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Supplementary Figure 1: State-of-the-art Atlantic Meridional Overturning Circulation
(AMOC) index calculation. Subpolar gyre AMOC index (AMOCspg, green) calculated as Global
Mean SST anomalies (GMST, red, multiplied by -1) subtracted from area-averaged subpolar
gyre SST (SPGss, blue), see Methods. All time series are normalized for graphical

representation.
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Supplementary Figure 2: Machine learning framework of the study. a. Scheme of the
evaluation of the machine learning methods (Fig. 2-3). The scheme here shows the evaluation
for the first historical simulation member. This evaluation is done for all four historical
simulation members. b. Scheme of the final Atlantic Meridional Overturning Circulation

reconstruction from sea surface temperature observations.
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Supplementary Figure 3: Comparison of Atlantic Meridional Overturning Circulation
(AMOC) in 4 historical HADGEM3 runs and direct measurements. Red line is the timeseries
of direct AMOC observations from RAPID*®, and blue, green, purple, and orange lines indicate
historical AMOC timeseries as simulated by the HadGEM3 Earth System Model

(Supplementary Fig. 2).
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Supplementary Figure 4: Sensitivity analysis of the Convolutional Neural Network (CNN)
method applied to real observations. Purple line: The Atlantic Meridional Overturning
Circulation (AMOC) index reconstructed as the median from 500 CNN reconstructions
(AMOCcnn, Methods).  Grey shaded. area: 5-95% envelop from the same 500 CNN

reconstructions (Methods).
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Supplementary Figure 5: Distribution of out-of-range years in historical Earth System Model
(ESM) simulations. Each dot represents the number of times (x-axis, in years) a timeseries
from Fig. 5a. lies outside of the CMIP6 ESM range described by 28 single-member simulations
(Supplementary Table 4). We used random values on the y-axis to ease the graphical
representation. Grey dots: ESM values. Green dot: value obtained for the subpolar gyre
Atlantic Meridional Overturning Circulation (AMOC) index (AMOCsps, Methods). Purple dot:
value obtained for the AMOC reconstructed from convolutional neural network (AMOCcnn,

Methods).



Model name

Modelling center (country)

Experiment (period)

Members

BCC-CSM2-MR BCC (China) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
CESM2 NCAR (USA) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
CanESM5 CCCma (Canada) historical (1900-2014) rlilp2fi, r2i1p2f1, r3ilp2fl
E3SM-2-0 DOE (USA) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
FGOALS-f3-L CAS (China) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
GISS-E2-2-H NASA GISS (USA) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
HadGEM3-GC31-MM | MOHC (UK) historical (1900-2014) rlilplf3, r2i1pi1f3, r3ilplf3
INM-CM5-0 INM (Russia) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
IPSL-CM6A-LR IPSL (France) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
KACE-1-0-G NIMS-KMA (Korea) historical (1900-2014) rlilplfl, r2ilpifl, r3ilplfl
MIROC-ES2H JAMSTEC (Japan) historical (1900-2014) rlilpafl, r2ilp4fl, r3ilpafl
MIROC6 JAMSTEC (Japan) historical (1900-2014) rlilplfl, r2i1pifl, r3ilplfl
MPI-ESM1-2-HAM MPI (Germany) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
MPI-ESM1-2-HR MPI (Germany) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
NorCPM1 NCC (Norway) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
NorESM2-MM NCC (Norway) historical (1900-2014) rlilpifi, r2i1pi1fl, r3ilpifl
UKESM1-0-LL MOHC (UK) historical (1900-2014) rlilplf2, r2ilp1f2, r3ilplf2

Supplementary Table 1: List of 51 historical simulations from 17 CMIP6 Earth System Models

for the bias analysis presented in Fig. 1.




Model name Modelling center (country) Experiment (period) Member

HadGEM3-GC31-MM | MOHC (UK historical (1900-2014) rlilp1f3

HadGEM3-GC31-MM | MOHC (UK historical (1900-2014) r2ilpif3

HadGEM3-GC31-MM | MOHC (UK historical (1900-2014) rdilpif3

)
)
HadGEM3-GC31-MM | MOHC (UK) historical (1900-2014) | r3i1p1f3
)
)

HadGEM3-GC31-MM | MOHC (UK piControl (1850-2349) rlilpifl

HadGEM3-GC31-MM | MOHC (UK) ssp1-2.6 (2015-2100) rlilp1f3

Supplementary Table 2: List of the 6 HadGEM3 simulations used for training CNN (Figs. 2-4)

and other machine learning methods (Figs. 2).



CNN model Batch size Initial learning rate Number of epochs
Historical 1 excluded 32 0.0005 4000
Historical 2 excluded 128 0.0001 4000
Historical 3 excluded 256 0.001 4000
Historical 4 excluded 64 0.0005 3000

All HadGEM3 64 0.0005 4000
simulations

Supplementary Table 3: List of tuned parameters for the five CNN models of the study.




Model name Modelling center (country) Experiment (period) Members
ACCESS-CM2 MOHC (UK) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
ACCESS-ESM1-5 MOHC (UK) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CESM2 NCAR (USA) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CESM2-WACCM NCAR (USA) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CIESM THU (China) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CMCC-CM2-SR5 CMCC (Italy) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CMCC-ESM2 CMCC (Italy) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
CNRM-CM6-1 CNRM (France) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
CNRM-CM6-1-HR CNRM (France) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
CNRM-ESM2-1 CNRM (France) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
CanESM5 CCCma (Canada) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
CanESM5-CanOE CCCma (Canada) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
EC-Earth3 EC-Earth Consortium (EU) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
EC-Earth3-Veg EC-Earth Consortium (EU) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
FGOALS-f3-L CAS (China) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
FGOALS-g3 CAS (China) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
GFDL-ESM4 NOAA GFDL (USA) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
GISS-E2-1-G NASA GISS (USA) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
HadGEM3-GC31-LL MOHC (UK) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
INM-CM4-8 INM (Russia) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
INM-CM5-0 INM (Russia) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2022) rlilpifl
IPSL-CMB6A-LR IPSL (France) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2022) rlilplfl
MIROC-ES2L JAMSTEC (Japan) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
MIROC6 JAMSTEC (Japan) historical (1900-2014) rlilpifl
ssp2-4.5 (2015-2021) rlilpifl
MPI-ESM1-2-HR MPI (Germany) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
MPI-ESM1-2-LR MPI (Germany) historical (1900-2014) rlilpifi
ssp2-4.5 (2015-2021) rlilpifl
MRI-ESM2-0 MRI (Japan) historical (1900-2014) rlilpifi




ssp2-4.5 (2015-2021) | rlilp1fl
UKESM-1-0 MOHC (UK) historical (1900-2014) | rlilp1fl
ssp2-4.5 (2015-2021) | rlilp1fl

Supplementary Table 4: List of 29 CMIP6 Earth System Model historical simulations (single

members) for the ESM evaluation and estimated forced Atlantic Meridional Overturning

Circulation component from Fig. 5.




Model name

Modelling center (country)

Experiment (period)

Member

ACCESS-CM2 CSIRO-ARCCSS (Australia) piControl (1150-1449) rlilpifl
CAS-ESM2-0 CAS (China) piControl (200-499) rlilpifl
CMCC-CM2-SR5 CMCC (Italy piControl (2050-2349) rlilpifl
CESM2 NCAR (USA) piControl (700-999) rlilpifl
CanESM5 CCCma (Canada) piControl (5901-6200) rlilpifi
E3SM-1-0 DOE (USA) piControl (201-500) rlilpifl
FGOALS-g3 CAS (China) piControl (400-699) rlilpifi
HadGEM3-GC31-MM | MOHC (UK) piControl (2050-2349) rlilpifl
INM-CM5-0 INM (Russia) piControl (2897-3196) rlilpifi
MIROC6 JAMSTEC (Japan) piControl (1900-2014) rlilpifl
MPI-ESM1-2-HR MPI (Germany) piControl (2050-2349) rlilpifi
UKESM1-0-LL MOHC (UK) piControl (2650-2949) rlilplf2

Supplementary Table 5: List of 12 CMIP6

Earth System Model preindustrial control

simulations (single members) for the EWS analysis presented in Fig. 6b.




Supplementary Note 1: Other Machine learning (ML) methods compared with
Convolutional Neural Network (CNN).
1) Generalities

As for the CNN, each machine learning (ML) method must be tuned (Methods).
Compared to the CNN, the other ML methods require a pre-screening of the explainable data
field (sea surface temperature, SST, here), here denoted by F and described as a time-varying
two-dimensional field (i.e, a three-dimensional data): F = (fijt),i €E@,jEOtET. Here,
@,0,and T are longitude, latitude, and time spaces, with sizes denoted p, q, and 7,
respectively. For each ML method, the longitude/latitude space is described by the regular
1°x1° grid over the study area: [20°N-70°N, 80°W-0°]. T depends on the different data
considered in the study. The prescreening of F consists in arranging all its time series of the
two-dimensional spatial field as the columns of a same initial matrix, denoted X® e rrx7,
where, v = p X q is the number of grid points in the SST field.

Because of the large computational efforts required to produce the results, we made
the decision to apply the machine learning techniques on Principal Components (PCs) of X ®
to realize a finer tuning of the hyperparameters. PCs are computed as the projection of X®
onto an optimal (in terms of explained variance) orthogonal basis of the correlation matrix of
X®_ Each PC from X® with eigenvalues (i.e., fraction of explained variance) higher than 1/r
are kept since 1/r is the theoretical weight all PCs would have under the hypothesis that all
columns of X are independent in the case of a standardized principal components. In the
following, the matrix of PCs has dimension R™**. The target AMOC;s to model by ML methods
is denoted Y € R™. A given AMOC reconstruction for k time steps is denoted ¥ € R, and is
obtained using the first a PCs from a new SST field projected on the eigenvectors of X,

denoted X' € Rk*s



The above principal component analysis prescreening was not necessary for the CNN,
as it deals with 3-dimensional data directly.
Methods are summarized, readers may refer to the associated references for more

details®1>2,

2) Machine learning methods

We here present the seven machine learning methods and identify the different
control parameters that we tuned (Supplementary Fig. 2) to produce the comparisons with

CNN performances from Fig. 2.

a) (Principal Component) regression (PCR)

Since we work on PCs for ML methods (see 1), what is called PC regression®! in the
main text, is a linear regression of X that is the matrix of the first s PCs from X (see 1). The
one difference is that X;, ..., X, are sorted by their explained variance from the initial X
data, so there is a number a < s of first PCs with highest explained variances that can be
tuned using 10-fold cross-validation?® (Methods). Once this parameter is tuned (Methods),
the PCR model is given by:

Y=o+ piXs + -+ BaXo + €
The ordinary least squares estimator of beta is given by:
g = argﬁgﬂgﬁl e = (XTX)"IXTy
With X = (I, X) € R™<@+1) \with I, a unique vector (only composed of ones) of size

n. B = (Bo B, By) €E R the vector of regression coefficients to estimated, f =

(Bo, B, -, Ba) € RO,



The obtained AMOC reconstruction is given by:

Y=, X', . X')B

b) Support Vector Machine
Support Vector Machine (SVM) is a classical ML technique used in general for classification
tasks®. However, a variant of it may be used for regression. It is called £-insensitive SVM
regression (e-SVR). We have inputs X € R™*, the timeseries of length n of the s first PCs of
the original SST fields (see 1) ; and target AMOC values Y € R™. The objective of e-SVR is to
find a function f that best maps the inputs to the outputs, an error ¢ being allowed. The test

function f is defined as>>~®:

fX) = Z(cx{ —a;)G(X;,X) + b, VX € RS

Where G(u,v) =< @(u), (v) > is the kernel function and «;, «;, b are real
parameters to be optimized. We will use a chose kernel function so that we don’t have to
know the exact transformation ¢. Here, we use the radial basis functions kernel:

G(u,v) = e~slu=vl? vy v e RS

Optimizing the function f amounts to minimizing the following Lagrangian in dual

space:

ii(al a))(a — )G (X, ])-I-SZ(CZ a)ZY(a

i=1j=1

l\JIb—\

Lla,a*) =

Subject to the constraints:

onh0<a <C
n}0<a <C

= {1
{n
Z



Where we have set C = 1 and ¢ is the parameter on which the cross validation is
applied.

Once the tuned parameters have been obtained, we can apply the optimized
function f to obtain the reconstructed AMOC values. Given, X' € R™*5, the e-SVR

reconstruction is obtained via:

n
vje{l,.. k)Y = Z(ai —a))G(X, X'j) +b

c) Lasso, Ridge, and Elastic Net (ENet)
The linear problem from 2) the ordinary least squares estimator is obtained solving
the convex optimization of the L cost function:

p 2

L) =|v =) gy

j=1

The usual linear model, as well as PCR (a), are based on a heteroscedasticity
assumption (i.e., normality of residuals), that is not always verified. This why so-calleed.
regularized regression models, such as Lasso>?, Ridge®3, and Enet>* regressions have been
developed. The Enet method combines Lasso and Ridge and may result as equivalent to one

of these two regression models after parameter tuning>*.

In Lasso and Ridge, the regularization term acts as a threshold constraint, based on

the S I, norm: |G|k = 5.’=1|,8j|k, with k = 1 for Lasso and k = 2 for Ridge. Cost functions

for the three approaches are given by:



p

LRige () = (Y — Z BiX' || + 2,

j=1

B}

-
||M~c
[y

P 2 p
peso() = |lv = > gl +2 ) |6
j=1 j=1

2

LFret(p) = Y—iﬁij +/11i|:3j|+’12i'8]2
j=1 j=1

j=1
With 4;,4, > 0.
Now let w = (wj)1<j<p = (Sgn(B}))1<j<p, Where sgn is the sign function. Costs
functions can then be written:

p 2

1rdseg) = \lv = > g0\l + 2678

j=1
2

p
peso(g) = |lv = > gl + 2,078
=1

p 2

LEnet(ﬁ) =\ly — Z’foj + Al(uTﬁ + AzﬁTﬁ

j=1

Estimates obtained from resolving the above convex problems>®* are given by:
R B A
ﬁLasso — (XTX) 1(XTY — ?w)
priage = (XTX + 2,D)1XTY

pEnet = (XTX + 2,1)71XTY

The BE™t estimator can also be written>*:

pEmet = (XX + (1 — ) D)"Y (XTY — a?lw)



Where a € [0,1]. Thus if & = 1, BE"¢t is effectively a Ridge regression estimator,
whereas if & = 0, it is a Lasso regression estimator. For Enet, @ and A > 0 are both tuned
(Methods). For Lasso (resp. Ridge) the tuning (Methods) is only made for A, (resp. 1,).

The AMOC predictions for the three methods are respectively given by:

pEnet — (X’p ___'X'a)BEnet
plLasso — (X’p ---'X’a)BLaSSO

?Ridge — (Xll' ."’XIa)'[;Ridge

d) Random Forest (RF) and Extremely randomized trees (EXT)

Both RF°7 and EXT°® are bootstrap aggregating methods that consist in aggregating
reconstructions obtained from several Regression Trees®” (RTs), where RTs differ for some
aspects for RF and EXT (see below).

i) Original RT

We not the learning sample composed of pairs of AMOC index values (Y) and first PCs
of SST values (X), organized year by year, and denoted {(Y;, X;)1<i<n}- Hence (Xij)lsjss is the
i" values of the j* from X®, modeled with the associated with the AMOC values for the
same it" value.

RT is a recursive algorithm consisting of several steps each depending on the former
one. The initial node of a given tree 7" to which the learning sample {(Y;, X;)1<i<n} is assigned,
is called the root of the RT and is denoted 7. In the following notation, we consider that each
pair of direct branches from a given node goes to two child nodes (left and right). A node
without subsequent child node is named a leaf*’.

The first step of the algorithm consists in finding the optimal cut of n for which the

sum of variances of Y in child nodes is minimized. This procedure where a not is separated in



two son-nodes is called a cut®. Any cut of the j variable (here, PC,see 1), 1 <j <s, is
denoted:
{X) < d}U{x’ > d}
Where d is the threshold value for which each value from X’ that are lower (resp.
higher) are set in the left (resp. right) child node.

Finding the optimal cut of the root is equivalent to solving the following bivariate

convex problem:

. . 1 2
U.d) = arg g Z i #({i: X! < d)) Z %)

1=jsp i:Xl.j<d i:Xi}<d
+ Z , ! z Y;)?
i~ : i
: #di: X! >d :
i:XL.]>d ({l t }) i:Xi]>d

Where # is the cardinal operator.
After this first step, we obtain two child nodes 14, 17, of the root. In the next step, the

best cut among all existing child nodes is selected, meaning that a third variable is optimized:

1
(1,),d) = arg mip Z =T 2

1<1<p X! <d lX]<d
neL(T)
( i Yz)z
Z # X’ > d Z
le]>d ({l }) i Xi}>d

Where L(T) is the number of leaves in T at the current step of the algorithm (i.e.,
T = {n4, n,} at this step of the algorithm. L(7T") updated every time a leaf is created or turned
to a node only (i.e., when it gets two child nodes) with the new set of leaves.

The algorithm stops when one newly built child note contains ¢ values or less (see
below).

ii) RF



The accuracy of RT is limited in that if overfits strongly the training data®’. Indeed, if
the first selected variables by the algorithm to cut the root of tree is removed, the model
turns out to be completely different. This highlights very poor robustness of the algorithm.
It is based on this observation that RF was developed®>.

RF consists in generating a large number of B RTs and aggregating their
reconstructions. A randomness aspect is introduced by randomly selecting d <s
variables from X (thus from the s first PCs of X® here). Once B RTs have been
constructed, they are browed using their established cuts using data from X'. For a given
RT, values from X’; ending up in a leaf denoted [, the AMOC reconstruction for the
corresponding it" value of the sample is given by the average of training values that

endud-up in that same leaf:

2,

itY;€l
ie{1,...,n}

The reconstructed value thus corresponds to the average of training AMOC values (Y)
that ended up in leaf [ after training.

One can identify 3 parameters for RF tuning: The number of trees B, the threshold ¢
at which RTs computations stop, and the number of d randomly drawn variables from X (here
s first PCs of X, see 1). However, it was shown that the gain in accuracy from tuning ¢ was
not worth the computation time for most datasets tested, and a value of s = 5 is often used
by default®’. Similarly, for values of B > 256 RTs, the computation time for the global RF
tuning is not worth the computation time®. We thus set s = 5%’ and B = 300°° for these two
parameters. The only parameter we tune here (Methods) is thus d, i.e., the number of

randomly variables in X (here s first PCs of X®, see 1).



iii) EXT

EXT is a close variant of RF°8. The way trees are constructed and aggregated is the same,
so as the reconstruction. The difference is in the way the RT algorithm is computed. After the
first step (cut of 1, see ii) that is the same as RF’s RTs, the best cut is found on a randomly
drawn leaf rather than optimized over all leaves. This reduces the individual accuracies but
increases their RTs’ computing speed dramatically®®. EXT is thus generally faster than RF with
similar levels of accuracy, even when computing thousands of trees?®.

The only parameter we tune here (Methods) is also d, i.e., the number of randomly
variables in X (here s first PCs of X(, see 1). We set s = 557 and B = 300058 for the other

two parameters (see ii).
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