaning that a third variable is optimized: 

(𝜂, 𝑗, 𝑑) = arg min
=∈ℝ
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I∈@(𝒯)

P (𝑌! −
1

#(s𝑖: 𝑋!
" < 𝑑u)

P 𝑌!
!:F%

&G=

);

!:F%
&G=

+ P (𝑌! −
1

#(s𝑖: 𝑋!
" > 𝑑u)

P 𝑌!
!:F%

&H=

);

!:F%
&H=

 

Where 𝐿(𝒯) is the number of leaves in 𝒯 at the current step of the algorithm (i.e., 

𝒯 = {𝜂+,	𝜂;} at this step of the algorithm. 𝐿(𝒯)	updated every time a leaf is created or turned 

to a node only (i.e., when it gets two child nodes) with the new set of leaves. 

The algorithm stops when one newly built child note contains 𝑐 values or less (see 

below).  

ii) RF 



The accuracy of RT is limited in that if overfits strongly the training data57. Indeed, if 

the first selected variables by the algorithm to cut the root of tree is removed, the model 

turns out to be completely different. This highlights very poor robustness of the algorithm. 

It is based on this observation that RF was developed55. 

RF consists in generating a large number of 𝐵 RTs and aggregating their 

reconstructions. A randomness aspect is introduced by randomly selecting 𝑑 ≤ 𝑠 

variables from 𝑋 (thus from the 𝑠 first PCs of 𝑋(!) here). Once 𝐵 RTs have been 

constructed, they are browed using their established cuts using data from 𝑋′. For a given 

RT, values from 𝑋′!  ending up in a leaf denoted 𝑙, the AMOC reconstruction for the 

corresponding 𝑖#D value of the sample is given by the average of training values that 

endud-up in that same leaf: 

1
#{𝑙} P 𝑌!

!:K%∈L
!∈{+,…,&}

 

 The reconstructed value thus corresponds to the average of training AMOC values (𝑌) 

that ended up in leaf 𝑙 after training. 

One can identify 3 parameters for RF tuning: The number of trees 𝐵, the threshold 𝑐 

at which RTs computations stop, and the number of 𝑑 randomly drawn variables from 𝑋 (here 

𝑠 first PCs of 𝑋(!), see 1). However, it was shown that the gain in accuracy from tuning 𝑐 was 

not worth the computation time for most datasets tested, and a value of 𝑠 = 5 is often used 

by default57. Similarly, for values of 𝐵 ≥ 256 RTs, the computation time for the global RF 

tuning is not worth the computation time59. We thus set 𝑠 = 557 and 𝐵 = 30059 for these two 

parameters. The only parameter we tune here (Methods) is thus 𝑑, i.e., the number of 

randomly variables in 𝑋 (here 𝑠 first PCs of 𝑋(!), see 1). 

 



iii) EXT 

EXT is a close variant of RF58. The way trees are constructed and aggregated is the same, 

so as the reconstruction. The difference is in the way the RT algorithm is computed. After the 

first step (cut of 𝜂, see ii) that is the same as RF’s RTs, the best cut is found on a randomly 

drawn leaf rather than optimized over all leaves. This reduces the individual accuracies but 

increases their RTs’ computing speed dramatically58. EXT is thus generally faster than RF with 

similar levels of accuracy, even when computing thousands of trees58. 

The only parameter we tune here (Methods) is also 𝑑, i.e., the number of randomly 

variables in 𝑋 (here 𝑠 first PCs of 𝑋(!), see 1). We set 𝑠 = 557 and 𝐵 = 300058 for the other 

two parameters (see ii). 

  



51.  Joliffe, I. T. Chapter 8: Principal Components in Regression Analysis. In: Principal 

Component Analysis, pp. 129-155 (1986). 

52. Tibshirani, R. Regression shrinkage and selection via Lasso. Journ. Roy. Stat. Soc. 58, 

267–288 (1996). 

53. Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased estimation of nonorthogonal 

problems. Technometrics 12, 55–67 (1970). 

54. Zou, H. and Hastie, T. Regularization and variable selection via the elastic net. Journ. 

Roy. Stat. Soc., 67 :301–320 (2005). 

55. Vapnik, V. N. The Nature of Statistical Learning Theory. Statistics for Engineering and 

Information Science (2000). 

56. Drucker, H., Burges, C. J. C., Kaufman, L. et al. Support Vector Regression Machines. 

In: Proceedings of the 9th International Conference on Neural Information Processing 

Systems, MIT Press, 155-161. 

57. Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. 

58. Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–

42 (2006).  

59. Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. How many trees in a random forest 

? Lect. Note Comp. Sci., 7376, 154–168 (2012). 

 


