

1 **Supplementary information for**
2 **A local-to-global emissions inventory of macroplastic pollution**

3

4 **This PDF file includes:**

5 Materials and Methods

6 Fig. S1 to Fig. S29

7 Table S1 to Table S37

8

9 **Other Supplementary information for this manuscript include the following:**

10 Supplementary Table 1: Data cleaning

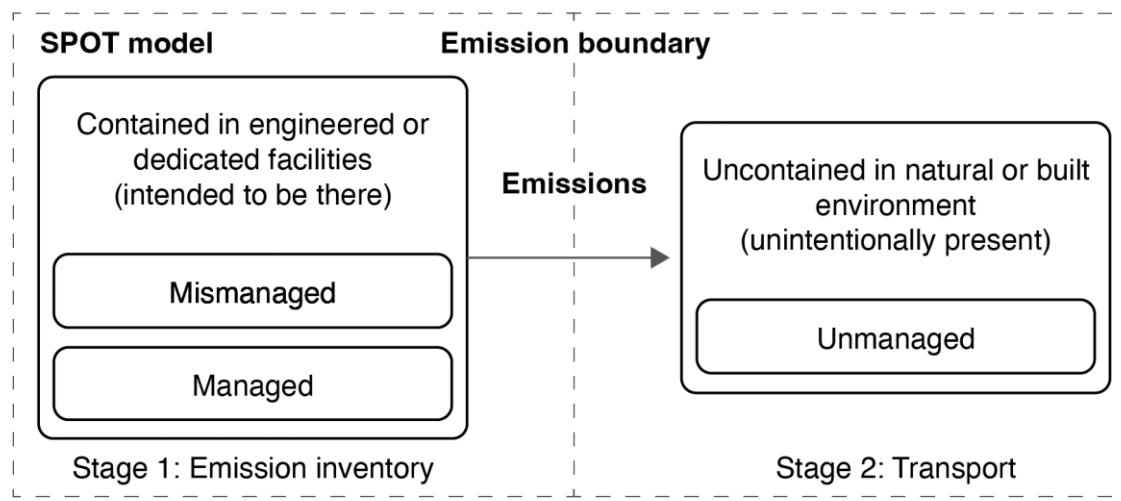
11 Supplementary Table 2: System of equations

12 Supplementary Table 3: Material flow analysis outputs - aggregated national

13 Supplementary Table 4: Material flow analysis outputs - aggregated global, regional, and income
14 category

15

16

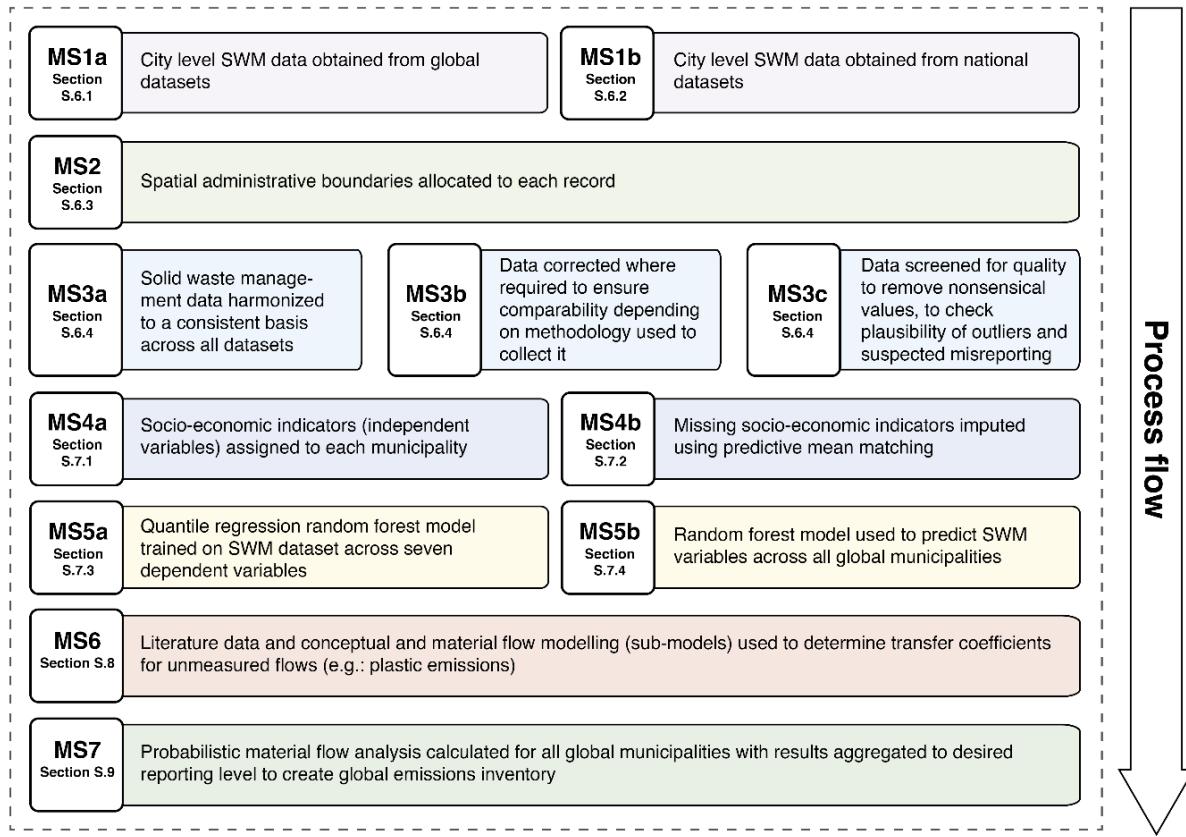

17 Table of Contents

18	S.1	<i>Methodology summary</i>	4
19	S.2	<i>Scope</i>	7
20	S.3	<i>Solid waste management data</i>	8
21	S.4	<i>System maps</i>	9
22	S.4.1	Tributary MFA	9
23	S.4.2	Full MSW MFA	10
24	S.4.3	Plastics MFA	12
25	S.5	<i>Data inputs</i>	16
26	S.6	<i>Primary data collection, harmonisation, correction, and cleaning</i>	20
27	S.6.1	Global municipal-level solid waste management <i>primary input data sources</i> (MS1a)	20
28	S.6.2	National municipal-level solid waste management data sources (MS1b)	21
29	S.6.3	Assignment of administrative areas (MS2)	22
30	S.6.4	Data harmonisation (MS3a), correction (MS3b) and quality screening (MS3c)	24
31	S.6.4.1	Waste Wise Cities Tool (WaCT)	24
32	S.6.4.2	Wasteaware Benchmark Cities Indicators (WABI)	25
33	S.6.4.3	What a Waste 2.0 (WaW2.0)	28
34	S.6.4.4	UNSD City Waste Data	37
35	S.6.4.5	SIPSN Data	44
36	S.6.4.6	MoHURD Data	45
37	S.6.5	Data consolidation and deduplication	46
38	S.6.6	Default GADM Level selection	47
39	S.6.7	Data cleaning via outlier identification	51
40	S.7	<i>Machine learning for prediction of primary data input variables</i>	56
41	S.7.1	Independent variables (MS4a)	56
42	S.7.2	Imputation of independent variables (MS4b)	58
43	S.7.3	Quantile regression random forest (MS5a and MS5b)	58
44	S.8	<i>Secondary data collection and processing (MS6)</i>	62
45	S.8.1	Proportion of plastic that is rigid (C0a)	63
46	S.8.2	Informal sector recycling (P14)	64
47	S.8.2.1	Informal recycling sector population	64
48	S.8.2.2	Informal recycling sector productivity	68
49	S.8.2.3	Proportion of plastic collected by informal recycling sector (C15)	68

50	S.8.2.4	Proportion of plastic collected by informal recycling sector that is rigid (C21a) _____	70
51	S.8.3 Rejects of rigid and flexible plastic from sorting and reprocessing by formal (C24aa C24ab) and informal (C23aa, C23ab) sectors _____	70	
52			
53	S.8.3.1	Step 1: Establish baseline plastic waste collected for recycling _____	71
54	S.8.3.2	Step 2 and 3: Identify empirical or assumptive data on rejects or use abductive reasoning to estimate _____	73
55			
56	S.8.3.3	Step 3: Apply evidenced or assumed reject rates to the mass of plastic collected for recycling _____	77
57	S.8.3.4	Mismanagement of rejects from sorting and reprocessing (C25aa, C25ab, C26aa, C26ab) _____	79
58	S.8.4 Proportion of plastic in formal sector collection for recycling _____	80	
59	S.8.5 Uncollected litter (C1) _____	80	
60	S.8.5.1	Littering rate _____	81
61	S.8.5.2	Total litter (L_T) _____	82
62	S.8.5.3	Uncollected litter (C1) _____	84
63	S.8.6 Proportion of plastic and rigid plastic in uncollected litter (C11 and C11a) _____	85	
64	S.8.7 Uncollected MSW (C2) _____	85	
65	S.8.8 Debris emissions from collection system (C3) _____	85	
66	S.8.9 Debris emissions from uncontrolled disposal of MSW (C9) _____	86	
67	S.8.10 Plastic (C14) and rigid plastic (C14a) in disposal debris emissions _____	88	
68	S.8.11 Open burning _____	89	
69	S.8.11.1	Open burning of uncollected waste (C10) _____	89
70	S.8.11.2	Open burning of rejects from sorting and reprocessing (C27aa, C27ab, C28aa, C28 ab) _____	92
71	S.8.11.3	Open burning at uncontrolled disposal sites (C8) _____	92
72	S.9 Probabilistic material flow analysis (MS7) _____	93	
73	S.9.1 Data inputs _____	94	
74	S.9.1.1	Random sampling of primary input data _____	94
75	S.9.1.2	Correction of primary input variable predictions by settlement typology _____	96
76	S.9.1.3	Sampling of <i>secondary data inputs</i> _____	100
77	S.9.2 Material flow analysis _____	100	
78	S.9.2.1	Spatial aggregation _____	101
79	S.10 Sensitivity analysis _____	102	
80	S.11 Conversion of emission mass to item count _____	105	
81	References _____	106	
82			
83			

84 **S.1 Methodology summary**

85 We present the first of two stages in the ‘Spatio-temporal quantification of plastic pollution
86 origins and transportation’ model (SPOT). This first stage begins when waste is generated
87 (created), meaning the part of the system where products and materials are ‘discarded’ by their
88 users, and ends when those materials are: recycled; recovered; stored in disposal facilities; or
89 ‘emitted’. We use ‘emission’ to describe the flow of plastic from a state of ‘containment’
90 (control) to one where it is ‘uncontained’ (**Extended data Fig. 1**). By uncontained we mean that
91 plastic is in the ‘environment’, both built and natural, and is no longer subject to any form of
92 management; it is unintentionally present. We call the point between the contained and
93 uncontained states, the ‘*emission boundary*’ (**Fig. S1**). For clarification, we do not consider land
94 disposal facilities (landfills or dumpsites), to be in the environment because despite the very poor
95 level of control in some cases (dumpsites), they are nonetheless contained, they are intended to
96 be there. We also consider solid waste which is in sewerage (wastewater) to be uncontained
97 because despite its presence in a contained structure, it is unintentionally present, meaning that
98 the sewers were not designed to carry it.

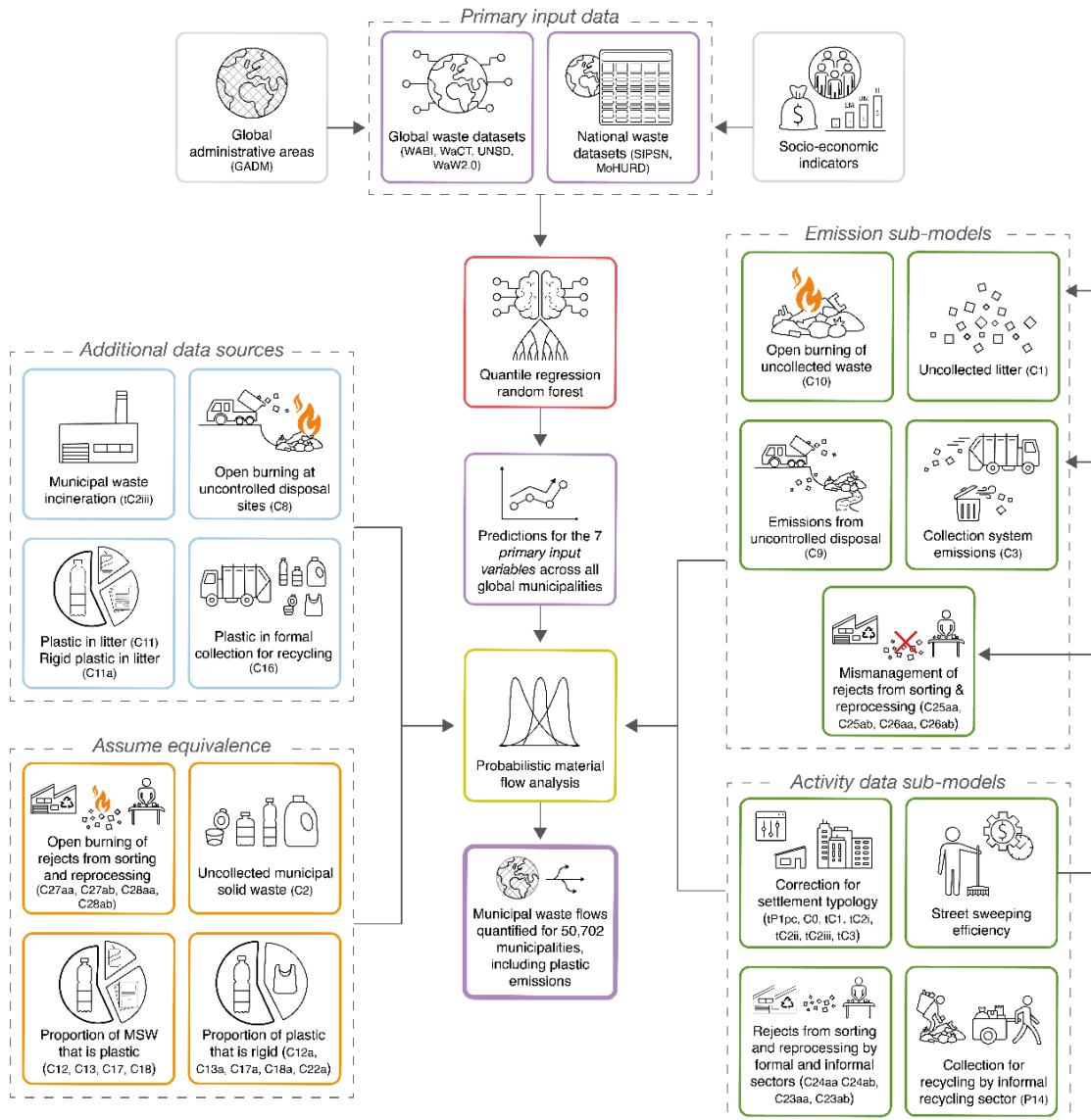


99

100 **Fig. S1.** The boundary between the present ‘upstream’ part and the next ‘downstream’ part of the
101 ‘Spatio-temporal quantification of plastic pollution origins and transportation’ model (SPOT).

102 Emissions of plastic fall into two categories: 1) open burning (combustion in open, uncontrolled
103 fires); and 2) debris (physical material items, objects, and particles). Emissions through open
104 burning (calculated as the mass partially or completely combusted) are considered a system
105 endpoint. Emissions of debris are at risk of further transport through the terrestrial environment
106 (unmanaged system) via the action of wind or surface water, movement which is described in the
107 second stage of the SPOT model, and which will not be discussed further here.

108 Our objectives were achieved following a seven-step workflow illustrated in **Fig. S2** according to
109 a series of methodological steps (MS).


110

111 **Fig. S2.** Overview of steps in methodological process. Abbreviations: Solid waste management
 112 (SWM); methodological step (MS).

113 Municipal level solid waste management data were obtained from both global (**MS1a, Section**
 114 **S.6.1**) and national datasets (**MS1b, Section S.6.2**). Each record in these datasets was assigned a
 115 spatial administrative area according to the area that the data is believed to represent (**MS2,**
 116 **Section S.6.3**). Data, termed here *primary input data*, for seven solid waste management
 117 variables, termed here *primary input variables*, (**Section S.5**), were extracted from each record
 118 and harmonised to the most consistent basis possible (**MS3a, Section S.6.4**).

119 *Primary input data* were screened and corrected depending on the methodology used to obtain
 120 them. This ensured comparability between and within datasets (**MS3b, Section S.6.4**). For
 121 example, if the waste generation rate was considered to represent only collected waste, the value
 122 was corrected to obtain the overall waste generation rate (including uncollected MSW) by
 123 dividing it by the collection coverage. Following these necessary corrections, data in each record
 124 were screened to remove values that were obviously incorrect, for instance, due to user error
 125 during data input (**MS3c, Section S.6.4**). Variables, defined in **Section S.5**, such as formal dry
 126 recycling, incineration, and other recovery were also manually checked for plausibility based on
 127 a review of literature. For example, many cities report a ‘recycling rate’, but it is often unclear if
 128 material is collected by the formal authorities or by informal recycling sector participants. The
 129 plausibility review attempted to improve reliability by determining what each data point is likely
 130 to represent, and therefore provide a justification for either accepting or rejecting it as formal dry
 131 recycling. Further cleaning of the dataset was performed by manually assessing the plausibility

132 of outlier data points to remove those which were believed to be a result of error rather than
 133 measured variation (Section S.6.4).

134

135 **Fig. S3.** Derivation of data used in Stage 1 of the Spatio-temporal Quantification of Plastic
 136 Pollution Origins and Transportation model (SPOT). *Primary input data* are activity data
 137 measured at municipal level which have been quality checked, harmonised, and corrected. Blue,
 138 orange, and green boxes represent *secondary data* which are defined as follows: *Additional data*
 139 *sources* are transfer coefficients that have been obtained from sources that are not directly
 140 measured at municipal level and are assumed for modelling purposes; *Assumed equivalence*
 141 indicates where, in the absence of measured data, we have used a coefficient from another part of
 142 the model which is approximately equivalent to the data that would be expected in another;
 143 *Emission sub-models* were used to approximate the flow of material from the contained to
 144 uncontained state using a combination of activity data and abductive reasoning; *Activity data*
 145 *sub-models* are similar to emission sub-models except that they are used to approximate mass or

146 transfer coefficients within the model where measured data do not exist. Other definitions can be
147 found in **Table S2** and **Table S3**. Abbreviations: Municipal solid waste (MSW).

148 Data indicating economic, social, geographical, and cultural status and development (hereafter
149 *socioeconomic indicators*) were assigned to each screened data record and to a global list ¹ of
150 administrative areas (**MS4, Section S.7.1**) that were assessed as those most likely to reflect the
151 municipal level data (**Section S.6.6**). These consisted of both national level *socioeconomic*
152 *indicators* and sub-national *socioeconomic indicators*. Missing *socioeconomic indicators* were
153 imputed using predictive mean matching method (**Section S.7.2**).

154 *Primary input data* alongside *socioeconomic indicators* (independent variables) were used to
155 train quantile regression random forest machine learning models for each of the seven *primary*
156 *input variables* (**MS5a, Section S.7.3**). Ten-fold cross validation with five repeats tuned the
157 hyperparameters of each random forest model, before their suitability was assessed against a
158 holdout test dataset. The quantile regression random forest models were then able to be used to
159 predict solid waste management data for all global municipalities with data gaps, including
160 associated uncertainty (**MS5b, Section S.7.3**).

161 Whereas metrics such as waste generation, waste composition, and less so, waste collection
162 coverage, are routinely measured, there are flows in other parts of the waste management system
163 which are rarely documented. To account for these unrecorded and in some cases, neglected
164 material flows and phenomena, we have developed a series of sub-models which use a
165 combination of indirectly related, measured activity data and objective reasoning to approximate
166 SWM activity and mass (**Fig. S3**). Where appropriate, we have also used data from literature
167 which is assumed to be equivalent to data required in our model (e.g., proportion of plastic that is
168 rigid or flexible). For example, we assume that the open burning of rejects happens at the same
169 rate as the open burning of uncollected waste. These data, termed *secondary data inputs* in
170 combination with the *primary data inputs* allowed detailed information of municipal solid waste
171 (MSW) management and plastic waste to be quantified for every municipality in the world.
172 These sub-models and datasets were used in combination with machine learning outputs to feed
173 into probabilistic material flow analysis as illustrated in **Fig. S3**.

174 *Primary input variables* and *secondary input variables* within each administrative boundary
175 were assigned a probability distribution from which 5,000 random samples were drawn from
176 each as part of a probabilistic material flow analysis using Monte Carlo simulation. Results of
177 municipal level material flows were aggregated to generate results at multiple spatial scales such
178 as at national, regional, and global level, including an assessment of uncertainty (**Section S.9**).
179 This provided a harmonised global macroplastic pollution emission inventory suitable for
180 reporting and ongoing monitoring.

181 **S.2 Scope**

182 As with other global plastic pollution models²⁻⁵, our global inventory model focusses on
183 municipal solid waste, meaning the flows of waste generated from households, commerce and
184 trade, small businesses, office buildings and institutions (schools, hospitals, government
185 buildings) following the UN-Habitat⁶ definition which excludes construction and demolition,
186 industry and sewage treatment. We exclude textiles; electrical and electronic equipment waste;

187 and waste material arising at sea. We model at municipal scale because that is the resolution at
188 which waste is managed and which waste data are measured. Quantification of municipal waste
189 flows begin at the point of waste generation. We do not consider upstream stages such as
190 production or consumption of goods because our method is focused on the waste management
191 phase.

192 ‘Embedded plastics’, for example those as part of assemblies of items or appended or adhered to
193 non-plastic items are assumed to be included in our model, despite the uncertainty of their
194 inclusion in measured source data.

195 Plastics waste exports from high income countries (HICs) have been justifiably highlighted as a
196 potential contributor to plastic pollution in the Global South where rejects are at higher risk of
197 being mismanaged⁷. However, in recent years the global secondary materials markets have
198 changed substantially and we assert that they have become a distraction from more prevalent
199 emissions sources⁸.

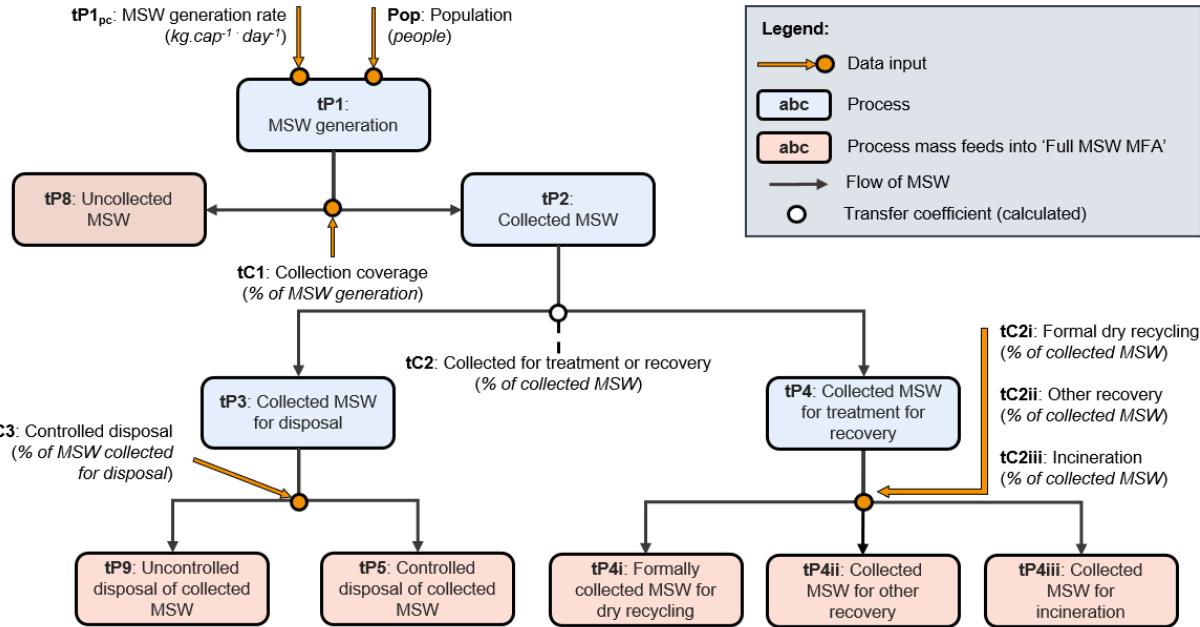
200 We deliberately omit plastic waste exports from our analysis for two reasons: (1) Attributing
201 plastic waste exports to a municipal source and recipient is a complex task and the data to do
202 such analysis are not available; and (2) Since the near complete ban on imported plastic waste by
203 China in 2018⁹, more recent changes to the Basel Convention¹⁰, and to EU Regulation
204 1013/2006¹¹, plastic waste exports from OECD countries to the Global South have plummeted to
205 less than 1.3 Mt·y⁻¹^(12,13). Based on the mean plastic waste emitted from recycling system rejects
206 across all the countries in the Global South (approximately 1 Mt), approximately 2% of the 50
207 Mt collected for recycling is emitted into the environment. From this we can approximate an
208 emission burden of 0.03 Mt·y⁻¹ from HIC exports; virtually all of which (95%) can be attributed
209 to eight countries: Japan, Netherlands, United States, Germany, Belgium, United Kingdom,
210 Australia, and Italy. Although we acknowledge that these emissions may affect the per capita
211 burden in a few HICs, we argue that the overall contribution is negligible in the context of 52.5
212 Mt·y⁻¹ plastic waste emissions worldwide. Therefore, we concluded that the very large and
213 complex task of including exported plastic waste in our model framework was unjustified as the
214 proportion of emissions is comparatively exiguous.

215 The concept of ‘mismanaged waste’ is not used as the basis for modeling here. Instead, we
216 describe the complex flows of waste through the technosphere and the emission of waste plastic
217 from five separate sources into the unmanaged system (**Fig. S1**). Each source considers the type
218 of emission (with open burning of plastic distinct from particles of solid waste, termed here
219 ‘debris’), as well as the format of the plastic (rigid versus flexible). Microplastics are omitted
220 from our analysis which focusses on the macroplastic fraction, items and particles >5 mm across
221 any spatial dimension¹⁴.

222 **S.3 Solid waste management data**

223 Solid waste management data vary substantially in both availability and reliability¹⁵. In the
224 Global South, where waste is seldom weighed, waste generation is often estimated by counting
225 trucks entering the disposal sites and applying assumptions¹⁶. Aside from the inaccuracy of this
226 method, it does not account for the many other pathways through which waste flows. For
227 example, waste which has not been collected is often burned, buried, dumped into waterways, or

228 deposited on the surface of the land⁵. The informal recycling sector also collect valuable
229 materials, sometimes before they leave the premises of the household or business in which they
230 were generated¹⁷. The reliability of waste composition data is also highly variable, particularly in
231 parts of the Global South¹⁸. There is even evidence that some well-funded high income country
232 waste characterisation studies are carried out without consideration of statistical representation of
233 samples¹⁹. Collection coverage is often estimated because it is not straightforward to measure
234 that which has not been managed. The number of households and businesses which do not
235 receive a service can be used as a proxy. Speculatively, in cases where waste management
236 services are minimal, the resources to make such estimations may also be lacking. Moreover,
237 there may be political interest in under- or over-reporting statistics. For instance in India, official
238 data include only a small proportion of MSW generated, and high collection coverage (95.4%)
239 throughout the country²⁰. In practice the data exclude rural areas and many towns and villages,
240 meaning waste generation is underestimated by a factor of between 4 and 7²⁰⁻²².

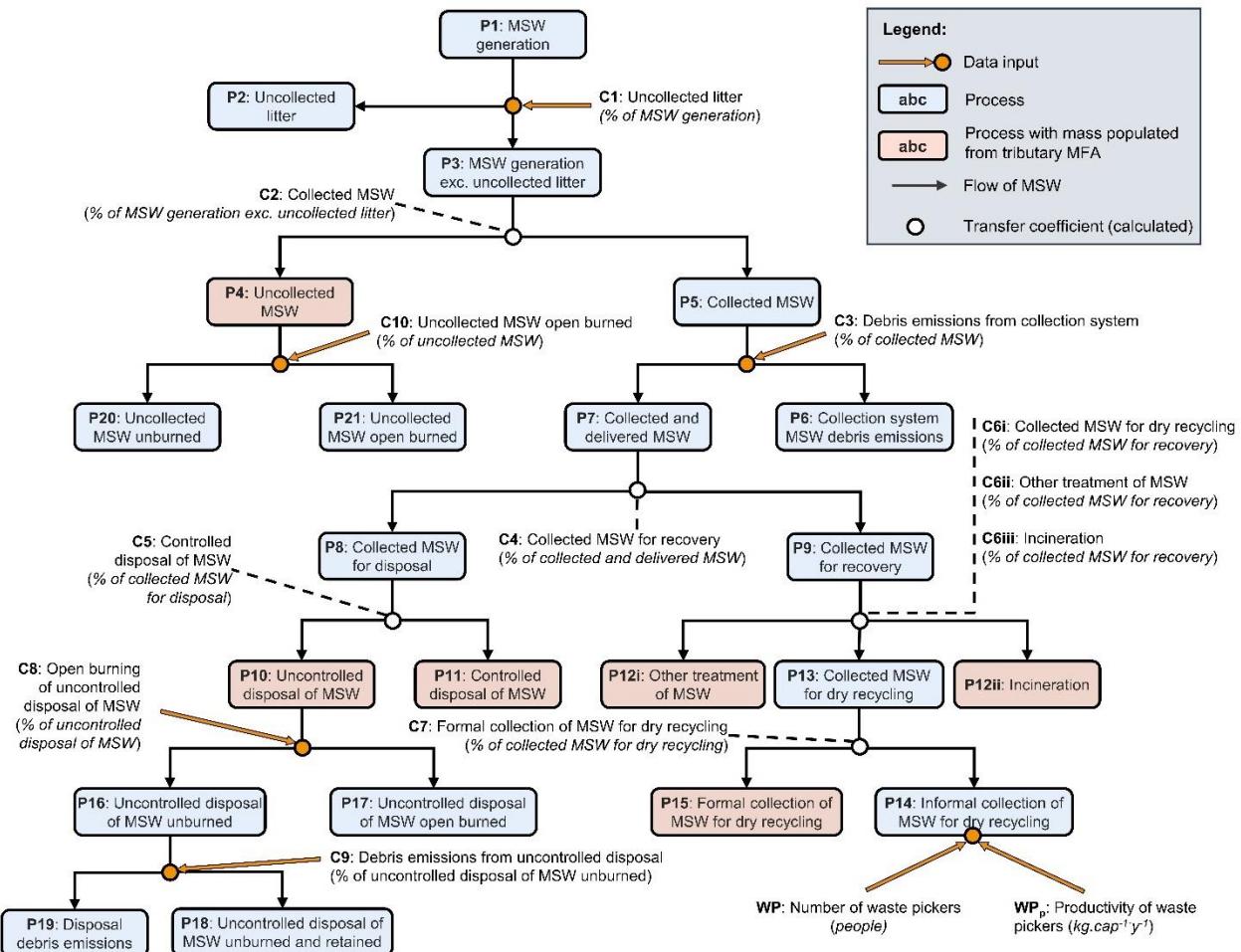

241 As we highlight in this study, measurement of waste generation and management takes place at
242 municipal or sub-municipal level, and in the Global South, it is focused primarily on urban areas.
243 National waste management datasets are created by aggregating these municipal
244 measurements²³. However, because there are often insufficient resources to keep records in all
245 municipalities, many are interpolated for the purposes of national scale aggregation¹⁶. Whereas
246 all other plastic pollution models use nationally aggregated data, which are either distributed
247 (allocated) to a finer resolution (top-down approach), our model uses municipal scale data which
248 are scaled upwards (bottom-up approach). By doing so, we aim to represent observable local
249 scale variability between municipal waste management practices. As interventions to tackle
250 plastic pollution often require localised intelligence, our model can identify locations where
251 plastic pollution is most problematic and enable decisionmakers to target their scarce resources.

252 **S.4 System maps**

253 Flows of waste in 50,702 municipalities were mapped according to three distinct system maps
254 (**Fig. S4-Fig. S8**) using material flow analysis (MFA)²⁴ as described in **Sections S.4.1, S.4.2, and**
255 **S.4.3**.

256 **S.4.1 Tributary MFA**

257 The first system map is a simplistic MFA, known hereafter as the '*Tributary MFA*' (**Fig. S4**)
258 because it feeds the subsequent MFA where the results are calculated. This aimed to quantify the
259 major flows of MSW managed by formal systems in every municipality worldwide, using data
260 that is both directly measured by local authorities and commonly reported. For example,
261 municipal waste generation rate (tP1), collection coverage (tC1), controlled disposal (tC3) and
262 the proportions sent to various treatment and recovery facilities (tC2). Nomenclature is listed in
263 **Supplementary Table 2**.


264

265 **Fig. S4.** Tributary material flow analysis (MFA) system map showing the major flows of
266 municipal solid waste (MSW) formally managed in a municipality. Orange arrows represent data
267 input points used to populate the processes and flows. Masses calculated for the pink process
268 boxes feed through into the *Full MSW MFA* (Fig. S5).

269 The population of each municipality was multiplied by the MSW generation rate ($kg \cdot cap^{-1} \cdot y^{-1}$) to
270 arrive at an estimate of waste generation (tP1). The collection coverage (tC1) dictates how much
271 waste is collected (tP2), and therefore enters the waste management system compared to the
272 amount that remains uncollected (tP8) and is assumed to be self-managed by residents and other
273 waste generators. Here, ‘self-management’ of waste includes ad-hoc activities carried out by
274 individuals (households/workplaces) in order to manage discarded materials (waste) in the
275 absence of formal managed service provision by a community, municipal or private entity.
276 Activities include open burning; burying; scattering (dumping) on land; and dumping into
277 waterways and coastal waters. The amount of collected waste sent for incineration (tP4iii), dry
278 recycling (tP4i), and other recovery facilities (tP4ii) were summed to calculate the amount of
279 waste going to treatment or recovery (tP4), whereas the remaining collected waste was
280 transferred to land disposal (tP3) where it was further distributed by either controlled (tP5) or
281 uncontrolled (tP9) disposal (defined in **Table S2, Section S.5**).

282 **S.4.2 Full MSW MFA**

283 Whereas the *Tributary MFA* (Section S.4.1) provides a simplistic overview of the major MSW
284 flows within a municipality, it is not detailed enough to quantify all MSW flows and therefore
285 describe all plastic emission sources.

286

287 **Fig. S5.** Full municipal solid waste (MSW) material flow analysis (MFA) system map (*Full*
288 *MSW MFA*). Orange arrows represent data input points used to populate the processes and flows
289 of the MFA. The masses associated with the pink process boxes are populated from those in the
290 *Tributary MFA* (**Fig. S4**).

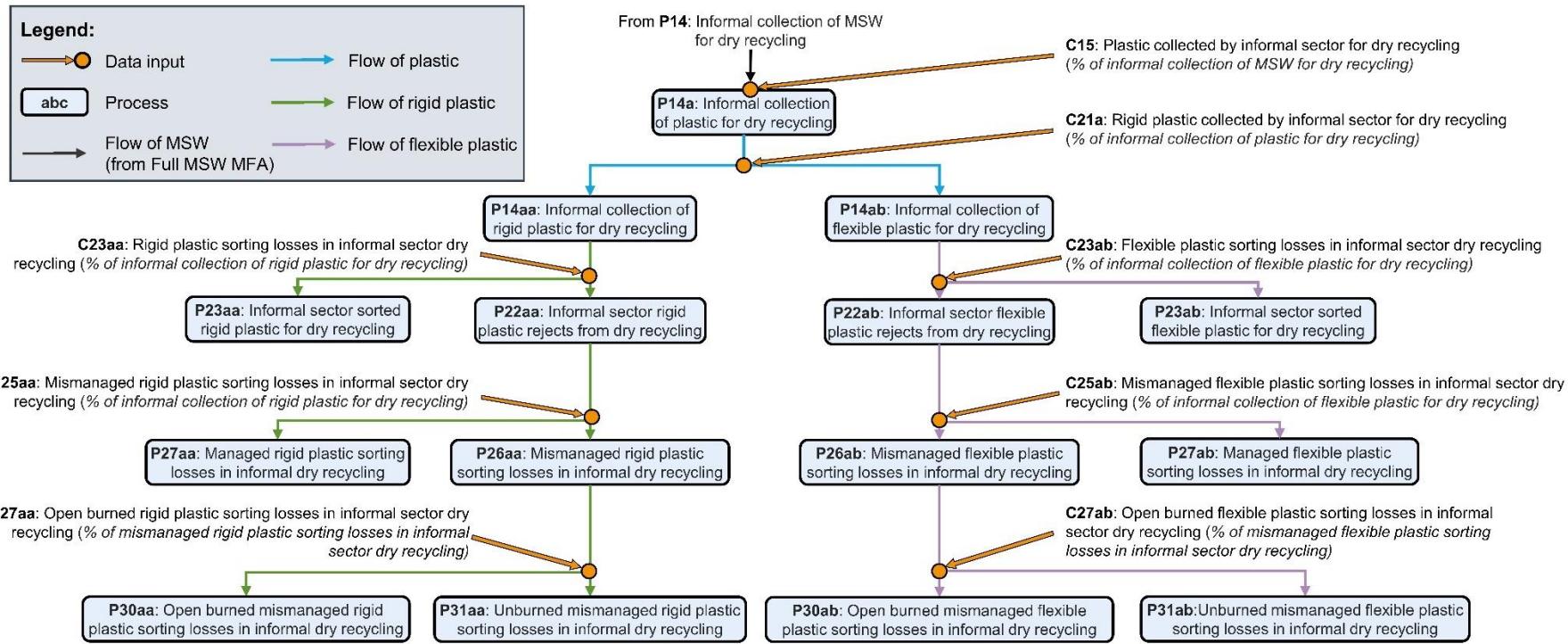
291 Flows such as those which represent the amount of material collected by the informal recycling
292 sector (IRS) (i.e., waste pickers) can be substantial across municipalities in the Global South²⁵,
293 but are often unreported because they occur outside of the formal waste management system²⁶.
294 Emissions of solid waste into the environment are also largely unreported because measuring
295 them is challenging and most municipalities are not compelled or motivated to do so. For
296 example, emissions are often spatially and temporally dispersed, can be orders of magnitude
297 lower in mass than collected flows, and frequently depend on human behaviour and practices
298 which are challenging to quantify (e.g., open burning). Nonetheless, quantification of flows that
299 are neglected from formal reporting are required to estimate plastic emissions into the
300 environment. The '*Full MSW MFA*', incorporates these neglected flows to provide a more
301 detailed map of MSW flows in each municipality (**Fig. S5**).

302 The *Full MSW MFA* uses the masses calculated in the *Tributary MFA* as inputs, as shown by the
303 pink process boxes. Assignment of mass in this manner ensured that these processes match as
304 closely as possible to the masses measured by municipalities. The remaining flows and processes

305 were calculated from these using transfer coefficients as described in **Section S.9**. A full system
306 of equations describing the MFA calculations is presented separately in **Supplementary Table**
307 **2**.

308 **S.4.3 Plastics MFA**

309 The final system map is the ‘*Plastics MFA*’, shown in **Fig. S6**, **Fig. S7** and **Fig. S8**. This MFA
310 takes system MSW endpoints from the *Full MSW MFA*, converts them to plastic material flows,
311 and then disaggregates them by rigid and flexible format according to the definitions proposed
312 by Charles and Kimman²⁷. Plastic flows are calculated at these system endpoints rather than for
313 the *Full MSW MFA* to incorporate the plastic compositions which vary at different parts of the
314 solid waste management system. For example, the proportion and composition of plastic in litter
315 is likely to be different to the proportion and composition of plastic generated at the household
316 level. Alternatively, if plastic flows were mapped throughout all the system, transfer coefficients
317 on aspects such as the proportion of plastics sent to composting or incineration would need to be
318 sourced. Data to evidence these parts of the system would be challenging to obtain and are
319 largely irrelevant to the overall analysis. However, given the amount of plastic in MSW (C0) is
320 commonly measured, we considered it advantageous to obtain these data to calculate plastic
321 waste generation. Additionally, it provided a reliable proxy for plastic compositions at system
322 ends points in situations where no other data were available.

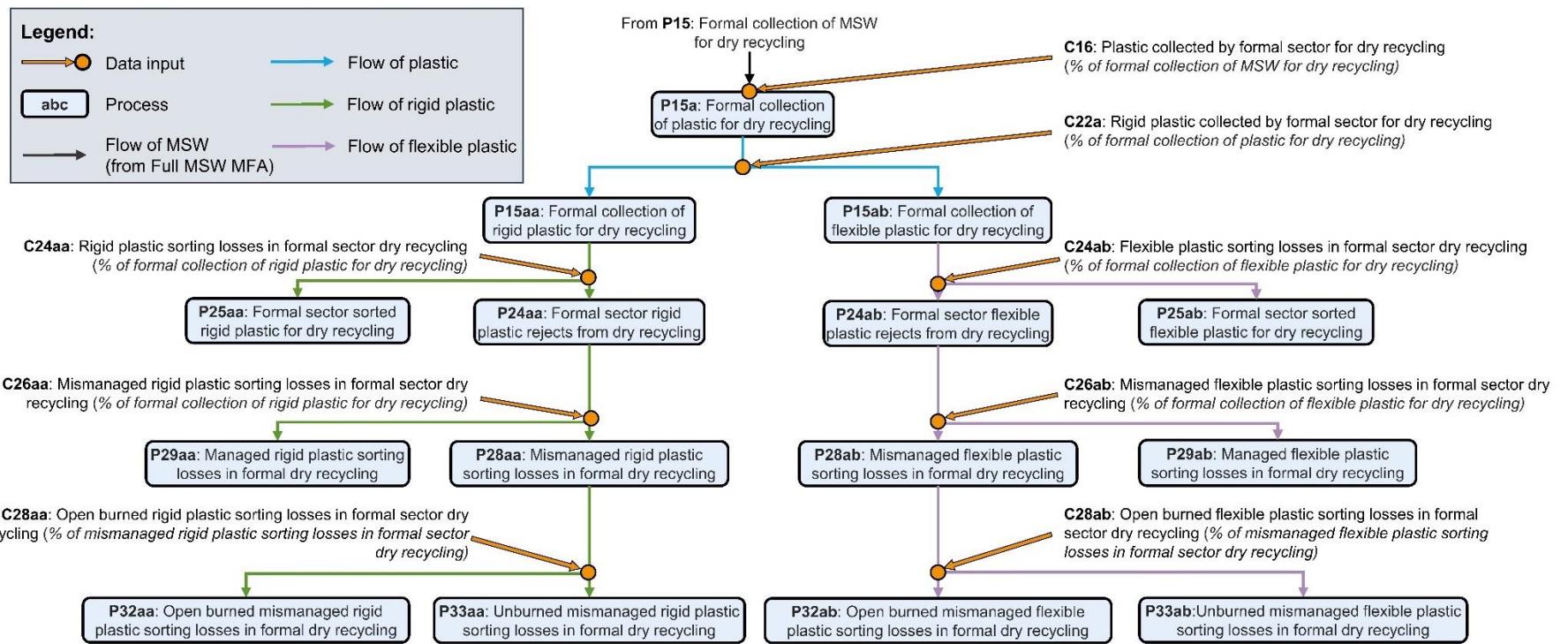


323

324 **Fig. S6.** Plastics material flow analysis (MFA) system map for uncollected litter, uncollected waste, collection system emissions,
 325 uncontrolled disposal, and disposal debris emissions. The *Plastics MFA* continues in **Fig. S7** and **Fig. S8** for informal and formal
 326 recycling flows respectively.

327

328


329

330 **Fig. S7.** Plastics material flow analysis (MFA) system map for sorting by the informal recycling sector (IRS).

331

332

333

334

335 **Fig. S8.** Plastics material flow analysis (MFA) system map for sorting by the formal recycling sector.

336 The plastic sorting processes carried out by the formal and informal recycling sectors were
337 disaggregated into both rigid and flexible plastic formats before assigning transfer coefficients on
338 aspects such as the reject (loss) rate (**Fig. S7**: C23aa, C23ab, C24aa, C24ab). Here we define
339 these reject rates as the amount of plastic collected for recycling that is subsequently discarded
340 during sorting operations at the sorting or reprocessing stages. These transfer coefficients were
341 derived via a sub-model described in **Section S.8.3** which considers recyclability and value of
342 plastics to approximate the probability of material being positively selected for reprocessing.

343 There are 20 points in the MFA system where plastic is emitted into the environment
344 (uncontrolled system), though these can be simplified to five generic ‘emission sources’ as
345 shown in **Table S1**.

346 **Table S1.** System emissions: generic sources and specific components.

Generic emission source		Generic system emission component	Material format and mode of emission				
ID#	Description		Debris		Burned		
			Rigid	Flex	Rigid	Flex	
GES-01	Uncollected waste	Uncollected plastic	P20a		P21a		
			P20aa	P20ab	P21aa	P21ab	
GES-02	Litter	Uncollected plastic litter	P2a		-		
			P2aa	P2ab	-	-	
GES-03	Collection system	Collection system plastic emissions	P6a		-		
			P6aa	P6ab	-	-	
GES-04	Disposal system	Uncontrolled disposal of plastic	P19a		P17a		
			P19aa	P19ab	P17aa	P17ab	
GES-05	Sorting and reprocessing	Mismanaged sorting rejects	Formal	P33aa	P33ab	P32aa	
			Informal	P31aa	P31ab	P30aa	
						P31ab	

347

S.5 Data inputs

348 Data on solid waste management was collected at a municipal level using existing published data
349 sources, as discussed in **Sections S.6.1** and **S.6.2**. This data was required to populate the MFAs
350 from **Section S.4** and can be divided into two main categories:

Primary data inputs Data on solid waste management that is widely measured by municipalities and of which large amounts of data exist.

Secondary data inputs Data on solid waste management that are infrequently measured by municipalities, and for which limited data exists yet is critical to include in plastic pollution quantification.

351 The *Tributary MFA* was populated solely by the *primary data inputs*, as shown in **Table S2**.
352 Further description on the sources and methods use to collect, harmonise, and clean the data is
353 discussed in **Section S.6**.

354

Table S2. Primary data inputs used to populate the *Tributary MFA*.

ID	Name	Unit	Description	Source
Pop	Population	People	Number of people living within a specified boundary	28
tP1 _{pc}	MSW generation rate	kg·cap ⁻¹ ·d ⁻¹	Waste generated from households, commerce and trade, small businesses, office buildings and institutions (schools, hospitals, government buildings). It also includes bulky waste (e.g., white goods, old furniture, mattresses) and waste from selected municipal services, e.g., waste from park and garden maintenance, waste from street cleaning services (street sweepings, the content of litter containers, market cleansing waste), if managed as waste.	
tC1	Collection coverage	% wt. of MSW generated	Waste that has been collected with the intention or purported intention to transport it to a place for treatment or disposal. Waste can be collected by public authorities, commercial entities.	
tC2i	Formal collection of MSW for dry recycling	% wt. of formally collected MSW	Waste collection by the formal sector with the intention, or purported intention of delivering it to a facility where it can be sorted and or reprocessed to recover material value.	
tC2ii	Formal collection of MSW for other recovery	% wt. of formally collected MSW	Waste collection by the formal sector with the intention, or purported intention of delivering it to a facility where it can be treated or processed through composting, anaerobic digestion, or processes which recover energy or materials other than incineration or recycling.	29-34
tC2iii	Formal collection of MSW for incineration	% wt. of formally collected MSW	Waste collection with the intention, or purported intention of delivering it to a combustion facility where it will be processed with or without energy recovery. This definition also includes solid recovered fuel production, regardless of where the combustion takes place.	
tC3	Controlled disposal of MSW	% wt. of formally collected MSW for disposal	A facility to which waste is transported for the purposes of material or energetic recovery or disposal. Controlled facilities are operated under basic, improved, or full control according to the Ladder of waste management facilities' control level defined in the UN-Habitat ⁶ Waste Wise Cities Tool.	
C0	Plastic in MSW*	% wt. of MSW generated	Proportion (wt. as received.) of plastic material as proportion of total waste.	
C0a	Rigid plastic in MSW*	% wt. of MSW plastic generated	Proportion (wt. as received.) of rigid format plastic material as proportion of all plastic.	

* These inputs were not used in *Tributary MFA* but are still grouped as a *Primary data input* as they widely measured data points and collected from the same datasets as above.

358 The mass calculated for each process in the *Tributary MFA* was assigned to the *Full MSW MFA*
359 and *Plastics MFA*, with the *secondary data inputs* (**Table S3**) used to populate the remaining
360 flows and processes. Sourcing of the inputs relied on a combination of assigning any existing
361 data to archetypes (e.g., country income categories), modelling based on available data and
362 known relationships, or as a last resort, assumptions. Details of the sources used, and analysis is
363 discussed further in **Section S.7**.

364 **Table S3.** Secondary data inputs used to populate *Full MSW MFA* and *Plastics MFA*.

ID	Name	Unit	Description	Source
WP	Number of informal waste pickers	People	The number of people engaged in waste collection activities (for the purposes of waste recovery or as a service) who do not operate under contracts with formal authorities or are unlicensed to carry out such activities.	Modelled based on available data (Section S.7)
WP _p	Productivity of informal waste pickers	tonnes·cap ⁻¹ ·y ⁻¹	The average amount of waste that is collected by informal waste pickers.	

ID	Name	Unit	Description	Source
C1	Uncollected litter	% of MSW generation	Waste generated on-the-go (in the public domain) that is discarded directly by humans into the environment without having previously been concentrated or containerised and which is not collected and managed.	
C3	Debris emissions from collection system	% of collected MSW	Waste that has been concentrated and presented for collection or which has been collected and which subsequently escapes from containers or vehicles prior to being deposited at a transfer, storage, treatment, or disposal facility.	
C8	Open burning of uncontrolled disposal	% of uncontrolled disposal of MSW	Waste that has been deposited in an uncontrolled disposal facility and which is subsequently combusted in an open uncontrolled fire, accidentally, intentionally, or spontaneously.	Based on ^{6,35} (Section S.7)
C9	Debris emissions from uncontrolled disposal of MSW	% of uncontrolled disposal of MSW unburned	Waste that has been deposited in an uncontrolled disposal facility which has not been combusted in open uncontrolled fires and which is subsequently emitted from that uncontrolled facility into the environment through the action of wind, surface water or gravity.	Modelled based on available data (Section S.7)
C10	Uncollected MSW openly burned	% of uncollected MSW	Material that has not been collected and which is subsequently combusted in an open uncontrolled fire, accidentally, intentionally, or spontaneously.	
C11	Plastic in uncollected litter	% of uncollected litter	The proportion of waste material which is characterised as plastic.	³⁶
C12	Plastic in uncollected MSW openly burned	% of uncollected MSW openly burned	The proportion of uncollected waste material which is characterised as plastic, and which is openly burned.	Assumed same as plastic in MSW (C0)
C13	Plastic in collection system debris emissions	% of collection system debris emissions	The proportion of collection system debris emissions which is plastic.	
C14	Plastic in disposal debris emissions	% of disposal debris emissions	The proportion of debris emissions from uncontrolled disposal of MSW which is characterised as plastic.	Assumed (Section S.7)
C15	Plastic collected by informal recycling sector	% of informal sector collection of MSW for dry recycling	The proportion of waste collected by informal waste pickers which is characterised as plastic.	Modelled based on available data (Section S.7)
C16	Plastic collected by formal recycling sector	% of formal sector collection of MSW for dry recycling	The proportion of waste collected for recycling by the formal sector which is characterised as plastic.	³⁷
C17	Plastic in uncontrolled disposal of MSW openly burned	% of uncontrolled disposal of MSW openly burned	The proportion of waste material which is deposited in uncontrolled disposal sites and openly burned, and which is characterised as plastic.	Assumed same as plastic in MSW (C0)
C18	Plastic in uncollected MSW unburned	% of uncollected MSW unburned	The proportion of waste material that has not been collected and which is dumped as debris into the environment, and which is characterised as plastic.	
C11a	Rigid plastic in uncollected litter	% of uncollected plastic litter	The proportion of plastic waste in uncollected litter which we describe as 'rigid', according to the definitions proposed by Charles and Kimman ²⁷ .	³⁶
C12a	Rigid plastic in uncollected plastic openly burned	% of uncollected plastic openly burned	The proportion of uncollected rigid plastic waste which is burned in open uncontrolled fires.	Assumed same as rigid plastic in MSW (C0a)
C13a	Rigid plastic in collection system debris emissions	% of collection system plastic debris emissions	The proportion of collection system plastic debris emissions which is rigid.	

ID	Name	Unit	Description	Source
C14a	Disposal system rigid plastic debris emissions	% of disposal system plastic debris emissions	The proportion of disposal system plastic debris emissions which is rigid.	Assumed (Section S.7)
C17a	Rigid plastic in uncontrolled disposal of plastic openly burned	% of uncontrolled disposal of plastic openly burned	The proportion of plastic waste in the disposal system which is burned in open uncontrolled fires and which is rigid.	Assumed same as rigid plastic in MSW (C0a)
C18a	Rigid plastic in uncollected plastic unburned	% of uncollected plastic unburned	The proportion of uncollected plastic waste which is rigid.	
C21a	Rigid plastic in informal collection for recycling	% of informal sector collection of plastic for dry recycling	The proportion of plastic waste collected by the informal recycling which is rigid.	Modelled based on available data (Section S.7)
C22a	Rigid plastic in formal collection for recycling	% of formal sector collection of plastic for dry recycling	The proportion of plastic waste collected by the formal recycling which is rigid.	Assumed same as rigid plastic in MSW (C0a)
C23aa	Informal sector sorting rejects of rigid plastic	% of rigid plastic collected by informal sector for dry recycling	The proportion of informal sector rigid plastics, collected for recycling, which is rejected at the sorting or reprocessing stage.	Modelled based on available data (Section S.7)
C23ab	Informal sector sorting rejects of flexible plastic	% of flexible plastic collected by informal sector for dry recycling	The proportion of informal sector flexible plastics, collected for recycling, which is rejected at the sorting or reprocessing stage.	
C24aa	Formal sector sorting rejects of rigid plastic	% of rigid plastic collected by formal sector for dry recycling	The proportion of formal sector rigid plastics, collected for recycling, which is rejected at the sorting or reprocessing stage.	
C24ab	Formal sector sorting rejects of flexible plastic	% of flexible plastic collected by formal sector for dry recycling	The proportion of formal sector flexible plastics, collected for recycling, which is rejected at the sorting or reprocessing stage.	
C25aa	Unmanaged rigid plastic sorting rejects by informal sector	% of informal sector rigid plastic sorting rejects	The proportion of sorting rejects from rigid plastic waste collected for recycling by the informal sector, which is unmanaged, meaning it is not collected and transferred to a facility (controlled or otherwise).	Assumed (Section S.8.3)
C25ab	Unmanaged flexible plastic sorting rejects by informal sector	% of informal sector flexible plastic sorting rejects	The proportion of sorting rejects from flexible plastic waste collected for recycling by the informal sector, which is unmanaged, meaning it is not collected and transferred to a facility (controlled or otherwise).	
C26aa	Unmanaged rigid plastic sorting rejects by formal sector	% of formal sector rigid plastic sorting rejects	The proportion of sorting rejects from rigid plastic waste collected for recycling by the formal sector, which is unmanaged, meaning it is not collected and transferred to a facility (controlled or otherwise).	
C26ab	Unmanaged flexible plastic sorting rejects by formal sector	% of formal sector flexible plastic sorting rejects	The proportion of sorting rejects from flexible plastic waste collected for recycling by the formal sector, which is unmanaged, meaning it is not collected and transferred to a facility (controlled or otherwise).	
C27aa	Open burning of unmanaged rigid plastic sorting rejects by informal sector	% of informal sector plastic sorting rejects	The proportion of unmanaged rigid plastic rejected during sorting and reprocessing by the informal recycling sector that is subsequently burned in open uncontrolled fires.	Assumed same as C10

ID	Name	Unit	Description		Source
C27ab	Open burning of unmanaged flexible plastic sorting rejects by informal sector	% of informal sector unmanaged flexible plastic sorting rejects	The proportion of unmanaged flexible plastic rejected during sorting and reprocessing by the informal recycling sector that is subsequently burned in open uncontrolled fires.		
C28aa	Open burning of unmanaged rigid plastic sorting rejects by formal sector	% of formal sector unmanaged rigid plastic sorting rejects	The proportion of unmanaged rigid plastic rejected during sorting and reprocessing by the formal recycling sector that is subsequently burned in open uncontrolled fires.		
C28ab	Open burning of unmanaged flexible plastic sorting rejects by formal sector	% of formal sector unmanaged flexible plastic sorting rejects	The proportion of unmanaged flexible plastic rejected during sorting and reprocessing by the formal recycling sector that is subsequently burned in open uncontrolled fires.		

365

366 **S.6 Primary data collection, harmonisation, correction, and**
 367 **cleaning**

368 **S.6.1 Global municipal-level solid waste management *primary input data***
 369 **sources (MS1a)**

370 Solid waste generation and management data for municipalities across the world were obtained
 371 from four sources²⁹⁻³² as shown in **Table S4**.

372 **Table S4.** Global municipal-level solid waste management *primary input data* sources.

Quality assurance hierarchy	Primary input data source	Data year(s)	Scale	Number of locations (records)	Methodology and quality assurance
1	Waste Wise Cities Tool (WaCT) ²⁹	2019 - 2022	Global	38*	Primary data collection as described in the WaCT user manual ⁶ . Quality assurance is checked based on data coherence and comparison against other datasets (e.g. What a Waste 2.0 data ³⁰).
2	Wasteaware Cities Benchmark Indicators (WABI) ³¹	2007 - 2018	Global	71	Secondary data used with some quality assurance checks by waste management experts ³⁸
3	What a Waste 2.0 (WaW2.0) cities data ³⁰	2018	Global	368	Combination of secondary data collected by literature reviews and questionnaire. Data quality assessment unclear but believed to be via data coherence calculations (e.g. percentages sum to 100).
4	United Nations Statistics Division (UNSD) Cities Waste data ³²	1989 - 2019	Global	237**	Data submitted by cities via a questionnaire provided by UNSD ³⁹ . Data quality assessed via data coherence calculations (e.g. percentages sum to 100).

373 * As of April 2023; ** Latest available year

374 Data for 714 municipalities in 180 countries were extracted from the global datasets, although
 375 this number reduced to 553 municipalities after removal of duplicate locations or during the
 376 screening and cleaning stages (**Section S.6.4**).

377 All global data sources had variable data years, dating back to 1989 in the case of the UNSD
378 waste data. Data older than 15 years (2006 at time of analysis) was excluded as it was assumed
379 that waste management has changed substantially since then, thereby reducing its relevance. This
380 exclusion had only limited impact as most locations had data for more recent years. Following
381 the data cleaning phase, the mean and median year of the *primary data inputs* was 2015. With
382 further efforts in data collection occurring at a rapid pace in recent years, particularly as part of
383 the UN-Habitat⁶ Waste Wise Cities Tool official data collection effort associated with the
384 quantification and monitoring of the SDG target 11.6.1 of environmentally sound management of
385 solid waste in cities, it is envisaged that more up to date data can be harnessed in the future.
386 However, at present we maximised data quantity and quality over data year relevance.

387 Each global data source had its own methodology for data collection (**Table S4**), which had to be
388 understood so that data could be harmonised and corrected where necessary (**Section S.6.4**).
389 Quality assurance measures implemented by the data source administrators and investigators
390 were also assessed. This enabled us to prioritise records which were duplicated across multiple
391 datasets and to inform the data-cleaning phase. The WaCT data were assumed to have the
392 highest quality because they were recently obtained using a standardised primary sampling
393 method⁶ and then quality checked for coherence by experts. The WABI data were assumed the
394 next highest quality because it was checked by waste management experts alongside wider
395 additional checks^{38,40}. The quality assurance for WaW2.0 city data and UNSD city waste data is
396 believed to mainly be via data coherence calculations only, for example, where percentages are
397 checked to sum to 100%. Based on our own assessment of the data quality, we assigned a higher
398 priority to the WaW2.0 data compared to UNSD city waste data.

399 **S.6.2 National municipal-level solid waste management data sources (MS1b)**

400 In addition to the four global-scale data sources (WaW2.0, WaCT, WABI and UNSD),
401 municipal level data were extracted from two national databases as shown in **Table S5**.
402 Specifically, the national waste databases of Indonesia³⁴ and China³³ were included due to
403 previous works^{2,3} highlighting these countries as key contributors to plastic pollution and only
404 limited municipal-level data being available for these from the four global datasets.

405 **Table S5.** National municipal-level solid waste management *primary input data sources*.

Primary input data source	Data year(s)	Scale	Number of locations (records)	Methodology and quality assurance
Sistem Informasi Pengelolaan Sampah Nasional (SIPSN)³⁴	2020	Indonesia	502 (10 records extracted)	Data are uploaded by representatives from municipalities. Data quality assurance is not reported.
Ministry of Housing and Urban-Rural Development (MoHURD)³³	2019	China	676* (47 records extracted)	Data provenance is unclear, though it is assumed that records are submitted to the Ministry by the municipalities. Data quality assurance is not reported.

406 * Sub-Provincial level

407 Data record extraction from the national databases of China and Indonesia was limited to 2% of
408 the total national records to avoid overrepresentation and potential biasing in the subsequent
409 machine learning steps (**Section S.7**). Records were chosen at random and filtered according to
410 the following conditions:

411 • Only data for urban areas was selected (as discussed in **Section S.7.1**).

412 • Only data with a high level of certainty with regards to administrative area matching were
413 selected ($\geq 60\%$ similarity for China municipalities or score of 1 for Indonesian
414 municipalities, as discussed in **Section S.6.3**)

415 The motivation behind the selection of only urban data points was to ensure compatibility with
416 the four global datasets, which predominantly included data for urban areas, whereas the other
417 filter was applied to ensure data quality.

418 The most recent published year was chosen for each of the countries at the time of analysis,
419 giving data from 2020 for Indonesia and 2019 for China. Data quality assurance and provenance
420 for the two datasets was not clearly stated by either. It is assumed that data are uploaded directly
421 by municipal authorities, and assessment of the content infers that only limited quality assurance
422 is carried out in each case. We assessed each of these datasets in full, flagging anomalies and
423 suspected data entry errors; only including data that appeared to be entered correctly.

424 **S.6.3 Assignment of administrative areas (MS2)**

425 The Global Administrative Areas (GADM) dataset V3.6¹ is a geographical information systems
426 (GIS) database including 386,733 polygons that represent up to five administrative area levels
427 within each country.

428 The number of boundaries used by national administrations to organise their political, economic,
429 and social affairs varies between countries, with some having just a single national boundary
430 (Level 0) and others having many thousands of districts (L04) and sub-districts (L05), as is the
431 case with France or Rwanda.

432 Although the data extracted from the sources outlined in **Table S4** and **Table S5** were
433 predominantly municipal level data, our analysis found the specific spatial boundary to which
434 these data relate to be unclear in many cases. For example, data provided for 'London' may
435 relate to either the City of London (population $\sim 8,000$) or Greater London (population ~ 9
436 million).

437 Each municipal waste data record (i.e. from WaW2.0, WaCT, WABI, UNSD, SIPSN or
438 MoHURD) was assigned to a GADM administrative area¹ by comparing the similarity between:
439 1) The population reported alongside the original primary data record and the population
440 calculated by summing GIS population rasters for the years 2010, 2015 and 2020^{28,41} across each
441 GADM polygon; and 2) The urban extent of the city on a Google Maps hybrid layer with the
442 GADM polygon boundary. Once a decision had been made about which administrative area best
443 matched the data record, the GADM ID of that boundary was assigned to the data record.
444 Additionally, a 'GADM match' score was assigned to denote how well we believed the data
445 record matched the administrative area (**Table S6**).

446 Data for China published in the MoHURD dataset³³ were analysed slightly differently to those
447 outlined in **Table S6** because of major discrepancies between those reported by MoHURD and
448 those in the GADM V3.6 dataset¹. This is for two main reasons: 1) MoHURD reports data in
449 Chinese script for which translations into Roman Script have undergone methodological changes
450 in recent years and are subject to the interpretation of software or human translator⁴²; and 2) The
451 Chinese Authority has implemented substantial reclassification of its sub-provincial

452 administrative areas over recent decades⁴³, resulting in a mismatch between areas reported in
 453 MoHURD and in the GADM.

454 **Table S6.** Criteria for level of correlation between administrative areas¹ and municipal waste
 455 data records.

Administrative area match score	Criteria
1	The difference in population between that reported in data record compared to that calculated via GIS for the administrative area and for the nearest reported year is less than 20% or has plausibly increased or decreased during the intervening years. Additionally, the administrative area correlates well with the urban area based on Google Maps hybrid layer.
2	The difference in population between that reported in data record compared to that calculated via GIS for the administrative area and for the nearest reported year is greater than 20%, but the administrative area correlates well with the urban area based on Google Maps hybrid layer ⁴⁴ . Alternatively, the difference in population between that reported in data record compared to that calculated via GIS for the administrative area and for the nearest reported year is less than 20%, but the administrative area correlates poorly with the urban area based on Google Maps hybrid layer.
3	The difference in population between that reported in data record compared to that calculated via GIS for the administrative area and for the nearest reported year is greater than 20%, and the administrative area correlates poorly with the urban area based on Google Maps hybrid layer. Despite this, it is reasonable to conclude the data and administrative area refer broadly to the same location.
4	Unable to find appropriate match between the data record and administrative areas.

456 To address these challenges, the Chinese script names of the administrative areas (n=708)
 457 reported by MoHURD were translated into Roman Script using the Google Translate function
 458 within Google Sheets. Of these, 32 are reported by MoHURD as provinces and therefore
 459 assigned to Level 1, the remaining 676 were assumed to be Level 2 or 3 and were assigned to the
 460 closest matching GADM polygon following a four-step approach (**Table S7**).

461 **Table S7.** Description of steps taken to assign incineration and collection data from ministry of
 462 Housing and Urban Rural Development (MoHURD)³³ into the administrative areas according to
 463 the Database of Global Administrative Areas (GADM)¹.

Step	Description	Number of municipalities Removed (merged)	Number of municipalities assigned			
			L01	L02	L03	Total
1	1a Level 1 names matched		27		27	
	1b Level 1 names adjusted			4		4
1	1c Level 1 Xinjiang merged with Xinjiang Uygur	-1	0		0	
	Translated Roman script names matched with either Level 2 2a or 3 unique IDs and population within 60%			113	228	341
	Translated Roman script names matched with either Level 2 or 3 unique IDs. Population below 60% match but correlation of GADM polygon with conurbations indicated					
2	2b the same area		68	96	164	
	Translated names in Roman script or original Chinese script compared with Google, Google maps and GADM layer then adjusted as necessary and allocated to Level 2 or 3 if					
3	3a population within 60%		11	107	118	
	Translated names in Roman script or original Chinese script compared with Google, Google maps and GADM layer then adjusted as necessary. Population below 60% match but correlation of GADM polygon with conurbations					
3	3b indicated the same area		6	27	33	

Step	Description	Number of municipalities		Number of municipalities assigned			
		Removed (merged)	Added	L01	L02	L03	Total
4a	Municipalities listed by MoHURD did not match with GADM but fell within another GADM boundary, therefore records combined with other validated records	-10		0	0		
4b	Municipalities reported by MoHURD (n=4) matched with two GADM municipalities, so data distributed between them by population	-4	8	8	8		
4c	Reassessment of population in the context of Level 3 municipalities already allocated showed good match at Level 2			6	6		
	Totals	-15	8	31	204	466	701

464 Municipalities reported by MoHURD were assigned to GADM V3.6 polygons sequentially according to the steps detailed. The
 465 number of municipalities assigned to each Level during each step are listed under L01, L02, L03. Data for some municipalities
 466 had to be merged in steps 1c, 4a and 4b as the GADM reported areas that had since been split into smaller administrative areas by
 467 the Chinese authorities. Data for other municipalities had to be redistributed into two municipalities in Step 4b because the
 468 Chinese authorities have merged municipalities since creation of the GADM. Abbreviations: Global Administrative Database of
 469 Municipalities (GADM).

470 **S.6.4 Data harmonisation (MS3a), correction (MS3b) and quality screening 471 (MS3c)**

472 Municipal waste management data reported by each of the six *primary input data* sources (**Table
 473 S4** and **Table S5**) were not collected using consistent criteria and therefore had to be harmonised
 474 to enable aggregation into a combined dataset that contained parameters with approximately
 475 equivalent basis. Within each dataset, we also took steps to assess: the methods by which data
 476 were collected; the quality of the data; and whether data quality assurance had already been
 477 carried out by the researchers who compiled them. As shown in **Table S4** and **Table S5**, most of
 478 the data sources had only limited quality assurance, meaning substantial cleaning was required.

479 Numerous authors have highlighted that data reported by municipalities is often
 480 incorrect^{15,16,30,45}. For example, municipalities often estimate MSW generation by measuring the
 481 amount of waste that arrives at a disposal site. However, if some waste is uncollected in the
 482 municipality, or if the informal recycling sector collect material before it reaches the disposal
 483 site, then that measured quantity would be underreported. Therefore, we corrected some reported
 484 MSW generation rates to approximately account for unrecorded material.

485 This section details the harmonisation, correction, and quality screening steps for each of the six
 486 *primary input data* sources used in our model.

487 **S.6.4.1 Waste Wise Cities Tool (WaCT)**

488 The WaCT was developed by UN-Habitat⁶ to assist and enable consistent and scientific
 489 collection of municipal level waste management related data across the world. The tool guides
 490 users through a series of steps aimed at quantifying the flows of waste through municipal solid
 491 waste systems, including household and commercial surveys. A WaCT Data Collection
 492 Application (DCA) assists users with collecting and analysing data. Summary results of data
 493 collected are available online via a dedicated data portal²⁹.

494 MSW generation rate (tPI_{pc}), collection coverage (tC1) and controlled disposal (tC3) were
495 extracted directly from the WaCT DCA to obtain higher precision than the summarised numbers
496 reported in the WaCT portal UN-Habitat²⁹.

497 In the present work, we define controlled disposal using the WACT⁶ definition of facilities
498 '*operated under basic, improved or full control according to the Ladder of waste management*
499 *facilities' control level*'. We then made a series of assumptions (**Sections S.6.4.2 - S.6.4.6**) about
500 how we harmonised other data source definitions with ours.

501 Additional inputs taken from the WaCT DCA include the percentage of plastic in MSW (C0) and
502 the percentage of that plastic that is rigid (C0a), termed 'dense plastic' in WaCT. As these are
503 only provided for household composition which we assume to be equivalent to MSW plastic
504 composition. This is a reasonable approximation given that households usually produce the bulk
505 of MSW generation (assumed as 70% wt. in WaCT as a default).

506 The primary inputs of formal collection of MSW for dry recycling (tC2i), formal collection of
507 MSW for other recovery (tC2ii) and formal collection of MSW for incineration (tC2iii) are not
508 directly reported by WaCT as they all fall within the tools aggregated category of 'recovery
509 facilities'. Despite this, an assessment of formal collection of MSW for incineration (tC2iii) can
510 be made by analysing the recovery facility data available in the WaCT DCA and summing the
511 mass input to any facility classified as incinerators, before dividing this by the collected mass to
512 achieve the correct basis. This approach cannot be applied for formal collection for dry recycling
513 (tC2i) or formal collection of MSW for other recovery (tC2ii) due to many of the sorting and
514 recovery facilities including contributions from both formal and informal collections. As such,
515 no data was extracted for these data points.

516 The SDG indicator 11.6.1, 'the proportion of municipal solid waste collected and managed in
517 controlled facilities out of total municipal waste generated, by cities', is not a direct input to the
518 MFA's used in this work, but instead is an output calculated from the MFA's. To ensure that the
519 values of SDG 11.6.1 calculated in this work match those of the official WaCT tool, the values
520 for managed in controlled facilities were also extracted from the WaCT DCA. These are
521 subsequently used to override the predictions as calculated based on the MFAs in this work for
522 municipalities having conducted WaCT analysis, thereby ensuring parity with the official
523 statistics. No further harmonisation, screening, or correction of WaCT data was required.

524 **S.6.4.2 Wasteaware Benchmark Cities Indicators (WABI)**

525 The Wasteaware Cities Benchmark Indicators (WABI) were first developed as a means to
526 compare cities waste management performance as part of the UN-Habitat flagship publication
527 *Solid Waste Management in the World's Cities*⁴⁶, although not yet under the WABI name and
528 documented by Wilson, et al.⁴⁷. Later adaptions of the methodology saw the development of
529 WABI as a complete framework and set of indicators to enable consistent solid waste data
530 collection and reporting which would enable assessments and comparison of waste management
531 systems around the world for their effectiveness at controlling waste, social inclusion in waste
532 management and environmental sustainability³⁸. Since its publication, the indicators have been
533 used as a basis for over 70 studies, examples of which can be found in^{38,47-65}.

534 WABI data used in this analysis is available from Velis, et al.⁴⁰, with additional data sourced
535 based on reports that used the WABI framework in China⁶², Egypt⁶³, Ethiopia and South

536 Africa⁶⁴. Wasteaware also provided supplementary information on case studies to aid in the
537 analysis, particularly to ensure consistency across the different versions of the tool. Data years
538 for the WABI dataset were assumed 3 years prior to the publication date of the data for each
539 municipality as reported by Velis, et al.⁴⁰. A data year for Ethiopian cities was only provided for
540 Bishoftu, therefore it was assumed all other Ethiopian cities were profiled in the same year.

541 The MSW generation rate ($tP1_{pc}$) was calculated from the above data by dividing the reported
542 waste generation ($t \cdot y^{-1}$), by the population provided in the dataset, and converting the units to
543 $kg \cdot cap^{-1} \cdot d^{-1}$. Similarly, collection coverage ($tC1$) and plastic in MSW ($C0$) was reported as a
544 percentage of MSW generation, therefore no further processing was necessary.

545 We assumed that the definition of controlled treatment and disposal facilities defined by
546 indicator 2E used in the WABI³⁸ is equivalent to the definition of controlled disposal used in this
547 analysis. Although this indicator relates to both treatment and disposal facilities, in practice the
548 indicator is mainly used to describe disposal facilities only. Similarly, as the units of this
549 indicator in WABI are as a percentage of waste destined for treatment or disposal, the units
550 matched closely with that required for the controlled disposal input ($tC3$), therefore no further
551 processing was needed.

552 The *primary data inputs* of formal collection of MSW for dry recycling ($tC2i$), formal collection
553 of MSW for other recovery ($tC2ii$) and formal collection of MSW for incineration ($tC2iii$) are
554 not directly reported as part of the WABI. Instead, the WABI reports a recycling rate that
555 includes dry recycling by both formal and informal sectors, plus organics valorisation (e.g.,
556 composting, anaerobic digestion and animal feeding). Supplementary information associated
557 with the WABI case studies⁴⁰ allowed many of the recycling data points to be disaggregated
558 between the proportion that was reported as formal recycling compared to that which was
559 informally collected. Though the informal sector is involved in recycling some wet wastes, it is
560 predominantly focused on dry material, therefore, we assumed that all informal recycling
561 reported in WABI was dry recycling. This enabled the WABI recycling rate to be adjusted so
562 that it only included formal recycling, thereby becoming closer to that required by the *primary*
563 *data inputs*. Importantly, informal recycling rates are included in our analysis, however, these are
564 modelled and added on as part of the *secondary data inputs* (**Section S.7**). Lastly, to enable
565 complete harmonisation with the *primary data inputs* of formal recycling ($tC2i$) and other
566 recovery ($tC2ii$), the formal recycling rate was split into the proportion that is related to dry
567 recycling, and the proportion sent for organics valorisation ('other recovery'). As this was not
568 explicitly recorded for many records in the WABI dataset, we obtained evidence from literature
569 for each municipality to estimate this split (**Table S8**).

570 **Table S8.** Review of evidence for municipalities in the Wasteaware Cities Benchmark Indicators
571 (WABI) dataset with reported formal recycling with the aim to understand the split between
572 formal dry recycling and other recovery.

Municipality	Country	Proportion of WABI formal recycling that is dry recycling	Justification	Source
Adelaide	Australia	77.5%	62% dry recycling and 18% composting reported as a percentage of waste generation	⁶⁶
Varna	Bulgaria	100%	Evidence of a recycling facility in Varna processing household waste for recycling but no mention of any other recovery facility type, therefore allocated completely to dry recycling	⁶⁷

Municipality	Country	Proportion of WABI formal recycling that is dry recycling	Justification	Source
Bahrain	Bahrain	100%	Although the reference suggest both dry recycling and composting facility exist, the latter is reported to have negligible flows. As such, dry recycling is assumed to represent the entire amount of the WABI recycling value.	68
Belo Horizonte	Brazil	100%	Evidence of formal cooperative waste pickers working alongside informal waste pickers. No evidence of other recovery such as composting so all assigned to dry recycling.	69
Victoria-Gastez	Spain	100%	Paper, plastics and glass reportedly recycled. No evidence of composting, therefore all recycling assigned to dry recycling.	70
Rotterdam	Netherlands	57.7%	Based on 15% composting and 11% dry recycling in South Holland	71
Belfast	Northern Ireland	59.1%	15.9% dry recycling and 11% composting	72
Athens	Greece	99.6%	99.6% dry recycling with only 0.4% composting of restaurant waste	73
Delhi	India	0%	Dry recycling reportedly performed largely by the informal sector. NGO's encouraged to perform composting, therefore all formal recycling allocated to composting.	74
Dhaka	Bangladesh	0%	Evidence of a composting plant in operation along with collection services for market waste	46
Castries	St Lucia	2.5%	Evidence of some formal dry recycling facilities present in Castries therefore it is plausible that the 2.5% is formal	75
Singapore	Singapore	81.4%	Approximated from a chart – Singapore includes several non-municipal sources so the reported rate of 59% was adjusted by deducting construction waste (29%) and slag (8.5%) – leaving 21.5%. Of this, the combined proportion of horticultural waste and food waste was 4%; assumed composted or sent for anaerobic digestion. This means the formal dry recycling rate was 81.4% of all formal MSW recycling	76
Curepipe	Mauritius	-	Evidence that although some collection of dry recyclables occurs by the formal sector, this is mixed together with residual waste at the transfer station and taken to disposal sites, therefore omitted.	46
Canete	Peru	100%	Separate collection of inorganic recyclables available in about 15% of the municipality.	46
Jakarta	Indonesia	-	Unable to source reliable data to justify the 5% reported, however both waste banks and compost facilities are reported to exist. Therefore omitted.	77
Ghorahi	Nepal	100%	A small amount of plastics are sorted for recycling formally at the landfill site. Although compost pits are also present at the landfill site, it is reported they have difficulty selling this due to glass contamination. As such, the dry recycling is assumed the dominant part of formal recycling.	46
Quezon City	Philippines	-	Formal <i>barangay</i> collectors are reported to have material recovery facilities for dry recycling but also collect biodegradable waste for composting. It is unclear of the relative split between these activities, therefore an equal split is assumed.	46
Managua	Nicaragua	100%	Believed to be due to waste picker cooperatives therefore assigned to dry recycling	46
Lusaka	Zambia	100%	Reported there is a strong formal sector with five recycling companies collection paper, plastics and metal.	46
Surat	India	-	Unable to source reliable data therefore omitted	
Bangalore	India	-	Unable to source reliable data therefore omitted	
Warangal	India	-	Unable to source reliable data therefore omitted	

Municipality	Country	Proportion of WABI formal recycling that is dry recycling	Justification	Source
Bishkek	Kyrgyzstan	93.75%	Material flow analysis suggest 500 tonnes per year are composted formally, whereas 7500 tonnes per year of paper goes to recycling factories directly (assumed formal). Therefore 93.75% of formal recycling is dry recycling	78
Lahore	Pakistan	0%	All formal recycling is composting	79
Castries	St Lucia	100%	Dry recyclables reportedly collected. No evidence of composting or other recovery	75
San Francisco	USA	72.2%	72.2% dry recycling with the remainder composting	80
Tompkins county	USA	100%	Evidence of material recovery facilities and mixed dry recyclables collection at source but no mention of other recovery facilities.	81

573 Abbreviations: Municipal solid waste (MSW); non-governmental organisation (NGO); WasteAware Benchmark Indicators
 574 (WABI).

575 The splits found in **Table S8** were used to disaggregate the WABI formal recycling rate by dry
 576 recycling and other recovery. As the units of the WABI recycling rate are as a percentage of
 577 waste generation, the values were further divided by the reported collection coverage to convert
 578 the units to a percentage of collected waste, thereby matching those required for tC2i and tC2ii.

579 Lastly, incineration is not directly reported as part of the WABI dataset. To populate the primary
 580 data input of ‘collected for incineration’ (tC2iii), we gathered evidence to determine whether
 581 incineration was taking place in each municipality. The municipalities in which incineration was
 582 found to occur is shown in **Table S9**.

583 **Table S9.** Amount of waste incinerated in municipalities profiled using the WABI method.

Municipality	Country	Mass incinerated (t·y ⁻¹)	Proportion MSW incinerated (% of MSW generation)	Source
Kunming	China	1,382,368	73	
Bengbu	China	369,619	73	
Lanzhou (Lan'Zhou)	China	870,459	100	
Suzhou	China	1,898,138	77	³³
Tai'an (Tai'an)	China	413,755	64	
Xian (Xi'an)	China	140,750	94	
Rotterdam	Netherlands		76.23 ^a	46
Singapore	Singapore		38	76

584 ^a based on the statement that all residual waste is incinerated with only 1% of residues sent to landfill and 23% recycling,
 585 anaerobic digestion and composting reported in the WABI dataset Abbreviations: municipal solid waste (MSW).

586 In all cases, collection coverage reported for municipalities which incinerate waste was 100%,
 587 therefore, the units of percentage of MSW generation are equivalent to the units of percentage of
 588 MSW collected. As such, no further processing was required and the values in **Table S9** were
 589 used directly as input tC2iii.

590 **S.6.4.3 What a Waste 2.0 (WaW2.0)**

591 The What a Waste 2.0 dataset provided by Kaza, et al.³⁰ reported waste data collected from 367
 592 cities covering nearly every country. Data were obtained by Kaza, et al.³⁰ from literature and

593 conversations with waste agencies and authorities. Data sources in WaW2.0 are listed in the
594 'City level codebook' that accompanied the report.

595 ***S.6.4.3.1 Collection coverage***

596 The WaW2.0 dataset includes four fields which are used to report collection coverage using
597 different units. For some cities no data are reported in any field, others just one field and others
598 two, three, or four. We assumed they were all equivalent estimates to collection coverage as a
599 percentage of MSW generation by mass (tC1), and selected them for inclusion in our dataset
600 according to the following order of the following preference:

601 1. % wt. of waste
602 2. % of population
603 3. % of households
604 4. % of geographical area

605 ***S.6.4.3.2 MSW generation rate***

606 The amount of MSW generated in each municipality is reported by WaW2.0 in $t \cdot y^{-1}$. We divided
607 these rates by the population reported in the dataset itself and then multiplied by (1000/365) to
608 adjust the units to $kg \cdot cap^{-1} \cdot d^{-1}$.

609 Approximately 30% of the waste generation entries also report whether scales are used to weigh
610 the mass of waste collected, and the location at which it was measured. For example, of the 100
611 cities that reported the measurement method, 69 reported scales were used at the point of
612 disposal, five at the point of aggregation (e.g., transfer stations), 16 did not have a measurement
613 method, and ten reported 'other'. It was assumed that the MSW generation rates were based on
614 measurements taken from these weighbridges when provided. This implies that many of the
615 reported waste generation rates represent collected waste only. Therefore, if collection coverage
616 is less than 100%, the total MSW generation rate has been underreported.

617 There is evidence that some municipalities and countries may correct their waste generation data
618 on the basis of waste collection and other factors, for instance for some municipalities in
619 Brazil⁸². There is also some evidence that waste generation is reported as that which has been
620 'collected and transported', for instance by National Bureau of Statistics of China⁸³. Without
621 checking each individual record by either re-requesting the information from the municipality or
622 following up the published source, it was not possible to determine whether the data had already
623 been corrected. Moreover, for most records (n = 267) in the WaW2.0 city database, the point of
624 measurement was left blank, creating uncertainty over where the waste was measured and also
625 whether it was corrected.

626 To address the potential underestimation of waste generation rates, we carried out a cautious
627 adjustment by dividing the waste generation rate by the collection coverage. For cities in high-
628 income countries (HICs), the difference between the reported and adjusted waste generation was
629 negligible because most cities in HICs reported collection coverage at or close to 100%. For
630 cities in upper-middle income countries (UMCs), lower-middle income countries (LMCs) and
631 low income countries (LICs), the difference between the adjusted waste generation rate and the
632 original waste generation rate was progressively greater as the collection coverage negatively
633 correlated with income category, a commonly observed trend^{5,30}.

634 Analysis of the central tendency and spread of the adjusted waste generation data showed that for
 635 some records, cities in UMCs, LMCs and LICs generated substantially more waste than in many
 636 HIC municipalities (**Table S10**). Whilst parts of some wealthier cities in the Global South may
 637 approach comparability with some poorer cities in HICs, we assumed that it is unlikely that the
 638 median waste generation would exceed that in HICs. Therefore, to control for potentially
 639 overestimated waste generation rates, we screened the adjusted waste generation data to assess
 640 the plausibility of our corrections according to the following criteria:

641 1. Adjusted waste generation rates for cities in LIC and LMC countries that were greater
 642 than the median waste generation mass for HICs ($1.02 \text{ kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$; $n = 60$) were assumed
 643 to be overcorrected and flagged for potential reversion to the original reported figure.
 644 2. Adjusted waste generation rates for cities in UMC and HICs that exceeded 1.5 times the
 645 interquartile range from the 75th percentile⁸⁴ were assumed to be outliers ($n = 5$) and
 646 flagged for potential reversion to the original reported figure.

647 Cities flagged for a potential correction were screened to identify plausible explanations for a
 648 high waste generation, for instance, for extremely high tourism. Three cities: Hanoi (Vietnam),
 649 San Pedro (Belize) and Honiara (Solomon Islands) were identified as being major tourist
 650 destinations. For each of these three, tourist arrivals statistics were compared with the resident
 651 population to see if there was a substantial inferred increase in population for long enough to
 652 affect the waste generation mass. In each case, we decided that the increase was not great enough
 653 to warrant the increase. Therefore, all the flagged records were reverted ($n = 65$), reducing the
 654 spread of the data.

655 **Table S10.** Side by side comparison of central tendency and spread for waste generation mass
 656 reported in the WAW2.0 dataset³⁰ compared to mass adjusted by collection coverage ($\text{kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$).
 657

Dataset	Central tendency and spread	LIC	LMC	UMC	HIC
Original data	25 th percentile	0.27	0.43	0.66	0.65
	Median	0.48	0.58	1.01	1.01
	75 th percentile	0.70	0.85	1.26	1.41
	Inter quartile range	0.43	0.42	0.59	0.76
Adjusted ('corrected')	25 th percentile	0.34	0.47	0.74	0.66
	Median	0.67	0.75	1.06	1.02
	75 th percentile	1.37	1.32	1.38	1.41
	Inter quartile range	1.03	0.85	0.65	0.75

658 As shown in **Table S11**, the 75th percentile for cities in LICs and LMCs of adjusted waste
 659 generation rate with the 65 outliers removed reduced substantially, whereas the data for UMCs
 660 and HICs were barely affected.

661 **Table S11.** Central tendency and spread of waste generation mass reported in the WAW2.0
 662 dataset³⁰, adjusted by collection coverage with the adjustment reverted for some records to
 663 control outliers.

Dataset	Central tendency and spread	LIC	LMC	UMC	HIC
Corrected with some corrections reverted	25 th percentile	0.34	0.46	0.70	0.66
	Median	0.55	0.64	1.06	1.02
	75 th percentile	0.75	0.88	1.34	1.41

Dataset	Central tendency and spread	LIC	LMC	UMC	HIC
	Inter quartile range	0.41	0.43	0.64	0.75

664

665 ***S.6.4.3.3 Plastic in MSW***

666 The composition of MSW is reported in WaW2.0, including a category for plastics. If the
 667 summation of the compositions did not equal 100%, values were normalised then assigned to
 668 'plastic in MSW' (C0).

669 ***S.6.4.3.4 Recovery and controlled disposal***

670 The proportion of waste that was treated and disposed of is reported in WaW2.0 under 12
 671 categories for 247 cities. Although the questionnaire used by WaW2.0 stated that respondents
 672 should report these categories as a proportion of waste generation, we assumed that, for the
 673 majority of cases, it was reported as a proportion of 'formally collected waste'. Our assumption
 674 is further supported by the fact that 59 cities reported informal recycling rates (as a percentage of
 675 waste generation), yet only six of these cities ensured that the summation of this informal
 676 recycling with the formal treatment and disposal options equaled 100%. By contrast, most of the
 677 cities with data on informal recycling reported that the other 12 treatment and disposal options
 678 summed to 100% (n = 32), whilst the remainder (n = 21) summed to less than 100%. Examples
 679 such as this indicated inconsistencies and errors, which fell into four main groups:

- 680 1. In approximately half of cases, the 'unaccounted for' category appeared to represent
 681 'uncollected waste' rather than material collected and transported. This implies that
 682 some municipalities had followed the instructions and reported proportions as a
 683 percentages of waste generation, whilst the other half had used it to represent collected
 684 waste for which the data to describe the treatment and disposal pathway was not known.
- 685 2. Data for informal sector recycling were reported as a proportion of waste generation (n
 686 = 59), yet when combined with the 12 other treatment and disposal options, the majority
 687 (n = 53) did not sum to 100%.
- 688 3. Only recycling was reported (n = 5) and the other categories were left blank.
- 689 4. The sum of categories added up to more or less than 100% (n = 50).

690 To approximately correct the inconsistent use of the 'unaccounted for' field (1), we assumed that
 691 if the sum of 'unaccounted for', 'waterways marine' and 'collection coverage' fields were within
 692 10 percentage points of 100%, then the 'unaccounted for' field represented 'uncollected waste'
 693 (n = 65). In all other cases we assumed that the 'unaccounted for' field represented collected and
 694 transported waste that had been deposited in an unknown, uncontrolled facility (n = 302).

695 If data for informal recycling sector collection (2) was within 10% of the reported
 696 'waste_treatment_recycling_percent' field, it was assumed both fields represent informal
 697 recycling and therefore the data point was removed from the analysis (informal sector recycling
 698 was instead estimated using a modeling approach to ensure more consistent estimations.

699 Where only the 'recycling' field was reported (3), data were left intact, and the other categories
 700 were left blank exactly as entered. Where the sum of the proportions was less than or greater than
 701 100% (4), we normalised each of the reported categories to 100%. If the summation of the

702 treatment and disposal options prior to normalisation summed to 100%, but some of the inputs
703 were left blank, it was assumed that no other treatment and disposal methods were present in that
704 municipality. The blank treatment and disposal options were therefore allocated zeros instead of
705 blanks. If the pre-normalised values did not sum to 100% the blanks were unchanged.

706 Each of the treatment and disposal types in WaW2.0 were assigned *primary data variables*
707 according to The World Bank⁸⁵ country income category of the municipality (**Table S12**). The
708 *primary data inputs* for formal collection for dry recycling (tC2i) and incineration (tC2iii) each
709 relate to only a single WaW2.0 category, therefore the proportions reported were used following
710 the above corrections. Other recovery (tC2ii) was calculated as the sum of the proportions
711 allocated to the ‘composting’, ‘anaerobic digestion’ and ‘advanced thermal treatment’ WaW2.0
712 categories. As the units for these were assumed as a percentage of collected waste, no further
713 processing was required. By contrast, the *primary data input* variable of ‘controlled disposal’
714 (tC3) is a proportion of waste collected for disposal, therefore this input was calculated as the
715 sum of the percentages assigned as controlled disposal, divided by all percentages assigned to
716 disposal.

717 **Table S12.** Classification of municipal solid waste treatment and disposal categories reported in
718 What a Waste 2.0 (WaW2.0)³⁰ by country income categories.

WaW2.0 treatment and disposal categories	Classification assigned in this work by income category of country	
	HIC	UMC, LMC, LIC
Recycling	Formal collection for dry recycling (tC2i)	Formal collection for dry recycling (tC2i)
Compost	Other recovery (tC2ii)	Other recovery (tC2ii)
Anaerobic digestion	Other recovery (tC2ii)	Other recovery (tC2ii)
Advanced thermal treatment	Other recovery (tC2ii)	Other recovery (tC2ii)
Incineration	Incineration (tC2iii)	Incineration (tC2iii)
Landfill gas system	Controlled disposal (tC3)	Controlled disposal (tC3)
Controlled landfill	Controlled disposal (tC3)	Controlled disposal (tC3)
Landfill unspecified	Controlled disposal (tC3)	Uncontrolled disposal
Open dump	Uncontrolled disposal	Uncontrolled disposal
Other	Controlled disposal (tC3)	Uncontrolled disposal
Marine / river	Uncontrolled disposal	Uncontrolled disposal
Unaccounted ¹	Uncontrolled disposal or uncollected	Uncontrolled disposal or uncollected

719 ¹Analysis of the City Dataset reported in WaW2.0³⁰ indicates confusion amongst some of the respondents to the survey.

720 In approximately half of the cases, it appears that the ‘unaccounted for’ field was used to represent ‘uncollected waste’, whereas
721 in the other half of cases it was used to represent collected waste for which the data to describe the treatment and disposal
722 pathway was not known. To correct these inconsistencies, we assume that if the sum of ‘unaccounted for’ and ‘collected’ waste is
723 within 10 percentage points of 100%, then the ‘unaccounted for’ field represents uncollected waste. In all other cases, we assume
724 that the ‘unaccounted for’ field represents collected waste that has been deposited in an uncontrolled facility. Abbreviations:
725 high-income country (HIC); upper-middle income country (UMC); lower-middle income country (LMC); low-income country
726 (LIC); What a Waste 2.0 (WaW2.0).

727 **S.6.4.3.5 Formal dry recycling**

728 On the basis that anaerobic digestion and composting are reported separately in WaW2.0³⁰, it
729 was assumed that the recycling rate reported is for dry recycling only.

730 While anaerobic digestion and particularly composting have become more common in LICs,
731 LMCs and UMCs³⁰, collection of dry recyclate by the formal sector is uncommon or small in

732 comparison to the informal sector⁸⁶. As we will show in this section, this is except for some
733 cities in UMCs that have begun to implement small-scale formal recycling collection systems.
734 Thus, the majority of WaW2.0 records for cities in LICs, LMCs and UMCs that included data for
735 'recycling' are likely to represent waste collected by the informal sector rather than by the formal
736 sector. We suggest that this may even be the case for the cities where the informal sector
737 recycling field was left blank due to insufficiently defined reporting between the formal and
738 informal sector activities, making disaggregation challenging.

739 To assess whether the recycling rate in WaW2.0 represents formal collection for recycling, the
740 following assumptions and data verification steps were conducted:

- 741 1. Recycling rates reported for cities in HICs were assumed to describe formal collection for
742 dry recycling collection as a proportion of waste collection.
- 743 2. Recycling rates reported for cities in LICs and LMCs were assumed to describe informal
744 recycling sector dry recycling collection as a proportion of waste collection. In these
745 cases, formal collection for dry recycling was marked as zero.
- 746 3. For cities in UMCs, evidence was collated from municipal websites, reports, and
747 academic articles to determine whether formal collection for dry recycling was being
748 carried out in the municipality (**Table S13**). This consisted of three tests:
 - 749 a. Is there evidence that the formal sector recycling is taking place in the
750 municipality?
 - 751 b. Is the recycling rate reported so high that it is implausible that it is entirely carried
752 out by the formal sector?
 - 753 c. Is the recycling rate low enough that it is implausible that it only represents
754 informal collection and is therefore more likely to represent a small formal
755 operation?

756 Records marked as 'plausible' were assumed to be representative of formal recycling; 'unlikely'
757 were assumed to represent informal recycling and marked with a zero; and 'uncertain' data
758 points, where it was unclear what the data represented, were removed.

759 **Table S13.** Evidence that formal recycling takes places in the municipalities reported by What a
760 Waste 2.0³⁰.

Municipality	Country	Reported recycling rate (% of collected waste) ¹	Plausibility that recycling rate is formal	Reason	Ref
Vlora	Albania	10	Unlikely	Thriving informal sector and no evidence of formal sector recycling	⁸⁷
Algiers	Algeria	10	Unlikely	No evidence of formal recycling and evidence of strong informal sector	⁸⁸
Cordoba	Argentina	0.68	Plausible	Recycling rate low and evidence that formal recycling takes place	⁸⁹
Ciudada Autonomous De Buenos Aires	Argentina	7.2	Unlikely	Thriving informal sector and little evidence of formal sector recycling	⁸⁹

Municipality	Country	Reported recycling rate (% of collected waste) ¹	Plausibility that recycling rate is formal	Reason	Ref
Grodno	Belarus	0.6	Plausible	Recycling rate low and evidence that formal recycling takes place	⁹⁰
Distrito Federal, Brazil Brasilia	Brazil	5.94	Unlikely	Thriving informal sector and little evidence of formal sector recycling	⁹¹
Rio De Janeiro	Brazil	0.5	Plausible	Recycling rate low and some small evidence that formal recycling takes place	⁹²
Bogota	Colombia	17	Plausible	Evidence that informal sector has become fully formalised	^{93,94}
Medellin	Colombia	16	Plausible	Evidence that informal sector has become fully formalised	⁹⁵
Cali	Colombia	15	Plausible	Evidence that informal sector has become fully formalised	⁹⁶
San Jose	Costa Rica	5.2	Plausible	Some evidence that formal recycling takes place	^{97,98}
Alajuela	Costa Rica	0.42	Plausible	Recycling rate low and some small evidence that formal recycling takes place	^{97,98}
Quito	Ecuador	6	Unlikely	No evidence of formal recycling and evidence of strong informal sector	^{99,100}
Guatemala City	Guatemala	5	Unlikely	No evidence of formal recycling and evidence of strong informal sector	¹⁰¹
Tehran	Iran, Islamic Rep.	4	Plausible	Evidence of formal recycling	¹⁰²
Beirut	Lebanon	5	Unlikely	No evidence of formal recycling and evidence of strong informal sector	¹⁰³
Saida	Lebanon	20	Plausible	Evidence of formal recycling	¹⁰⁴
Skopje	Macedonia, FYR	3	Unlikely	No evidence of formal recycling and evidence of strong informal sector	^{73,105}
Kuala Lumpur	Malaysia	10.4	Plausible	Evidence of formal recycling	¹⁰⁶
Mexico City	Mexico	14.19	Plausible	Potentially plausible, but recycling rate is perhaps too high to be carried out formally for a UMC. However, as references claim that IRS is prohibited in Mexico City, it was therefore assumed plausible)	^{65,97}
Guadalajara	Mexico	8	Unlikely	Evidence that it is informal recycling	¹⁰⁷
Cusco	Peru	0.3	Plausible	Recycling rate low and evidence that formal recycling takes place	⁹⁹
Cluj-Napoca	Romania	13.72	Uncertain	Evidence for formal recycling is very weak and slightly stronger evidence of a thriving informal sector. Uncertain that such a high recycling rate would be entirely from formal recycling in an UMC	¹⁰⁸
Bucharest	Romania	9.44	Plausible	Evidence for a strong formal sector recycling effort	^{73,109}
Moscow	Russian Federation	4	Unlikely	Evidence for a strong formal sector recycling effort	¹¹⁰
St. Petersburg	Russian Federation	10	Unlikely	Evidence of some small scale formal recycling initiatives such as bring sites	^{111,112}
Kemerovo	Russian Federation	1.9	Plausible	Evidence for a strong formal sector recycling effort	¹¹³
Novi Sad	Serbia	2	Unlikely	Evidence that formal recycling is around 0.4% so 2% is assumed too high	¹¹⁴
Bangkok	Thailand	11.85	Unlikely	Strong evidence for informal sector and recycling rate likely too high for a UMC	¹¹⁵

Municipality	Country	Reported recycling rate (% of collected waste) ¹	Plausibility that recycling rate is formal	Reason	Ref
Vavau	Tonga	5.1	Plausible	Strong evidence for formal recycling system	¹¹⁶
Sakarya Mm	Turkey	2.49	Plausible	Evidence for formal recycling system in place	¹¹⁷
Caracas	Venezuela, RB	0.9	Plausible	According to source, recycling is the 'responsibility' of the municipality but seems to be limited in scope and coverage –therefore such a small amount seems plausible	¹¹⁸

⁷⁶¹ ¹ Although recycling rates were supposedly reported as a percentage of waste generation, it is assumed that most municipalities
⁷⁶² reported their recycling rates as a percentage of collected waste for reasons previously discussed.

⁷⁶³

⁷⁶⁴ *S.6.4.3.6 Incineration*

⁷⁶⁵ Data reported in WaW2.0 dataset under the 'incineration' category were sense checked for
⁷⁶⁶ plausibility using several databases and other sources¹¹⁹ listed in **Table S14**. Where incinerators
⁷⁶⁷ with sufficient capacity to process the amounts likely to be generated in a city existed near the
⁷⁶⁸ municipality, we considered them plausible. In two cases (Angers-Loire Metropole and Trnava),
⁷⁶⁹ no incinerator was close-by, however the proportions reported were very small, so it was
⁷⁷⁰ plausible that small amounts or, perhaps, hazardous waste were being transported to incinerators
⁷⁷¹ which were in nearby municipalities. Therefore, it was considered plausible that the amounts
⁷⁷² stated were being incinerated.

⁷⁷³ **Table S14.** Evidence that incineration takes places in municipalities reported by What a Waste
⁷⁷⁴ 2.0³⁰.

Municipality Name	Country Name	Data Year	Incineration rate	Plausibility of Justification incineration	Reference
Baku	Azerbaijan	2013	39.97	Plausible	Baku waste to energy plant installed 2012 cap 550,000 t·y ⁻¹ ¹¹⁹
Liege	Belgium	2014	26.00	Plausible	Intradel Herstal plant installed 2009 cap 320,000 t·y ⁻¹
Beijing	China	2015	8.00	Plausible	Incineration in 2019 was 54% ³³ , and although it does not go back to 2015, 8% is commensurate with the general increase in Incineration over the past decade ¹²⁰ .
Paris	France	2015	77.50	Plausible	Eight MSW incinerators located in Paris
Angers-Loire Metropole	France	2015	0.23	Plausible	Incinerators at Nates and Chinon, far but within reasonable proximity to process such a very small amount of waste
Berlin	Germany	2015	65.00	Plausible	Incinerator with 3.6 M t·y ⁻¹ capacity since 1967
Budapest	Hungary	2014	52.00	Plausible	Hulladékhásznosító Mü (HHM) has 17 Mt capacity since 2005
Delhi	India	2014	52.04	Unlikely	Delhi has one incinerator operational since 2011 with 225,000 t·y ⁻¹ , so it cannot be plausible that it has treated half the waste in the city in 2014. At least one is functional since, but it was not ready at the time.
Kanpur	India	2016	42.86	Unlikely	No record found of an incinerator here

Municipality Name	Country Name	Data Year	Incineration rate	Plausibility of Justification incineration	Reference
Tehran	Islamic Republic of Iran	2014	2.50	Unlikely	No record found of an incinerator here ¹¹⁹
Milano	Italy	2015	43.47	Plausible	Incinerator with 1.4 Mt·y ⁻¹ capacity reported here ¹¹⁹
Osaka	Japan	2015	78.07	Plausible	Nine incinerators reported to be operational in the municipality ¹¹⁹
Kobe	Japan	2015	72.60	Plausible	Five incinerators reported to be operational in the municipality ¹¹⁹
Naha	Japan	2015	81.50	Plausible	Clean Center Naha Haebaru incinerator operational since 2006 170,00 t·y ⁻¹ ¹¹⁹
Toyama	Japan	2015	68.21	Plausible	Clean Center Toyama incinerator 270,000 t·y ⁻¹ operational since 2003 ¹¹⁹
Kitakyushu	Japan	2015	64.92	Plausible	Three incinerators operational in the municipality ¹¹⁹
Yokohama	Japan	2015	65.55	Plausible	Four incinerators operational in the municipality ¹¹⁹
Seoul	Korea, Rep.	2012	8.00	Plausible	Five incinerators operational in the municipality ¹¹⁹
Oslo	Norway	2013	57.85	Plausible	Two incinerators operational in the municipality ¹¹⁹
Bergen	Norway	2014	39.10	Plausible	BIR Avfallsenergi AS incinerator operational since 1999 and upgraded in 2010
Lahore	Pakistan	2017	6.15	Unlikely	No record found of an incinerator here ¹¹⁹
Trnava	Slovak Republic	2010	0.34	Plausible	Proximity to Bratislava which has an incinerator suggests that such a small quantity could be plausibly transported there ¹¹⁹
Bratislava	Slovak Republic	2013	41.02	Plausible	Incinerator with 135,000 t·y ⁻¹ capacity reported here ¹¹⁹
Madrid	Spain	2014	10.00	Plausible	Incinerator with 314,000 t·y ⁻¹ capacity reported here ¹¹⁹
Stockholm	Sweden	2013	71.01	Plausible	Incinerator with 700,000 t·y ⁻¹ capacity reported here ¹¹⁹
Boras	Sweden		54.62	Plausible	Incinerator with 109,000 t·y ⁻¹ capacity reported here ¹¹⁹
Kiev	Ukraine	2016	24.57	Plausible	Incinerator with 450,000 t·y ⁻¹ capacity reported here since 1988 ¹¹⁹
London	United Kingdom	2012	46.34	Plausible	At least one incinerator and several fuel producing MBT plants reported here during the timescale ¹¹⁹
Hanoi	Vietnam	2014	6.59	Unlikely	Nam Son solid waste treatment complex (SWTC) incinerator has 100,000 t·y ⁻¹ capacity reported here ¹¹⁹

775 Abbreviations: Million tonnes (Mt); mechanical biological treatment (MBT); municipal solid waste (MSW).

776 **S.6.4.3.7 Data Year**

777 The years that data were collected for WaW2.0 records were recorded by the World Bank in a
778 downloadable ‘city level codebook’¹²¹. Years were provided for both the population and the year
779 of waste generation; however, the other data points were not assigned a data year. Here, we
780 assumed the data year for the waste generation also applies to all other waste data points of that
781 record, albeit we acknowledge there is uncertainty in this assumption. When the year of waste

782 generation was not available, the data year was left blank, but the records were retained in the
783 analysis to maximise the number of data points.

784 **S.6.4.4 UNSD City Waste Data**

785 Municipal solid waste management data³² was provided by the United Nations Statistical
786 Division (UNSD) on the 23rd April 2021.

787 The data forms part of the UNSD Environmental Indicators database, populated by national
788 statistic offices and ministries of environment and collected by means of a biennial
789 questionnaire³⁹. The raw data includes information for 237 cities across the World for multiple
790 years spanning from 1989 to 2019; however, not all cities submit complete records for all years.
791 According to their operation protocols, data are accepted by UNSD without further adjustment
792 aside from basic data coherence checks (e.g., percentages sum to 100%). As such, some data
793 entries appear to have been erroneously entered by respondents necessitating thorough cleaning,
794 as described in this section.

795 **S.6.4.4.1 Waste generation rate**

796 The municipal waste generation rate of a municipality was calculated using three different
797 methods, prioritised in the following order:

798 Method 1: The total amount of MSW generated and population of the municipality for the
799 corresponding year were used to calculate the MSW generation rate per capita
800 ($tP1_{pc}$) for the most recent available year.

801 Method 2: Total MSW collected was divided by the collection coverage to estimate total
802 MSW generated and then divided by the population reported for the
803 corresponding year to calculate the MSW generation rate per capita ($tP1_{pc}$). If the
804 collection coverage was not reported, the total MSW collected was not used as
805 this would exclude any uncollected waste.

806 Method 3: For cities that did not report data for the total MSW collected, but instead
807 provided information of the amounts entering treatment and disposal facilities, it
808 was assumed that the summation of the amounts entering the treatment and
809 disposal facilities is equal to the total amount of MSW collected. The same
810 process as method two was then repeated.

811 Only 31 cities reported waste generation according to *Method 1*, of which four of these (Lalitpur,
812 Kathmandu, Biratnagar and Niamey) reported values inconceivably low ($< 1.0 \text{ kg} \cdot \text{cap}^{-1} \cdot \text{y}^{-1}$) and
813 were therefore removed. The waste generation rate was estimated using *Method 2* for a further
814 73 cities, although again four of these data points (Escuintla, Cobán, Huehuetenango, Rusape)
815 were removed during initial screening due to the values being inconceivably high ($> 10 \text{ kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$). Lastly, an additional six cities relied on *Method 3* for calculation of waste generation rate,
817 of which one (Masvingo) was removed during screening based on an implausibly low value
818 ($0.04 \text{ kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$). In total, this resulted in 101 data points for MSW generation rate.

819 **S.6.4.4.2 Collection coverage**

820 Collection coverage is reported in the UNSD dataset as percentage of population served. The
821 most recent year was taken for this variable when available, resulting in 135 inputs for collection

822 coverage. To increase this further, the collection coverage was also calculated for cities that did
823 not report collection coverage but did report the amounts entering treatment and disposal
824 facilities, and the amounts generated overall. This resulted in a further 7 cases for which the
825 collection coverage had not been previously reported.

826 **S.6.4.4.3 Formal dry recycling**

827 The UNSD waste questionnaire³⁹ asks respondents to detail the amounts of waste going to
828 ‘recycling’, ‘composting’, ‘incineration’ (with a subset for ‘incineration with energy recovery’),
829 ‘landfill’ (with a subset for ‘controlled landfill’), and ‘other’.

830 The primary data input in this work of formal collection for recycling (tC2i) has units of
831 percentage of collected waste. Accordingly, the mass entries provided for recycling in the UNSD
832 dataset were divided by the data point for mass of collected waste. However, in many cases,
833 inconsistencies in the reported data meant this had to be done cautiously. The following rules and
834 priorities were used in calculating the recycling rate:

- 835 1. If the sum of the five recovery and disposal options summed to within $\pm 20\%$ of the mass
836 reported as collected, the recycling rate was taken as the mass reported for recycling
837 divided by the mass collected. Data calculated in this manner were assumed the most
838 reliable and used as priority.
- 839 2. Occasionally, data records reported a mass collected from households but did not provide
840 an overall collected amount. When the sum of the treatment and disposal options were
841 within $\pm 20\%$ of this household collected mass, it was assumed the household collected
842 mass was misaligned and was instead taken as overall mass collected. Recycling rates
843 were then calculated in the same manner as in 1.
- 844 3. If mass was provided only for recycling and collected waste (i.e., no other treatment and
845 disposal options were recorded), the recycling rate was calculated based on the recycling
846 mass divided by the collected mass.
- 847 4. In cases where the sum of the treated and disposed mass was not within $\pm 20\%$ of the
848 collected waste, the recycling rate was still calculated but instead using the treated and
849 disposed mass as the denominator. Deviation of masses does not necessarily reflect
850 incorrect data as the masses may deviate due to either rounding errors, based on
851 deviations from sampling, or due to import / export of waste between municipalities. As
852 such, recycling was still calculated in this manner, but only used when the above options
853 were not possible.
- 854 5. If no mass was provided for recycling, but the sum of the treatment and disposal options
855 were within $\pm 20\%$ of the collected waste, it was assumed that no recycling occurs and
856 therefore the recycling rate was set as 0%.

857 No distinction is given in the UNSD definition³⁹ provided for recycling on whether this includes
858 informal sector recycling or not. Given the questionnaire states that the treatment and recovery
859 values should sum up to the amounts of waste collected (minus exports), and that this collected
860 waste is defined as that collected ‘*on behalf of municipalities (by public or private companies*’);
861 it is assumed the mass provided for recycling is intended to relate to formal recycling only. It is
862 unclear whether respondents also took this to be the case and therefore whether the recycling
863 rates reported include informally recycled material or not. The recycling rates calculated as per
864 the above were therefore adjusted in the same manner as for the WaW2.0 dataset. Namely, the
865 28 LMC and LIC cities that had a non-zero recycling were assumed to be reporting informally

866 collected waste for recycling, particularly given many of the rates calculated were comparable to
 867 those of HIC. The recycling rates for these cities were therefore set to zero for tC2i – formal
 868 collection for recycling. Alternatively, the recycling rates for HIC were assumed to represent
 869 formal collection for recycling and therefore taken directly, whilst data points greater than zero
 870 in UMC were checked for plausibility by means of gathering evidence (**Table S15**).

871 **Table S15.** Evidence that formal recycling takes places in the municipalities reported in UNSD
 872 city waste data³².

Municipality	Country	Reported recycling rate (% of collected waste)	Year	Plausibility	Reason	Reference
Adrar	Algeria	10.00	2015	Unlikely	Some evidence of the formal sector, however, seems that the informal sector still manages the bulk of the countries recycling. Government initiatives in place to increase reuse but seems to be limited focus on recycling.	122,123
Djelfa	Algeria	10.00	2015	Unlikely	Noted as being an area with thriving informal recycling sector. Formal initiatives seem to focus on reuse not recycling.	122,124
Algiers	Algeria	10.00	2015	Unlikely	Little evidence of formal recycling and evidence of strong informal sector. Sorting sites have little structure, and it is reported that many of these are no more than just a landfill.	124,125
Wahran (Oran)	Algeria	10.00	2015	Unlikely	Seem to be some initiatives in Oran for formal recycling but most of these appear to have been reported more recently than this data. Still seems to be a large informal sector in the municipality.	126-128
Qacentina (Constantine)	Algeria	10.00	2015	Unlikely	Shortcomings in any formal processes that are in place and most recycling is done through the informal sector.	129
El Djazair (Algiers)	Algeria	10.00	2015	Unlikely	Little evidence of formal recycling and evidence of strong informal sector. Sorting sites have little structure, and it is reported that many of these are no more than just a landfill.	124,125
Minsk	Belarus	20.28	2019	Plausible	26% recycling rate reported in Minsk. Unclear if this is all from the formal sector but it does seem that the government are trying to provide recycling facilities in the area. On the other hand, there is some evidence of the informal recycling sector in Minsk.	130-132
Zenica	Bosnia and Herzegovina	4.76	2009	Plausible	Evidence 5% recycling rate for formal sector in the municipality.	133
Gaborone	Botswana	0.24	2017	Unlikely	Evidence suggests that all recycling is collected by informal sector.	134
Francistown	Botswana	0.25	2017	Unlikely	Thriving informal sector and little evidence of formal sector recycling.	91,135
Brasília	Brazil	2.49	2015	Unlikely	Evidence that selective collection did not exist in any formal sense before 2014, therefore this is unlikely to be formally collected.	136
Salvador	Brazil	0.48	2011	Unlikely	25 coops are authorised in São Paulo – it is assumed the reported recycling rate relates to these cooperatives	137
São Paulo	Brazil	0.98	2015	Unlikely		

Municipality	Country	Reported recycling rate (% of collected waste)	Year	Plausibility	Reason	Reference
Rio de Janeiro	Brazil	0.09	2015	Plausible	Bulk of the recycling is via the informal recycling sector, with formal efforts only at a very small scale – the 0.09% is therefore plausible	94,138
Porto Alegre	Brazil	3.43	2015	Unlikely	Evidence of a strong informal sector. Though there is an indication in the reference that some formal recyclates are collected, however it doesn't appear enough to justify the 3.42% stated.	139
Camagüey	Cuba	3.86	2017	Plausible	Evidence of both government sanctioned and organised recycling and sloe buy-back centres commensurate with a relatively low recycling rate as reported	140
Quito	Ecuador	0.86	2012	Plausible	Evidence that formal recycling takes place and will increase in the future, but also evidence of a strong informal sector across Ecuador. Given the low proportion, too low to represent a large informal sector, it is suggested here that the data represent formal operations rather than informal	141-143
Cuenca	Ecuador	0.50	2012	Plausible	Evidence of Bring sites in the municipality but not formal collection by municipality – the very low rate reported indicates it cannot be the informal sector as too low	144
Tehran	Iran, Islamic Rep.	39.62	2017	Unlikely	References indicate that formal recycling is not carried out and that the informal sector is thriving	145,146
Mashhad	Iran, Islamic Rep.	13.14	2017	Unlikely	Though some evidence of formal recycling exists, it does not appear to be substantial enough to justify 13.14% - therefore this is assumed to be a mixture – but classed as 'unlikely' for this screening process	146,147
Esfahan	Iran, Islamic Rep.	6.72	2017	Plausible	Evidence of a type of mixed waste sorting facility – the mechanism for collection is unclear, but the rate reported is low enough for this to be plausible.	148
Astana	Kazakhstan	16.41	2019	Plausible	The national statistics bureau indicates an 10.9% recycling rate nationwide in 2019 and 20.5% in 2020 - in Astana, a waste and recycling programme was proposed in 2006, so it is plausible that it is functioning now	149,150
Almaty	Kazakhstan	10.21	2019	Plausible	Various government websites extol the countries efforts to recycle one of which repots a 23% recycling rate for Almaty – the rate of 10.21 appears plausible for formal recycling, if a little high for a municipality of 2 million	151
Tripoli	Lebanon	5.47	2012	Unlikely	Though some news articles have indicated that Lebanon has plans to introduce formal recycling and it appear it has been done in some institutions, there is no historical evidence for formal recycling but strong evidence of an informal sector and various charitable initiatives	152,153

Municipality	Country	Reported recycling rate (% of collected waste)	Year	Plausibility	Reason	Reference
Beirut	Lebanon	4.00	2012	Unlikely	Though some news articles have indicated that Lebanon has plans to introduce formal recycling and it appears it has been done in some institutions, there is no historical evidence for formal recycling but strong evidence of an informal sector and various charitable initiatives	^{103,152,153}
Callao	Peru	1.14	2019	Unlikely	Callao Municipality publishes a register of private companies and cooperatives who are licensed to selectively collect waste. It is suggested that the 1.14% reported equates to their activities as they can't be disaggregated and we consider the cooperatives to be informal, we have scored as 'unlikely'	¹⁵⁴
Arequipa	Peru	1.14	2019	Unlikely	Evidence of a sorting station (Yanahuara Recycling Plant) that has been implemented to replace previous waste picker activity on the dumpsite. As they were previously informal workers we will classify as unlikely to be formal here	¹⁵⁵
Lima	Peru	0.64	2019	Plausible	Evidence of some formal activity but still dominated by informal sector – some token bring banks are evident as the proportion is very low, it is suggested that it represents formal activities	^{156,157}
Soweto	South Africa	9.82% x (1 – 0.238) = 7.48%	2017	Plausible	Evidence indicates that formal recycling takes place, though: 1) It is only provided directly by the municipality in about 24% of cases on average across South Africa; and 2) Only approximately 23% and 16% of the residents of Cape Town and Johannesburg respectively report that they separate material for recycling. These two basic assertions do not seem to justify the quantities reported (11.26%). Therefore, we surmise that the figures reported by UNSD for Soweto and Cape Town include both formal and informal collection. The evidence also includes an estimate that says 23.8% of waste is collected by itinerant buyers. We therefore deducted this proportion from the proportion recycled reported by UNSD to approximate the proportion formally collected.	¹⁵⁸
Cape Town	South Africa	11.26% x (1 – 0.238) = 8.58%	2017	Plausible		

873 Often the value for recycling was left blank by the user. In cases where the amounts recorded as going to treatment and disposal
 874 options were within 20% of the collected waste (or household collected waste if collected waste was not provided), it was
 875 assumed that all mass had been accounted for by the user and therefore this blank was treated as a zero.

876 **S.6.4.4.4 Incineration**

877 The amount of waste going to incineration is a data point in the UNSD waste data³² along with a
 878 subset for the amount of that incineration with energy recovery. A similar approach was taken as
 879 with the recycling data point, whereby the incineration rate as a percentage of collected waste
 880 (tC2iii) was calculated first by dividing the mass reported incinerated by the mass reported as
 881 collected. In a small number of cases, the amount collected was reported as household collection
 882 instead of overall collection. In these instances, the incineration rate was calculated as the mass
 883 incinerated divided by the amounts collected from households. Lastly, if data on the amount
 884 collected were not reported, but data on the amount going to each facility were, it was assumed

885 that the sum of the amount going to recovery and disposal facilities equalled the amount
 886 collected. This summed value was then used as the denominator in the calculation of the
 887 incineration rate.

888 In total, 67 records yielded an incineration rate, although only 21 of these reported a non-zero
 889 rate. However, analysis of the dataset suggested that some records of MSW incineration may
 890 have been because of a misclassification. For instance, small amounts of medical (hazardous
 891 waste), or waste that is open burned may have been included. As we were only interested in
 892 modelling full scale MSW incineration, we assessed the plausibility that incineration was
 893 actually taking place in each of these 21 cities by corroborating the assertion with other sources
 894 which we have detailed **Table S16**.

895 **Table S16.** Evidence that incineration takes places in the municipalities reported in UNSD city
 896 waste data³².

Municipality	Country	Calculated incineration rate (% of collected waste)	Year	Plausibility	Reason	Reference
Baku	Azerbaijan	44.8	2019	Plausible	Evidence of incineration with energy recovery in Baku.	¹⁵⁹
Thimphu	Bhutan	15.0	2017	Unlikely	No evidence of incineration of MSW, but there is for incineration of hazardous medical waste.	^{160,161}
Gaborone	Botswana	0.4	2017	Unlikely	No evidence of incineration. Perhaps confused with open burning which is reported to occur.	¹³⁴
Francistown	Botswana	0.3	2017	Unlikely		
Brasilia	Brazil	0.3	2009	Unlikely	No evidence of incineration in Brazil.	
Rio de Janeiro	Brazil	0.02	2009	Unlikely	Small percentages here may relate to hazardous waste incineration.	¹⁶²
Shanghai	China	65.6	2019	Plausible		
Chongqing	China	50.6	2019	Plausible		
Beijing	China	48.9	2019	Plausible	Evidence of incineration for each city in national statistics.	³³
Macao	China, Macao Special Administrative Region	98.5	2015	Plausible	Evidence of incineration in Macao.	¹⁶³
Zagrab	Croatia	0.1	2012	Unlikely	Evidence of incineration project being scrapped due to public opposition.	¹⁶⁴
Cuenca	Ecuador	0.2	2011	Unlikely	No evidence of incineration. Small percentages here may relate to hazardous waste incineration.	¹¹⁹
Schaan	Liechtenstein	47.1	2019	Plausible	Although there are no incineration plants in Liechtenstein it is reported that much waste is exported to Switzerland for incineration, hence this is assumed plausible.	¹⁶⁵
Monaco	Monaco	89.9	2017	Plausible	Original value reported exceeds 100%. It is believed this is a typo and the value of 130,000 tonnes/year was replaced with 30,000 tonnes/year. Regardless, there is evidence of widespread incineration with energy recovery in Monaco.	¹⁶⁶

Municipality	Country	Calculated incineration rate (% of collected waste)	Year	Plausibility	Reason	Reference
Yangon	Myanmar	1.9	2017	Plausible	Incineration plant opened in 2017 with plans to develop further.	¹⁶⁷
Zinder	Niger	1.0	2006	Unlikely	No evidence of incineration. Small percentages here may relate to hazardous waste incineration.	
Niamey	Niger	1.0	2006	Unlikely		¹¹⁹
Kiev	Ukraine	13.8	2019	Plausible	As of 2013, one incineration plant was operation in Kiev although this reportedly incinerating only 1% of MSW in Kiev and was beyond its designed lifespan. It is plausible that this has since been upgraded.	¹⁶⁸
Songea	Tanzania	0.8	2015	Unlikely	No evidence of incineration. Small values may represent hazardous waste incineration such as medical waste.	
Moshi	Tanzania	0.2	2015	Unlikely		¹¹⁹
Kwekwe	Zimbabwe	7.9	2015	Unlikely	No evidence of incineration in 2015 although a plant has recently been approved.	¹⁶⁹

897 Abbreviations: municipal solid waste (MSW).

898 As with formal recycling, blank values were treated as zero if the sum of the treated and disposed
 899 waste summed to within 20% of the collected waste.

900 **S.6.4.4.5 Other recovery**

901 The primary data input ‘formal collection of MSW for other recovery’ (tC2ii) is composed of
 902 two categories from the UNSD waste data, namely ‘composting’ and ‘other treatment methods’.
 903 The overall recovery rate as a percentage of collected was first calculated in the same manner as
 904 that for incineration. The collected waste was first prioritised as the denominator, followed by
 905 household collected waste, and lastly treated and disposed waste. Likewise, blank values were
 906 treated as zero if the sum of the treated and disposed waste summed to within 20% of the
 907 collected waste.

908 **S.6.4.4.6 Controlled disposal**

909 The definition for ‘controlled landfill’ in the UNSD waste questionnaire states ‘*final placement*
 910 *of waste into or onto the land in a controlled landfill site*’³⁹. No clarification is provided on what
 911 constitutes ‘control’. As such, a respondent’s decision about whether a disposal site is controlled
 912 is likely to be subjective and cannot be directly correlated with the definition used in the present
 913 work. In the absence of this clear definition, given the use explicit use of term ‘controlled’, we
 914 assumed that the definition for controlled landfill provided in the UNSD dataset matches that
 915 used in the present work.

916 The proportion of waste collected for disposal that is sent for controlled disposal (tC3) was
 917 calculated by dividing ‘controlled landfill’ by total ‘landfill’, provided that the sum of the mass
 918 going to treatment and disposal facilities was within \pm 20% of the mass of collected waste (n =
 919 113). As before, due to the incorrect assignment of values to household collected waste instead
 920 of total collected waste by some respondents, ‘controlled disposal’ was also calculated using the

921 ‘household collected waste’ as the denominator. This was only used if the previous method was
922 not available (n = 7). This gave 120 records for controlled disposal (tC3) from the UNSD dataset.

923 If a value for ‘landfill’ was provided but the value for ‘controlled landfill’ was left blank by the
924 user, it was assumed that no waste was assigned to ‘controlled landfill’ and therefore set as zero.

925 **S.6.4.5 SIPSN Data**

926 Municipal level solid waste management data for Indonesia is recorded as part of a national
927 dataset entitled ‘Sistem Informasi Pengelolaan Sampah Nasional’³⁴, hereafter referred to as
928 SIPSN. Data is recorded at the municipality / Regency level of which there are 514 in Indonesia;
929 however, not all of these have data available. Data for the year 2020 was used in this analysis.

930 The mass of waste generated in tonnes per day is directly recorded in SIPSN. This was converted
931 to a per capita waste generation rate by dividing by the population of the Regency as obtained
932 from the 2020 BPS census¹⁷⁰.

933 Collection coverage is not reported in the SIPSN data. This may be due to the highly
934 decentralised nature of waste collection in Indonesia meaning collection of waste and
935 transportation to transfer stations (TPS) is the responsibility of neighbourhood associations
936 (*Ruken Warga*)^{171,172}. Despite this, the SIPSN dataset records the amount of waste entering
937 disposal sites (TPA) and the amounts recovered at transfer stations with material recovery
938 facilities (TPS3R). The collection coverage was therefore estimated for each Regency by
939 summing the amount of waste entering disposal sites with the amount of waste recovered at
940 TPS3R sites, before dividing by the reported mass of waste generation.

941 To avoid double counting, it was ensured that the recovered mass at TPS3R sites did not include
942 any residuals that would later be transferred to disposal sites. Similarly, the SIPSN dataset
943 reports the mass of recyclables collected by informal recyclers at disposal sites. This too is
944 subtracted from the mass collected, as informal recycling collection is modelled within this work
945 and added on as part of the *Full MSW MFA* (**Section S.7**). Again this avoided any double
946 counting.

947 The mass of recyclate recovered by the formal sector was calculated from the SIPSN data by
948 summing the amounts of ‘dry recycling’ recovered at TPS3R’s by the formal sector with the
949 mass of ‘inert recovery’ recorded at the disposal sites. We chose this summation on the basis that
950 it would be closest to the way that formal recycling is reported in the other datasets (for example:
951 WaW2.0 and UNSD). Informal sector recovery at the disposal sites and ‘organic recovery’ are
952 recorded as separate data points in the SIPSN dataset, therefore it can be assumed that the
953 summed values reflect that of formal dry recycling only. The calculated mass of recyclate
954 recovered by the formal was divided by the mass of collected waste to give the formal dry
955 recycling rate as a percentage of formally collected waste (tC2i).

956 Similarly, the primary data input for formal collection of MSW for other recovery (tC2ii) was
957 calculated by summing the mass of ‘composting’ occurring at TPS3R’s with the mass of ‘organic
958 recovery’ at the disposal sites, before dividing this by the mass of collected waste.

959 The composition of MSW is not provided in the SIPSN waste dataset, therefore the primary data
960 input ‘plastic in MSW’ (C0) was unable to be calculated. Small amounts of waste were reported

961 to be processed using ‘waste-to-energy’ in 37 municipalities in the SIPSN. We assumed that all
962 of these were misclassifications as Terzidis¹¹⁹ reported no operational large scale MSW
963 incinerators in Indonesia.

964 The level of environmental control at the disposal sites is reported by the SIPSN data according
965 to three categories: ‘sanitary landfill’, ‘controlled landfill’ and ‘open dumping’. It is unclear how
966 these categories are defined, with it perhaps being subjective to the respondent. The definition
967 for controlled disposal of MSW (tC3) used in the present work is ‘basic’, ‘improved’, or ‘full
968 control’ according to the ‘Ladder of control level for landfill sites’ in the Waste Wise Cities
969 Tool⁶. This states that to achieve the status of basic control, amongst other things the site must
970 have a functioning weighbridge in use and have perimeter drainage maintained around the site.
971 The SIPSN dataset details for each disposal site whether a weighbridge is in use and whether the
972 site has drainage, therefore this data was used to cross check the response provided. If the
973 Regency recorded their disposal site as a ‘sanitary landfill’ or ‘controlled landfill’, but also stated
974 they did not have either a functioning weighbridge or perimeter drainage, then the disposal site
975 class was downgraded to an uncontrolled site. If the disposal site was recorded as ‘open
976 dumping’, this was automatically assigned uncontrolled, regardless of the presence of
977 weighbridges or perimeter drainage, given the WaCT ladder of control also specifies a degree of
978 cover is required for basic control. As such, a disposal site was only classified as controlled if it
979 was recorded as a ‘sanitary landfill’ or ‘controlled landfill’ and had both a functioning
980 weighbridge and perimeter drainage. The mass of waste going to controlled disposal sites in each
981 regency was divided by the total mass of waste going to disposal to arrive at an estimate for tC3:
982 controlled disposal as a percentage of disposed waste.

983 The entire SIPSN dataset was not used, but instead a sample ($n = 10$) was extracted to ensure
984 Indonesia was not being overrepresented in the subsequent machine learning steps. Details of
985 this procedure are described in **Section S.6.2**.

986 **S.6.4.6 MoHURD Data**

987 The Ministry of Housing and Rural Development (MoHURD) in China release an annual dataset
988 entitled ‘Urban Construction Statistical Yearbook’³³. The 2019 version of this was used in this
989 analysis, specifically the data points relating to mass of waste collected and transported by each
990 municipality and the masses incinerated. The other inputs required for this work were either not
991 reported (collection coverage), were unreliable (controlled disposal), or do not feature sufficient
992 distinction (cannot differentiate between recycling and composting).

993 **S.6.4.6.1 Waste generation**

994 To estimate the primary input of waste generation rate ($tP1_{pc}$) the mass collected and transported
995 was used as a starting point. However, this does not include waste that was generated and not
996 collected, and therefore required correction by dividing by the collection coverage. Given the
997 collection coverage is not a variable specified in the MoHURD dataset, an alternative approach
998 was used for this correction. Initially, the collection coverage was estimated for each
999 municipality based on the machine learning random forest process outlined in **Section S.7**. The
1000 collected and transported mass were then divided by predicted collection coverages to arrive at
1001 an estimate of total waste generation. This could then be divided by the population of the
1002 municipality as reported in the MoHURD dataset to arrive at a per capita waste generation rate.

1003 **S.6.4.6.2 Incineration**

1004 The percentage of collected waste that was incinerated (tC2iii) was derived by dividing the mass
1005 of waste going to incineration by the reported mass of waste collected and transported. In some
1006 cases, ambiguous administrative boundaries meant that it was difficult to assign incineration data
1007 to a specific GADM polygon. In these cases, the amount of waste reported as incinerated for the
1008 province was distributed amongst the polygons within it using its population.

1009 The MoHURD dataset provided a full record of incineration for China, so we used these values
1010 directly in the probabilistic MFA, replacing any predictions from the machine learning steps
1011 (**Section S.9.1.2.7**). In contrast to the waste generation rate, a subset of the China incineration
1012 data was not randomly extracted from the MoHURD dataset for use in the machine
1013 learning steps (**Section S.6.2**). This was to avoid overly influencing (i.e., introduce bias) the
1014 training data with data for China, particularly given incineration in other UMCs is uncommon.

1015 **S.6.5 Data consolidation and deduplication**

1016 Following the initial data collection, harmonisation, correction, and preliminary screening phase
1017 described in **Section S.6.4**, data were combined into a single dataset with 691 municipal records.
1018 Each data record included:

- 1019 • A unique data ID, linking the record to the source dataset
- 1020 • Country name and ISO3 code
- 1021 • Income category of the country for the year of the data record
- 1022 • Name of the municipality (as per the original dataset)
- 1023 • A unique administrative area ID identifying which GADM polygon the data record was
1024 assigned to (if any)
- 1025 • GADM Level, administrative area match score, and any notes associated with the
1026 boundary matching

1027 Data records also included one or more of the following:

- 1028 • Waste generation rate (tP1_{pc}) and year (n = 582)
- 1029 • Collection coverage (tC1) and year (n = 498)
- 1030 • Plastic in MSW (C0) and year (n = 397)
- 1031 • Rigid plastic (C0a) and year (n = 38)
- 1032 • Formal dry recycling (tC2i) and year (n = 422)
- 1033 • Other recovery (tC2ii) and year (n = 422)
- 1034 • Incineration (tC2iii) and year (n = 441)
- 1035 • Controlled disposal (tC3) and year (n = 458)
- 1036 • SDG11.6.1 – MSW collected and managed in controlled facilities (n = 38)

1037 Following consolidation, municipalities which were unable to be assigned a GADM boundary
1038 match (boundary match score of 4 as per **Table S6**) were removed from the analysis (n = 15).
1039 Likewise, data points older than 15 years (2006 at time of analysis) were also removed as it was
1040 assumed these data points were no longer relevant because waste management is likely to have
1041 changed substantially since then (n = 22). As an exception, a minority (n = 13) of WaW2.0
1042 records older than 2006 were retained due to the underlying uncertainty around the year of data

1043 collection for data points other than waste generation rate (**Section S.6.4.3.7**) and to maximise
1044 data availability. All except one of these data records retained were post-2000.

1045 95 municipalities had more than one record ($n = 201$) which either had to be merged or removed.
1046 Data were prioritised based on most recent year of data collection and dataset quality in the
1047 following quality assurance hierarchy 1) WaCT; 2) WABI; 3) WaW2.0; and 4) UNSD, the
1048 justification of which is detailed in **Table S4 (Section S.6.1)**. Most recent data were selected first
1049 unless data from a higher quality data point was available within three years. If a record was
1050 missing a data point, then one from an older or lower quality dataset was used. Only one
1051 duplicate, Taian in China, existed for the records sampled from the national datasets. In this case,
1052 the MoHURD data were prioritised over that of the WABI dataset because the year was more
1053 recent. Records which were constructed from multiple data sources were given a new data id
1054 with prefix 'CD'.

1055 **S.6.6 Default GADM Level selection**

1056 Of the 254 countries covered by the GADM dataset¹, 175 of these had at least one data record
1057 associated with it. The remaining 79 countries were mainly small countries and island states with
1058 small population or entirely uninhabited. Whilst these would be likely to have negligible impact
1059 on our global analysis, the lack of data indicates the need for data collection in less populous
1060 nations.

1061 For the 175 countries with municipal level waste data, 134 had data records with a consistent
1062 GADM Level that had previously been assigned in **MS2 (Section S.6.3)**. In these cases, the
1063 consistent GADM Level was assigned as that country's municipal Level, described hereafter as
1064 the '*default GADM Level*'. Some countries ($n = 41$) had data records that were assigned to more
1065 than one GADM Level. In these cases, the *default GADM Level* was assigned as the Level for
1066 which the majority of that country's data records represented.

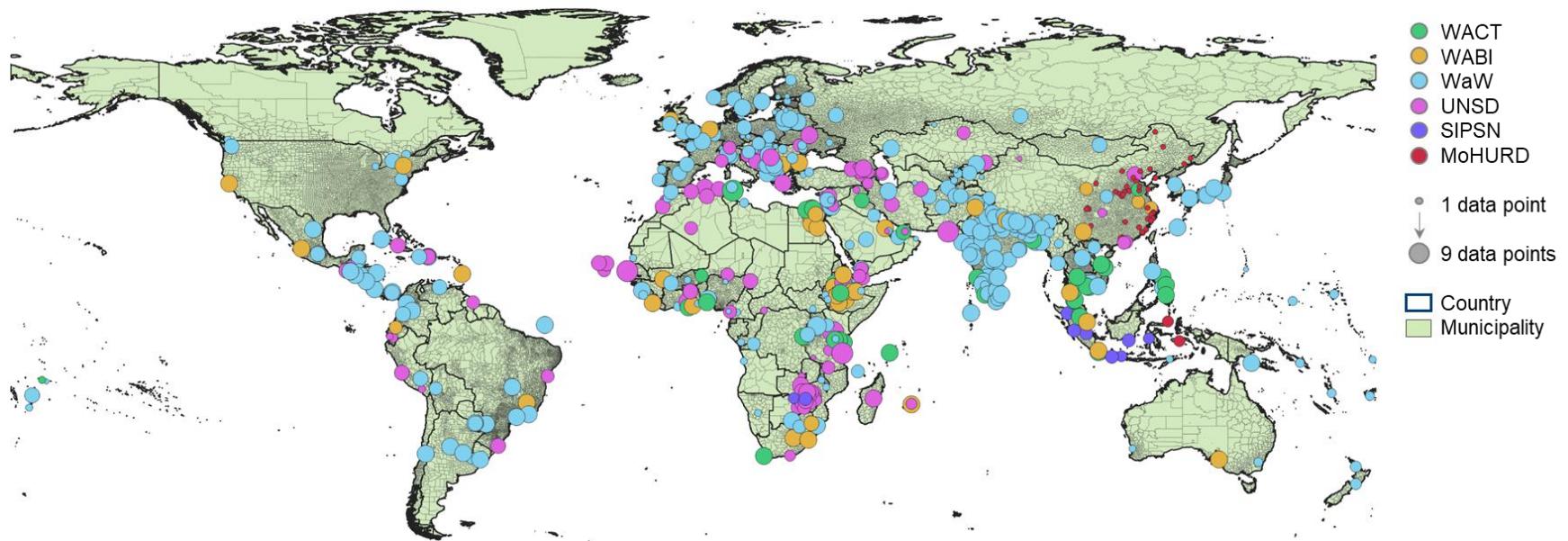
1067 Data records that had been assigned a GADM Level that was more granular than the *default*
1068 *GADM Level* were removed from the analysis ($n = 4$), whereas data records at a less granular
1069 level were added alongside the *default GADM Level* by merging the underlying polygons ($n =$
1070 39) (**Table S17**). Additionally, a few records ($n = 12$) were allocated multiple GADM
1071 administrative boundaries at the same Level as this better matched the area for which the record
1072 represented (e.g., data for Melbourne was better represented by combining multiple Level 2
1073 GADM polygons rather than choosing Level 1 which referred to the wider State). In these cases,
1074 the GADM polygons were merged into a single polygon and assigned the unique ID of the
1075 lowest numerical unique ID of the merged polygons along with the subscript 'Merged' to
1076 highlight changes had occurred compared to the original GADM dataset.

1077 A small number ($n = 22$) of data records were allocated multiple GADM Levels because the
1078 administrative boundary was identical across different Levels. Typically, but not exclusively, this
1079 occurred for capital cities that have special administrative areas (e.g., cities that are both
1080 provinces and municipalities). In these cases, the data record was assigned the same Level as that
1081 of the *default GADM Level*.

1082 Of the 79 countries for which no data existed, the majority of these countries ($n=65$) were small
1083 island states which had either no resident population, no subnational administrative divisions, or

1084 only a single subnational administrative division. The *default GADM Level* was therefore
 1085 assigned for these as the most granular GADM Level available (either Level 0 or Level 1). The
 1086 remaining countries without data were instead assigned the *default GADM Level* thought most
 1087 likely to represent the municipal Level. All these allocations of *default GADM Levels* are
 1088 documented in the **Supplementary Table 1** (cleaning, combining and deduplication steps).

1089 **Table S17.** Municipal records which were assigned to a newly created merged polygon.


Country	Municipality	Default GADM Level	Data record Level	Unique ID of data point
Bangladesh	Dhaka	3	2	BGD.3.1_1
Bangladesh	Chittagong	3	2	BGD.2.4_1
Benin	Porto Novo	2	1	BEN.10_1
Bosnia and Herzegovina	Sarajevo	3	2	BIH.2.6_1
Burundi	Bujumbura	2	1	BDI.2_1
Cambodia	Sihanoukville	2	1	KHM.13_1
Cambodia	Phnom Penh	2	1	KHM.16_1
Cameroon	Douala	3	2	CMR.5.4_1
Cameroon	Yaounde	3	2	CMR.2.7_1
Canada	Vancouver	3	2	CAN.2.14_1
China	Lanzhou	3	2	CHN.5.7_1
China	Suzhou	3	2	CHN.15.7_1
China	Shanghai	3	2	CHN.24.1_1
China	Chongqing	3	2	CHN.3.1_1
China	Beijing	3	2	CHN.2.1_1
Cuba	Havana	2	1	CUB.4_1
Czech Republic	Prague	2	1	CZE.11_1
Egypt	Cairo	2	1	EGY.11_1
Egypt	Suez City	2	1	EGY.15_1
Ethiopia	Addis Ababa	3	2	ETH.1.1_1
France	Paris	3	2	FRA.8.3_1
Greece	Athens	3	2	GRC.3.1_1
Guatemala	Guatemala City	2	1	GTM.7_1
India	Chennai	3	2	IND.31.2_1
India	Greater Mumbai	3	2	IND.20.18_1
Indonesia	Jakarta	2	1	IDN.7_1
Mexico	Mexico City	2	1	MEX.9_1
Nigeria	Lagos	2	1	NGA.25_1
Pakistan	Karachi	3	2	PAK.8.2_1
Peru	Lima	3	2	PER.15.1_1
Peru	Callao	3	2	PER.7.1_1
Russia	Moscow	2	1	RUS.43_1
Rwanda	Kigali	2	1	RWA.5_1
Senegal	Dakar	4	1	SEN.1_1
Serbia	Belgrade	2	1	SRB.3_1
Slovakia	Bratislava	2	1	SVK.2_1
Tajikistan	Dushanbe	3	2	TJK.1.1_1
Tanzania	Dar es Salaam	2	1	TZA.2_1
Thailand	Bangkok	2	1	THA.3_1

Country	Municipality	Default GADM Level	Data record Level	Unique ID of data point
Ukraine	Kiev	2	1	UKR.11_1
United Kingdom	London	3	2	GBR.1.36_1
Vietnam	Hanoi	2	1	VNM.27_1
Vietnam	Ho Chi Minh City	2	1	VNM.25_1

1090

1091 A vector layer was created from the GADM dataset ¹ that included the *default GADM Level*
 1092 assigned for each country as well as the above modifications. In total this resulted in 50,702
 1093 *default GADM Level* polygons that represent the municipalities of the world (**Fig. S9**). The
 1094 *default GADM Levels* varied from Level 0 (national Level) in the case of small island states, to
 1095 Level 4 for the cases of Finland and Nepal.

1096

1097

1098 **Fig. S9.** Locations of *primary input data* by source dataset. Size of circles indicates number of data points in each location.

1099

1100

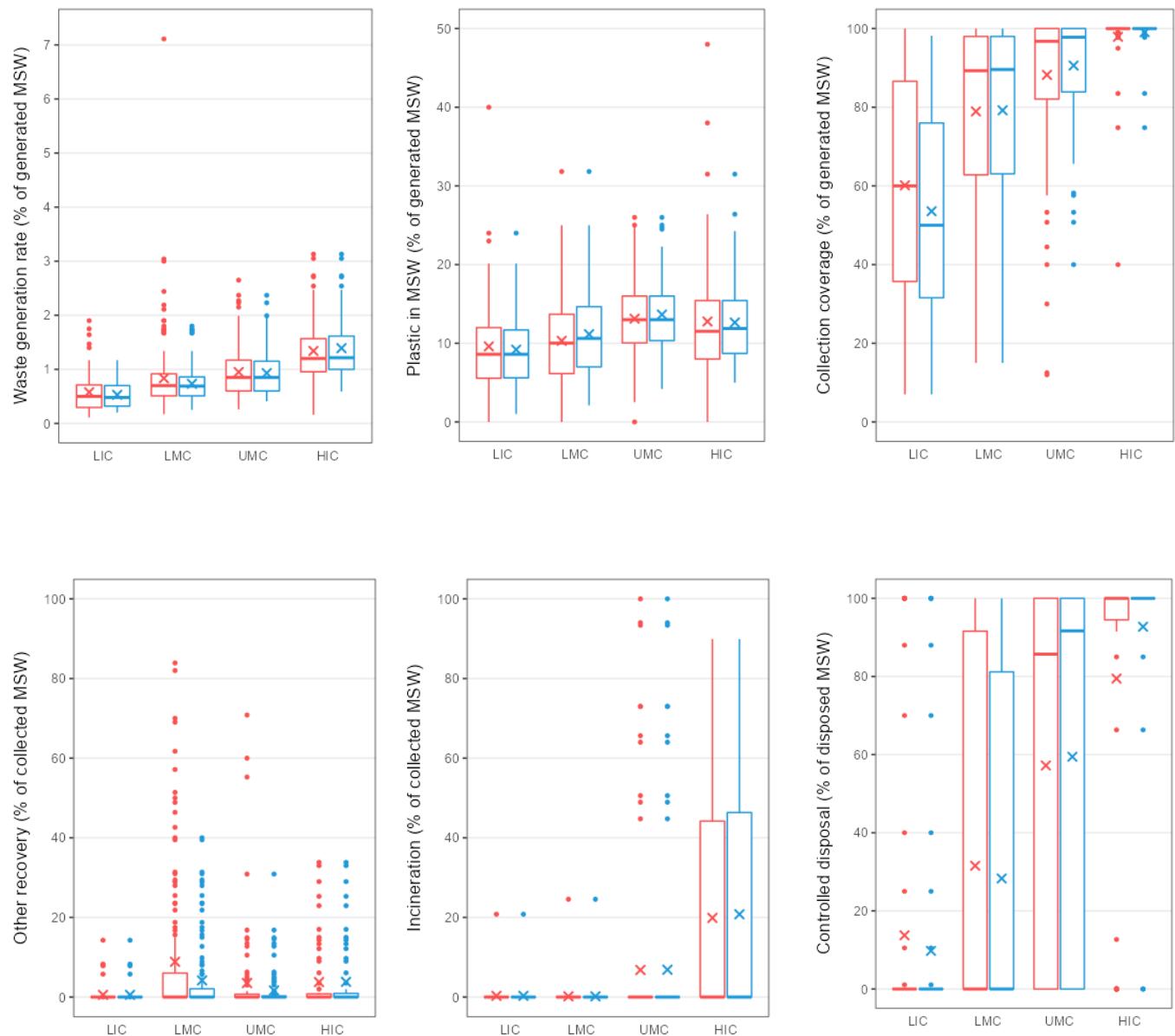
1101

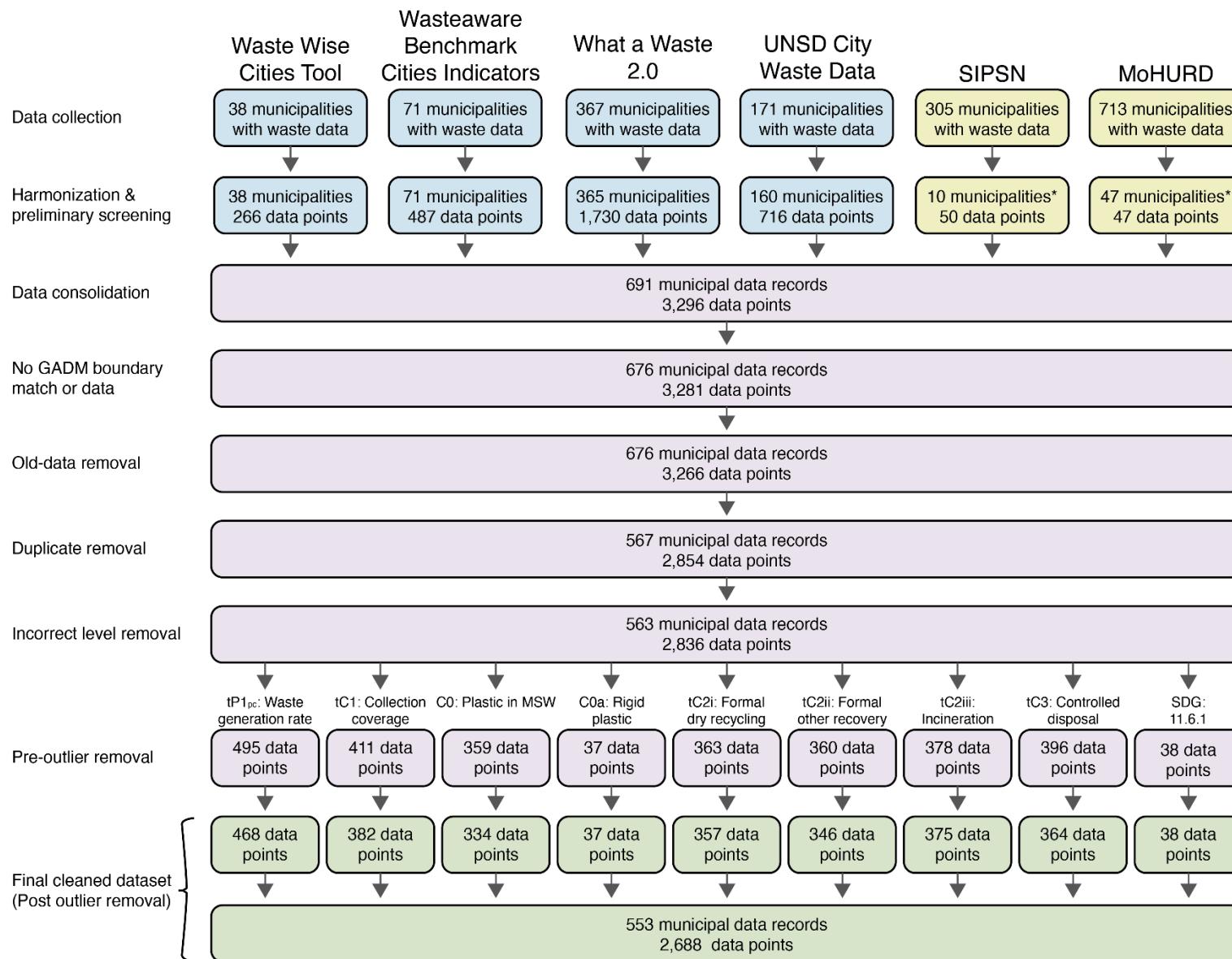
1102 **S.6.7 Data cleaning via outlier identification**

1103 Although initial data screening was performed on each individual dataset as described in **Section**
1104 **S.6.4**, this was primarily checking for obvious errors in the way the data was reported by users
1105 (e.g., wrong units) and making educated assumptions around what the data they reported was
1106 likely representing (plausibility checks). This section instead describes the checks applied to
1107 assess the reliability of the data via outlier identification, and, as such, was only performed once
1108 all the data had been combined into a single dataset.

1109 Box and whiskers plots for each of the seven waste related *primary data variables* (**Fig. S10**)
1110 enabled visualisation of trends in the data and gave a first indication of potential outliers using
1111 the rule proposed by Tukey⁸⁴, which states that outliers are those data points which are more than
1112 1.5 times the interquartile range distance from the 25th or 75th percentiles. However, this alone
1113 was deemed insufficient for potential outlier detection due to the data being often skewed. For
1114 example, waste generation rate is bound by zero therefore tends to have a long positive tail.
1115 Similarly, the dependent variables with units of percentages are bound between 0 and 100,
1116 therefore also tend to show either skewed distributions or bimodal distributions as many values
1117 fall at the limits. Setting outliers as 1.5 times the interquartile range in these situations often
1118 causes the whiskers to exceed the bounds of the data therefore failing to identify potential
1119 outliers. To overcome this, the fences as proposed by the 1.5 the interquartile range definition
1120 were used as guides along with expert opinion of the authors on what values should be
1121 crosschecked for potential implausibility. In general, the fences were set more conservatively
1122 than that proposed by the interquartile range rule, to ensure all potential outliers were screened
1123 for plausibility. This process was carried out for each dependent variable by income category of
1124 the country, with details of the fences used shown in **Table S18**.

1125 Data points identified as potential outliers were not automatically removed from the dataset, but
1126 instead screened for plausibility (**Fig. S10**). This manual approach to removal of outliers was
1127 deemed preferential to automatic outlier removal as the global data was derived from many
1128 different socio-economic conditions, therefore one would expect some outlying values to be true
1129 values. Plausibility checks were based on expert opinion of the authors alongside as assessment
1130 of the data source reliability and context of the municipality that could be potentially resulting in
1131 an outlying value (e.g., tourism levels, whether it is a capital city or major commercial hub, and
1132 comparison to other values from that country).


1134 **Table S18.** Upper and lower fences set based on expert opinion for which values outside these
 1135 values were screened for plausibility.


ID	Primary data input	Unit	Country income category*	Total data points	Lower fence	Upper fence	Outlier cases below lower fence	Outlier cases above upper fence	Outlier cases removed for implausibility
tP1pc	MSW generation rate	kg·cap ⁻¹ ·d ⁻¹	LIC	80	0.2	1.37	5	5	9 out of 10
			LMC	171	0.3	1.53	4	14	9 out of 18
			UMC	162	0.4	2.07	7	5	5 out of 12
			HIC	82	0.7	2.49	7	5	4 out of 12
tC1	Collection coverage	% of MSW generated	LIC	72	20	80	5	24	14 out of 29
			LMC	173	40	100	13	0	1 out of 13
			UMC	111	70	100	14	0	11 out of 14
			HIC	55	100	100	9	0	3 out of 9
tC2i	Formal collection of MSW for dry recycling	% wt. of formally collected MSW	LIC	65	0	0	0	1	0 out of 1
			LMC	131	0	5	0	0	0 out of 0
			UMC	97	0	5	0	13	0 out of 13
			HIC	71	0	50	0	6	6 out of 6
tC2ii	Formal collection of MSW for other recovery	% wt. of formally collected MSW	LIC	65	0	10	0	1	0 out of 1
			LMC	133	0	15	0	26	11 out of 26
			UMC	97	0	20	0	4	3 out of 4
			HIC	66	0	20	0	5	0 out of 5
tC2iii	Formal collection of MSW for incineration	% wt. of formally collected MSW	LIC	68	0	0	0	1	0 out of 1
			LMC	138	0	0	0	1	0 out of 1
			UMC	104	0	0	0	11	1 out of 11
			HIC	68	0	0	0	26	2 out of 26
tC3	Controlled disposal of MSW	% wt. of formally collected MSW for disposal	LIC	68	0	0	0	13	3 out of 13
			LMC	155	0	50	0	48	7 out of 48
			UMC	106	50	100	47	0	4 out of 47
			HIC	66	100	100	22	0	18 out of 22
C0	Plastic in MSW	% wt. of MSW generated	LIC	69	3	20	7	4	4 out of 11
			LMC	133	3	25	13	1	10 out of 14
			UMC	87	5	25	7	2	4 out of 9
			HIC	69	5	25	6	4	7 out of 10

1136 *Abbreviations: High-income country (HIC); upper-middle income country (UMC); lower-middle income country
 1137 (LMC); low-income country (LIC).

1138 The cleaning process resulted in the removal of 136 (35%) out of 386 outlier data points.
 1139 Removal of these data points had minimal impact on the central values (mean and median) or
 1140 quartiles of input data (**Fig. S10**). Combined with the non-outliers, there were 553 cleaned
 1141 records (municipalities with data) and 2,688 individual data points. Although the 553 records
 1142 represent only 1.1% of global municipalities, approximately 904 million people live in them
 1143 based on 2015 populations. This represents 12.2% of the 2015 global population, with similar
 1144 coverage levels spanning all four income categories (LIC: 12.0%, LMC: 11.4%, UMC: 13.5%,
 1145 HIC: 11.2%). Records are distributed across 172 countries and many major cities, as shown in
 1146 **Fig. S9**. We are therefore confident that the data collected represents the most widespread and
 1147 quality checked municipal level data on municipal solid waste management to date. A summary
 1148 of the data collection and cleaning process is shown in **Fig. S11**.

Fig. S10. Central tendency and spread of *primary data inputs* by country income category prior to outlier removal (red box plots) and post outlier removal (blue box plots). Dots represent outliers according to the $1.5 \times$ interquartile range rule⁸⁴. Crosses represent the mean value. The distribution of data as shown in the box plots was used to set fences around which outliers were identified and checked for plausibility (**Table S18**). Abbreviations: high-income country (HIC); upper-middle income country (UMC); lower-middle income country (LMC); low-income country (LIC).

* Municipal records relate to a subset of sampled municipalities

150 **Fig. S11.** Summary of data collection, consolidation, and cleaning process. Blue and yellow boxes represent harmonisation and preliminary screening
151 of the raw global and national datasets respectively; purple boxes represent cleaning steps following consolidation of data; and the green boxes
152 represent the final cleaned dataset (**Supplementary Table 1**).

1153 S.7 Machine learning for prediction of primary data input variables

1154 We created a new machine learning model to predict data across all global municipalities using
1155 our cleaned dataset (**Supplementary Table 1**).

1156 A commonly used method to estimate municipal solid waste management data is to base the
1157 prediction on the socioeconomics of the area. Waste generation rate is the most frequently
1158 estimated variable with several studies predicting global MSW generation at a country level
1159 using regression analysis and with gross domestic product (GDP) as the independent
1160 variable^{21,30,173}. Others have expanded this further by using more sophisticated machine learning
1161 techniques (for example: artificial neural networks, supported vector machine, decision trees,
1162 gradient boosted regression trees, and K-nearest neighbours) to arrive at waste generation
1163 predictions, although these have so far been restricted to the national scale or below and often for
1164 forecasting time-series waste generation for a single location¹⁷⁴⁻¹⁸⁰.

1165 Aside from MSW generation and composition, very few studies have attempted to assess other
1166 aspects of municipal solid waste management performance that relate to the primary inputs in
1167 this work (i.e., collection coverage, levels of treatment and recovery, controlled disposal).
1168 Lebreton and Andrade¹⁸¹ used country level data from Waste Atlas¹⁸² (a database of user
1169 submitted waste management data, without quality control checks) alongside regression analysis
1170 to estimate global plastic waste generation and its mismanagement. ‘Mismanaged plastic waste’
1171 was defined as the waste that goes to ‘unsound disposal’, plus 1% to account for littering. More
1172 recently, Velis, et al.⁴⁰ demonstrated that variability in cities waste management progress, as
1173 measured via Wasteaware Cities Benchmark Indicators, can be modelled by various socio-
1174 economic variables using both univariate non-linear regression and multivariate random forest
1175 approaches. The variables of waste generation rate, collection coverage, quality of collection
1176 services, controlled disposal and environmental protection tested by Velis, et al.⁴⁰ are highly
1177 relevant to the present work and therefore provide the justification that data gaps can be
1178 sufficiently estimated using socioeconomic data (indices) modelled through machine learning
1179 approaches.

1180 S.7.1 Independent variables (MS4a)

1181 Independent variables used for predicting gaps in the *primary data inputs* were initially selected
1182 based on those that Velis, et al.⁴⁰ had found to show high importance. To enable the in-country
1183 variability of solid waste management data to be described, sub-national independent variables
1184 were also sourced (**Table S19**) to ensure we had explanatory power across a range of economic,
1185 cultural, social, touristic, and geographic factors. We restricted our selection of independent
1186 variables for the random forest process to those which had near global coverage to minimise data
1187 gaps. With the exception of a few data points of independent variable highlighted in **Table S19**,
1188 we chose the nearest reference year for each variable to be as close to 2015 as possible because
1189 this is the median year of the cleaned *primary data inputs*.

1190 A global spatial raster of population count data at 100 m resolution was sourced for the year
1191 2020 from the Global Human Settlement Population dataset (GHS-POP)¹⁸³. The zonal statistics
1192 tool in QGIS version 3.2.1 was used to sum the population count across each administrative area
1193 to calculate the 2020 population for each municipality. This was repeated for data from the year

1194 2015 to assess historical populations of municipalities and allow comparison with the
 1195 populations provided in older data records when performing the administrative area matching
 1196 process (**Section S.6.3**). Although population was not used as an independent variable in the
 1197 machine learning, it was still required to calculate other independent variables such as the
 1198 number of international annual tourists as a percentage of national population.

1199 **Table S19.** Independent variables and their properties.

Category	Variable	Unit	Format	Year	Type	Scale	Resolution	Ref.
Economic	GDP per capita	GDP per capita PPP in constant 2011 int. USD	Spatial raster	2015	Continuous	Global	Subnational (5 arc-min)	184
	Human development index (HDI)	-	Spatial raster	2015	Continuous	Global	Subnational (5 arc-min)	184,185
	Gross National Income (GNI) Per Capita, Atlas Method	Current US\$	Excel	2015*	Continuous	Global	National	186
	Income category	-	Excel	2015	Categorical	Global	National	85
	Developing country	Y/N	Excel	2015	Categorical	Global	National	
	Small island developing country	Y/N	Excel	2015	Categorical	Global	National	
Demographic / Social / Cultural	Population density (unconstrained UN-adjusted)	People·km ⁻²	Spatial raster	2015	Continuous	Global	Subnational (30 arc seconds)	187
	Corruption Perceptions Index (CPI)	-	Excel	2015*	Continuous	Global	National	188
	Social Progress Index (SPI)	-	Excel	2015	Continuous	Global	National	189
Touristic	International tourist arrivals as % of population (calculated)	People	Excel	2015*	Continuous	Global	National	190
Geographic	Major city	Y/N	Spatial vector	NA	Categorical	Global	Subnational	191
	Sub-region	-	Excel	NA	Categorical	Global	National	192
	Degree of Urbanisation	-	Spatial vector	2015	Categorical	Global	Subnational (municipal level)	193

1200 * Or nearest year to 2015 (up to three years away) if country data point not available for 2015.

1201 We classified each default municipality to characterise its level of urbanisation according to the
 1202 Global Human Settlement Global Degree of Urbanisation Classification of administrative units
 1203 (GHS-DUC) methodology¹⁹⁴. The GHS-DUC provides classification for administrative areas
 1204 according to two levels. Level 1 includes three classes represented by a numeric ID: (1) rural;
 1205 (2) town/semi-dense area; and (3) city. Level 2 includes eight classes: (30) city; (23) dense town;
 1206 (22) semi-dense town; (21) suburban / peri-urban; (13) village; (12) dispersed rural area; (11)
 1207 mostly uninhabited area; and (10) water.

1208 The GHS-DUC is not available for GADM V3.6 (the version used here), so we applied the
 1209 GHS-DU-TUC toolkit¹⁹³ to calculate urbanisation (for Level 1 and 2) for our own default
 1210 municipality vectors using the GHS Settlement Model grid (GHS-SMOD)¹⁹⁵ and GHS-POP
 1211 raster¹⁸³ for the years 2015 and 2020.

1212 The Level 1 categorical classifications were used as an independent variable in our machine
1213 learning. The Level 2 classifications were used to calculate the proportion of the population that
1214 lives each settlement typology in each municipality using the GHS-DU-TUC toolkit¹⁹³. The rural
1215 classes (10-13) were combined into a single ‘Rural_share’ category. The population in the
1216 Rural_share category and all of the other Level 2 classes were used to calculate street sweeping
1217 efficiency (**Section S.8.5.2**) and the Rural_share alone was used to correct data for rurality
1218 (**Section S.9.1.2**).

1219 We also used several other sub-national independent variables to train the random forest model
1220 including: sub-national GDP per capita (PPP in constant 2011 international USD) and
1221 subnational human development index (HDI) for the latest available year of 2015 as per Kummu,
1222 et al.¹⁸⁴. Additionally, sub-national HDI data was also obtained from Smits and Permanyer¹⁸⁵ for
1223 the year 2015 to fill any data gaps in Kummu, et al.¹⁸⁴. Likewise, population density per km² for
1224 the year 2015 was further obtained from WorldPop¹⁸⁷. Each of these independent variables was
1225 in raster form therefore the value for each municipality was summarised as the mean value,
1226 calculated using the QGIS zonal statistics tool.

1227 Data on whether a municipality was a capital city, world city, or mega city was sourced from the
1228 Natural Earth populated places dataset¹⁹¹. These were aggregated into one overall indicator
1229 termed here ‘major city’ to reduce the number of independent variables and avoid overly
1230 correlated variables as this can impact the measure of variable importance via the permutation
1231 method¹⁹⁶.

1232 In addition to the sub-national independent variables, national level independent variables were
1233 allocated to each municipality using their ISO3 country code¹⁹⁷ as detailed in **Table S19**. The
1234 international annual tourist arrivals were calculated as a percentage of the national population as
1235 determined from GHS-POP.

1236 **S.7.2 Imputation of independent variables (MS4b)**

1237 Occasionally, independent variables were not available for some administrative areas. At
1238 national level this was mainly because the World Bank does not recognise certain countries
1239 included in GADM (e.g., Taiwan, Kosovo), or does not report data for them (e.g., Small Island
1240 Developing States), but also because some data are not collated and published (e.g., international
1241 touristic arrivals). Any omissions in an independent variable were small, accounting for 2% of all
1242 administrative areas or less.

1243 The random forest process described in **Section S.7.3** requires a complete set of independent
1244 variables with no data gaps. Therefore, missing values were imputed using predictive mean
1245 matching (pmm) method implemented with the R package ‘*MICE*’ (version 3.14.0). We used the
1246 mean of five iterations, however when the imputed values for national level independent
1247 variables differed for the same country, we used the median to ensure consistency within a
1248 country.

1249 **S.7.3 Quantile regression random forest (MS5a and MS5b)**

1250 Random forest is a supervised machine learning method developed by Breiman¹⁹⁸. A random
1251 forest is an ensemble of decision trees whereby each tree is grown from a bagged version of the

1252 training dataset and the predictor variables used for splitting are selected at random at each node
1253 of the decision tree. In regression problems, the predictions are the average of the response of
1254 each tree, whereas in classification problems the majority result is taken.

1255 Since its development, random forest has been used extensively for both classification and
1256 regression problems due to their wide suitability, simplicity, ability to deal with small sample
1257 sizes, minimal requirement for tuning and reduced risk of overfitting^{198,199}. It has also recently
1258 been used for modelling solid waste management indices by Velis, et al.⁴⁰ who found that it
1259 outperformed non-linear regression models in all but one indicator.

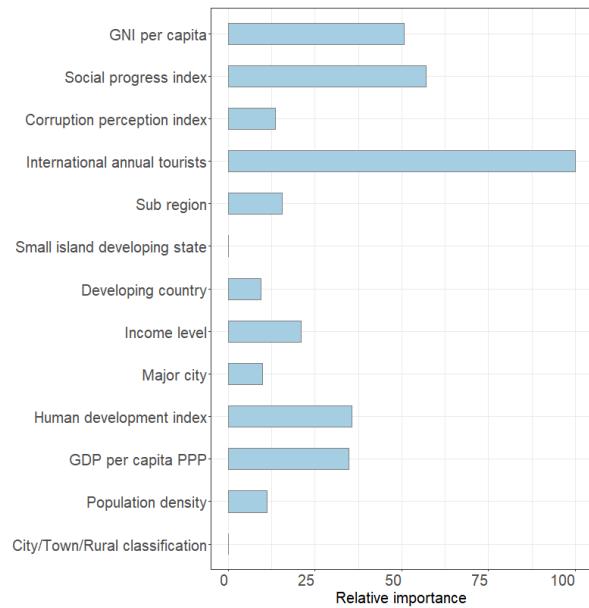
1260 Potential drawbacks of random forest regression are that they can be computational demanding;
1261 do not allow for extrapolation outside of the training data range; that variable importance metrics
1262 can be unreliable when dealing with highly correlated predictors; and that important information
1263 on the distribution of responses is neglected when the mean value of responses is taken²⁰⁰⁻²⁰². To
1264 overcome this last disadvantage, Meinshausen²⁰⁰ developed a variant of the random forest model
1265 originally presented by Breiman¹⁹⁸ whereby the value of all responses is retained, rather than just
1266 the mean. Termed ‘quantile regression forests’, the comprehensive retention of this information
1267 allows the distribution of responses to be expressed as quantiles, and therefore the uncertainty
1268 around predictions quantified. Quantification of uncertainty around *primary input* data
1269 predictions was used in this work by feeding it into the Monte Carlo probabilistic material flow
1270 analysis (**Section S.9**).

1271 We implemented quantile regression random forest independently for each of the seven *primary*
1272 *input variables* in R using the package ‘*caret*’ (version 6.0-92). Twelve imputed independent
1273 variables shown in **Table S19** were used as the predictor variables. Hyperparameters of the
1274 random forest process include the number of trees in the forest (*ntree*), the number of input
1275 features to randomly sample at each split (*mtry*) and the minimum number of observations in a
1276 terminal node (*min.node.size*). Probst, et al.²⁰³ performed a literature review on the impact of
1277 these parameters on the performance of random forest and concluded that *mtry* is the most
1278 important parameter to tune, whereas *ntree* should be set high, but has diminishing value as more
1279 trees are added.

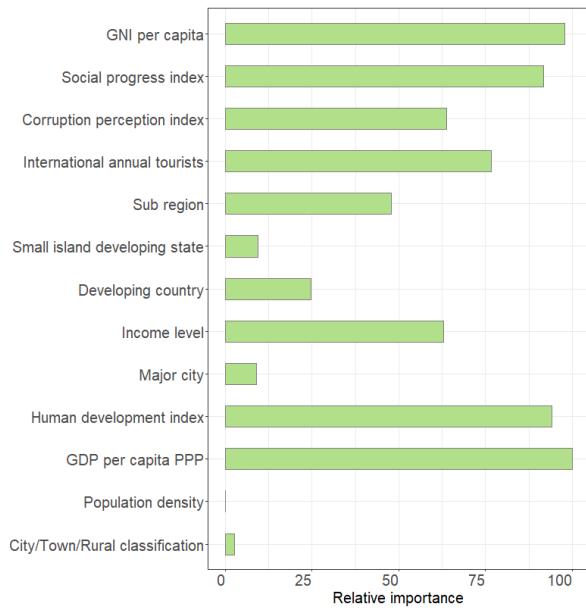
1280 To limit potential overfitting and reliably estimate the predictive ability of the random forest
1281 models, the dataset was initially split into a training and test dataset (80:20) using the *caret*
1282 function *createDataPartition*. Training data was then used to tune the hyperparameters using
1283 grid search with 10-fold cross validation and five repeats. Hyperparameters tested were *mtry*
1284 between 1 and 12 (the maximum number of predictors), and *min.node.size* between 5 and 10.
1285 The number of trees *ntree* was kept constant at the default of 500 trees. Suitability of the random
1286 forest models in the tuning process were assessed by calculating the root mean squared error
1287 (RMSE), with the optimal model for each dependent variable chosen as the one where RMSE
1288 was minimised. The optimised model was then used to predict the unseen test dataset and again
1289 the RMSE was calculated. Similar values of RMSE between the cross-validation and testing data
1290 signified that the model was not overfitting (**Table S20**). Finally, once the error and overfitting
1291 checks were considered acceptable, the random forest model was retrained on the full dataset
1292 using the optimum hyperparameters. This process was repeated for each of the dependent
1293 *primary input variables*.

1294 **Table S20.** Results of hyperparameter optimisation including optimum model parameters and
 1295 root mean squared error (RMSE) values from cross-validation and testing on a holdout dataset.

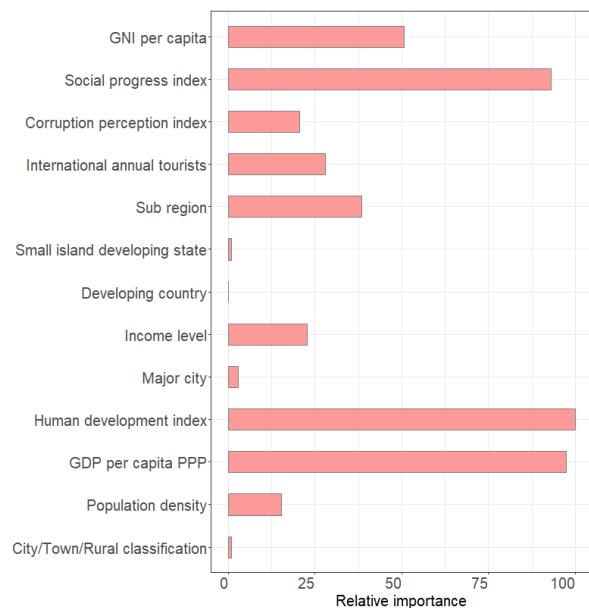
ID	Variable	Unit	Optimum model parameters		Input data range		Cross validation Test data	
			mtry	min.node.size	Min	Max	RMSE*	RMSE
tP1pc	MSW generation rate	$\text{kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$	3	5	0.2	3.13	0.32	0.37
C0	Plastic in MSW	% wt. of MSW generated	1	7	1.0	31.8	4.78	5.29
tC1	Collection coverage	% wt. of MSW generated	4	5	7.0	100.0	15.47	13.84
tC2i	Formal collection of MSW for dry recycling	% wt. of formally collected MSW	2	10	0.0	49.9	6.07	5.95
tC2ii	Formal collection of MSW for other recovery	% wt. of formally collected MSW	1	5	0.0	40.0	6.46	5.26
tC2iii	Formal collection of MSW for incineration	% wt. of formally collected MSW	3	6	0.0	100.0	12.97	11.76
tC3	Controlled disposal of MSW	% wt. of formally collected MSW for disposal	2	7	0.0	100.0	35.38	34.92

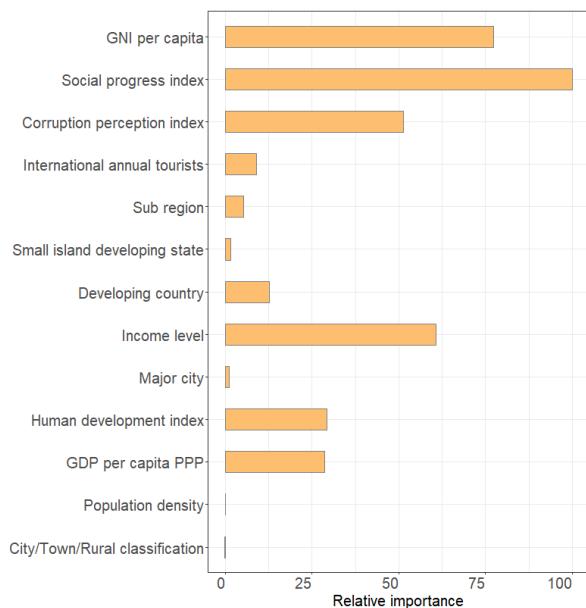

1296 * Of optimal model from cross-validation. Abbreviations: municipal solid waste (MSW).

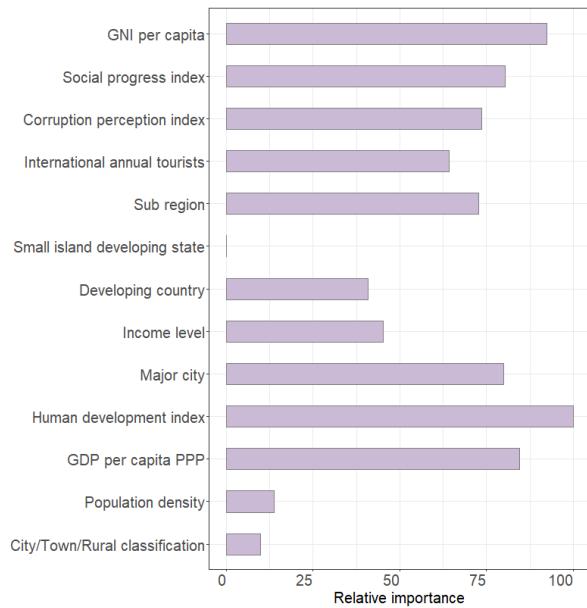
1297 The performance of random forest was assessed using the RMSE values presented in **Table S20**.
 1298 Given RMSE has the same units as the dependent variable, the range of input data for each
 1299 variable is also provided for comparison. Alternate metrics, such as the mean absolute
 1300 percentage error (MAPE) or the symmetric mean absolute percentage error (SMAPE), were
 1301 avoided because much of the data includes zeros, or values close to zero, and these metrics are
 1302 known to become undefined or unstable respectively in these cases²⁰⁴. RMSE values were further
 1303 compared to the RMSE values reported by Velis, et al.⁴⁰ for the comparable variables of waste
 1304 generation rate (0.31 adjusted to $\text{kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$), collection coverage (10.17) and controlled
 1305 disposal (27.96). The RMSE values in the present work are broadly comparable to those
 1306 achieved by Velis, et al.⁴⁰, albeit slightly higher. It should be noted, however, that the Velis, et
 1307 al.⁴⁰ analysed a limited dataset from a single primary data generating methodology (WABI),
 1308 consisting of only 40 cities (maximum), and as such, their dataset was not tested on a holdout
 1309 dataset and is therefore more at risk of overfitting. Likewise, the dataset used in this work is
 1310 much larger than that used in Velis, et al.⁴⁰. Although this is useful for improved learning by
 1311 random forest, it is also likely to exhibit higher levels of noise, especially as it was collated from
 1312 multiple sources (WaCT, WABI, WaW2.0, UNSD, SIPSN, MoHURD), despite efforts to
 1313 compatibilize them (**Section S.6**).

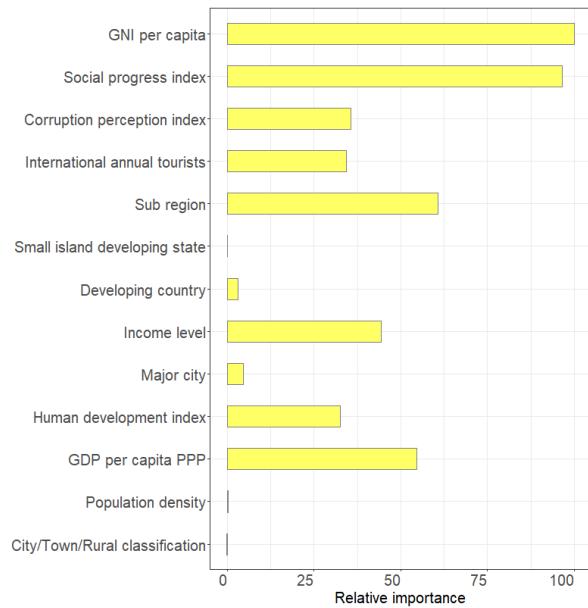

1314 The RMSE values presented in **Table S20** were considered acceptable for use in this work,
 1315 especially given the wide range, noise and complexity of the waste management data that it
 1316 predicts. Controlled disposal had the worst predictive capability with an RMSE of 35%,
 1317 however, given its bimodal nature, the method for predicting controlled disposal was adapted to
 1318 be treated as a classification problem rather than a regression one, as discussed in **Section**
 1319 **S.9.1.1**.

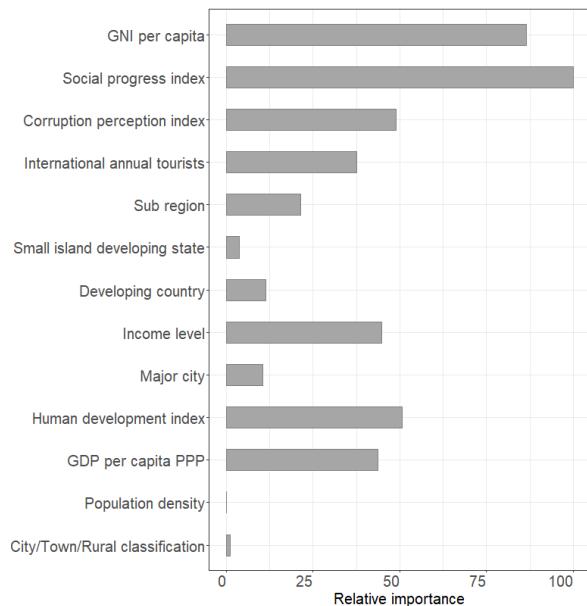
1320 Whilst the economic independent variables score highly for importance across all dependent
 1321 variables, in many cases it is the social, cultural, or touristic independent variables that show the
 1322 highest importance (**Fig. S12**). This signifies that models that only use GDP or other economic
 1323 metrics for prediction are perhaps excluding other important metrics.


Waste generation rate (tP1pc)


Plastic in MSW (C0)


Collection coverage (tC1)


Formal dry recycling (tC2i)


Other recovery (tC2ii)

Incineration (tC2iii)

Controlled disposal (tC3)

Fig. S12. Relative importance measure for each dependent variable as determined through the permutation method in quantile regression random forest.

1324

S.8 Secondary data collection and processing (MS6)

1325

In addition to the *primary data inputs* used to populate the *Tributary MFA*, secondary data was required to complete the more detailed *Full MSW MFA* and *Plastics MFA*. These secondary inputs build upon the *Tributary MFA* and enable three key areas to be explored in more detail, namely:

1329 1. Converting MSW flows to plastic and rigid plastic flows at the *Tributary MFA* system
 1330 ends.
 1331 2. Allowing further description of the formal and informal recycling processes.
 1332 3. Estimating emissions of plastic into the environment at specific parts of the system,
 1333 including both debris emissions and open burning emissions.

1334 Municipalities rarely report on the *secondary data inputs*, and in some cases, such as emissions
 1335 of plastic from different parts of the solid waste management system, no reliably measured data
 1336 yet exists. These data limitations mean that it was not possible to collate a database of *secondary*
 1337 *data inputs* per municipality as done with the *primary data inputs*. Instead, available data is
 1338 summarised either by archetypes (e.g., based on the income category of the country), or by
 1339 modelling approaches.

1340 Material flow analysis calculations in this work used a probabilistic approach based on Monte
 1341 Carlo Analysis (**Section S.9**). This relies on the variability of each data input being specified in
 1342 the form of a probability density function (PDF). Quantile regression random forest enabled the
 1343 *primary data inputs* to be specified as PDFs (**Section S.7.3**), however, for the *secondary data*
 1344 *inputs* different approaches were used, as detailed below.

1345 **S.8.1 Proportion of plastic that is rigid (C0a)**

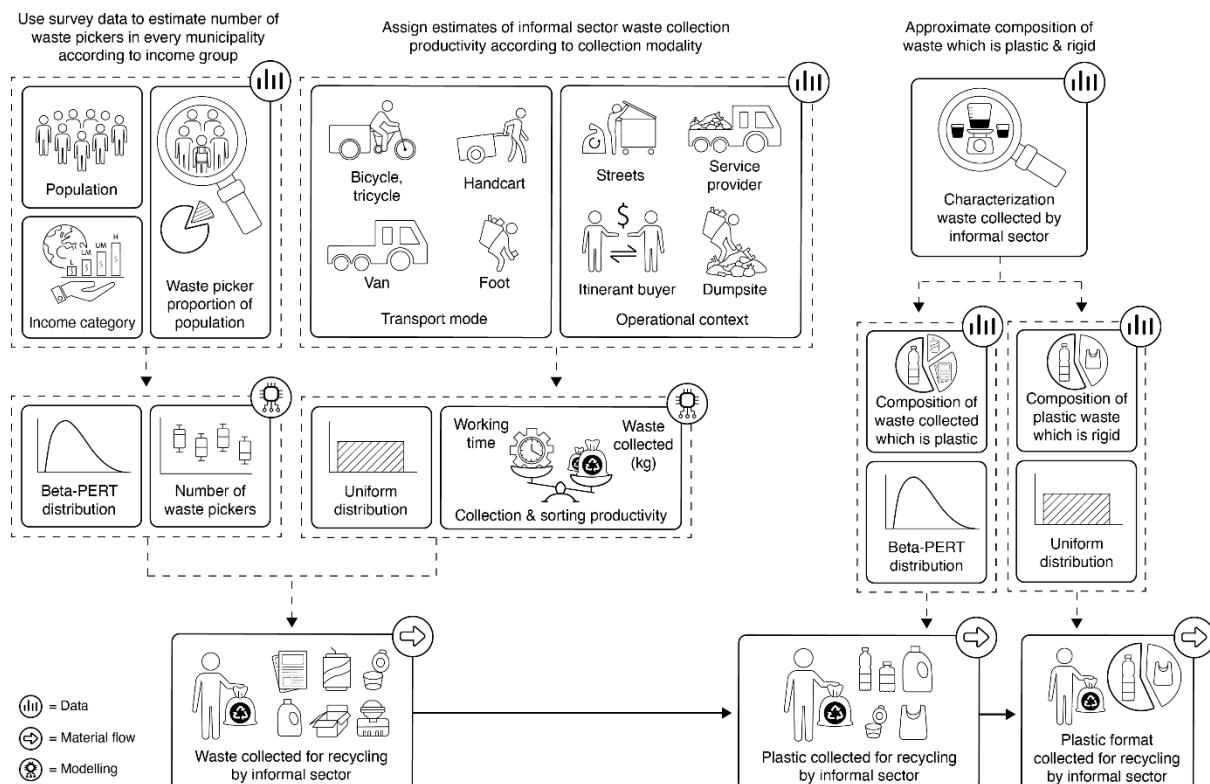
1346 The ratio of rigid to flexible plastic at different points of the system helps to determine the
 1347 probability of material being emitted from different system components through the action of
 1348 wind and surface water and in subsequent terrestrial transport models. In the absence of reliable
 1349 measured data, we assume that the ratio of rigid to flexible plastic in waste generated is
 1350 equivalent to C12a, C13a, C17a, C18a and C22a. For LICs, LMCs, and UMCs, the WaCT²⁹
 1351 provides verifiable, quality checked data for 37 municipalities which we used to approximate
 1352 these proportions as normal distributions (**Table S21**). Due to only four data points being
 1353 available for LICs, these were combined with LMC data.

1354 **Table S21.** Proportion of rigid format material in upper-middle (UMC) and lower-middle / low
 1355 income (LMC / LIC) countries based on household surveys from WaCT²⁹.

Income category	Number of data points	Rigid plastic (% wt. of plastic generation)	
		Mean	Standard deviation
UMC	7	44.4	3.9
LMC / LIC	30	41.8	10.3

1356 For HICs, we used a normal distribution based on the mean (61.7%) and standard deviation
 1357 (8.7%) of composition data from five sources which reported on approximately the same basis
 1358 (**Table S22**).

1359 **Table S22.** Proportion of rigid and flexible format material in selected high-income countries.


Source	Geographical context	Data type	Method	Basis	Rigid (% wt.)	Flexible (% wt.)
Chruszcz ²⁰⁵	Wales	Primary	Waste characterisation	MSW	63.6	36.4
Bridgwater, et al. ²⁰⁶	England	Secondary	Synthesis	HH	64.0	36.0
Cascadia Consulting Group ²⁰⁷	California	Primary	Waste characterisation	MSW*	60.9	39.1

Source	Geographical context	Data type	Method	Basis	Rigid (% wt.)	Flexible (% wt.)
BMK ²⁰⁸	Austria	Secondary	Not stated	MSW*	72.0	28.0
Tetra Tech EBA Inc. ²⁰⁹	Vancouver	Primary	Waste characterisation	MSW	48.1	51.9
			Mean		61.7	38.3
			Median		63.6	36.4
			Standard deviation		8.7	8.7

* Although it was not specifically described as municipal solid waste (MSW), we assumed it based on the context and narrative in the study report. Abbreviations: Municipal solid waste (MSW); household waste (HH).

1362 S.8.2 Informal sector recycling (P14)

1363 A sub-model was developed to estimate the amount of waste collected by the informal recycling
 1364 sector (IRS) (P14) worldwide (**Fig. S13**), based on a two-stage process originally developed by
 1365 Lau, et al.⁵: (1) Estimate the number of informal recyclers in each area; and (2) Estimate the
 1366 productivity of those recyclers, and hence how much waste they collect and reclaim for
 1367 recycling.

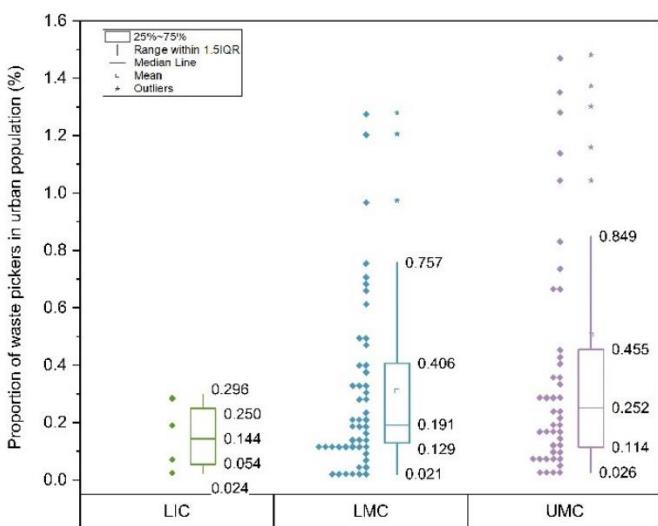
1368

1369 **Fig. S13.** Sub model used to estimate the quantity of plastic collected for recycling by the
 1370 informal recycling sector.

1371 S.8.2.1 Informal recycling sector population

1372 Estimates for the proportion of informal recyclers in the urban populations of 102 municipalities
 1373 and countries around the world were collated (**Table S23**) and categorised by World Bank
 1374 income category (**Fig. S14**).

Table S23. Population engaged in informal waste collection as a proportion of total urban population in cities and countries.


ISO3	Country	Income category	Municipality	Proportion of waste pickers in urban population	Source
BRA	Brazil	UMC	Sorocaba	0.194	92
IDN	Indonesia	LMC	Jakarta	0.378	210
BRA	Brazil	UMC		0.192	211
BRA	Brazil	UMC	Esteio	0.186	212
ZAF	South Africa	UMC		0.136	213
PHL	Philippines	LMC	Metro Manila	0.156	
PHL	Philippines	LMC	Quezon City	0.072	214
ARG	Argentina	HIC	Rauch	0.233	
PAK	Pakistan	LMC	Lahore	0.188	215
PAK	Pakistan	LMC	Lahore (UC 16)	0.189	
IND	India	LMC	Tiruchirappalli	0.021	216
CHN	China	UMC	Urban Area	0.668	
CHN	China	UMC	Beijing	1.373	
CHN	China	UMC	Guangzhou	1.159	
CHN	China	UMC	Shenzhen	2.179	
CHN	China	UMC	Suzhou	1.482	
CHN	China	UMC	Wuhan	0.262	
MNG	Mongolia	LMC	Ulaanbaatar	0.757	
IND	India	LMC	Urban Area	0.412	
IND	India	LMC	Ahmedabad	0.675	
IND	India	LMC	Amritsar	0.281	
IND	India	LMC	Bangalore	0.708	
IND	India	LMC	Delhi	1.280	
IND	India	LMC	Kanpur	0.615	
IND	India	LMC	Kolkata	0.511	
IND	India	LMC	Mumbai	0.694	
IND	India	LMC	Pune	0.248	
IDN	Indonesia	LMC	Bandung	0.133	26
IDN	Indonesia	LMC	Jakarta	0.224	
PHL	Philippines	LMC	Manila	0.191	
PHL	Philippines	LMC	Quezon City	0.485	
BGD	Bangladesh	LMC	Dhaka	0.133	
PAK	Pakistan	LMC	Lahore and Allama Iqbal Town	0.333	
VNM	Vietnam	LMC	Ho Chi Minh City	0.338	
KHM	Cambodia	LMC	Phnom Penh	0.134	
MEX	Mexico	UMC	Mexico City	0.121	
MEX	Mexico	UMC	Monterrey	0.038	
PER	Peru	UMC	Urban Area	0.441	
PER	Peru	UMC	Callao	0.178	
PER	Peru	UMC	Canete	0.358	
PER	Peru	UMC	Lima	0.186	
BRA	Brazil	UMC	Urban Area	0.364	
BRA	Brazil	UMC	Belo Horizonte	0.157	
BRA	Brazil	UMC	Rio de Janeiro	1.301	

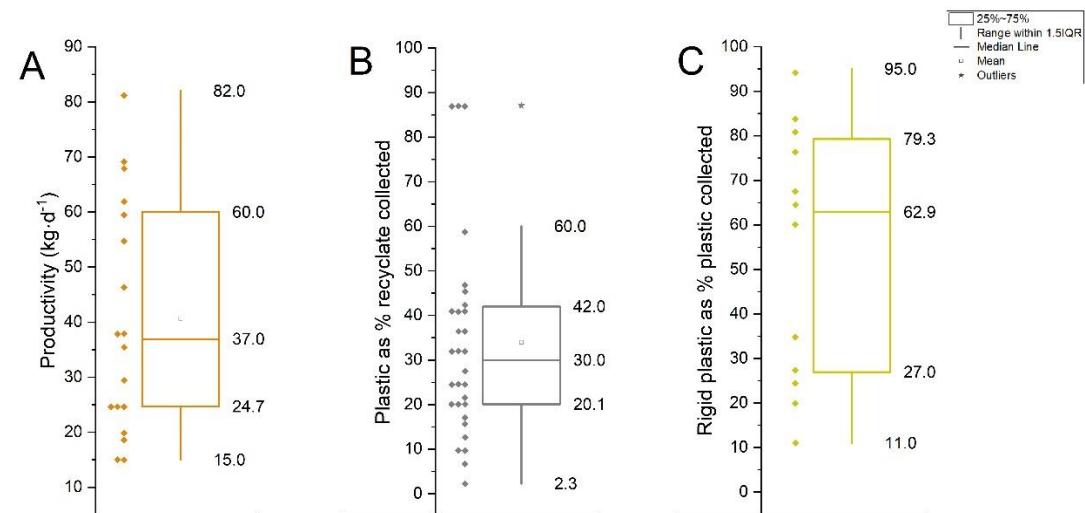
ISO3	Country	Income category	Municipality	Proportion of waste pickers in urban population	Source
BRA	Brazil	UMC	Santo Andre	0.303	
BRA	Brazil	UMC	Sao Paulo	0.177	
COL	Colombia	UMC	Bogota	0.252	
ARG	Argentina	HIC	Buenos Aires	0.222	
URY	Uruguay	HIC	Montevideo	0.907	
ETH	Ethiopia	LIC	Addis Ababa	0.204	
EGY	Egypt, Arab Rep.	LMC	Cairo	0.321	
TZA	Tanzania	LIC	Dar-es-Salaam	0.024	
ZMB	Zambia	LMC	Lusaka	0.039	
ROU	ROMANIA	UMC	Cluj-Napoca	1.044	
GHA	Ghana	LMC	Accra metropolitan area (GAMA)	0.031	217
MEX	Mexico	UMC	Monterrey	0.033	
MEX	Mexico	UMC	Guadalupe	0.087	
MEX	Mexico	UMC	San Nicolas	0.040	
MEX	Mexico	UMC	Mexico City	0.100	218
MEX	Mexico	UMC	Tultitlán	4.564	
MEX	Mexico	UMC	Nezahualcóyotl	0.055	
MEX	Mexico	UMC	Tultepec	0.026	
BRA	Brazil	UMC	Santo Andre	0.303	219
BRA	Brazil	UMC		0.114	220
SRB	Serbia	UMC		0.339	221
BRA	Brazil	UMC		0.303	222
MEX	Mexico	UMC	Celaya	0.422	223
CHL	Chile	HIC	Santiago de Chile	0.111	224
NIC	Nicaragua	LMC	Managua	0.117	225
GHA	Ghana	LMC	Kpone Katamanso District	0.143	226
IND	India	LMC	Mumbai	1.206	227
PAK	Pakistan	LMC	Halimur Town	0.037	228
PRY	Paraguay	UMC	Asunción	0.096	229
IND	India	LMC	Pune	0.028	230
PAK	Pakistan	LMC	Al Ima Iqbal Town	0.333	231
BGD	Bangladesh	LMC	Khulna	0.134	232
NGA	Nigeria	LMC	Lagos	0.063	233
EGY	Egypt, Arab Rep.	LMC	Cairo	0.227	
ROU	ROMANIA	UMC	Cluj	0.849	
PER	Peru	UMC	Lima	0.227	234
ZMB	Zambia	LMC	Lusaka	0.039	
IND	India	LMC	Pune	0.295	
PHL	Philippines	LMC	Quezon	0.406	
IDN	Indonesia	LMC	Bandung	0.129	235
COL	Colombia	UMC		0.290	236
VNM	Vietnam	LMC	Hanoi	0.136	237
IND	India	LMC	Kanpur	0.226	238
IND	India	LMC	Calcutta	0.167	
PHL	Philippines	LMC	Manila	0.128	239
MEX	Mexico	UMC	Mexico City	0.088	

ISO3	Country	Income category	Municipality	Proportion of waste pickers in urban population	Source
ZWE	Zimbabwe	LIC	Harare	0.084	240
ZWE	Zimbabwe	LIC	Bulawayo	0.296	
IND	India	LMC	New Delhi	0.106	241
BGD	Bangladesh	LMC	Dhaka	0.973	242
BRA	Brazil	UMC	Metropolitan region of São Paulo	0.094	243
IND	India	LMC		0.514	244
PHL	Philippines	LMC	Iloilo City	0.060	245
BGD	Bangladesh	LMC	Rajshahi City	0.156	246
CHN	China	UMC	Beijing-Haidian District (North)	0.757	247
CHN	China	UMC	Urban Area	0.668	248
CHN	China	UMC	Beijing (North)	0.073	249
CHN	China	UMC	Cities in China	0.455	250

1377

1378 We assumed a Beta-PERT distribution for the informal recycling sector population data with a
1379 default shape factor of four²⁵¹. The shape factor controls the weighting of the most likely value.
1380 We chose the Beta-PERT distribution for two reasons: (1) Beta-PERT distributions require only
1381 three, easily obtainable parameters (minimum plausible value, most likely value, maximum
1382 plausible value), and are therefore suitable in situations where the available data are not
1383 sufficient to provide a more accurate distribution shape or when parameters rely on expert
1384 judgement; and (2) Beta-PERT distributions overcome some of the disadvantages of the
1385 triangular distribution, often favoured in such situations, because triangular distributions assign
1386 higher probabilities to the extremities of fat-tailed distributions²⁵².

1387


1388 **Fig. S14.** Central tendency and spread of estimated proportion of waste pickers in municipalities
1389 and countries (n = 102).

1390 Informal recycling sector population data were grouped by income category (**Fig. S14**). For the
1391 LICs, LMCs and UMCs, the most likely value was taken as the median, and the lower and upper
1392 plausible limits were taken as the range of values excluding outliers, defined as being greater

1393 than 1.5 times the inter-quartile range distance from each quartile. Four data points were
 1394 available for HICs, all for countries in South America (Argentina, Chile and Uruguay) which, at
 1395 the time the data were collected, had relatively recently entered the HIC category. For this
 1396 reason, we considered that they are not necessarily representative of other countries in HICs, and
 1397 therefore an assumption used by Lau, et al.⁵ of mid-0.005% (range 0.0045-0.0055) was adopted.

1398 S.8.2.2 Informal recycling sector productivity

1399 Productivity data from 18 municipalities first reported by Lau, et al.⁵ indicated a range of between
 1400 3.525-19.27 t·y⁻¹ of waste (all types of recyclate) collected for recycling by selective collectors
 1401 (**Fig. S15A**). This productivity data was converted to a PDF by assuming a uniform distribution.
 1402 Multiplication of estimated number of waste pickers in a municipality with the expected
 1403 productivity of each waste picker and a working year of 235 days, enabled the mass collected by
 1404 the informal recycling sector to be approximated. This was undertaken within the probabilistic
 1405 MFA detailed in **Section S.9** to incorporate the uncertainty as represented by the above PDFs.

1406

1407 **Fig. S15.** Central tendency and spread of (A) daily productivity of informal recyclers in
 1408 municipalities (n = 18); (B) proportion of waste collected by informal recyclers that is plastic (n
 1409 = 29); and (C) proportion of plastic waste collected by informal recyclers that is rigid format.

1410 S.8.2.3 Proportion of plastic collected by informal recycling sector (C15)

1411 The proportion of waste collected by informal recyclers that was plastic (C15) in UMCs, LMCs,
 1412 and LICs was based on 30 sources of data collected in 30 municipalities (**Table S24**). A Beta-
 1413 Pert distribution was assumed with central value of 30% and a range of 2.3-60% (**Fig. S15B**).

1414 There is little data available on the proportion of plastic collected by informal recyclers in HICs
 1415 where plastic recycling is driven by regulation and financial subsidies rather than unsupported
 1416 market forces²⁵³. Financial incentives such as producer responsibility²⁵⁴ are out of reach of
 1417 informal recyclers and because they are light and have low value (by weight) relative to the cost
 1418 of living, we assume they are barely targeted if at all on a weight basis. Using a Beta-Pert
 1419 distribution as with the Global South Countries, we chose the lower end of the range 2.3% as our
 1420 central value, multiplied by 2 for the upper and of the range (4.6%) and a zero for the lower end.

1421

Table S24. Plastic proportion of waste collected by informal recyclers.

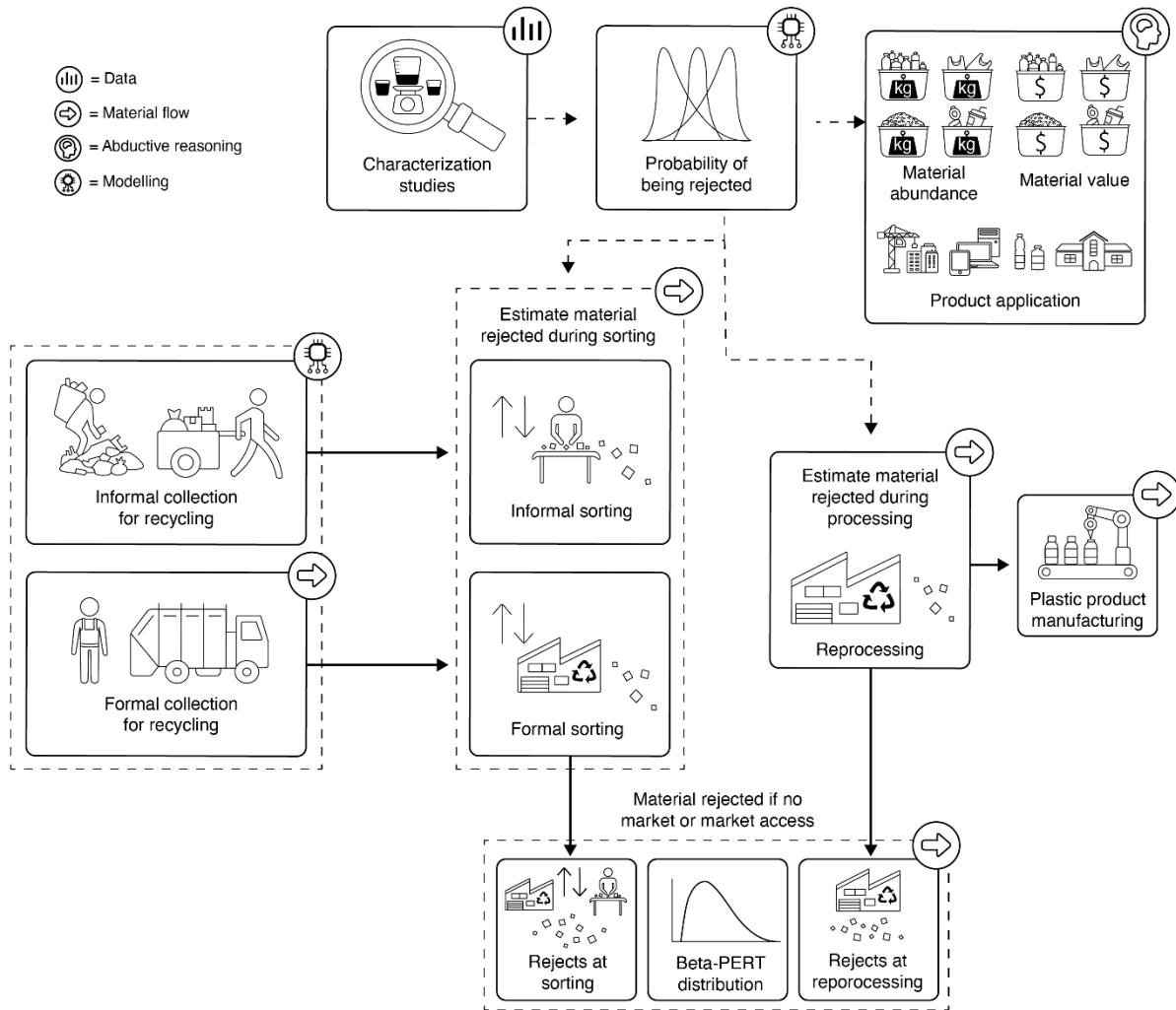
Country	Municipality	Year data collected	Proportion waste collected by informal recyclers that is plastic (%)	Source
Brazil	Esteio	2017	20.76	212
Indonesia	Bantar Gebang	2014	87.00	255
India	Tiruchirappalli	2010	60.00	216
Brazil	Santa Rita	2012	32.80	256
India	Dhanbad	2018	43.00	178
South Africa	Johannesburg	2017	25.97	257
Egypt	Cairo	2016	13.00	258
Pakistan	Halimar Town	2015	32.00	228
India	Kanpur	2008	33.00	238
Cote d'Ivoire	Abdjan	2016	47.00	259
Bangladesh	Rajshahi City	2012	2.25	246
Brazil	Campinas	2013	24.80	260
China	Beijing-Haidian District (North)	2017	17.80	
China	Beijing-Haidian District (North)	2017	6.80	247
China	Beijing (North)	2010	10.50	261
Ecuador	Cuenca	2020	25.00	262
Ecuador	Cuenca	2019	22.10	263
Bolivia	La Paz	2020	20.70	264
Brazil	Belo Horizonte	2021	28.00	69
Brazil	Londrina, Parana state	2020	20.07	265
Brazil		2020	11.00	266
Indonesia	Bantar Gebang	2020	87.21	267
Ghana	Greater Accra Metropolitan Area	2023	87.12	59
Ecuador	Quito	2015	42.00	
Ecuador	Guayaquil	2015	42.00	
Ecuador	Cuenca	2015	37.00	
Ecuador	Manta	2015	46.00	
Ecuador	Average of 4 cities	2015	42.00	268
Nigeria	Abuja	2021	36.47	269
Brazil	Ribeirão Pires, São Paulo	2013	15.91	243

1422

1423

1424 **S.8.2.4 Proportion of plastic collected by informal recycling sector that is rigid (C21a)**

1425 The proportion of plastic collected by informal recyclers that is rigid (C21a) was based on 10
1426 sources that presented data on 11 municipalities (**Table S25**). Due to the paucity of data and
1427 large spread, we were not confident to assign a central value and therefore chose a uniform
1428 distribution between the range 11-95% (**Fig. S15C**) for all countries.


1429 **Table S25.** Proportion plastic waste collected by informal recyclers that is rigid.

Location of cohort (country)	Location of cohort (municipality)	Year of publication	Rigid (%)	Source
Indonesia	Bantar Gebang	2019	20.0	270
Indonesia	Jakarta	2018	95.0	210
Indonesia	Bantar Gebang	2014	11.0	255
India	Tiruchirappalli	2010	77.0	216
India	Dhanbad	2018	81.5	178
Pakistan	Halimar Town	2015	84.0	228
			60.6	
India	Kanpur	2008	28.2	238
Ecuador	Cuenca	2020	35.1	262
Ecuador	Cuenca	2019	65.2	263
Brazil	na	2020	67.9	266
Indonesia	Bantar Gebang	2020	25.7	267

1430 **S.8.3 Rejects of rigid and flexible plastic from sorting and reprocessing by**
1431 **formal (C24aa C24ab) and informal (C23aa, C23ab) sectors**

1432 We estimated plastic mass rejects (sometimes referred to in the literature as ‘losses’) at the
1433 sorting and reprocessing steps by creating a sub-model which used a set of logical assumptions
1434 about the economic value and recyclability of different polymers and formats. We used these to
1435 assign the probability that different types of plastic waste would be selected for recycling rather
1436 than screened for recovery or disposal. As summarised in **Fig. S16**, we applied these reject rates
1437 to baseline data for the amount of plastic waste collected for recycling in the Global North and
1438 South.

1439

1440

1441 **Fig. S16.** Sub-model for estimating rejects (sometimes referred to in the literature as 'losses')
 1442 (wt. as received (ar) reporting basis) from plastic waste that has been collected for recycling.

1443 **S.8.3.1 Step 1: Establish baseline plastic waste collected for recycling**

1444 The OECD provided us with polymer specific data on the amount of MSW plastic waste
 1445 collected for recycling from their ENV-Linkages model ('Global Plastics Outlook'), which
 1446 underlies a dataset that is published online in a summarised format²⁷¹. Textiles were excluded for
 1447 congruence with our model. We developed our assumptions according to three municipal
 1448 categories: packaging; electrical and electronic; and consumer and institutional. Data for LDPE
 1449 used in electrical and electronic equipment was excluded, because LDPE is rarely used in
 1450 electrical and electronic equipment^{272,273}. For simplification, we assumed that OECD members
 1451 are HICs, which collect formally, and non-OECD countries are LMICs, which collect informally.

1452 The ENV-Linkages model does not differentiate between flexible and rigid material collected for
 1453 recycling. Therefore, we used European plastic packaging consumption data as a proxy,
 1454 calculating the amount of flexible plastic consumed in each polymer category reported by
 1455 Nonclercq²⁷⁴ as a proportion of plastic consumption reported by Cimpan, et al.²⁷⁵ (**Table S26**).
 1456 Data to indicate the proportion of each polymer collected for recycling which is flexible were not

1457 available for LMICs. Therefore, we calculated a ratio between the mean proportion of flexible
1458 packaging for Europe (**Table S26**) and the median proportion of flexible material reported by
1459 WaCT data points. We applied this ratio to each of the proportions calculated for Europe.
1460

1461 **Table S26.** Estimated flexible plastic packaging as a proportion of all plastic packaging.

Polymer	Total consumption (Mt in 2014) ²⁷⁵	Flexible consumption (Mt in 2014) ²⁷⁴	Proportion of total plastic packaging that is flexible in HICs (%)	Proportion of total plastic packaging that is flexible in LMICs (%)
HDPE	3.30	0.23	6.97	9.66
LDPE ^a	5.79	5.79	100.00	100.00
OTHER	1.37	0.24	17.50	24.25
PET	3.29	0.16	4.87	6.75
PP	3.78	0.88	23.31	32.30
PVC	0.38	0.08	20.79	28.82
Total	17.91	6.42	35.86	57.14

1462 ^aLDPE includes LLDEPE. All flexible consumption was reported by Nonclercq²⁷⁴ except LDPE which was all assumed to be
1463 flexible. Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene
1464 terephthalate (PET); polyvinyl chloride (PCV); polypropylene (PP); high income counties (HIC); low- and middle-income
1465 countries (LMIC).

1466 Polyurethane (PUR) collected for recycling is assumed to be used as bonding or coating and
1467 therefore rigid, except for in consumer and institutional category where it was assumed to be
1468 flexible and used as foam in mattresses and furniture²⁷⁶. We assumed that PVC collected under
1469 consumer and institutional was entirely rigid. We applied the proportions of flexible plastic
1470 packaging (**Table S26**) to the OECD polymer specific data for each category as shown in **Table**
1471 **S27**.

1472

1473 **Table S27.** Estimated mass of municipal solid waste plastic collected for recycling in high
 1474 income countries and low-middle income countries based on MSW data underlying the ENV-
 1475 Linkages model ('Global Plastics Outlook')²⁷¹. Rigid and flexible plastics were estimated using
 1476 European packaging data provided by Cimpan, et al.²⁷⁵ and Nonclercq²⁷⁴ as a proxy, as detailed
 1477 in **Table S26**.

Sector/ application	Plastic type by dominant polymer	Rigid & flexible mixed as reported		Rigid	Flexible	Rigid	Flexible
		HIC (Mt)	LMIC (Mt)				
Consumer & Institutional Products	HDPE	0.86	1.04	1.91	0.86	0.00	1.04
	LDPE, LLDPE	0.62	0.75	1.38	0.00	0.62	0.00
	Other	0.01	0.02	0.03	0.01	0.00	0.02
	PET	0.00	0.00	0.00	0.00	0.00	0.00
	PP	1.27	1.54	2.82	1.27	0.00	1.54
	PS	0.16	0.19	0.36	0.16	0.00	0.19
	PUR	0.07	0.08	0.15	0.00	0.07	0.00
	PVC	0.08	0.09	0.17	0.08	0.00	0.09
Consumer & Institutional Products Total 3.08		3.72	6.80	2.39	0.69	2.89	0.84
Electrical/ Electronic	HDPE	0.08	0.08	0.16	0.08	0.00	0.08
	LDPE, LLDPE	0.00	0.00	0.00	0.00	0.00	0.00
	Other	0.02	0.02	0.03	0.02	0.00	0.02
	PET	0.00	0.00	0.00	0.00	0.00	0.00
	PP	0.28	0.27	0.55	0.28	0.00	0.27
	PS	0.05	0.05	0.10	0.05	0.00	0.05
	PUR	0.03	0.03	0.05	0.03	0.00	0.03
	PVC	0.04	0.04	0.09	0.04	0.00	0.04
Electrical/Electronic Total 0.51		0.49	1.00	0.51	0.00	0.49	0.00
Packaging	HDPE	5.20	6.59	11.79	4.84	0.36	5.96
	LDPE, LLDPE	3.00	3.90	6.90	0.00	3.00	0.00
	Other	0.01	0.01	0.01	0.00	0.00	0.00
	PET	4.24	5.39	9.63	4.04	0.21	5.02
	PP	3.00	3.80	6.80	2.30	0.70	2.57
	PS	0.21	0.27	0.48	0.21	0.00	0.27
	PUR	0.01	0.02	0.03	0.01	0.00	0.02
	PVC	0.13	0.16	0.29	0.10	0.03	0.12
Packaging Total 15.81		20.14	35.95	11.51	4.30	13.96	6.18
Grand total		19.40	24.35	43.75	14.40	4.99	17.34
							7.01

1478 Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene
 1479 terephthalate (PET); polyvinyl chloride (PCV); polypropylene (PP); high income counties (HIC); low- and middle-income
 1480 countries (LMIC).

1481 **S.8.3.2 Step 2 and 3: Identify empirical or assumptive data on rejects or use abductive
 1482 reasoning to estimate**

1483 **S.8.3.2.1 General assumptions, data, and abductive reasoning**

1484 We used a combination of empirical data, reported assumptions and abductive reasoning to
 1485 estimate rejects at the sorting and reprocessing stages. For simplification of this step, plastic
 1486 waste collected for recycling in LMICs was assumed to be collected exclusively by the informal
 1487 sector, despite a few examples identified and discussed in **Section S.6.4.3.5** and **Section**
 1488 **S.6.4.4.3**. We also simplify what is a complex continuum of processes into two basic stages of:
 1489 1) Sorting; and 2) Reprocessing, which would otherwise be overly challenging to model at global
 1490 scale.

Table S28. Empirical data, assumptions and abductive reasoning underlying decisions made on the mass of rejects for material collected for recycling through formal and informal systems.

Sector / application	Formal collection, sorting	Informal collection and sorting
Packaging	<p>Assumptions</p> <ul style="list-style-type: none"> Predominantly collected alongside a mixture of non-plastics or, where collected separately, as a mixture of plastics. Almost never collected as separate stream except for LDPE wrap from commercial sources which is generally collected separately when collected for recycling. <p>Reject rates applied</p> <ul style="list-style-type: none"> PS, PVC, PUR and 'other' plastics not separated for recycling therefore 100% rejects across sorting and reprocessing stages. Non-LDPE films not separated for recycling therefore 100% rejects across sorting and reprocessing stages. Reject rates at sorting stage for other plastics are mean reported by Antonopoulos, et al.²⁷⁷ for European and UK materials recovery facilities: <ul style="list-style-type: none"> PET 19% PP 43% LDPE 42% HDPE 24% <p>Rejects at the reprocessing stage are based on analysis of data reported by Roosen, et al.²⁷⁸, presented in Section S.8.3.2.2.</p>	<p>Assumptions</p> <ul style="list-style-type: none"> Material is manually selected at the point of collection meaning that subsequent rejects are likely to be very small – waste pickers are unlikely to expend effort selecting and carrying substantial amounts of material that is not likely to return value. Therefore, rejects consist mainly of closures, plastic labels and some soiled material rejected by junkshops. <p>Reject rates applied</p> <ul style="list-style-type: none"> As there are no published studies on this aspect of the informal sector, we assume informal sector rejects as twofold: <ul style="list-style-type: none"> 1) We used an assumption from Lau, et al.⁵ that 5% of material collected for recycling by the informal sector is rejected during sorting; and 2) That rejects at the reprocessing stages are commensurate with analysis of data reported by Roosen, et al.²⁷⁸ and Antonopoulos, et al.²⁷⁷ presented in Section S.8.3.2.2.
Electrical & electronic	<p>Assumptions</p> <ul style="list-style-type: none"> The mass of plastic collected for recycling is part of the complex assemblies of items that constitute electrical and electronic equipment and cabling. Several sorting businesses now exist in Europe²⁷⁹⁻²⁸², and presumably elsewhere across HICs, but separation of plastics in these plants is commercially nascent. Sorting is predominantly by comminution and optical or electrostatic separation²⁸³. Of the mass collected for recycling, only a very small proportion is likely to be recoverable for reprocessing due to its potentially hazardous characteristics, and the co-processing conditions which hinder purity^{284,285}. <p>Reject rates applied</p> <ul style="list-style-type: none"> On the basis of evidence that markets for secondary post-consumer PU and PS packaging are weak and that recovery rates are low when processed²⁷⁷, we assume that recovery of PU and PS from WEEE are likely to be low or non-existent given that recovery from WEEE sources is more technically challenging. Therefore, we assume 100% reject rate at the sorting stage. In the absence of strong data, assuming that formal WEEE reclaimers have advanced conservatively in the previous decade, and that the majority of material is too contaminated to be recycled, we apply a 90% reject rate for sorting and reprocessing to all non-PUR and PS WEEE plastics. 	<p>Assumptions</p> <ul style="list-style-type: none"> As with formal system, informal reclaimers are focused on the most valuable constituents of WEEE, the metals. There is some evidence that they recycle plastics in some locations²⁸⁶, but in others they are simply burned due to lack of market access²⁸⁷. Informal recyclers work harder to reclaim more material if it is technically possible. They are also likely to have less awareness of the hazardous nature of some WEEE plastics and therefore are less selective about which plastics to reclaim. <p>Reject rates applied</p> <ul style="list-style-type: none"> PVC is mainly used in cabling in WEEE, and the informal sector is unlikely to strip and recover it due to the extensive time taken. Evidence suggests it is almost always burned in open uncontrolled fires²⁸⁸. Therefore, we attribute a 100% reject rate for PVC at the sorting stage. On the basis that informal sector workers make more effort to recover less concentrated materials but that they have less technical capability to do so, we assume the following: <ul style="list-style-type: none"> For PS and PU, 100% rejects at the sorting stage for the same reason as HICs. For HDPE, PP and other plastics, recovery rates slightly higher than HICs of 85% across the sorting and reprocessing stages.

Sector / application	Formal collection, sorting	Informal collection and sorting
Consumer & Assumptions	<p>institutional</p> <ul style="list-style-type: none"> Items include all non-packaging plastics consumed domestically, commercially, and institutionally. Examples include toys, garden furniture, household and commercial furniture (i.e., all plastic items that are not electrical and electronic, part of a vehicle, packaging, used in agriculture, or part of a building construction). If recovered for recycling, these items are likely to exist in a format that is much larger than most packaging items. All material collected for recycling will be rigid format and many items and objects will be assemblies of items and materials. 	<p>Assumptions</p> <ul style="list-style-type: none"> Unlike electrical and electronic waste, items in this category are unlikely to be collected for recycling unless the collector intends to recycle them. This is because they do not generally occur as bonded assemblies with other more valuable materials such as metals.

Reject rates applied

- In the absence of any empirical data, we assumed the same reject rates as plastic packaging across the sorting and reprocessing stages for all materials except the following:
 - PUR is mostly collected in foam format as part of mattress collections. In many cases it is likely to be incinerated or landfilled, but there is strong evidence of recycling too, therefore we assign an assumption of 80% reject rate at the sorting stage.
 - PVC occurs in this category as furniture, often as a single, un-bonded or assembled material. Therefore, we suggest that the reject rates are relatively low and apply a 50% reject rate at the sorting stage.

1493
1494
1495

Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene terephthalate (PET); polystyrene (PS); polyvinyl chloride (PCV); polypropylene (PP); polyurethane (PUR); waste electrical and electronic equipment (WEEE); high income counties (HIC); low- and middle-income countries (LIMIC).

1496

S.8.3.2.2 Material rejects at reprocessors

1497
1498
1499
1500
1501
1502
1503
1504
1505

Chemical and physical characterisation of plastic packaging item data reported by Roosen, et al.²⁷⁸ was used to estimate potential rejects at reprocessors for rigid HDPE, PET and PP using a three step process: (1) We calculated the content of the target plastic component, meaning material targeted for recycling, as a proportion of total plastic (**Table S29**); (2) We deducted an assumed 1% process reject rate, to account for spillages and extrusion rejects (wastage); (3) We used the ratio of bottles to pots tubs and trays (excluding black plastics) reported in a weighted compositional analysis of plastic packaging collected for recycling in the UK²⁸⁹ to approximate the proportion of each, and hence weight the anticipated rejects during reprocessing (**Table S30**).

1506 **Table S29.** Non-target (not targeted for recycling) plastics sampled at plastics reprocessors as a
 1507 proportion of total plastics processed based on item characterisation reported by Roosen, et al.²⁷⁸.

Item type	Target	Plastic residues	Non-plastic residues	As proportion of plastic excluding non-plastic residues		Reject rates adjusted for 1% wastage	
	Mean	Mean	Mean	Target (%)	Residue (rejects) (%)	Target (%)	Residue (rejects) (%)
PET bottle	81.60	11.60	6.80	87.55	12.45	86.55	13.45
PET tray	79.20	12.50	8.30	86.37	13.63	85.37	14.63
PE Bottle	77.50	13.60	8.90	85.07	14.93	84.07	15.93
PP Bottle	76.90	19.60	3.50	79.69	20.31	78.69	21.31
PP tray	91.30	1.00	7.70	98.92	1.08	97.92	2.08
Film	90.8		9.2	100.00	0.00	99.00	1.00

1508 Abbreviations: polyethylene terephthalate (PET); polypropylene (PP); polyethylene (PE).

1509 **Table S30.** Process of estimating the amount of material which is rejected for each item type
 1510 listed in **Table S29** at the sorting and reprocessing stages according to typical ratio of bottles to
 1511 pots, tubs and trays after Chruszcz and Reeve²⁸⁹.

Dominant polymer	Item type	Colour	Composition reported by Chruszcz and Reeve ²⁸⁹ (%)	Normalised composition (%)	Assigned target rate (%)	Item descriptor from Roosen, et al. ²⁷⁸	Reject rate per item type (%)
HDPE	Milk bottle	Natural	13.20	61.1	84.07	PE Bottle	9.734
HDPE	Non-milk bottles	Jazz	7.70	35.6	84.07	PE Bottle	5.678
HDPE	Pots, tubs & trays	Natural	0.10	0.5	97.92	PP tray	0.010
HDPE	Pots, tubs & trays	Jazz	0.60	2.8	97.92	PP tray	0.058
Total HDPE 21.60				100.0	Weighted average rejects HDPE 15.5		
PP	Bottles	Jazz	0.4	4.0	78.69	PP Bottle	0.844
PP	Pots, tubs & trays	Natural	4.4	43.6	97.92	PP tray	0.908
PP	Pots, tubs & trays	Jazz	5.3	52.5	97.92	PP tray	1.093
Total PP 10.1				100.0	Weighted average rejects PP 2.8		
PET	Bottles	Natural	26.4	65.5	86.55	PET bottle	8.809
PET	Bottles	Jazz	3.1	7.7	86.55	PET bottle	1.034
PET	Pots, tubs & trays	Natural	10.3	25.6	85.37	PET tray	3.740
PET	Pots, tubs & trays	Jazz	0.5	1.2	85.37	PET tray	0.182
Total PET 40.3				100.0	Weighted average rejects PET 13.8		

1512 Abbreviations: High density polyethylene (HDPE); polyethylene terephthalate (PET); polypropylene (PP).

1513 For PET film, HDPE film, PP film, rigid PS and rigid PVC, we used arithmetic mean reject rates
 1514 reported by Antonopoulos, et al.²⁷⁷ (**Table S35**). In the absence of better data, the reject rate for
 1515 PUR and Other was assumed the same as PVC. We assumed the same reject rates at the
 1516 reprocessing stage for materials collected for recycling by the formal and informal sectors.

1517

1518 **Table S31.** Summary of plastic packaging reject rates at the reprocessing stage.

Plastic type by dominant polymer	Rigid	Flexible		
	Reject rate (%)	Data source	Reject rate (%)	Data source
HDPE	15.48	(Table S30)	29.00	277
LDPE, LLDPE			1.00	(Table S29)
Other	20.00	277	29.00	277
PET	13.76	(Table S30)	29.00	277
PP	2.84	(Table S30)	29.00	277
PS	34.00	277		
PUR	20.00	277		
PVC	20.00	277	29.00	277

1519 Abbreviations: High density polyethylene (HDPE); low density polyethylene (LDPE); linear low-density polyethylene (LLDPE);
 1520 polyethylene terephthalate (PET); polystyrene (PS); polyvinyl chloride (PCV); polypropylene (PP); polyurethane (PUR).

1521

1522 **S.8.3.3 Step 3: Apply evidenced or assumed reject rates to the mass of plastic collected
 1523 for recycling**

1524 Reject rates at the sorting and reprocessing stages were applied to the mass of plastic under each
 1525 industrial sector / application and plastic type as shown in **Table S33**. The mass of each category
 1526 was then summed for rigid and flexible material for the formal and informal sectors to provide
 1527 weighted average reject rates for each category. The reject rates for each process flow are
 1528 summarised in **Table S32**.

1529 **Table S32.** Summary of rejects calculated for each process.

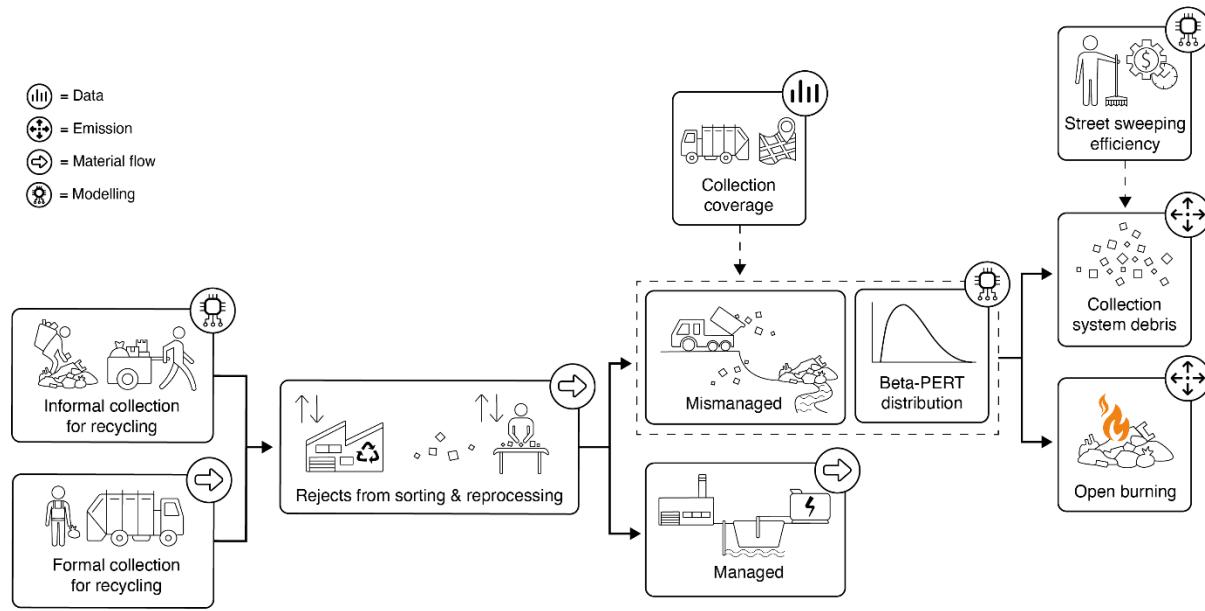
Formality	Format	System component	Proportion of collected for recycling that is rejected (lost) before conversion
Formal	Rigid	C24aa	40.74
	Flexible	C24ab	58.08
Informal	Rigid	C23aa	18.84
	Flexible	C23ab	14.90

1530 Beta-PERT distributions were assigned for rejects taking the value reported in **Table S32** as the
 1531 most likely value, and assigning a $\pm 20\%$ uncertainty to each for the upper and lower plausible
 1532 bounds, and assuming a shape factor of four.

1533

1534

1535


Table S33. Reject rates applied to main plastic types for three municipal solid waste industrial sectors / applications.

Industrial sector / by application	Plastic type / by dominant polymer	Collected for recycling mass (Mt)												Sorting reject rates (%)				Post sorting mass (Mt)				Reprocessing reject rates (%)		Post reprocessing mass (Mt)		Post reprocessing rejects as proportion of collected for recycling (%)	
		Form				Inf.				Form.				Inf.				Form. + Inf.		Form.		Inf.		Form.		Inf.	
		Form	Inf.	+	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	Form.	Inf.	
		Rig. & flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	Rig.	Flex.	
Consumer & institutional	HDPE	0.86	1.04	1.91	0.86	0.00	1.04	0.00	24	100	5	5	0.66	0.00	0.99	0.00	15.48	29.00	0.55	0.00	0.84	0.00	35.76	na	19.71	na	
	LDPE*	0.62	0.75	1.38	0.00	0.62	0.00	0.75	v	42	na	5	0.00	0.36	0.00	0.72	na	1.00	0.00	0.36	0.00	0.71	na	42.58	na	5.95	
	Other	0.01	0.02	0.03	0.01	0.00	0.02	0.00	100	na	5	na	0.00	0.00	0.01	0.00	na	na	0.00	0.00	0.01	0.00	100.00	na	5.00	na	
	PET	0.00	0.00	0.00	0.00	0.00	0.00	0.00	na	na	na	na	0.00	0.00	0.00	0.00	13.76	29.00	0.00	0.00	0.00	0.00	na	na	na	na	
	PP	1.27	1.54	2.82	1.27	0.00	1.54	0.00	43	na	5	na	0.73	0.00	1.46	0.00	2.84	29.00	0.71	0.00	1.42	0.00	44.62	na	7.70	na	
	PS	0.16	0.19	0.36	0.16	0.00	0.19	0.00	100	na	5	na	0.00	0.00	0.18	0.00	34.00	29.00	0.00	0.00	0.12	0.00	100.00	na	37.30	na	
	PUR	0.07	0.08	0.15	0.00	0.07	0.00	0.08	na	80	na	5	0.00	0.01	0.00	0.08	na	29.00	0.00	0.01	0.00	0.06	na	85.80	na	32.55	
	PVC	0.08	0.09	0.17	0.08	0.00	0.09	0.00	50	na	5	5	0.04	0.00	0.09	0.00	20.00	29.00	0.03	0.00	0.07	0.00	60.00	na	24.00	na	
Consumer & institutional total		3.08	3.72	6.80	2.39	0.69	2.89	0.84	na	na	na	na	1.42	0.37	2.74	0.79	na	na	1.29	0.37	2.47	0.76	45.94	46.84	14.54	8.57	
Electrical/ electronic	HDPE	0.08	0.08	0.16	0.08	0.00	0.08	0.00	90	na	85	na	0.01	0.00	0.01	0.00	na	na	0.01	0.00	0.01	0.00	90.00	na	85.00	na	
	LDPE*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	na	na	na	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	na	na	na	na	
	Other	0.02	0.02	0.03	0.02	0.00	0.02	0.00	90	na	85	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	90.00	na	85.00	na	
	PET	0.00	0.00	0.00	0.00	0.00	0.00	0.00	na	na	na	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	na	na	na	na	
	PP	0.28	0.27	0.55	0.28	0.00	0.27	0.00	90	na	85	na	0.03	0.00	0.04	0.00	na	na	0.03	0.00	0.04	0.00	90.00	na	85.00	na	
	PS	0.05	0.05	0.10	0.05	0.00	0.05	0.00	100	na	100	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	100.00	na	100.00	na	
	PUR	0.03	0.03	0.05	0.03	0.00	0.03	0.00	100	na	100	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	100.00	na	100.00	na	
	PVC	0.04	0.04	0.09	0.04	0.00	0.04	0.00	90	na	100	na	0.00	0.00	0.00	0.00	na	na	0.00	0.00	0.00	0.00	90.00	na	100.00	na	
Electrical/ electronic total		0.51	0.49	1.00	0.51	0.00	0.49	0.00	na	na	na	na	0.04	0.00	0.06	0.00	na	na	0.04	0.00	0.06	0.00	91.57	na	88.68	na	
Packaging	HDPE	5.20	6.59	11.79	4.84	0.36	5.96	0.64	24	100	5	5	3.68	0.00	5.66	0.61	15.48	29.00	3.11	0.00	4.78	0.43	35.76	100.00	19.71	32.55	
	LDPE*	3.00	3.90	6.90	0.00	3.00	0.00	3.90	na	42	na	5	0.00	1.74	0.00	3.71	na	1.00	0.00	1.73	0.00	3.67	na	42.58	na	5.95	
	Other	0.01	0.01	0.01	0.00	0.00	0.01	0.00	100	100	5	5	0.00	0.00	0.01	0.00	20.00	29.00	0.00	0.00	0.00	0.00	100.00	100.00	24.00	32.55	
	PET	4.24	5.39	9.63	4.04	0.21	5.02	0.36	19	100	5	5	3.27	0.00	4.77	0.35	13.76	29.00	2.82	0.00	4.12	0.25	30.15	100.00	18.08	32.55	
	PP	3.00	3.80	6.80	2.30	0.70	2.57	1.23	43	100	5	5	1.31	0.00	2.45	1.17	2.84	29.00	1.27	0.00	2.38	0.83	44.62	100.00	7.70	32.55	
	PS	0.21	0.27	0.48	0.21	0.00	0.27	0.00	100	100	5	na	0.00	0.00	0.26	0.00	34.00	na	0.00	0.00	0.17	0.00	100.00	na	37.30	na	
	PUR	0.01	0.02	0.03	0.01	0.00	0.02	0.00	100	100	5	na	0.00	0.00	0.01	0.00	20.00	na	0.00	0.00	0.01	0.00	100.00	na	24.00	na	
	PVC	0.13	0.16	0.29	0.10	0.03	0.12	0.05	100	100	5	5	0.00	0.00	0.11	0.04	20.00	29.00	0.00	0.00	0.09	0.03	100.00	100.00	24.00	32.55	
Packaging total		15.81	20.14	35.95	11.51	4.30	13.96	6.18	na	na	na	na	8.26	1.74	13.26	5.87	na	na	7.20	1.73	11.55	5.21	37.41	59.88	17.29	15.76	
Grand total		19.40	24.35	43.75	14.40	4.99	17.34	7.01	na	na	na	na	9.72	2.12	16.06	6.66	na	na	8.54	2.09	14.07	5.97	40.74	58.08	18.84	14.90	

High income countries are assumed to be formal and non-high-income countries are assumed informal. *LDPE includes LLDPE. Abbreviations: Formal (Form.), informal (Inf.); rigid (rig.); flexible (flex.); million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); linear low-density polyethylene (LLDPE); polyethylene terephthalate (PET); polystyrene (PS); polyvinyl chloride (PVC); polypropylene (PP); polyurethane (PUR).

1541 **S.8.3.4 Mismanagement of rejects from sorting and reprocessing (C25aa, C25ab, C26aa,
1542 C26ab)**

1543 To understand the proportion of rejects which are mismanaged, we created a further sub-model
1544 which used collection coverage and street sweeping efficiency to approximate mismanagement
1545 activity data (**Fig. S17**).

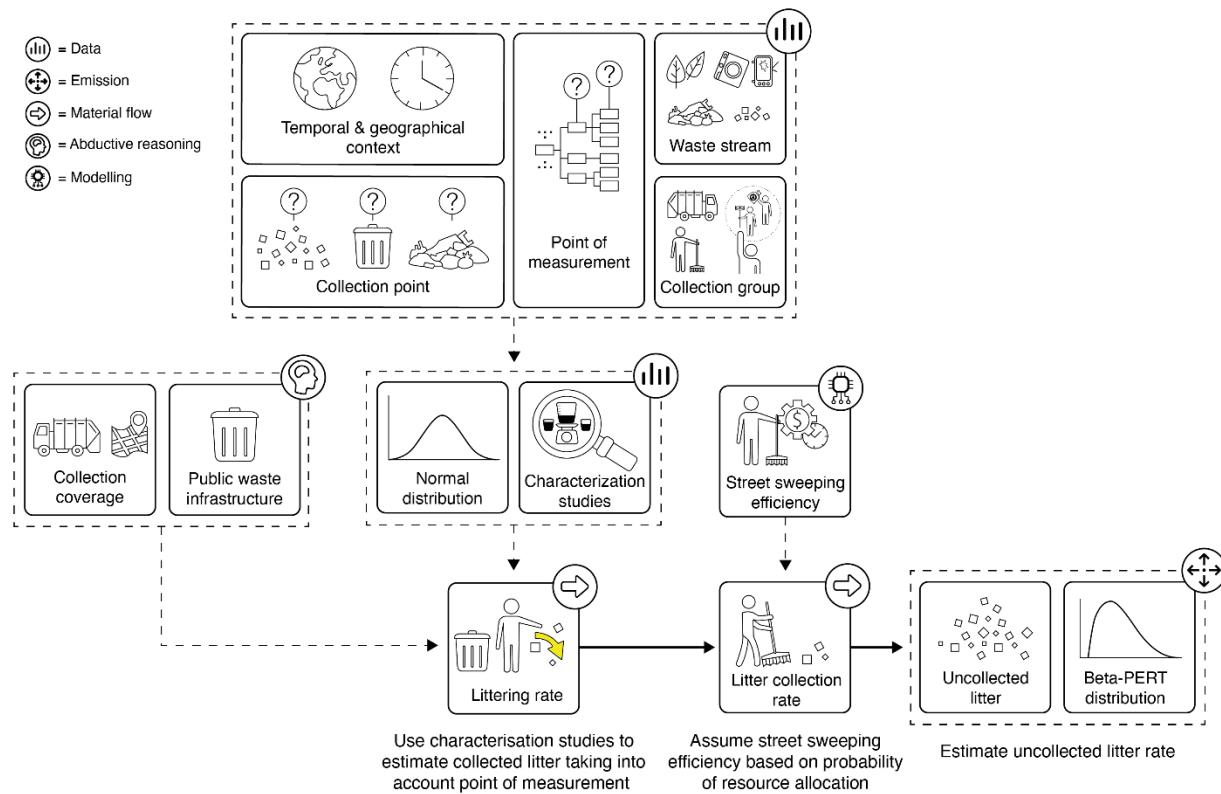
1547 **Fig. S17.** Sub-model to estimate the quantity of rejects from sorting and reprocessing which are
1548 mismanaged.

1549

1550 We assumed that rejects from sorting and reprocessing (C25aa, C25ab, C26aa, C26ab) were
1551 connected to waste management collection coverage and street sweeping efficiency using
1552 **Equation S1**.

$$M_L = (100 - C2) \times \left(1 - \frac{S}{100}\right) \quad \text{Equation S1}$$

1553 Where:


- 1554 • C2 is the collection coverage from the *Full MSW MFA*;
- 1555 • S is the assumed street sweeping efficiency (%) as sampled from a Beta-PERT
1556 distribution according to the parameters in **Table S35**;
- 1557 • M_L is the rate of mismanagement of sorting and reprocessing rejects for rigid plastic
1558 collected by informal sector (C25aa); flexible plastic collected by the informal sector
1559 (C25ab); rigid plastic collected by the formal sector (C26aa); and flexible plastic
1560 collected by the formal sector (C26ab).

1561 S.8.4 Proportion of plastic in formal sector collection for recycling

1562 The amount of waste collected by the formal recycling sector is an input (tC2i) to the *Tributary*
 1563 *MFA*. The proportion of this waste that is plastic (C16) was estimated at 8.5% based on data for
 1564 the UK from Department for Environment Food and Rural Affairs (Defra)³⁷. As no uncertainty
 1565 was provided in the original source, an assumed 50% error for both low and high estimates was
 1566 assigned and modelled with a Beta-PERT distribution. The amount of rigid plastic in formally
 1567 collected material for recycling as a percentage of plastic collected (C22a) was assumed the same
 1568 as C0a.

1569 S.8.5 Uncollected litter (C1)

1570 Litter is often used as a generic term to describe waste that is in the environment with no
 1571 distinction given to its emission source (point of initial release). In this work we adopt a
 1572 definition which states that litter must originate from littering, defined here as: '*the act of*
 1573 *discarding items of waste generated on-the-go (in the public domain) directly into the*
 1574 *environment without it having previously been concentrated or containerised*'. This distinguishes
 1575 more sparsely generated, usually single item deposits from larger deposits into the environment
 1576 (open dumping), each of which will have different factors affecting the probability of movement,
 1577 and the magnitude and frequency of their occurrence.

1580 Published littering data is usually a measure of litter that has been collected, either via street bins,
1581 street cleansing (litter picking) or irregular environmental clean-ups (e.g., beach cleaning)²⁹⁰.
1582 However, the amount of litter which is uncollected is challenging to measure because it does not
1583 pass through any system of management and often becomes dispersed soon after it is
1584 emitted^{291,292}.

1585 To estimate the amount of *uncollected litter* (C1), we developed a sub-model as illustrated in
1586 **Fig. S18**. First, we calculated the amount of litter deposited on the floor that is subsequently
1587 collected by a municipality using measured data from Europe, termed here the *littering rate*
1588 (**Section S.8.5.1**). We then corrected the *littering rate* to estimate of *total litter* (L_T) by dividing
1589 by an assumed street sweeping efficiency (S) for these European cities (**Section S.8.5.2**). Finally,
1590 as we had used European data to calculate the *littering rate*, we had to adjust it to be relevant for
1591 the Global South by assuming that waste receptacle provision and collection quality and
1592 efficiency was less comprehensive. We then divided the complement of the assumed street
1593 sweeping efficiency percentage to calculate the fraction which was *uncollected litter* (C1)
1594 (**Section S.8.5.3**).

1595 **S.8.5.1 Littering rate**

1596 We began by classifying data on collected litter according to the point in the system at which
1597 litter was measured, and the temporal and geographical context using a typology proposed by
1598 Elliott, et al.²⁹³ as follows:

- 1599 • **Collection point** – Litter is typically either measured based on what is placed in public
1600 waste bins (bin litter), or what is collected from the environment (ground litter, river litter
1601 etc.).
- 1602 • **Waste stream** – Street cleansing teams may collect fly-tipped (informal open dumping
1603 on land) waste, side-waste (waste placed alongside bins), green waste (e.g., leaves), or
1604 perform street sweeping which will likely have high amounts of soil, vegetation as well
1605 as small amounts of litter. Understanding what waste streams are included in a
1606 measurement is important for both the mass and the composition.
- 1607 • **Collection group** – Litter may be collected either by municipal street cleansing crews or
1608 by other groups such as commercial operators or volunteer organisations.
- 1609 • **Area** – In order to extrapolate littering rates, the residential and visiting population of an
1610 area must be determined and related to a geographical area.
- 1611 • **Time** – The time since any previous litter collection is important to understand to be able
1612 to infer the rate of littering.

1613 As we required the *littering rate* to be equivalent to litter deposited on the floor, we needed to
1614 exclude other wastes which are commonly reported within the same category such as: waste
1615 deposited in bins; naturally occurring litter (e.g., leaves); non-littering sources such as fly tipping
1616 (informal open dumping); and waste which had overflowed from non-litter bins. Elliott, et al.²⁹³,
1617 reported *littering rates* from five European locations, excluding litter deposited in bins, natural
1618 litter (for example leaves, tree debris, soil, and insects) and fly-tipping (informal open dumping)
1619 (**Table S34**). Waste from overflowing bins was not mentioned therefore is likely included in the
1620 measurements, potentially resulting in double counting in our model. However, considering the
1621 data was collected across the EU where bins are relatively well managed, it is assumed this
1622 contribution is negligible.

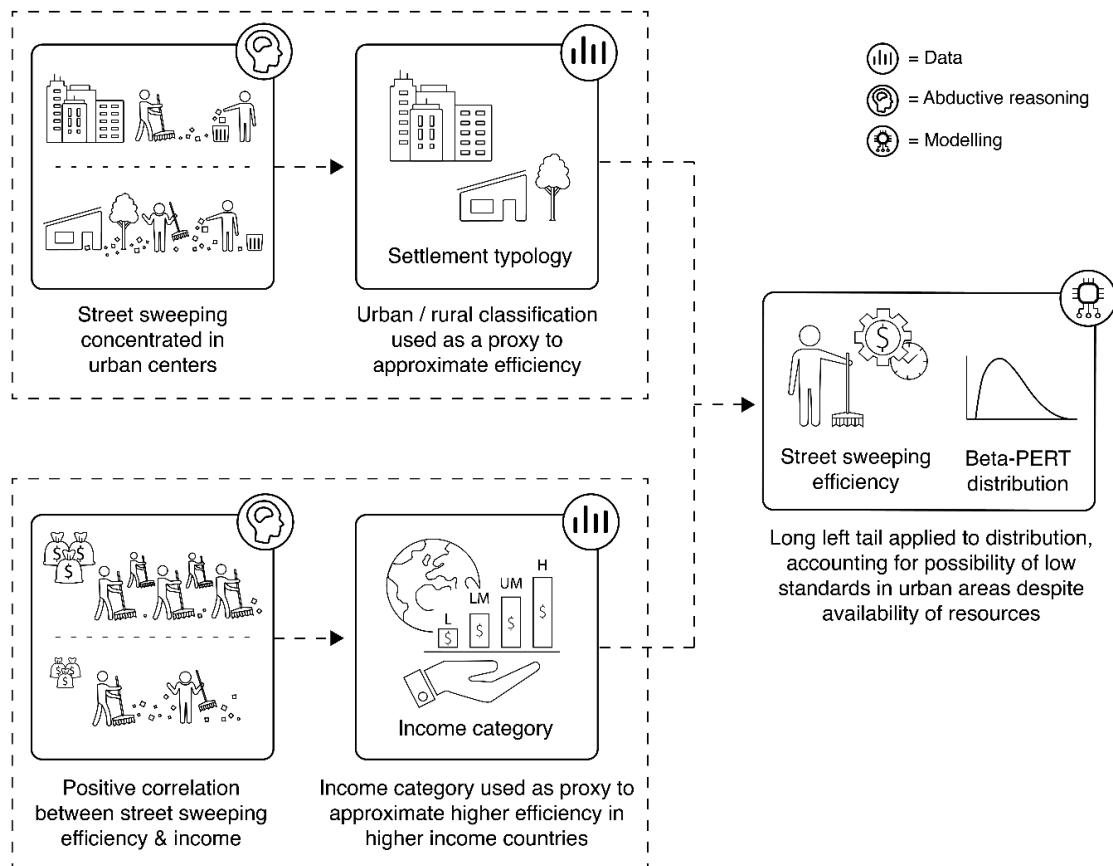
1623 For consistency, the *littering rate* was converted from per capita rates to as a proportion of MSW
1624 generation as used in other works^{2,3}. This was sampled according to a normal distribution with
1625 mean of 0.81 and standard deviation 0.15 (**Table S34**).

1626 **Table S34.** Littering rates in European cities and countries.

Location	Date	Per capita littering rate (kg·cap ⁻¹ ·y ⁻¹)	MSW generation rate ^{**} (kg·cap ⁻¹ ·y ⁻¹)	Per capita littering rate (% of MSW generation)
Bristol, UK	Approx. 2016	4.8	479	0.99
Scotland, UK	Approx. 2012	3.3	483	0.68
East Lothian, Scotland, UK	Approx. 2012	4.8	483	0.99
Flanders, Belgium	2013	2.72	436	0.62
Flanders, Belgium	2015	3.17	412	0.77
Mean	-	3.76	-	0.81
Standard deviation	-	0.87	-	0.15

1627 * as reported by Elliott, et al.²⁹³; ** linearly interpolated to correct year based on data reported in Eurostat²⁹⁴; Abbreviations:
1628 Municipal solid waste (MSW).

1629 **S.8.5.2 Total litter (Lt)**


1630 The *littering rate* discussed in **Section S.8.5.1** relates only to litter that was deposited on the
1631 ground and subsequently collected by the municipality; therefore, it excludes litter that remained
1632 uncollected in the environment. To better approximate the *total litter*, including the uncollected
1633 proportion, we created another sub-model to estimate street sweeping efficiency (S), defined as
1634 the amount of litter that is collected as a proportion of *total litter* generation.

1635 In reality, street sweeping efficiency is affected by many factors including: the method used to
1636 clean the streets; the frequency and timing of cleaning; access to the waste (including the
1637 presence of obstacles such as parked cars and vegetation); environmental conditions (e.g., wind
1638 and frequency of rainfall); and the pollutant that is being collected (e.g., litter, sediment, and
1639 leaves)^{295,296}. However, data to evidence each of these factors are not available at global scale, so
1640 we based our model on two broad assumptions:

- 1641 1. Anecdotally, street sweeping activities are more likely to occur in highly frequented and
1642 prominent places such as city centers, around tourist attractions, financial centers and in
1643 commercial areas, whilst rural areas may have less frequent street cleansing if at all. We
1644 therefore assume that street sweeping is more efficient in urban and less in rural areas.
- 1645 2. By weight, the cost of street sweeping outweighs that of collection of concentrated waste
1646 from containers, particularly if drains are cleansed²⁹⁷. Given countries in the Global
1647 South often lack the funds to carry out basic waste collection services, it is appropriate to
1648 assume that on average, formal street sweeping activities are less comprehensive in
1649 lower income countries.

1650 Street sweeping efficiencies and uncertainty assumed in the present work are shown in **Table**
1651 **S35** according to the country income category and the settlement typology of each municipality,
1652 as determined via data from the Global Human Settlement – Settlement Model (GHS-SMOD)¹⁹⁵
1653 (**Section S.7.1**). Many of the efficiencies were assigned as negatively skewed (long tails to the

1654 left) to account for the premise that although the majority municipalities will likely recognise the
 1655 importance of street sweeping, a minority of municipalities may neglect it.

1656

1657 **Fig. S19.** Sub-model to estimate street sweeping efficiency across the world's municipalities.

1658 Given the street sweeping efficiencies in **Table S35**, the *littering rate*, which is based solely on
 1659 European data (**Table S34**), was corrected to an estimate of *total litter* by dividing by the street
 1660 sweeping efficiency, as sampled for a HIC assuming a semi-dense urban settlement typology and
 1661 a Beta-PERT distribution.

1662 **Table S35.** Assumed street-sweeping efficiencies (% wt. ar) by country income category and
 1663 settlement typology¹⁹⁵.

Income category	Settlement typology	Minimum efficiency (%)	Most likely efficiency (%)	Maximum efficiency (%)
HIC	Urban centre	90	99	100
	Dense urban	80	97.5	99
	Semi-dense urban	70	95	97.5
	Suburban	60	92.5	95
	Rural	50	90	92.5
UMC	Urban centre	80	95	100
	Dense urban	50	80	85

Income category	Settlement typology	Minimum efficiency (%)	Most likely efficiency (%)	Maximum efficiency (%)
LMC	Semi-dense urban	20	70	75
	Suburban	0	50	55
	Rural	0	20	25
LIC	Urban centre	50	80	90
	Dense urban	20	60	70
	Semi-dense urban	0	20	30
	Suburban	0	10	20
	Rural	0	5	15

Abbreviations: Low-income country (LIC); high income country (HIC); lower middle-income country (LMC); upper middle-income country (UMC).

1666 S.8.5.3 Uncollected litter (C1)

1667 The proportion of *uncollected litter* (C1) for each municipality was divided by the complement
 1668 of the street sweeping efficiency to calculate *total litter*. Street sweeping efficiencies (S) were in
 1669 turn calculated for each municipality by sampling from Beta-PERT distributions according to the
 1670 values in **Table S35** and weighting these by the percentage of the population living in each
 1671 settlement typology. GHS-SMOD level two rural classifications of ‘rural cluster’, ‘low density
 1672 rural’, ‘very low density rural’ and ‘water’ were simplified here to a single ‘rural’ classification.

1673 The *total litter* calculated in **Section S.8.5.2** is based on European data and cannot be assumed
 1674 representative of all global municipalities, particularly given many municipalities may provide
 1675 fewer public waste infrastructure than for the European cities. Accordingly, a further correction
 1676 was required to estimate the *total litter* for all global municipalities. In the absence of data on the
 1677 provision of public waste infrastructure, the collection coverage (tC1) of the municipality was
 1678 used as a proxy. The *uncollected litter* for each municipality was then estimated using **Equation
 1679 S2**.

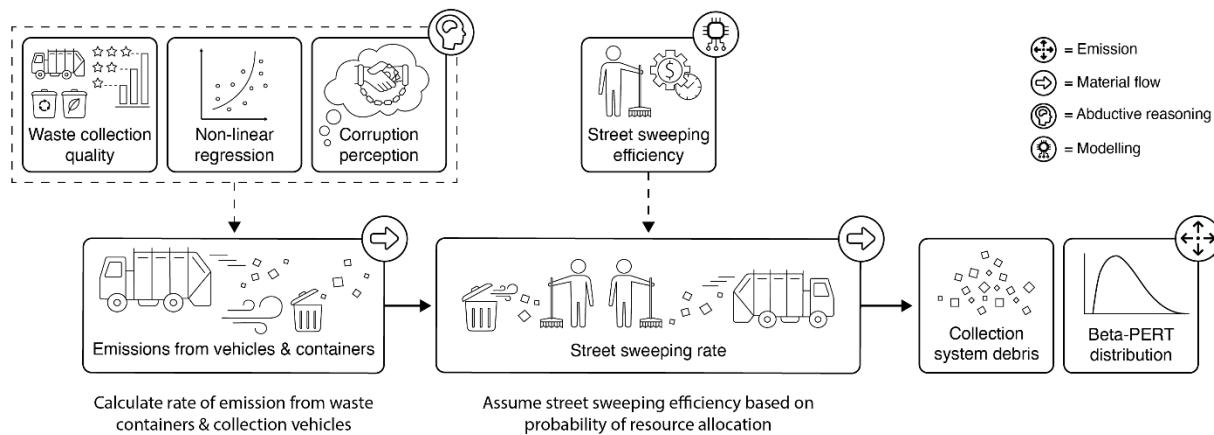
1680

$$C1 = L_T \times \left(1 + \log\left(\frac{100}{tC1}\right)\right) \times \left(1 - \frac{S}{100}\right) \quad \text{Equation S2}$$

1681 Where:

- 1682 • L_T is the *total litter* (%) of MSW generation) estimated based on European data as
 1683 described in **Section S.8.5.2**.
- 1684 • $tC1$ is the collection coverage, used here to estimate *total litter* in a global context.
- 1685 • S is the street sweeping efficiency (%) calculated as the weighted sum of its population
 1686 by settlement typology as sampled from a Beta-PERT distribution according to the values
 1687 in **Table S35**.

1688 **S.8.6 Proportion of plastic and rigid plastic in uncollected litter (C11 and**
1689 **C11a)**


1690 The *secondary data inputs* relating to the proportion of litter that is plastic (C11) and rigid plastic
1691 (C11a) were obtained from a study of the composition of litter in Wales³⁶. The author sampled
1692 litter both in waste bins and that picked from the ground. The composition of litter picked from
1693 the ground is likely to be more applicable to the uncollected litter used here, therefore only this
1694 data was used in this analysis. On a weight basis and excluding the collection sacks, plastic as a
1695 proportion of litter (C11) was on average 17.7% with a minimum of 13.8% and maximum of
1696 20.4%. On the other hand, the proportion of this plastic that is rigid was on average 72.9% with a
1697 minimum of 69.1% and a maximum of 76%. These values were converted into PDFs for the
1698 probabilistic MFA using a Beta-PERT distribution with shape factor of four.

1699 **S.8.7 Uncollected MSW (C2)**

1700 Uncollected MSW differs from littering in that it has been concentrated (i.e., not an individual
1701 item), usually in a premises (household or business) and occurs in the context where waste
1702 collection services are either un-affordable or unavailable. Likewise, unlike littering, uncollected
1703 waste may be open burned or purposely dumped in a specific location (e.g., rivers, disused land
1704 etc.). The mass of uncollected waste was determined based on the complement of the collection
1705 coverage (C2) and as such is calculated directly in the *Full MSW MFA* as part of process P4 (**Fig.**
1706 **S5**). The proportion of uncollected waste that is openly burned compared to dumped into the
1707 environment as debris emissions is discussed in **Section S.8.11.1**

1708 **S.8.8 Debris emissions from collection system (C3)**

1709 The act of storing, collecting, and transporting MSW to recovery or disposal facilities is grouped
1710 here by the term ‘collection system’. Emissions of debris can occur at several points in this
1711 system; for example, by blowing out of bins, being dropped as it is loaded into vehicles, or by
1712 falling from collection vehicles. The authors have found no reliable quantification of these
1713 emissions into the environment; therefore, emissions were estimated via a sub-model (**Fig. S20**).

1714

1715 **Fig. S20.** Sub-model to estimate emissions from collection systems.

1716 Firstly, we assumed that emissions from the collection system were proportional to the quality of
1717 the collection. This quality of collection is an indicator measured in the Wasteaware Cities
1718 Benchmark Indicators (WABI) toolkit³⁸ based on assessment of criteria, including the
1719 appearance of waste collection points and the effectiveness of transport. Recent analysis has
1720 demonstrated the strong link between socio-economic development, as measured through
1721 relevant indices, and solid waste management performance as measured by WABI for waste
1722 generation, collection coverage, quality of collection, controlled recovery and disposal and
1723 environmental protection⁴⁰. Non-linear regression identified the strongest predictor for waste
1724 collection quality was that of the corruption perception index (CPI). Municipal data on CPI
1725 (**Section S.7.1**) was therefore used to predict the quality of collection for all municipalities
1726 according to the curve described by **Equation S3**, as derived from Velis, et al.⁴⁰:

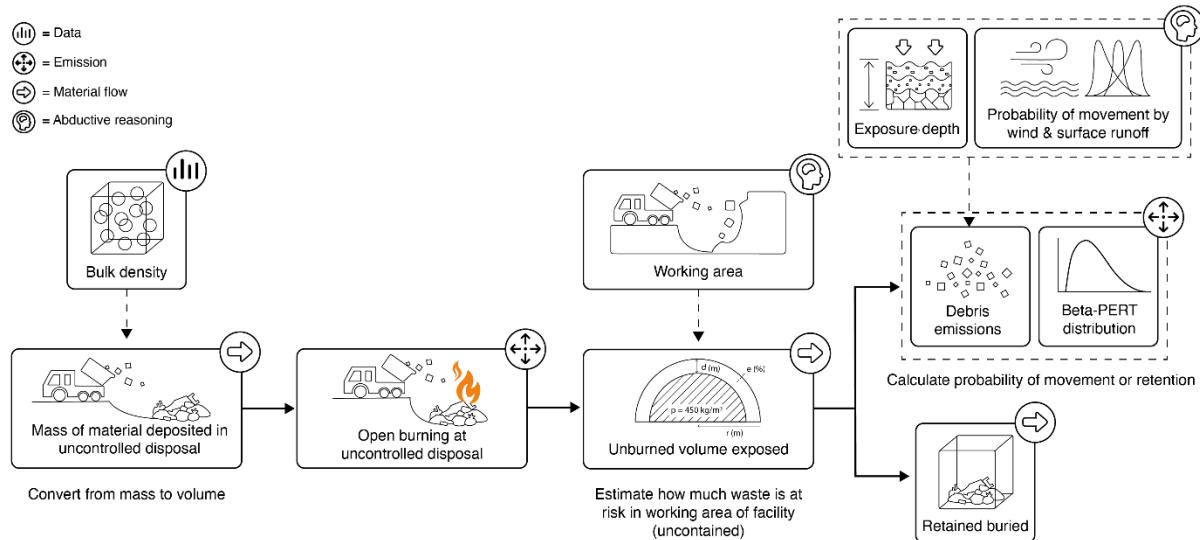
$$\text{Quality of collection} = 20.7 + 35.4 \log(\text{CPI}) \quad \text{Equation S3}$$

1727 The quality of collection was used to predict emissions from the collection system as a
1728 proportion of waste collected prior to any street sweepings (C3i) by linearly interpolating
1729 between assumed emissions for a best (100% quality collection) and worst (0% quality of
1730 collection) scenario. It was estimated that in a best-case scenario, 0% of the waste for collection
1731 is emitted into the environment, whereas for a worst-case scenario 5% of waste for collection is
1732 emitted (1% low estimate, 15% high estimate). A Beta-PERT distribution was used to model the
1733 uncertainty around these emissions.

1734 Lastly, to account for waste which was emitted from the collection system and then subsequently
1735 collected, the sampled emission rate (C3i) was multiplied by the complement of the street
1736 sweeping efficiency for the relevant settlement typology and income category listed in **Table**
1737 **S35**. This is summarised in **Equation S4**.

$$C3 = C3i \times \left(1 - \frac{S}{100}\right) \quad \text{Equation S4}$$

1738 Where:


- 1739 • C3 is the emissions from the collection system (after street sweeping) – (% of collected
1740 waste)
- 1741 • C3i is the emissions from the collection system (before street sweeping) – (% of collected
1742 waste)
- 1743 • S is the street sweeping efficiency (% of emitted waste)

1744 The proportion of the collection system emissions that is plastic (C13) was assumed equal to the
1745 proportion of MSW that is plastic (C0). Likewise, the proportion of these plastic emissions that
1746 are rigid plastic (C13a) was assumed to be the same as the proportion of rigid plastic in MSW
1747 (C0a).

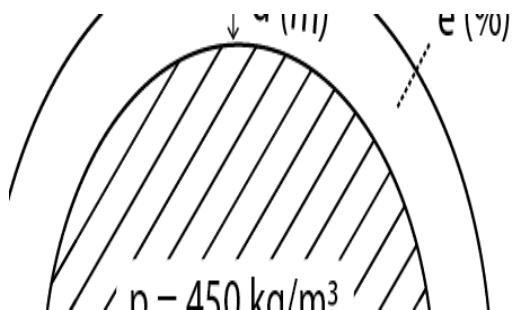
1748 **S.8.9 Debris emissions from uncontrolled disposal of MSW (C9)**

1749 Solid waste is emitted into the environment from uncontrolled disposal sites in two ways: 1) as
1750 debris (physical material); and 2) via open burning (combustion in open uncontrolled fires). As

far as we are aware, no works have reliably measured these emissions from land disposal sites. Yadav, et al.²⁹⁸ proposed a conceptual framework for estimating debris emissions from specific land disposal sites based on their physical structure, geographical and topological context and meteorological conditions. Gathering that level of data for all global land disposal sites would be infeasible. Therefore, we developed a simplified conceptual model to estimate the probability of debris emission because of how much plastic waste was exposed to wind and surface water runoff and therefore how much is likely to mobilise and be transported into the environment (Fig. S21).

1759

1760 **Fig. S21.** Sub-model for estimating emissions from uncontrolled disposal.


1761 We assumed that most emissions occur on freshly deposited waste whilst it is still relatively
 1762 loose and before any settling or compaction (natural or mechanical) takes place. Therefore, only
 1763 the 'working area' ('working face') was quantified, meaning the part of the site where waste is
 1764 deposited, manipulated, or in the case of sites where the informal sector operate, recovered from.

1765 To calculate the proportion of waste that is exposed, assumptions about typical dimensions of the
 1766 working area of uncontrolled disposal sites were posited. These included the dumpsite shape,
 1767 working area, bulk density, and exposure depth (Fig. S22). Simple geometry calculations
 1768 enabled the volume, mass, and surface area of the dumpsite to be derived, the latter of which was
 1769 multiplied by the exposure depth and bulk density to arrive at an approximation for exposed
 1770 mass. This exposed mass was multiplied by an assumed emission rate to derive the mass emitted,
 1771 which when divided by the overall mass gives the emissions as a percentage of uncontrolled
 1772 unburned disposal (C9).

1773 A hemisphere shape was chosen based on its simplicity and broad similarity with dumpsite
 1774 profiles, whilst the bulk density (ρ) was assumed constant at $450 \text{ kg} \cdot \text{m}^{-3}$ ^(299,300). The working
 1775 area radius (r), exposure depth (e) and emission rate for exposed waste are all highly uncertain
 1776 parameters, and therefore were varied according to best estimates to provide low, mid and high
 1777 point estimates. For instance, as the working area radius increases, the surface area to volume

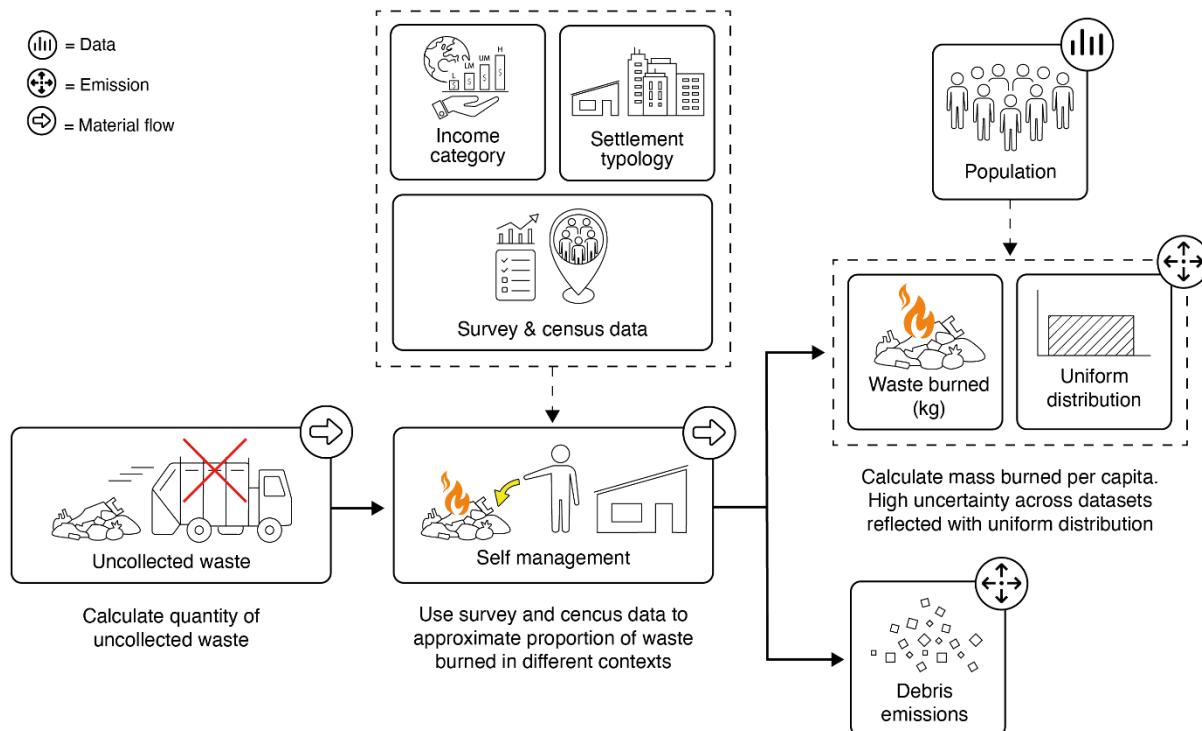
ratio decreases, leading to lower exposed mass as a percentage of total mass. The low emission estimate had a larger working radius of 50 m, as opposed to 30 m in the central estimate and 10 m in the high estimate. Alternatively, as the exposure depth increases, so do the calculated emissions, therefore a low estimate assumed a value of 10 cm, mid estimate of 20 cm and high estimate of 30 cm. These values are all on the same order of magnitude as typical waste items under the assumption that once an item is covered by another, its exposure to wind and surface water is nullified. Lastly, the emission rate was assumed as 1% in a low estimate, 2% mid-estimate and 3% high estimate. These values gave the overall emissions from uncontrolled disposal as a proportion of disposed waste as: 0.006% (low-estimate), 0.04% (mid-estimate) and 0.45% (high-estimate) which were assigned a Beta-PERT distribution. Although these numbers may seem small, it should be noted that disposal sites contain large amounts of waste, therefore even small emission rates can lead to large overall masses of waste being emitted into the environment. Similarly, the distribution of estimates shows that whilst the central estimate of 0.04% is relatively small, the high estimate leads to a high right-skewed distribution signifying large emission rates may be possible although less likely.

1793

1794

1795 **Fig. S22.** Conceptual model for calculation of exposed mass in an uncontrolled disposal site.
1796 Abbreviations: r is the dumpsite working radius (m), ρ is the bulk density of waste ($450 \text{ kg}\cdot\text{m}^{-3}$),
1797 d is the exposure depth (m) and e is the emission rate (% of exposed waste).

1798 **S.8.10 Plastic (C14) and rigid plastic (C14a) in disposal debris emissions**


1799 The proportion of the uncontrolled disposal debris emissions that are plastic (C14) was assumed
1800 based on the hypothesis that lighter materials are those most susceptible to release, particularly
1801 by wind. It is therefore likely that both paper and plastic are the items predominantly released at
1802 disposal sites. Without any available data to inform this split, it was assumed 50% of emissions
1803 are plastic (40% minimum, 60% maximum). Likewise, given that plastic most susceptible to
1804 movement by wind are likely plastic films, the proportion of plastic emissions taken to be rigid
1805 plastic (C14a) was assumed as 10% (5% minimum, 15% maximum). Lastly, each of these
1806 disposal debris emission variables were converted into PDFs by assuming a Beta-PERT
1807 distribution.

1808 **S.8.11 Open burning**

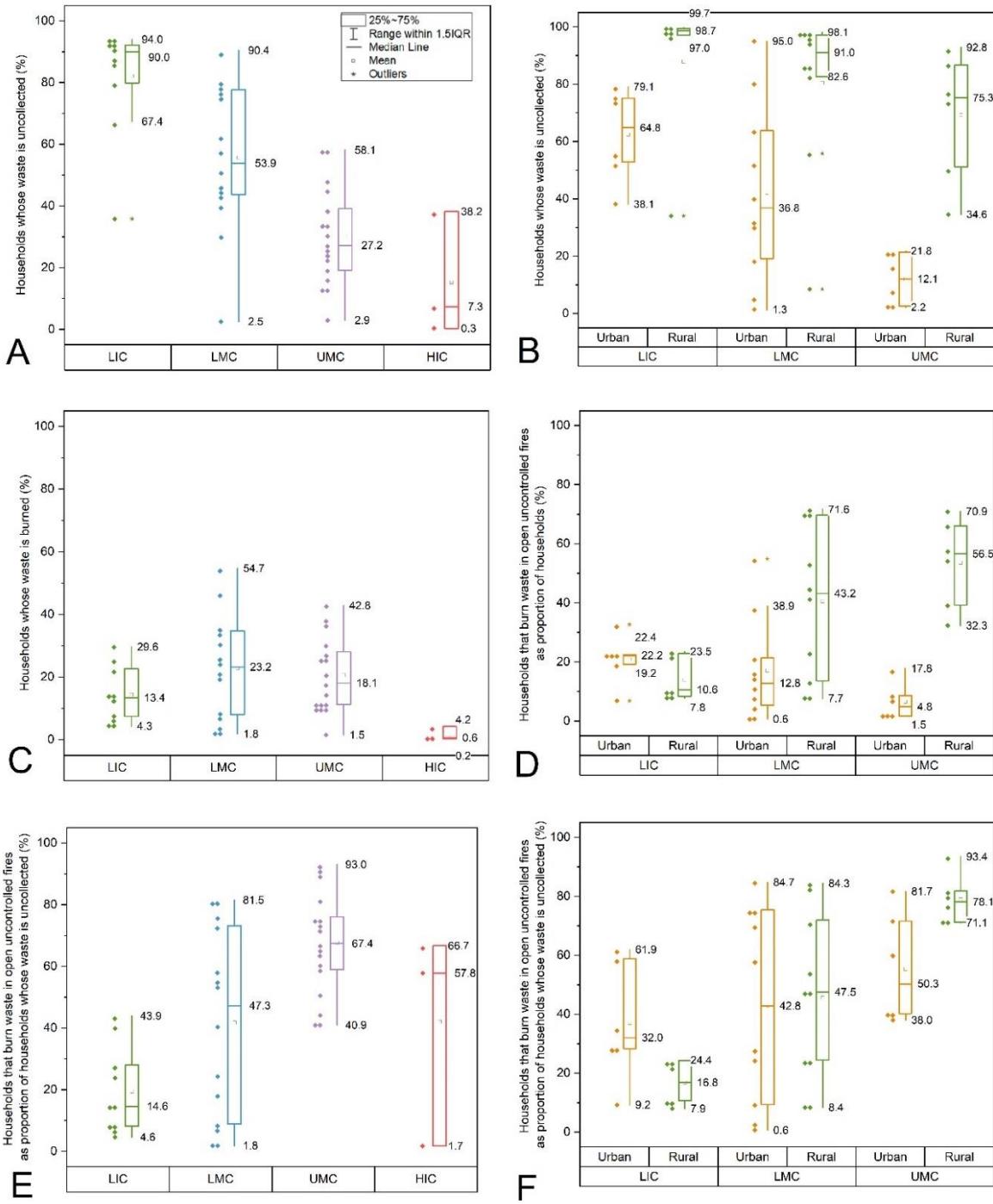
1809 **S.8.11.1 Open burning of uncollected waste (C10)**

1810 Data to estimate the mass of MSW burned in open uncontrolled fires (C10) are scarce and
1811 seldom robust, being driven by assumptions and expert judgement³⁰¹. Therefore, it was necessary
1812 to build a sub-model which combined activity data from census and surveys with income
1813 category and settlement typology data to estimate the prevalence of the practice in each of the
1814 world's municipalities (**Fig. S23**).

1815

1816

1817 **Fig. S23.** Sub-model for estimating open burning emissions from uncollected waste.


1818 We collected census and health survey data that queried waste management practices in 44
1819 countries, spanning from 1996-2021³⁰²⁻³³⁴. In the absence of data on the mass of waste burned in
1820 open uncontrolled fires, we used these activity data as a proxy for the amount of waste burned. In
1821 agreement with several authors^{5,30,290}, we found that the amount of uncollected waste in a system
1822 reduces as a country's income increases (**Fig. S24A**) and that uncollected waste is far higher in
1823 rural areas compared to urban areas (**Fig. S24B**). In this context, we also make three observations
1824 about the amount of waste burned in the Global South: (1) The range of data for both open
1825 burning (as proportion of uncollected waste) and uncollected waste in LMCs is large, indicating
1826 huge variation in practices within that income category; (2) As a proportion of the total waste
1827 generated in LICs (where waste collection rates are generally higher in major cities but virtually
1828 absent in many rural areas - **Fig. S24B**), waste burning is slightly lower than LMCs, which in

1829 turn are slightly higher than UMCs (**Fig. S24C**); and (3) As a proportion of uncollected waste
1830 (**Fig. S24E**), the amount of waste burned appears to increase as collection coverage increases.
1831 Observations (2) and (3) indicate a development of practices and behaviour that approximately
1832 correlates with increased wealth. It appears that as economic development progresses, societies
1833 focus their efforts on reducing terrestrial and aquatic dumping rather than open burning. Two
1834 reasons are suggested: (A) That regulators and policy-makers concentrate on reducing terrestrial
1835 and aquatic debris due to its visual unsightliness rather than on open-burning which rightly or
1836 wrongly is considered to have made the waste ‘disappear’; and (B) That the open-burning of waste
1837 is overlooked by waste authorities and treasuries, because it reduces the cost of collection,
1838 treatment and disposal.

1839 The rate of open burning (as proportion of total waste) in LMCs and UMCs is much higher in
1840 rural areas (**Fig. S24D**), whereas in LICs, rural burning occurs at a slightly lower rate compared
1841 to urban. It is suggested that this is because LICs have less capacity to enforce regulation on
1842 open burning in cities, with this only improving once a country has sufficient resources to fund
1843 its environmental regulators sufficiently.

1844 The narrative that open burning varies with income category and settlement typology is
1845 plausible, and we have substantial data to support it circumstantially³⁰²⁻³³⁴. However, the data do
1846 not fit a normal distribution and the ranges are large in some cases. On the basis that our model
1847 requires open burning data using uncollected waste as a denominator, and acknowledging the
1848 large range, we applied a uniform distribution between the ranges (excluding outliers defined as
1849 values greater than 1.5 times the interquartile range distance from the 25th and 75th percentiles)
1850 for each of the income categories and urban-rural contexts presented in **Fig. S24F**. This decision
1851 allows for the observed variation between and within countries to be incorporated into the
1852 probabilistic MFA, whilst acknowledging the variation between income categories and
1853 settlement typology. The uniform distribution for each municipality was weighted by the urban
1854 to rural population.

1855 Data to evidence the amount of waste which is open burned in HICs is extremely limited, and we
1856 found a large range (1.2-66.7% wt. of uncollected waste) between the three data points we
1857 obtained^{302,304,308}, all of which were for small island states (Anguilla, Trinidad and Tobago and
1858 Cook Islands). Urban-rural data were unavailable, and there are arguments that indicate that
1859 waste is burned in both cities and the countryside within high income countries. For instance,
1860 KANTAR³³⁵ reported similar rates of outdoor burning in the UK between urban and rural areas
1861 and the difference between indoor burning. Therefore, we applied the range (1.2-66.7% wt. of
1862 uncollected waste) to both urban and rural areas with a uniform distribution for all HICs.

1863

1864 **Fig. S24.** National average census and survey data (n=44 countries) and country level urban-rural data (n=22 countries) showing: (A, B) proportion of householders who reported that waste
1865 is uncollected; (C, D) proportion of householders who reported burning their waste in open
1866 uncontrolled fires; (E, F) proportion of householders who reported burning their waste in open
1867 uncontrolled fires, as a proportion of households whose waste is uncollected. Abbreviations:
1868 Low-income country (LIC); lower middle-income country (LMC); upper middle-income country
1869 (UMC); high-income country (HIC); inter-quartile range (IQR)³⁰¹.

1871 **S.8.11.2 Open burning of rejects from sorting and reprocessing (C27aa, C27ab, C28aa,**
 1872 **C28 ab)**

1873 As the open burning of mismanaged rejects from sorting and reprocessing is generally an illegal
 1874 practice, there is no data to estimate its prevalence. Therefore, here, as an approximation we
 1875 assumed that it takes place at the same rate as for open burning of uncollected waste at
 1876 household level for rigid plastic collected by informal sector (C27aa); flexible plastic collected
 1877 by the informal sector (C27ab); rigid plastic collected by the formal sector (C28aa); and flexible
 1878 plastic collected by the formal sector (C28ab).

1879 **S.8.11.3 Open burning at uncontrolled disposal sites (C8)**

1880 Determining the mass of waste burned at uncontrolled disposal sites is a highly challenging
 1881 exercise. Landfill / dumpsite fires may be started deliberately or spontaneously²⁵, with a high
 1882 variability between events, influenced by management practices which vary substantially
 1883 between and within countries and regions⁶. Anecdotally, most dumpsites have at least one daily
 1884 fire, and many are permanently on fire³³⁶. Even in HICs with highly controlled systems such as
 1885 the UK, it has been reported that there is at least one fire ablaze on a landfill somewhere³³⁷.

1886 Five estimates of the mass of waste open burned are presented in **Table S36**, alongside the
 1887 methods used to determine them. All these methods result in highly uncertain outcomes, being
 1888 strongly driven by assumptions or the judgement of the authors. The Swaziland model³³⁸ is the
 1889 only one to have modelled at a local scale. The assumptions were based on interviews with the
 1890 officials who operated the land disposal sites, so the data are considerably more robust than the
 1891 other models which used assumptions. Moreover, because the data were provided across all the
 1892 states in the country, we were able to determine the range. We therefore took the mean mass
 1893 combusted for the whole country (8.6% wt.) and the upper and lower quartiles (0% and 80.2%
 1894 wt.) and assumed a Beta-PERT distribution.

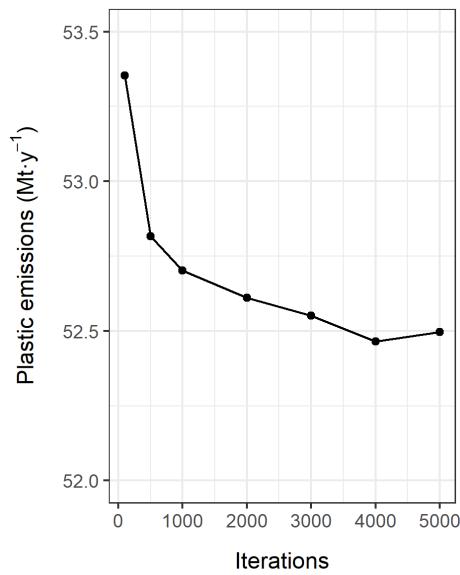
1895 **Table S36.** Estimates of waste plastics mass open burned in land disposal sites worldwide.

Country	Year	Income category	Proportion (wt.)	Statistic	Denominator	Method	Source
China	2017		38%	Not stated	Dumpsites	Not stated	³³⁹
Global	2014	LMC, LIC, UMC	60%	Mean	Dumpsites	Material flow analysis based on IPCC ³⁴⁰ assumptions	³⁴¹
		HIC	13%				
India	2010	LMC	10%	Mean	Dumpsites	Interviews with officials	³⁴²
Poland	2021	HIC	4.3%	Mean	Landfilled waste	Extrapolation from firefighting service records reported by Bihalowicz, et al. ³⁴³ combined	³⁴³
Swaziland	2017	LMC	8.6% (0%, 80.2%)	Mean (Upper, lower quartiles of provincial estimates)	Dumpsites	Used waste management data, combustibility estimates based on composition and estimates of how much waste is burned	³³⁸

1897 **S.9 Probabilistic material flow analysis (MS7)**

1898 Material flow analysis is a well-established method for the quantification of material flows
1899 within a system. It has been used extensively in many disciplines, for example to quantify the
1900 flow of materials through societal systems or for assessing exposure to harmful substances in the
1901 environment³⁴⁴. A core feature of material flow analysis is the conservation of mass, which
1902 requires the modeller to find ways to account for all material within the system boundary³⁴⁵. This
1903 means a great deal of data may be required to model complex systems, which can be challenging
1904 to obtain³⁴⁶. Frequently, assumptions are used in place of measured process (activity) data³⁴⁷
1905 which can result in greater uncertainty in models³⁴⁸.

1906 Probabilistic material flow analysis overcomes some of these challenges by ascribing uncertainty
1907 to the input parameters of a model³⁴⁹. This uncertainty is then propagated through the system to
1908 enable the user to assess the probability distribution around the various flows and processes. One
1909 way to achieve probabilistic material flow analysis is to perform Monte Carlo analysis, a
1910 stochastic method that requires probability density functions to be applied to model inputs. The
1911 material flow model is then repeated for many iterations, each one sampling randomly from the
1912 input PDFs. Results are then summarised as probability distributions which can be analysed
1913 according to the requirements of the user. Probabilistic material flow analysis has been applied
1914 successfully to assess plastic pollution, circular economy and many other material and substance
1915 flow systems³⁵⁰⁻³⁵⁵.


1916 As described in **Section S.4 (Fig. S4 - Fig. S8)**, material flows were quantified across three
1917 systems using probabilistic material flow analysis. Predictions from the random forest were used
1918 as its inputs to the *Tributary MFA* so that the major, measured, and readily reported formal flows
1919 of MSW could be quantified. The process masses calculated in the *Tributary MFA* were then
1920 used as inputs into the second MFA, the *Full MSW MFA*. This MFA builds upon the *Tributary*
1921 *MFA* to include flows that are not typically measured by municipalities, such as informal sector
1922 collection of recyclables, and emissions of waste into the environment. These extra processes
1923 were calculated using the coefficients described in **Section S.7**, informed by sub-models
1924 described in Sections **S.8.2, S.8.3, S.8.3.4, S.8.5, S.8.5.2, S.8.8, S.8.9, S.8.11.1** and **S.9.1.2**.

1925 **The results of the Full MSW MFA** were used to populate the *Plastics MFA* which converted the
1926 full MSW fraction to plastic in both rigid and flexible formats. These conversions were again
1927 achieved using the coefficients described in **Section S.7**. A full list of equations used in all the
1928 MFAs is included in **Supplementary Table 2**.

1929 The probabilistic nature of the MFA was implemented using Monte Carlo analysis with 5,000
1930 iterations. This meant that each of the 50,702 municipalities had 5,000 separate MFAs generated,
1931 whereby the input data for each MFA was randomly sampled from probability density functions
1932 and random forest predictions (**Section S.9.1**). The minimum, lower quartile, median, mean,
1933 upper quartile and maximum values of the MFA results for each municipality were then used to
1934 summarise the outputs and uncertainty.

1935 The number of iterations deemed suitable was deduced by repeatedly implementing the
1936 probabilistic MFA with increasing number of iterations and recording the point at which the

1937 average overall plastic emissions into the environment varied by less than 0.1% compared to the
1938 previous iteration (**Fig. S25**).

1939

1940 **Fig. S25.** Comparison of global plastic emissions ($\text{Mt} \cdot \text{y}^{-1}$) versus number of iterations used in the
1941 probabilistic material flow analysis (MFA) showing results stabilise ~5000 iterations.

1942 **S.9.1 Data inputs**

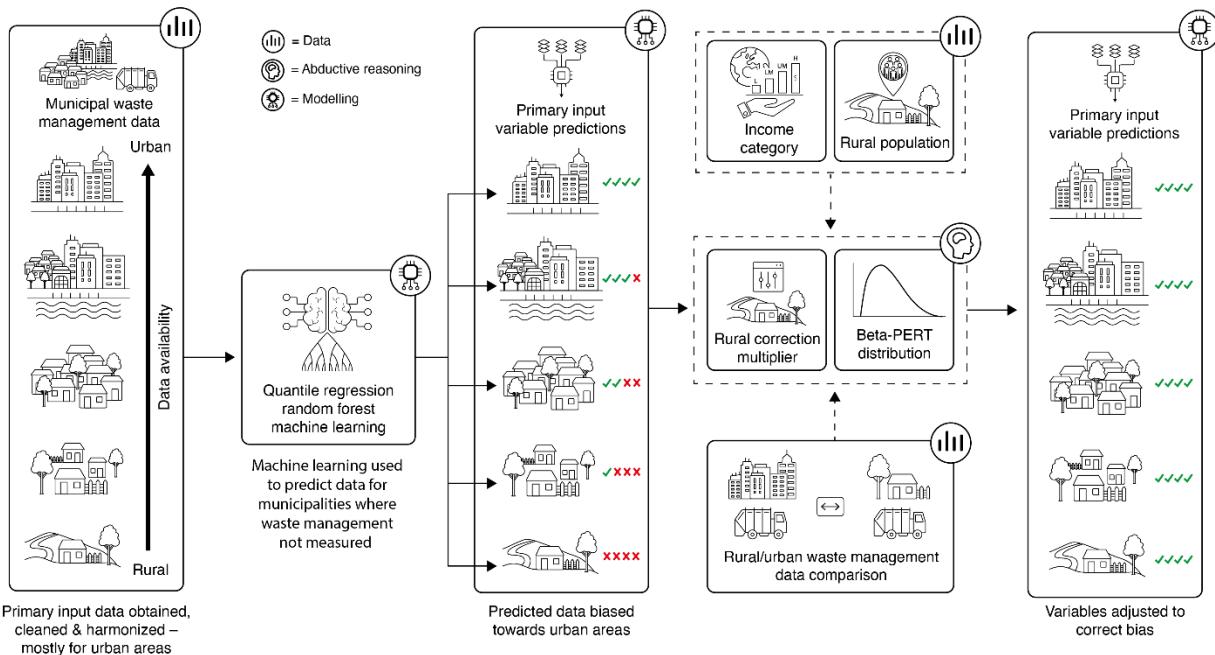
1943 We chose 2020 as the baseline year for our model to enable best relevance to the UN Treaty on
1944 Plastic Pollution, agreed in 2022 through Resolution UNEP/EA.5/Res.14³⁵⁶ and being negotiated
1945 by the International Negotiating Committee (INC)³⁵⁷ in 2023. The choice of year was adopted
1946 tentatively as it is towards the top of the range (2006-2021) of our *primary input data*, which
1947 would ideally have been more recent. Though our decision introduced some small error to our
1948 model because waste management practices and behaviours change over time, we balanced that
1949 against the need to apply our data to a contemporary demographic. Therefore, population and
1950 settlement typology for the year 2020 was calculated for each municipality from the Global
1951 Human Settlement Population dataset (GHS-POP)¹⁸³ according to the method described in
1952 (**Section S.7.1**). It is anticipated that future iterations of our model will be implemented with
1953 more up-to-date primary data collected using the UN-Habitat⁶ SDG11.6.1 estimator Waste Wise
1954 Cities Tool (WaCT) data collection protocol, which is currently deployed world-wide, and with
1955 which our approach is fully compatible.

1956 **S.9.1.1 Random sampling of primary input data**

1957 The quantile regression random forest method (**Section S.7.3**) was chosen as it allows
1958 uncertainty to be incorporated into the random forest predictions used in the *Tributary MFA*
1959 (**Section S.4.1**) by retaining the full conditional distribution of each response variable. Samples
1960 were randomly drawn from the conditional distribution with replacement equal to the number of
1961 iterations. Sample values that were more than 1.5 times the interquartile range from the upper
1962 and lower quartiles (i.e., outliers) were replaced with randomly sampled non-outlier values to

1963 avoid biasing the probabilistic results, for instance by having an overly large influence on the
1964 mean value of bounded variables. Occasionally random samples of the predictions for formal
1965 recycling (tC2i), other recovery (tC2ii) and incineration (tC2iii) summed to over 100%. To
1966 ensure mass balance in the material flow analysis these values were normalised to 100%.

1967 A demonstrable example of the need for this correction of outliers would be our sampling of
1968 collection coverage (tC1) for an affluent urban municipality in a HIC. The input data related to
1969 such a municipality would suggest a collection coverage of 100%, and indeed the random forest
1970 predictions may predict 100% collection coverage in most samples. However, a few predictions
1971 may be below 100%, perhaps because an influential independent variable was not randomly
1972 selected during decision tree construction (remembering quantile regression forest retains the full
1973 conditional response). In this example, these few predictions would slightly reduce the mean
1974 collection coverage. However, because emissions are sensitive to collection coverage in our
1975 model (**Section S.10**), they would be overestimated in some cases. We argue this phenomenon is
1976 an inevitable artifact of the stochastic nature of the quantile regression random forest and
1977 probabilistic material flow analysis. We therefore believe that the correction is valid. It should
1978 be noted that when genuine uncertainty exists in a variable's predictions (e.g., the predictions of
1979 collection coverage for a municipality have high variance), the interquartile range would be large
1980 therefore the number of outliers would likely be minimal, and this correction would have
1981 negligible impact.


1982 The correction for outlier values was applied to all *primary input variables* except for waste
1983 generation rate ($tP1_{pc}$) and controlled disposal (tC3). For waste generation rate, a density
1984 function of the full conditional response was estimated using the 'density' function in R and
1985 assuming a bandwidth determined by the 'nd0' method and a Gaussian smoothing kernel.
1986 Samples were then randomly drawn from the density function and outliers removed as with other
1987 *primary input variables*. This adapted method, applied to the waste generation rate, has the
1988 advantage that predictions do not necessarily have to be the same as those supplied in the
1989 training data, but instead can vary according to the fitted density function. On the other hand, this
1990 approach was not applied to the other *primary input variables* as they are percentages between
1991 0% and 100%, and often have a high frequency of values located near the bounds. For example,
1992 many of the data for incineration had a value of 0%, whereas many of the collection coverage
1993 values were reported as 100%. Fitting a Gaussian density function to these values would assign
1994 high probabilities to the values approaching the bound, leading to these being sampled to a
1995 greater extent. Referring again to the example of collection coverage, when most predictions for
1996 a municipality equalled 100%, practically this meant values of 99% and above were sampled
1997 instead of 100%. Although this was a small difference, even small amounts of uncollected waste
1998 can have big implications on the overall emissions predicted; therefore, this approach was
1999 avoided.

2000 Of the 361 *primary input data* points for controlled disposal of MSW (tC3), 303 (84%) were
2001 either 0% or 100%. This meant that the full conditional response of predictions often spanned the
2002 entire range as it was highly probable that at least some trees in the random forest would predict
2003 both bounds. To avoid artificially high uncertainty of predictions, as would be the case with a
2004 bimodal distribution of the data, the prediction was treated in a similar manner to a classification
2005 problem whereby the majority result was used. This meant that uncertainty was not predicted for
2006 the uncontrolled disposal variable, however, it resulted in relatively high accuracy with 82% of

2007 the predicted values matching the actual value for the random forest test dataset. If this approach
 2008 had not been used, and instead the full conditional response used as with other *primary input*
 2009 *variables*, many of the iterations of the probabilistic MFA would have artificially predicted
 2010 uncontrolled disposal in countries where this is highly unlikely and vice versa.

2011 **S.9.1.2 Correction of primary input variable predictions by settlement typology**

2012 Waste management data collection in rural areas of the Global South is a largely neglected
 2013 endeavour, despite evidence that rural areas have generally poor waste management services and
 2014 are a source of plastic pollution³⁵⁸. As a consequence, most of our *primary input data* were
 2015 obtained from urban areas (**Section S.6.1-S.6.2**), meaning rural areas were under-represented in
 2016 our dataset. Given this data paucity, it was infeasible to expand the *primary input data* to include
 2017 more rural areas. Instead, we corrected each randomly sampled prediction (V_u) using a sub-
 2018 model (**Fig. S26**).

2019

2020 **Fig. S26.** Sub-model used to correct prediction bias in rural municipalities using correction
 2021 multipliers based on income category and settlement typology.

2022 We applied **Equation S5** to each *primary input variable* as listed in **Table S37**. Similar
 2023 corrections have been made in other works^{5,181}.

$$V_r = V_u \times \left(1 - \left(\frac{Pop_{r,\%}}{100} \right) \times (1 - CF_r) \right) \quad \text{Equation S5}$$

2024 Where:

2025 • V_r is the *primary input variable predictions* after correction for settlement typology

2026 • V_u is the *primary input variable predictions* prior to correction for settlement typology (**Section**
2027 **S.9.1.1**)
2028 • $Pop_r, \%$ is the rural population as a percentage of the municipality's population (**Section S.7.1**)
2029 • CF_r is the rural correction multiplier as randomly sampled from the distributions and
2030 parameters outlined in **Table S37**.

2031 **Table S37.** Correction multipliers were used to adjust randomly sampled predictions for selected
2032 variables in rural administrative areas. Parameters 1,2 and 3 for Beta-PERT distributions are the
2033 minimum, most likely, and maximum respectively, with a default shape factor of 4 used in all
2034 cases. For normal distributions, Parameters 1 and 2 are the mean and standard deviation
2035 respectively.

ID	Variable name	Income category	PDF	Parameter 1	Parameter 2	Parameter 3
tP1pc	MSW generation rate	HIC	Beta-PERT	0.95	1.08	1.15
		UMC	Normal	0.62	0.21	-
		LMC	Normal	0.47	0.25	-
		LIC	Normal	0.47	0.25	-
C0	Plastic in MSW	HIC	Beta-PERT	0.9	1.00	1.00
		UMC	Normal	0.73	0.36	1.00
		LMC	Normal	0.69	0.38	-
		LIC	Normal	0.69	0.38	-
tC1	Collection coverage	HIC	Beta-PERT	1.00	1.00	1.00
		UMC	Beta-PERT	0.43	0.53	0.63
		LMC	Beta-PERT	0.36	0.46	0.56
		LIC	Beta-PERT	0.44	0.54	0.64
tC2i	Formal collection of MSW for dry recycling	HIC	Beta-PERT	0.90	1.00	1.00
		UMC	Beta-PERT	0.40	0.50	0.60
		LMC	Beta-PERT	0.00	0.00	0.00
		LIC	Beta-PERT	0.00	0.00	0.00
tC2ii	Formal collection of MSW for other recovery	HIC	Beta-PERT	0.90	1.00	1.00
		UMC	Beta-PERT	0.40	0.50	0.60
		LMC	Beta-PERT	0.00	0.00	0.00
		LIC	Beta-PERT	0.00	0.00	0.00
tC2iii	Formal collection of MSW for incineration	HIC	Beta-PERT	0.90	1.00	1.00
		UMC	Beta-PERT	0.00	0.00	0.00
		LMC	Beta-PERT	0.00	0.00	0.00
		LIC	Beta-PERT	0.00	0.00	0.00
tC3	Controlled disposal of MSW	HIC	Beta-PERT	1.00	1.00	1.00
		UMC	Beta-PERT	0.90	1.00	1.00
		LMC	Beta-PERT	0.00	0.00	0.00
		LIC	Beta-PERT	0.00	0.00	0.00

2036 Abbreviations: Low-income country (LIC); high income country (HIC); lower middle-income country (LMC); upper middle-
2037 income country (UMC); municipal solid waste (MSW).

2038 The correction in **Equation S5** scales the *primary input variable predictions* according to the
2039 percentage of the population in each municipality that is classed as rural (**Section S.7.1**) and a
2040 *primary input variable* specific correction multiplier (with uncertainty accounted for by
2041 representing this as a PDF and randomly sampling from it). The parameters of the rural

2042 correction multiplier PDFs for each *primary input variable* are shown in **Table S37** and justified
2043 in **Sections S.9.1.2.1-S.9.1.2.6**.

2044 **S.9.1.2.1 MSW generation rate ($tP1_{pc}$)**

2045 MSW generation rates ($tP1_{pc}$) are thought to vary according to rurality (degree of urbanisation),
2046 however the data to evidence this is limited. It is widely assumed that in the Global South, waste
2047 generation in rural areas is less, for example both Hoornweg and Bhada-Tata³⁵⁹ and Kaza, et al.³⁰
2048 assumed it is approximately 50% less than in urban areas whilst acknowledging that the data to
2049 support such an assumption are sparse. This is also supported by much of the data reported in
2050 Karak, et al.³⁶⁰, although considerable variation around this value was demonstrated depending
2051 on the case study. On the other hand, Lau, et al.⁵ assumed no difference between waste
2052 generation in rural and urban areas of HICs and Hidalgo, et al.³⁶¹ found only non-significant
2053 differences in Spain.

2054 **High income countries**

2055 For HICs, we classified UK local Unitary and Collection Authorities by Level 1 settlement
2056 typology using the GHS-DUC¹⁹⁴ results for GADM V4.1³⁶², ignoring any blanks due to
2057 differences between the local authority and GADM boundaries. We summed local authority
2058 collected waste reported by Defra³⁶³ and divided it by the GHS population for 2020¹⁹⁴ to express
2059 on a per capita basis.

2060 Rural areas generated approximately 7.6% (central estimate) more waste compared with urban
2061 areas. Analysis of the same dataset³⁶³ shows that this difference is largely due to higher rates of
2062 'green' waste (garden/ yard waste) which were 57% higher in rural areas compared to urban
2063 areas, accounting for 24% and 18% of household waste generation respectively. We assumed a
2064 Beta Pert distribution with a shape factor of 4, an upper limit that was double the central estimate
2065 (15%) and rounded the central estimate to 8% (**Table S37**). For the lower limit, we assumed a
2066 slightly lower waste generation rate on the basis that the UK is unlikely to be typical for all HICs
2067 and that many of them will have lower rural waste generation rates.

2068 **Low- and middle-income countries**

2069 Robust and granular waste generation data such as that analysed for the UK was not available for
2070 countries in the Global South. Therefore, we collected 40 data points (13 from UMCs, 26 from
2071 LMCs, and 1 from LICs) from 13 studies³⁶⁴⁻³⁷⁶ of 11 countries, where rural waste generation was
2072 reported. For 11 of the data points, urban waste generation was calculated so we were able to
2073 calculate a ratio directly. For the remaining 29 data points, we calculated the ratio between rural
2074 waste generation and the mean urban waste generation for that country from our own cleaned
2075 *primary input data*. We grouped countries by income category and calculated the mean and
2076 standard deviation for each, assuming a normal distribution for the model input (**Table S37**). As
2077 there was only one data point for LICs, we merged LIC and LMC categories.

2078 **S.9.1.2.2 Plastic in MSW (C0)**

2079 Little data exist to evidence a difference in plastic composition between rural and urban areas in
2080 HICs. Lebreton and Andrade¹⁸¹ also found no statistically significant relationship between per
2081 capita GDP and the proportion of plastic in MSW. It is unclear if this lack of relationship with

2082 GDP also applies sub-nationally; however, we argue that the amount of plastic in MSW may be
2083 lower in rural areas compared to those in cities because of higher proportions of Green (garden
2084 yard) (**Section S.9.1.2.1**).

2085 For HICs, we assumed plastic compositions the same as those for urban areas, as the central and
2086 maximum estimates (highly unlikely they produce more plastic as % in rural than urban). We
2087 chose the lower bound of the BETA-PERT distribution to be 0.9, as HIC may produce more
2088 garden waste (**Table S37**). For LMICs, we carried out the same analysis as described in **Section**
2089 **S.9.1.2.1**, using a sub-set of nine of the same articles^{364-368,371-373,376} (which reported plastic waste
2090 composition).

2091 **S.9.1.2.3 Collection coverage (tC1)**

2092 Kaza, et al.³⁰ reported that urban areas have higher collection coverage than rural areas, with this
2093 also depending on the income level of the country. HICs for instance had rural collection
2094 coverages almost comparable to urban levels (98% of urban collection rate). This proportion
2095 decreases for UMCs to 53% of urban collection rates, 46% in LMCs and 54% in LICs
2096 (equivalent to 26% rural collection coverage in LICs). These factors were used as the central
2097 estimates for the collection coverage rural correction factors with $\pm 10\%$ assigned as the
2098 uncertainty in all income groups except HIC. For HICs, no correction was made to the predicted
2099 values to account for settlement typology as applying the 0.98 factor from Kaza, et al.³⁰ would
2100 likely lead to an unrealistic overestimation of uncollected waste in HICs.

2101 **S.9.1.2.4 Formal collection of MSW for dry recycling (tC2i) and other recovery (tC2ii)**

2102 Both formal collection of MSW for dry recycling (tC2i) and formal collection of MSW for other
2103 recovery (tC2ii) were assigned the same rural correction factors. This assumed that HICs have
2104 the resources and regulatory imperative to extend recycling and recovery operations to rural
2105 areas (albeit with a lower uncertainty value assigned of 0.9). Conversely, LIC and LMC
2106 countries are highly unlikely to have the resources to implement formal recycling or recovery
2107 operations in rural areas, as poor road networks and high transportation costs create barriers to
2108 doing so³⁵⁸. As such, a correction factor of zero was applied to these LICs and LMCs, thereby
2109 assuming that fully rural municipalities (rural population percentage equal to 100%) have no
2110 formal recycling or other recovery. For UMCs we assumed more variation as there is evidence
2111 that formal recycling and recovery begins to be implemented along with growing resources
2112 (**Table S8**, **Table S13**, **Table S15**), and it is therefore plausible that these activities take place in
2113 some UMC rural municipalities (particularly if close to an urban centre). Therefore, a correction
2114 multiplier of 0.5 with ± 0.1 uncertainty was assigned to sit in-between those of HICs and LICs.

2115 **S.9.1.2.5 Formal collection of MSW for incineration (tC2iii)**

2116 Incineration in HICs was treated the same as for formal dry recycling and other recovery;
2117 however, all other income categories were assigned a rural correction factor of zero. Further
2118 correction to the incineration data is discussed in **Section S.9.1.2.7**.

2119 **S.9.1.2.6 Controlled disposal of MSW (tC3)**

2120 No rural correction was applied to controlled disposal in HICs due to regulations often enforcing
2121 controlled disposal regardless of their settlement typology, for example Directive 1999/31/EC³⁷⁷.

2122 A similar assumption was also applied to UMC (albeit with a lower uncertainty value of 0.9),
2123 whereas both LMC and LIC had a value of zero assumed for the rural correction factor. Notably,
2124 a rural correction factor of one does not mean all predictions of controlled disposal are classed as
2125 controlled, but instead that the original prediction for the municipality is not altered based on its
2126 settlement typology. Accordingly, municipalities in both HICs and UMCs can still be predicted
2127 to have uncontrolled disposal.

2128 **S.9.1.2.7 Replacement of primary input predictions for formal collection of MSW for**
2129 **incineration (tC2iii)**

2130 Both the training and test datasets were generally effective at distinguishing between
2131 municipalities which incinerate waste compared to those that do not. However, in a few cases,
2132 the *primary input predictions* suggested that a municipality does not incinerate its waste when in
2133 fact it does and vice versa.

2134 To correct these anomalies, we used data from OECD³⁷⁸, Eurostat³⁷⁹, Ding, et al.³⁸⁰, and Lu, et
2135 al.³⁸¹ to assess which countries report more than 1% of their municipal solid waste being
2136 incinerated between 2017 and 2020. These were: Austria, Belgium, Canada, China, Croatia,
2137 Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
2138 Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, Norway,
2139 Poland, Portugal, Romania, Singapore, Slovak Republic, Slovenia, South Korea, Spain, Sweden,
2140 Switzerland, Taiwan, United Kingdom, and United States. We removed predictions for countries
2141 reporting less than 1%, assuming that their incinerators were being used to treat hazardous or
2142 healthcare waste, neither of which are relevant to the model.

2143 Although there are some incinerators in cities that are not within the countries above, for
2144 example, Kyiv in Ukraine has an incineration plant that handles around a quarter of Kyiv's solid
2145 waste³⁸², these countries were purposely not included in the above list. This was to avoid
2146 potentially accepting predictions of incineration throughout the whole country when incineration
2147 is not widespread. This omission of countries with small amounts of incineration is mitigated
2148 somewhat as the replacement of predictions with *primary input data* (Section S.9.1.3) takes
2149 priority over the above correction, therefore, cities such as Kyiv that are included in the *primary*
2150 *input data* will still have incineration represented.

2151 In the case of China, incineration as a percentage of collected waste was taken directly from the
2152 MoHURD dataset³³ and replaced any predictions, as discussed in Section S.6.4.6.2.

2153 **S.9.1.3 Sampling of secondary data inputs**

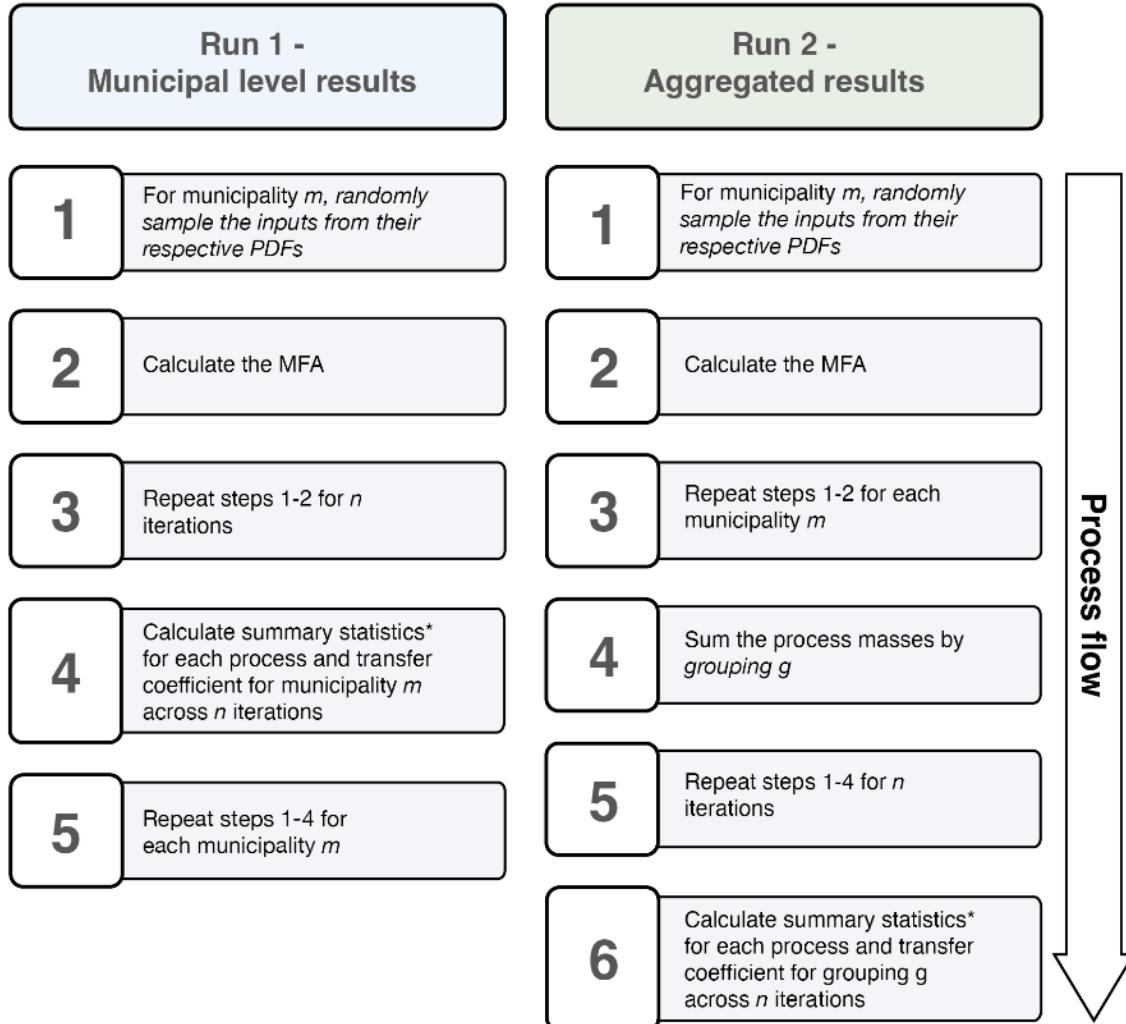
2154 *Secondary data inputs* were sampled according to the probability density functions and
2155 parameters as described throughout Section S.7, each of which was randomly sampled 5,000
2156 times. A summary of all *secondary data inputs* is shown in Table S3.

2157 **S.9.2 Material flow analysis**

2158 Material flow analysis was carried out for the system maps as shown in Fig. S4 - Fig. S8
2159 according to the equations described in Supplementary Table 2 and across all 50,702 global
2160 municipalities. The probabilistic Monte Carlo analysis approach meant that each of these

2161 municipal MFA results had 5,000 iterations to assess the uncertainty. As such, a large amount of
2162 raw output data was generated. Ideally, the full set of raw data outputs would have been retained
2163 to assess the probability density functions of all outputs, however, this was too computationally
2164 demanding. Instead, the raw results for each iteration were retained for only select
2165 municipalities, as specified in *Model Inputs*³⁸³. These are used to demonstrate the variability and
2166 shape of distributions of per capita plastic emissions as shown in **Figure 3**. For easier
2167 interpretation and comparability, all results were summarised by their minimum, lower quartile,
2168 median, mean, upper quartile and maximum values, as displayed in the result tables of
2169 **Supplementary Table 3, 4** and *Model Inputs*³⁸³.

2170 In total, for each of the 50,702 municipalities, 81 processes and 42 transfer coefficients were
2171 quantified. An additional 59 outputs were also calculated from these results, such as total
2172 emissions into the environment, or the number of people without waste collection services.
2173 Outputs relate to values calculated from the processes or coefficients, for instance, the
2174 summation of all emission source processes to give the overall emissions or the division of an
2175 emission source by the overall emissions to represent it as a percentage. To represent the
2176 uncertainty of outputs (e.g., by quantiles), these calculations had to be performed on the raw
2177 results of 5,000 iteration as opposed to on the summarised results. As such, we caution the reader
2178 against calculating their own outputs based solely on the summarised data. If further outputs are
2179 required, all data and code required to run the model is available to download from DBPR³⁸³.


2180 **S.9.2.1 Spatial aggregation**

2181 A unique aspect of the methodological approach described here was the bottom-up approach
2182 whereby results could be aggregated to different spatial extents (e.g., national or regional level)
2183 or groupings (e.g., by country income category).

2184 To ensure the implementation of the probabilistic material flow analysis was computationally
2185 feasible, the Monte Carlo analysis iterated across the municipalities, with the results summarised
2186 and raw data removed after each iteration. A consequence of this would have meant that only
2187 mean values could have been aggregated, whilst information on the quantiles would have been
2188 lost. To avoid this, the probabilistic MFA was run a second time, but following a different
2189 approach. Firstly, a single iteration of the MFA was calculated for each municipality with all raw
2190 outputs retained. The processes were then summed up by the relevant groupings, before then
2191 only retaining the result at this aggregated level. This process was then repeated n times, where n
2192 is the number of overall iterations, before finally summarising the aggregated results by their
2193 minimum, lower quartile, median, mean, upper quartile and maximum values. A comparison of
2194 the two approaches is shown in **Fig. S27**.

2195 Both approaches are a variation of the same method and should have converging results as $n \rightarrow \infty$.
2196 This was found to be the case with the mean global plastic emissions varying by less than 0.01%
2197 with 5,000 iterations. The groupings over which results were aggregated in this work include
2198 country level (national), UN regions (including sub-regions and intermediate regions)¹⁹², OECD
2199 regions³⁸⁴, income categories⁸⁵ and globally - **Supplementary Table 3, 4** and DBPR³⁸³.

2200

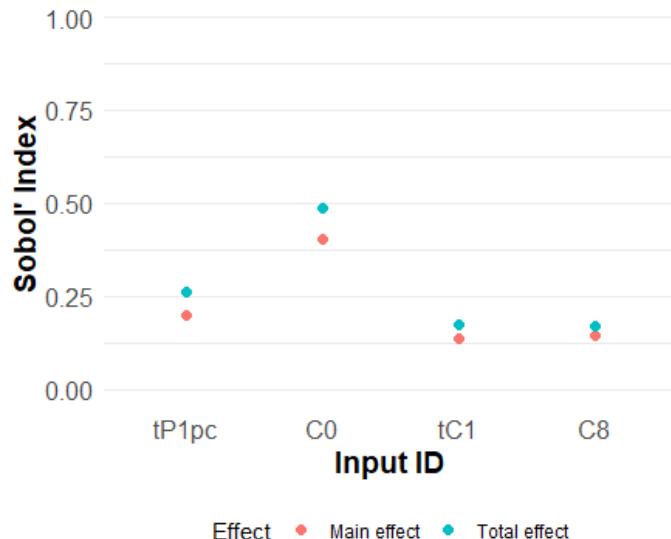

2201
2202
2203
2204

Fig. S27. Comparison of methods used for calculating probabilistic MFA results with uncertainty at municipal and aggregated levels. *Summary statistics are the mean, median, 5th and 95th quantile

2205 **S.10 Sensitivity analysis**

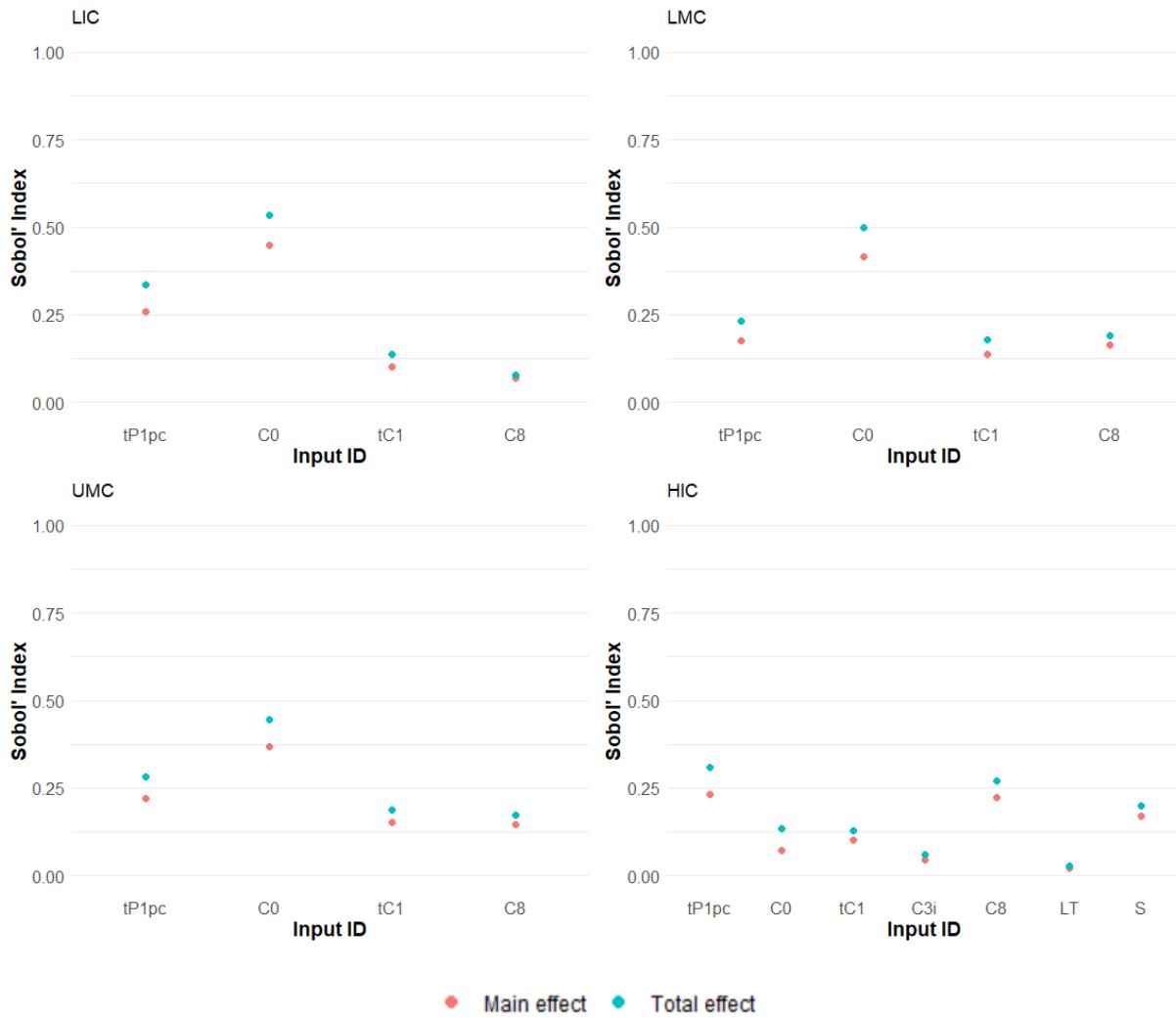
2206 In the absence of measured data of emissions into the environment to use as model validation,
2207 we carried out sensitivity analysis³⁸⁵ to assess the most influential parameters of the model, in a
2208 similar manner to Lau, et al.⁵.

2209 The Sobol method for sensitivity analysis is a global sensitivity variance-based method suitable
2210 for non-linear models³⁸⁶. We applied the *sobolmartinez* function within the R-package *sensitivity*
2211 version 1.28.1 for Monte Carlo estimation of Sobol' indices using 10,000 iterations. Both first-
2212 order (main effect) and total effect indices were estimated. Main effect indices relate to the
2213 influence one input parameter has on the output, whereas the total effect indices relate to the
2214 impact an input parameter has on the output, including all higher-order interactions.

2215

2216 **Fig. S28:** Main effect and total effect Sobol' indices for total plastic emissions aggregated to the
 2217 global scale. Abbreviations: tP1pc = Waste generation rate per capita ($\text{kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$), C0 = plastic
 2218 in MSW (% of generated MSW), tC1 = MSW collection coverage (% of generated MSW), C8 =
 2219 open burning of uncontrolled disposal (% of uncontrolled disposal).

2220 Sobol indices were estimated individually for each of the 50,702 municipalities and all uncertain
 2221 inputs. To summarise each of these sensitivity analysis results, we aggregated the first and total
 2222 order indices across all municipalities by calculating the mean value, weighted by the total
 2223 emissions of the municipality (**Fig. S28**). Inputs with a total effect <0.01 are removed for
 2224 simplicity given these have negligible influence of plastic emissions.


2225 Four input parameters had an influence on the amount of plastic emission (**Fig. S28**), which
 2226 were, in order of importance from high to low: (1) Proportion of MSW that is plastic (C0); (2)
 2227 Waste generation rate per capita (tP1pc); (3) Collection coverage (tC1); and (4) Open burning of
 2228 uncontrolled disposal (C8). Three of these (C0, tP1pc, and tC1) were derived from our cleaned
 2229 *primary input data* and relate to parameters that can be physically measured and therefore
 2230 validated.

2231 It is self-evident that inputs which affect the overall mass of plastic in the system, such as the
 2232 proportion of MSW that is plastic (C0) and waste generation rate (tP1pc), will influence plastic
 2233 emissions. In agreement with other models⁵, we also found collection coverage (tC1) to be highly
 2234 influential. This is partly because collection coverage takes place very early in the system and
 2235 because the scattered and highly distributed nature of uncollected waste (the complement of
 2236 collection coverage) means its entire mass becomes an emission.

2237 Although the open burning of uncontrolled disposal (C8) coefficient is implemented lower down
 2238 in the MFA compared to the other three influential data inputs (C0, tP1pc, and tC1), it is still
 2239 highly influential because of the large mass of material which flows through that part of the
 2240 model. Land disposal is still the predominant system endpoint for solid waste worldwide³⁰ and
 2241 therefore it is unsurprising that our model is sensitive to it. We postulate that controlled disposal
 2242 (C5) itself is also a highly influential parameter. However, due to the classification problem

2243 highlighted in **Section S.9.1.1** and subsequent corrections, no uncertainty was applied to
 2244 controlled disposal (C5) meaning we could not calculate a Sobol index for it.

2245

2246 **Fig. S29:** Main effect and total effect Sobol' indices > 0.01 for total plastic emissions aggregated
 2247 according to the income-categories. Abbreviations: tP1pc = Waste generation rate per capita
 2248 ($\text{kg} \cdot \text{cap}^{-1} \cdot \text{d}^{-1}$) C0 = plastic in MSW (% of generated MSW), tC1 = MSW collection coverage (%
 2249 of generated MSW), C8 = open burning of uncontrolled disposal (% of uncontrolled disposal),
 2250 C3i = emissions from the collection system prior to street sweepings (% of collected waste), LT
 2251 = littering rate (% of MSW generation), S = street sweeping efficiency (%).

2252 We also aggregated municipal level Sobol indices on an income-category basis to assess the
 2253 influence of wealth on our model's sensitivity (Fig. S29). The results for LIC, LMC and UMC
 2254 broadly matched those of the global analysis (Fig. S28) with the same four influential parameters
 2255 (tP1pc, C0, tC1, C8). The results for HIC showed that three additional parameters were also
 2256 influential on plastic emissions, the four previously listed, plus the emissions from the collection
 2257 system prior to street sweepings (C3i); the littering rate (LT); and the street sweeping efficiency

2258 (S). The influence of these inputs highlights the stark differences between the causes of plastic
2259 pollution in HICs compared to the Global South, the former of which is related to comparatively
2260 small emissions from littering and escape from the collection system, and the latter of which is
2261 predominantly a result of uncollected waste. We acknowledge that measured data to support
2262 these additional sensitive inputs for HICs (C3i, LT, S) is lacking, and therefore recommend
2263 increased efforts to focus on improving the quality of data to enable more accurate modelling of
2264 the HIC context. However, on a global scale, these inputs were not influential and therefore the
2265 uncertainty around their values does not affect the overall plastic pollution emission estimates or
2266 conclusions.

2267 **S.11 Conversion of emission mass to item count**

2268 Assuming an average plastic item mass of 5-10 g, $52.5 \text{ Mt} \cdot \text{y}^{-1}$ is equivalent to 5.2-10.5 trillion plastic items
2269 released as debris or through open burning every year. Based on a global population of 7.8 billion people,
2270 the same mass would be approximately 2-4 plastic items emitted per person per day (note: a large proportion
2271 of emissions take place after collection, for example, by open burning at dumpsites).

2272 **References**

2273 1 GADM. GADM database of global administrative areas. <https://gadm.org/> (2012).

2274 2 Jambeck, J. R. *et al.* Plastic waste inputs from land into the ocean. *Science* **347**, 768 (2015).

2275

2276 3 Lebreton, L. C. M. *et al.* River plastic emissions to the world's oceans. *Nat. Comm.* **8**, 15611 (2017).

2277

2278 4 Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. *Environ. Sci. Technol.* **51**, 12246-12253 (2017).

2279

2280 5 Lau, W. W. Y. *et al.* Evaluating scenarios toward zero plastic pollution. *Science* **369**, 1455-1461 (2020).

2281

2282 6 UN-Habitat. Waste wise cities tool: Step by step guide to assess a city's municipal solid waste management performance through SDG indicator 11.6.1 monitoring. <https://unhabitat.org/wwc-tool> (2021).

2283

2284

2285 7 Velis, C. A. Global recycling markets: plastic waste: A story for one player – China. <http://wedocs.unep.org/handle/20.500.11822/19316> (International Solid Waste Association, Vienna, Austria, 2014).

2286

2287

2288 8 Cook, E. & Velis, C. Plastic waste exports and recycling: Myths, misunderstandings and inconvenient truths. *Waste Manage. Res.* **40**, 1459-1461 (2022).

2289

2290 9 Wen, Z., Xie, Y., Chen, M. & Dinga, C. D. China's plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide. *Nat. Comm.* **12**, 425 (2021).

2291

2292

2293 10 Secretariat of the Basel Convention. BC-14/12: Amendments to Annexes II, VIII and IX to the Basel Convention. <http://www.basel.int/Portals/4/download.aspx?d=UNEP-CHW-COP.14-BC-14-12.English.pdf> (Châtelaine, Switzerland, 2021).

2294

2295

2296 11 European Commission. Commission Delegated Regulation (EU) 2020/2174 of 19 October 2020 amending Annexes IC, III, IIIA, IV, V, VII and VIII to Regulation (EC) No 1013/2006 of the European Parliament and of the Council on shipments of waste (Text with EEA relevance). http://data.europa.eu/eli/reg_del/2020/2174/oj (Official Journal of the European Union, 2020).

2297

2298

2299

2300

2301 12 United Nations. UN Comtrade Database: 3915-Waste, parings and scrap, of plastics 2022. <https://comtradeplus.un.org/> (2023).

2302

2303 13 Iliff, C. Plastic waste and the Basel Convention: Investigation into the impact of the January 2021 amendments to annexes II, VIII and IX. University of Leeds (2023).

2304

2305 14 Verschoor, A. Towards a definition of microplastics: Considerations for the specification of physico-chemical properties. Report No. RIVM Letter report 2015-0116, <https://www.rivm.nl/bibliotheek/rapporten/2015-0116.pdf> (National Institute for Public Health and the Environment, Bilthoven, The Netherlands, 2015).

2306

2307

2308

2309 15 Velis, C. A., Cook, E. & Cook, J. Waste management needs a data revolution – Is plastic pollution an opportunity? *Waste Manage. Res.* **39**, 1113-1115 (2021).

2310

2311 16 Wilson, D. C. *et al.* Global waste management outlook. Report No. 9280734792,
2312 https://wedocs.unep.org/bitstream/handle/20.500.11822/9672/-Global_Waste_Management_Outlook-2015Global_Waste_Management_Outlook.pdf.pdf?sequence=3&isAllowed=true (United Nations Environment Programme, Nairobi, Kenya, 2015).

2316 17 Velis, C. Waste pickers in Global South: Informal recycling sector in a circular economy era. *Waste Manage. Res.* **35**, 329-331 (2017).

2318 18 Adedara, M. L., Taiwo, R. & Bork, H.-R. Municipal solid waste collection and coverage rates in sub-Saharan african countries: A comprehensive systematic review and meta-analysis. *Waste* **1**, 389-413 (2023).

2321 19 Wasserman, M., Anshassi, M. & Townsend Timothy, G. Assessing sample number requirements for municipal solid waste composition studies. *J. Hazard. Toxic Radioact. Waste* **26**, 04021038 (2022).

2324 20 Chaudhary, P. *et al.* Underreporting and open burning – the two largest challenges for sustainable waste management in India. *Resour. Conserv. Recycl.* **175**, 105865 (2021).

2326 21 Chen, D. M. C., Bodirsky, B. L., Krueger, T., Mishra, A. & Popp, A. The world's growing municipal solid waste: trends and impacts. *Environ. Res. Lett.* **15**, 074021 (2020).

2329 22 Sharma, G. *et al.* Gridded Emissions of CO, NO_x, SO₂, CO₂, NH₃, HCl, CH₄, PM_{2.5}, PM₁₀, BC, and NMVOC from Open Municipal Waste Burning in India. *Environ. Sci. Technol.* **53**, 4765-4774 (2019).

2332 23 Kawai, K. & Tasaki, T. Revisiting estimates of municipal solid waste generation per capita and their reliability. *J. Mater. Cycles Waste Manage.* **18**, 1-13 (2016).

2334 24 Brunner, P. H. & Rechberger, H. *Practical Handbook of Material Flow Analysis: For Environmental, Resource and Waste Engineers*. Second edn, (CRC Press, Boca Raton, USA, 2017).

2337 25 Cook, E. & Velis, C. Global review on safer end of engineered life. 2021).

2338 26 Linzner, R. & Lange, U. Role and size of informal sector in waste management – a review. *Proceedings of the Institution of Civil Engineers - Waste and Resource Management* **166**, 69-83 (2013).

2341 27 Charles, D. & Kimman, L. Plastic waste makers index 2023.
<https://cdn.minderoo.org/content/uploads/2023/02/04205527/Plastic-Waste-Makers-Index-2023.pdf> (2023).

2344 28 Schiavina, M., Freire, S. & MacManus, K., GHS population grid multitemporal (1975, 1990, 2000, 2015) R2019A. European Commission Joint Research Centre (JRC) <http://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218> (2019).

2347 29 UN-Habitat. Wastewise cities (WaCT) data portal. <https://unh.rwm.global/> (2022).

2348 30 Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: a global snapshot of solid waste management to 2050.

2350 https://openknowledge.worldbank.org/bitstream/handle/10986/30317/9781464813290.pdf?sequence=12&isAllowed=y (World Bank Publications, Washington, DC, 2018).

2351

2352 31 Wasteaware. Wasteaware benchmark indicators. <http://wabi.wasteaware.org/> (2022).

2353 32 United Nations Statistics Division (UNSD). UNSD environmental indicators - waste. <https://unstats.un.org/unsd/envstats/qindicators> (New York, 2020).

2354

2355 33 Ministry of Housing and Urban-Rural Development (MoHURD), 2019 urban construction statistical yearbook. <http://www.mohurd.gov.cn/xytj/tjzlsxtytjgb/jstjn/w02020123122485271423125000.xls> (2019).

2356

2357

2358

2359 34 SIPSN, National waste management information system (Sistem informasi pengelolaan sampah nasional). <https://sipsn.menlhk.go.id/sipsn/public/home> (2022).

2360

2361 35 Dlamini, W. M. *et al.* National inventory on open burning practices and unintentional persistent organic pollutants (UPOPS) releases. https://stopopenburning.unitar.org/site/assets/files/1089/eswatini-inventory_report_for_open_burning_project-_oct2017.pdf (Mbabane, Swaziland, 2017).

2362

2363

2364

2365 36 Wills, P. Composition analysis of litter waste in Wales. <https://gov.wales/sites/default/files/publications/2020-01/composition-analysis-of-litter-waste-in-wales.pdf> (Welsh Government, Bristol, UK, 2019).

2366

2367

2368 37 Department for Environment Food and Rural Affairs (Defra). Statistics on waste managed by local authorities in England in 2019/20. <https://www.gov.uk/government/statistics/local-authority-collected-waste-management-annual-results> (UK, 2021).

2369

2370

2371

2372 38 Wilson, D. C. *et al.* 'Wasteaware' benchmark indicators for integrated sustainable waste management in cities. *Waste Manage.* **35**, 329-342 (2015).

2373

2374 39 United Nations Statistics Division (UNSD). Questionnaire 2020 on environmental statistics - waste. <https://unstats.un.org/unsd/envstats/questionnaire> (United Nations Statistics Division (UNSD), New York, 2020).

2375

2376

2377 40 Velis, C. A., Wilson, D. C., Gavish, Y., Grimes, S. M. & Whiteman, A. Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. *Sci. Total Environ.* **872**, 161913 (2023).

2378

2379

2380 41 Ciesin Columbia University & Center for International Earth Science Information Network, Gridded population of the world, version 4 (GPWv4): Population count adjusted to match 2010, 2015, 2020 revisions of UN WPP country totals, revision 11. <https://doi.org/10.7927/H4PN93PB> (2018).

2381

2382

2383

2384 42 Qu, W. & Li, R. Translation of personal and place names from and into Chinese in modern China: A lexicographical history perspective. *International Journal for the Semiotics of Law - Revue internationale de Sémiotique juridique* **28**, 525-557 (2015).

2385

2386

2387 43 Chen, J., Kan, K. & Davis, D. S. Administrative reclassification and neighborhood governance in urbanizing China. *Cities*. **118**, 103386 (2021).

2388

2389 44 Google. Google hybrid map. <https://www.google.com/maps> (2021).

2390 45 Hogg, D. *et al.* Study on Waste Statistics – A comprehensive review of gaps and
2391 weaknesses and key priority areas for improvement in the EU waste statistics.
2392 <https://www.eunomia.co.uk/reports-tools/study-on-waste-statistics-a-comprehensive-review-of-gaps-and-weaknesses-and-key-priority-areas-for-improvement-in-the-eu-waste-statistics/> (Eunomia Research & Consulting, ENT Environment and Management,
2393 & Ekokonsultacijos, Bristol, UK, 2017).

2396 46 UN-Habitat. *Solid Waste Management in the World's Cities*. (UN-HABITAT, 2010).

2397 47 Wilson, D. C., Rodic, L., Scheinberg, A., Velis, C. A. & Alabaster, G. Comparative
2398 analysis of solid waste management in 20 cities. *Waste Manage. Res.* **30**, 237-254 (2012).

2399 48 Azevedo, B. D., Scavarda, L. F., Caiado, R. G. G. & Fuss, M. Improving urban
2400 household solid waste management in developing countries based on the German
2401 experience. *Waste Manage.* **120**, 772-783 (2021).

2402 49 Abdulredha, M., Kot, P., Al Khaddar, R., Jordan, D. & Abdulridha, A. Investigating
2403 municipal solid waste management system performance during the Arba'een event in the
2404 city of Kerbala, Iraq. *Environ. Dev. Sus.* **22**, 1431-1454 (2020).

2405 50 Ali, M. *et al.* Improvement of waste management practices in a fast expanding sub-
2406 megacity in Pakistan, on the basis of qualitative and quantitative indicators. *Waste
2407 Manage.* **85**, 253-263 (2019).

2408 51 Kabera, T. & Nishimwe, H., "Systems analysis of municipal solid waste management and
2409 recycling system in east Africa: benchmarking performance in Kigali City, Rwanda" in
2410 2018 International Conference on Renewable Energy and Environment Engineering
2411 (REEE 2018) (E3S Web Conf, 2019), pp. 03004.

2412 52 Sharma, A., Ganguly, R. & Gupta, A. K. in *Pollutants from Energy Sources: Characterization and Control* (eds Rashmi Avinash Agarwal, Avinash Kumar Agarwal, Tarun Gupta, & Nikhil Sharma) 253-268 (Springer Singapore, Singapore, 2019).

2415 53 Kabera, T., Wilson, D. C. & Nishimwe, H. Benchmarking performance of solid waste
2416 management and recycling systems in East Africa: Comparing Kigali Rwanda with other
2417 major cities. *Waste Manage. Res.* **37**, 58-72 (2019).

2418 54 Sharma, A., Ganguly, R. & Gupta, A. K. Matrix method for evaluation of existing solid
2419 waste management system in Himachal Pradesh, India. *J. Mater. Cycles Waste Manage.*
2420 **20**, 1813-1831 (2018).

2421 55 Sharma, A., Ganguly, R. & Gupta, A. K., "Comparative analysis of solid waste
2422 management processes in Himachal Pradesh and Punjab" in Proceedings of the 1st
2423 International Conference on Sustainable Waste Management through Design (Springer
2424 International Publishing, 2019), pp. 343-352.

2425 56 Sharma, D. & Ganguly, R. Evaluation of existing solid waste management practices for
2426 Solan city-India. *J. Solid Waste Technol. Manage.* **44**, 32-42 (2018).

2427 57 Lupo, T. & Cusumano, M. Towards more equity concerning quality of urban waste
2428 management services in the context of cities. *J Clean Prod* **171**, 1324-1341 (2018).

2429 58 Abdulredha, M., al-Khaddar, R., Kot, P., Jordan, D. & Abdulridha, A., "Benchmarking of
2430 the current solid waste management system in Karbala, Iraq, using Wasteaware

2431 Benchmark Indicators" in World Environmental and Water Resources Congress 2018
2432 (ASCE, 2018), pp. 40-48.

2433 59 Oduro-Appiah, K. *et al.* Assessment of the municipal solid waste management system in
2434 Accra, Ghana: A 'Wasteaware' benchmark indicator approach. *Waste Manage. Res.* **35**,
2435 1149-1158 (2017).

2436 60 Byamba, B. & Ishikawa, M. Municipal solid waste management in Ulaanbaatar,
2437 Mongolia: Systems analysis. *Sustainability* **9**, 896 (2017).

2438 61 Rana, R., Ganguly, R. & Gupta, A. K. Evaluation of solid waste management in satellite
2439 towns of Mohali and Panchkula-India. *J. Solid Waste Technol. Manage.* **43**, 280-294
2440 (2017).

2441 62 Whiteman, A. *et al.* Wasteaware benchmark indicators for integrated sustainable waste
2442 management in chinese cities. <https://rwm.global/utilities/documents/wabi.pdf> (Deutsche
2443 Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Beijing, PR China,, 2019).

2444 63 New center for Integrated studies of Land & Environment (NILE), Zaki, T., Kafafi, A.
2445 G., Mina, M. B. & Abd El-Halim, A. E. H. M. Annual report for solid waste management
2446 in Egypt, 2013.
2447 http://cairoclimatetalks.net/sites/default/files/EN%20Annual%20Report%20on%20Waste%20in%20Egypt_2013.pdf (Ministry of State for Environmental Affairs, Cairo, Egypt,
2448 2013).

2449

2450 64 Association Jeffares & Green (Pty) Ltd & RWA Resources & Waste Advisory Group.
2451 The diversion of municipal solid waste away from landfills in 6 South African
2452 municipalities: Waste analysis and composition survey (report). Deutsche Gesellschaft
2453 für Internationale Zusammenarbeit (GIZ) GmbH, 2016).

2454 65 Gutierrez Galicia, F., Coria Paez, A. L. & Tejeida Padilla, R. A study and factor
2455 identification of municipal solid waste management in mexico city. *Sustainability* **11**,
2456 6305 (2019).

2457 66 Zaman, A. U. Measuring waste management performance using the 'Zero Waste Index':
2458 the case of Adelaide, Australia. *J Clean Prod* **66**, 407-419 (2014).

2459 67 Waste Management World. Recycling facility opens in Varna Bulgaria. <https://waste-management-world.com/artikel/recycling-facility-opens-in-varna-bulgaria/> (2011).

2460

2461 68 Al Sabbagh, M. K., Velis, C. A., Wilson, D. C. & Cheeseman, C. R. Resource
2462 management performance in Bahrain: a systematic analysis of municipal waste
2463 management, secondary material flows and organizational aspects. *Waste Manage. Res.*
2464 **30**, 813-824 (2012).

2465 69 Fuss, M., Barros, R. T. V. & Pogonitz, W. R. The role of a socio-integrated recycling
2466 system in implementing a circular economy – The case of Belo Horizonte, Brazil. *Waste
2467 Manage.* **121**, 215-225 (2021).

2468 70 European Green Capital. Vitoria-Gasteiz towards zero waste.
2469 <https://ec.europa.eu/environment/europeangreencapital/vg-zero-waste/> (2013).

2470 71 StatLine, Municipal waste quantities, 1993-2015.
2471 <https://opendata.cbs.nl/#/CBS/en/dataset/7467eng/table?searchKeywords=municipal%20waste> (2016).

2473 72 Department of the Environment. Northern Ireland local authority collected municipal waste management statistics: Annual report 2011/12. <https://www.daera-ni.gov.uk/sites/default/files/publications/doe/lac-municipal-waste-2011-12.pdf> (Analytical Services Branch Department of the Environment, Belfast, Northern Ireland, 2012).

2478 73 European Commission. Capital factsheet on separate collection. Report No. 070201/ENV/2014/691401/SFRA/A2, <https://www.municipalwasteeurope.eu/sites/default/files/EL%20Athens%20Capital%20factsheet.pdf> (European Commission, 2014).

2482 74 Agarwal, A., Singhmar, A., Kulshrestha, M. & Mittal, A. K. Municipal solid waste recycling and associated markets in Delhi, India. *Resour. Conserv. Recycl.* **44**, 73-90 (2005).

2485 75 Unifeed. St Lucia recycling. <https://www.unmultimedia.org/tv/unifeed/asset/1153/1153089/> (2014).

2487 76 Zero Waste SG. Singapore waste statistics 2011. <http://www.zerowastesg.com/2012/03/27/singapore-waste-statistics-2011/> (2011).

2489 77 Aprilia, A., Tezuka, T. & Spaargaren, G. in *Waste Management-An Integrated Vision* (ed Luis Fernando Marmolejo Rebellon) 71-100 (IntechOpen, 2012).

2491 78 Sim, N. M., Wilson, D. C., Velis, C. A. & Smith, S. R. Waste management and recycling in the former Soviet Union: The City of Bishkek, Kyrgyz Republic (Kyrgyzstan). *Waste Manage. Res.* **31**, 106-125 (2013).

2494 79 Masood, M., Barlow, C. Y. & Wilson, D. C. An assessment of the current municipal solid waste management system in Lahore, Pakistan. *Waste Manage. Res.* **32**, 834-847 (2014).

2496 80 Zaman, A. U. & Lehmann, S. The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city’. *J Clean Prod* **50**, 123-132 (2013).

2498 81 Scheinberg, A. & Simpson, M. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance. *Waste Manage. Res.* **33**, 975-985 (2015).

2500 82 Albrepe. Panorama dos resíduos sólidos no Brasil. <https://abrelpe.org.br/panorama/> (Albrepe, 2020).

2502 83 National Bureau of Statistics of China. Explanatory notes on main statistical indicators. <http://www.stats.gov.cn/tjsj/ndsj/2017/indexeh.htm> (2017).

2504 84 Tukey, J. W. *Exploratory Data Analysis*. Vol. 2 (Reading, MA, 1977).

2505 85 The World Bank. World Bank country and lending groups. <https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups> (2021).

2508 86 Wilson, D. C., Araba, A. O., Chinwah, K. & Cheeseman, C. R. Building recycling rates through the informal sector. *Waste Manage.* **29**, 629-635 (2009).

2510 87 Kodra, A. & Milios, L. Municipal waste management in Albania.
 2511 <https://www.eea.europa.eu/publications/managing-municipal-solid-waste/albania-municipal-waste-management> (European Environment Agency (EEA), 2013).

2513 88 Ruurd van Schaik, H. B. Business opportunities in waste management in Algeria.
 2514 Netherlands Enterprise Agency, Prinses Beatrixlaan, 2018).

2515 89 Pegels, A. *et al. How Sustainable is Recycling? Reconciling the Social, Ecological, and Economic Dimensions in Argentina.* (Discussion Paper, Bonn, Germany, 2020).

2517 90 BELTA. Belarus aims to achieve 90% recycling rate of solid municipal waste by 2035.
 2518 <https://eng.belta.by/> (2020).

2519 91 Gunsilius, E. Role of the informal sector in solid waste management and enabling
 2520 conditions for its integration: Experiences from GTZ. https://www.resource-recovery.net/sites/default/files/gunsilius_gtz_role_of_informal_sector_conditions_for_integration.pdf (2012).

2523 92 Silva de Souza Lima, N. & Mancini, S. D. Integration of informal recycling sector in
 2524 Brazil and the case of Sorocaba City. *Waste Manage. Res.* **35**, 721-729 (2017).

2525 93 Bermudez, J. F., Montoya-Ruiz, A. M. & Saldarriaga, J. F. Assessment of the current
 2526 situation of informal recyclers and recycling: case study Bogotá. *Sustainability* **11**, 6342
 2527 (2019).

2528 94 Bergman, E. Municipal solid waste management in informal settlements: A multiple-case
 2529 study of challenges and possibilities in the favelas and informal sector of Rio de Janeiro
 2530 city. Report No. LUTFD2/TFEM-19/5150--SE + (1-92), <http://lup.lub.lu.se/student-papers/record/8998685> (Lund University, 2019).

2532 95 Valenzuela-Levi, N. Waste political settlements in Colombia and Chile: Power,
 2533 inequality and informality in recycling. *Dev. Change.* **51**, 1098-1122 (2020).

2534 96 Laroche, L., Turner, M. & LaGiglia, M. Evaluation of NAMA opportunities in
 2535 Colombia's solid waste sector. Center for clean air policy Colombia, Washington, DC,
 2536 2012).

2537 97 The Economist Intelligence Unit. Progress and challenges for inclusive recycling: An
 2538 assessment of 12 Latin American and Caribbean Cities. EIU, New York, 2017).

2539 98 RRS & Walmart. Pursuing zero waste in a diverse landscape. <http://recycle.com/wp-content/uploads/2018/12/walmart-pursuing-zero-waste-in-a-diverse-landscape.pdf> (2018).

2542 99 Holland Circular Hotspot. Waste management in the LATAM region: Business
 2543 opportunities for the Netherlands in waste/circular economy sector in eight countries of
 2544 Latin America.,
 2545 https://www.rvo.nl/sites/default/files/2021/02/Report_LATAM_Waste_Management_feb_2021.pdf (Netherlands Enterprise Agency, 2021).

2547 100 Robayo Tapia, L. C. Propuesta para el manejo del reciclaje de desechos sólidos en el
 2548 Distrito Metropolitano de Quito. PUCE (2016).

2549 101 Mazariegos, C., Constantino, P. & Brolo, J. The power of grassroots solutions in the
2550 waste recovery chain. <https://www.gt.undp.org/> (2021).

2551 102 Koushki, B., Nasrabadi, T. & Amiri, M. J. Effective factors in municipal solid waste
2552 minimization and recovery by making use of citizens' participation: Case study of a
2553 district in Tehran City. *Pollution* **6**, 367-375 (2020).

2554 103 Ferrero, V. Recycle Beirut: give recycling a chance.
2555 <https://medium.com/@vittoriaferrero/recycle-beirut-give-recycling-a-chance-14ee66b31d19> (2019).

2557 104 Farah, J. *et al.* Solid waste management in Lebanon: Lessons for decentralisation.
2558 <https://shs.hal.science/halshs-02407660v2> (Democracy Reporting International, Beirut,
2559 Lebanon, 2019).

2560 105 Republic of North Macedonia State Statistical Office. Municipal waste, 2020.
2561 <https://www.stat.gov.mk/> (2021).

2562 106 Razali, F., Weng Wai, C. & Daud, D. Z. A review of Malaysia solid waste management
2563 policies to improve recycling practice and waste separation among households. *Int. J.*
2564 *Built. Env. Sustain.* **6**, 39-45 (2019).

2565 107 Bernache, G. The environmental impact of municipal waste management: the case of
2566 Guadalajara metro area. *Resour. Conserv. Recycl.* **39**, 223-237 (2003).

2567 108 Fogarasi, S. *et al.* Dissolution of base metals from waste printed circuit boards. *Environ*
2568 *Eng Manag J* **14**, 5186 (2015).

2569 109 Almasi, A. M. Municipal waste management in Romania.
2570 <https://www.eea.europa.eu/publications/managing-municipal-solid-waste/romania-municipal-waste-management> (European Environment Agency (EEA), 2013).

2572 110 Euronews. No time to waste? Moscow begins recycling its rubbish.
2573 <https://www.euronews.com/2020/01/02/no-time-to-waste-moscow-begins-recycling-its-rubbish> (2020).

2575 111 Kilpeläinen, M. Evaluating alternative ways to promote recycling and circularity in St.
2576 Petersburg's waste management. Degree Programme in Industrial Engineering and
2577 Management. Thesis, LUT University (2020).

2578 112 Owen, C. A tale of two recycling initiatives: State, society and waste management in St
2579 Petersburg and Shanghai. <https://fpc.org.uk/a-tale-of-two-recycling-initiatives-state-society-and-waste-management-in-st-petersburg-and-shanghai/> (2019).

2581 113 Government of Russian Federation, "Country report (Draft) Russian Federation" in
2582 Eighth Regional 3R Forum in Asia and the Pacific "Achieving Clean Water, Clean Land
2583 and Clean Air through 3R and Resource Efficiency - A 21st Century Vision for Asia-
2584 pacific Communities" (2018).

2585 114 letsrecycle. Recycling solutions in Serbia. <https://www.letsrecycle.com/news/latest-news/recycling-solutions-in-serbia/> (2016).

2587 115 Archer, D. & Trang, N. Closing the loop. Innovative partnerships with informal workers
2588 to recover plastic waste, in an inclusive circular economy approach.

2589 https://www.unescap.org/sites/default/files/Closing%20The%20Loop_Regional%20Policy%20Guide.pdf (United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), 2018).

2592 116 Woodruff, A. Solid waste management in the Pacific: Tonga country snapshot. Report No. ARM146616-2, <https://www.adb.org/publications/solid-waste-management-pacific-tonga-country-snapshot> (Asian Development Bank, 2014).

2595 117 Japan International Cooperation Agency, EX Research Institute Ltd & Kokusai Kogyo Co. Ltd. Data collection survey on solid waste management in Turkey. <https://openjicareport.jica.go.jp/pdf/12247094.pdf> (Republic of Turkey, 2015).

2598 118 Ramos, C., Vicentini, A. & Ortega, D. Challenges and opportunities of waste collection in Caracas: Sucre municipality case study. *Consilience*, 115-129 (2012).

2600 119 Terzidis, K. Investigation into the current and potential future use of incineration as a form of waste treatment. MSc in Environmental Engineering and Project Management. Thesis, University of Leeds (2022).

2603 120 Ma, W. *et al.* Air pollutant emission inventory of waste-to-energy plants in China and prediction by the artificial neural network approach. *Environ. Sci. Technol.* **57**, 874–883 (2022).

2606 121 Kaza, S., Yao, L., Bhada-Tata, P., and Van Woerden, F., City level codebook. World Bank <https://datacatalog.worldbank.org/dataset/what-waste-global-database> (2018).

2608 122 Djemaci, B. La gestion des déchets municipaux en Algérie: Analyse prospective et éléments d'efficacité. Université de Rouen (2012).

2610 123 Bilal, A. & Abdelkader, O. The problem of municipal solid waste management in Algeria. *Journal of the New Economy* **12**, 118-131 (2021).

2612 124 Madani, S. Z. in *Sociétés urbaines et déchets: Éclairages internationaux* (eds C. Cirelli & B. Florin) 101-120 (Presses Universitaires François-Rabelais, 2015).

2614 125 van Schaik, R. & Breukelman, H. Business opportunities in waste management in Algeria. <https://www.rvo.nl/sites/default/files/2018/06/Business-opportunities-in-waste-management-in-Algeria.pdf> (Ministry of Foreign Affairs, Netherlands, 2018).

2617 126 Algerie Presse Service. Recycling and waste treatment fair: opening of the 2nd edition in Oran. <https://www.aps.dz/economie/68042-salon-de-recyclage-et-traitement-des-dechets-ouverture-de-la-2e-edition-a-oran> (2018).

2620 127 Algerie Eco. Waste sorting in Oran: Plastic bottles for telephone credit tickets. <https://www.algerie-eco.com/2020/11/12/tri-des-dechets-a-oran-des-bouteilles-en-plastique-contre-des-tickets-de-credit-telephonique/> (2020).

2623 128 R20 Regions of Climate Action. Integrated solid waste management Oran, Algeria. <https://r20paris.org/wp-content/uploads/2016/06/oran-waste-overview301115.pdf> (Geneva, Switzerland, 2015).

2626 129 Maha, B. Gestion et traitement des déchets à la wilaya de Constantine. Université des Frères Mentouri Constantine (2017).

2628 130 Anisovich, N. Minsk and its garbage. An online map and modular sites with containers
 2629 will appear in the capital [in Russian]. <https://greenbelarus.info/articles/19-05-2020/minsk-i-yago-smeccce-anlayn-karta-i-modulnyya-plyacouki-z-kanteynerami-zyavyacca> (2020).

2632 131 Johansson, K. Municipal solid waste management in Minsk-current situation, future
 2633 development and challenges. MSc Environmental Science. Thesis, Lund University
 2634 (2020).

2635 132 Belta. Collection of secondary raw materials in Belarus up by 3.2% in 2020.
 2636 <https://eng.belta.by/society/view/collection-of-secondary-raw-materials-in-belarus-up-by-32-in-2020-138678-2021/> (2021).

2638 133 PwC Advisory spółka z ograniczoną odpowiedzialnością sp.k. The green city action plan
 2639 - Zenica: Bosnia and Herzegovina.
 2640 https://www.ebrdgreencities.com/assets/Uploads/PDF/7018b505ef/Zenica-GCAP_Eng.pdf (2019).

2642 134 Mmereki, D. Current status of waste management in Botswana: A mini-review. *Waste Manage. Res.* **36**, 555-576 (2018).

2644 135 Gerdes, P. G., E. The waste experts: Enabling conditions for informal sector integration
 2645 in solid waste management: Lessons learned from Brazil, Egypt and India.
 2646 <https://www.giz.de/en/downloads/gtz2010-waste-experts-conditions-is-integration.pdf>
 2647 (GTZ, 2008).

2648 136 Wollmann, C. Análisis de la gestión de los residuos sólidos en Brasil. Una comparativa
 2649 entre las diez ciudades más grandes del país. Universitat Politècnica de Catalunya (2015).

2650 137 Cidade De Sao Paulo. Cooperativas. <http://www.capital.sp.gov.br/cidadao/rua-e-bairro/lixo/cooperativas> (2019).

2652 138 Pacheco, E. B. A. V., Ronchetti, L. M. & Masanet, E. An overview of plastic recycling in
 2653 Rio de Janeiro. *Resour. Conserv. Recycl.* **60**, 140-146 (2012).

2654 139 Cardosa, A. Porto Alegre, Rio Grande do Sul Brazil. <https://globalrec.org/city/porto-alegre/> (nd).

2656 140 Ahlheim, M., Becker, M., Trastl, H. & Losada, Y. A. Wasted! Resource recovery and
 2657 waste management in Cuba. *Int. J. Cuban. Stud.* **11**, 147-173 (2019).

2658 141 EMASEO EP. Quito a Reciclar. <http://www.emaseo.gob.ec/gestion-ambiental/quitoareciclar/> (2020).

2660 142 Zabala Celi, J. L. La industria del reciclaje en la ciudad de Quito, propuesta de modelo de
 2661 negocio para la industria de reciclaje de plástico PET. Universidad Andina Simón
 2662 Bolívar, Sede Ecuador (2018).

2663 143 Latitud R. Programa “Quito a reciclar” inició en multifamiliares de Quitumbe.
 2664 <https://latitudr.org/programa-quito-a-reciclar-inicio-en-multifamiliares-de-quitumbe/>
 2665 (2019).

2666 144 Ayuntamiento de Cuenca. Horario del punto limpio.
2667 <https://medioambiente.cuenca.es/punto-limpio?AspxAutoDetectCookieSupport=1>
2668 (2022).

2669 145 Tehran Times. 25% of waste produced in Iran recyclable: environment official.
2670 <https://www.tehrantimes.com/news/435128/25-of-waste-produced-in-Iran-recyclable-environment-official> (2019).

2672 146 Khayamabshi, E. Current status of waste management in iran and business opportunities.
2673 <http://www.unido.or.jp/files/Iran-updated.pdf> (2016).

2674 147 Farzadkia, M., Jorfi, S., Akbari, H. & Ghasemi, M. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran. *Waste Manage. Res.* **30**, 106-112 (2012).

2677 148 Islamic Republic News Agency. The completion of Isfahan waste complex requires 50 billion tomans of facilities [in Persian]. <https://khabarban.com/a/28016140> (2019).

2679 149 Republic of Kazakhstan Strategic planning and reform agency. Waste reuse and recycling. <https://stat.gov.kz/search/item/ESTAT368109> (2022).

2681 150 Republic of Kazakhstan of regulatory legal acts informal and legal systems. About the draft of the decree of the president of the Republic of Kazakhstan "On the strategic plan for the sustainable development of the city of Astana until 2030".
<https://adilet.zan.kz/kaz/docs/P060000113> (2006).

2685 151 egov. Information on waste reduction, recycling and reuse.
https://egov.kz/cms/kk/articles/ecology/waste_reduction_recycling_and_reuse (2022).

2687 152 Saleh, E. Recycling policies from the bottom up: Waste work in Lebanon.
<https://www.arab-reform.net/pdf/?pid=16284&plang=en> (Arab Reform Initiative, 2021).

2689 153 Hamdan, H. Is Lebanon's new recycling project a bunch of garbage? <https://www.al-monitor.com/originals/2018/05/lebanon-beirut-municipality-hariri-paper-project-garbage.html> (2018).

2692 154 Ministerio del Ambiente. Asociaciones de recicladores autorizadas para iniciar operaciones.
https://cdn.www.gob.pe/uploads/document/file/1234953/Asociaciones_de_Recicladores_formalizados_y_con_plan_operando_en_Lima_y_Callao.08.20.pdf (2020).

2696 155 Zárate, P. M. Planta de Reciclaje en Arequipa, primera especializada en plástico.
<https://elbuho.pe/2019/12/planta-de-reciclaje-en-arequipa-es-la-primera-a-nivel-nacional-especializada-en-plastico/> (2019).

2699 156 Cruz, A. H. Evaluación de la actividad de reciclaje en Lima Norte. *Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas* **21**, 47-54 (2018).

2702 157 La República. Cercado de Lima: instalarán 8 estaciones de reciclaje.
<https://larepublica.pe/sociedad/2019/09/21/cercado-de-lima-instalaran-8-estaciones-de-reciclaje-municipalidad-de-lima-plastico/> (2019).

2705 158 Baloy, O. *et al.* National waste information baseline report.
2706 <http://sawic.environment.gov.za/documents/1880.pdf> (Department of Environmental
2707 Affairs, Pretoria, 2012).

2708 159 Islamic Development Bank. Waste to energy: Averting environmental damage in
2709 Azerbaijan. https://www.isdb.org/sites/default/files/media/documents/2020-06/Success_LfI_Azerbaijan_EN.pdf (Islamic Development Bank, Jeddah, Kingdom of
2710 Saudi Arabia, 2020).

2711 160 Bir, R. S. Understanding the effectiveness of the current waste management system in
2712 Thimphu City, Bhutan. Master of Science in International Cooperation Policy (Master of
2713 Engineering in International Material Flow Management). Thesis, Ritsumeikan Asia
2714 Pacific University (2015).

2715 161 UNDP. Incinerator for Thimphu's bio-medical and hazardous wastes.
2716 <https://www.undp.org/bhutan/stories/incinerator-thimphus-bio-medical-and-hazardous-wastes> (2021).

2717 162 Silva, L. J. d. V. B. d., Santos, I. F. S. d., Mensah, J. H. R., Gonçalves, A. T. T. & Barros,
2718 R. M. Incineration of municipal solid waste in Brazil: An analysis of the economically
2719 viable energy potential. *Renew. Energy* **149**, 1386-1394 (2020).

2720 163 Song, Q., Li, J., Duan, H., Yu, D. & Wang, Z. Towards to sustainable energy-efficient
2721 city: A case study of Macau. *Renewable Sustainable Energy Rev* **75**, 504-514 (2017).

2722 164 Zero Waste Europe. Big victory: Under public pressure, waste incinerator was kicked out
2723 of the spatial plan of Zagreb! <https://zerowasteeurope.eu/2017/10/big-victory-under-public-pressure-waste-incinerator-was-kicked-out-of-the-spatial-plan-of-zagreb/> (2017).

2724 165 Bianchi, M., Merger, P. & Cordella, M. CIRCTER spin-off: Switzerland and
2725 Liechtenstein case study.
2726 <https://www.espon.eu/sites/default/files/attachments/CIRCTER%20SPINOFF%20-%20Switzerland%20and%20Liechtenstein.pdf> (2021).

2727 166 Bryne, T. The waste management system of the Principality of Monaco.
2728 <https://wasteadvantagemag.com/international-the-waste-management-system-of-the-principality-of-monaco/> (2015).

2729 167 JFE Engineering Corporation. Waste to energy plant for Yangon City in Myanmar final
2730 report https://www.env.go.jp/earth/coop/lowcarbon-asia/english/project/data/EN_MMR_2017_03.pdf (2018).

2731 168 Turilova, K. *et al.* Municipal solid waste in Ukraine: Development potential.
2732 <https://documents1.worldbank.org/curated/zh/839801556599035128/pdf/Municipal-Solid-Waste-in-Ukraine-Development-Potential.pdf> (The World Bank, Kyiv, Ukraine,
2733 2019).

2734 169 Wansi, B. I. Zimbabwe: Waste-to-energy plant to be built in KweKwe.
2735 <https://www.afrik21.africa/en/zimbabwe-waste-to-energy-plant-to-be-built-in-kwekwe/>
2736 (2022).

2737 170 Badan Pusat Statistik (BPS). Indonesia Census 2020. <https://www.bps.go.id/> (2020).

2745 171 Premakumara, D. G. J., Abe, M. & Maeda, T., "Reducing municipal waste through
2746 promoting integrated sustainable waste management (ISWM) practices in Surabaya city,
2747 Indonesia" in *Ecosystems and Sustainable Development VIII* (WIT Press, 2011), pp. 457-
2748 468.

2749 172 Shekdar, A. V. Sustainable solid waste management: an integrated approach for Asian
2750 countries. *Waste Manage.* **29**, 1438-1448 (2009).

2751 173 Maalouf, A. & Mavropoulos, A. Re-assessing global municipal solid waste generation.
2752 *Waste Manage. Res.* **41**, 936-947 (2022).

2753 174 Rosecký, M. *et al.* Predictive modelling as a tool for effective municipal waste
2754 management policy at different territorial levels. *J. Environ. Manage.* **291**, 112584
2755 (2021).

2756 175 Dissanayaka, D. M. S. H. & Vasanthapriyan, S. Forecast municipal solid waste
2757 generation in Sri Lanka. *2019 International Conference on Advancements in Computing*
2758 (*ICAC*), 210-215 (2019).

2759 176 Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O. & Olubambi, P. A. Forecasting municipal
2760 solid waste quantity using artificial neural network and supported vector machine
2761 techniques: A case study of Johannesburg, South Africa. *J Clean Prod* **289**, 125671
2762 (2021).

2763 177 Solano Meza, J. K., Orjuela Yepes, D., Rodrigo-Illarri, J. & Cassiraga, E. Predictive
2764 analysis of urban waste generation for the city of Bogotá, Colombia, through the
2765 implementation of decision trees-based machine learning, support vector machines and
2766 artificial neural networks. *Heliyon* **5**, e02810 (2019).

2767 178 Kumar, A., Samadder, S., Kumar, N. & Singh, C. Estimation of the generation rate of
2768 different types of plastic wastes and possible revenue recovery from informal recycling.
2769 *Waste Manage.* **79**, 781-790 (2018).

2770 179 Yang, L. *et al.* Municipal solid waste forecasting in China based on machine learning
2771 models. *Front. Ener. Res.* **9**, 763977 (2021).

2772 180 Kannangara, M., Dua, R., Ahmadi, L. & Bensebaa, F. Modeling and prediction of
2773 regional municipal solid waste generation and diversion in Canada using machine
2774 learning approaches. *Waste Manage.* **74**, 3-15 (2018).

2775 181 Lebreton, L. & Andrade, A. Future scenarios of global plastic waste generation and
2776 disposal. *Palgrave Communications* **5**, 1-11 (2019).

2777 182 Waste Atlas. Waste Atlas <http://www.atlas.d-waste.com/> (2022).

2778 183 Schiavina, M., Freire, S. & MacManus, K., GHS-POP R2022A - GHS population grid
2779 multitemporal (1975-2030). European Commission Joint Research Centre (JRC)
2780 <http://data.europa.eu/89h/d6d86a90-4351-4508-99c1-cb074b022c4a> (2022).

2781 184 Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for Gross Domestic
2782 Product and Human Development Index over 1990–2015. *Sci. Dat.* **5**, 180004 (2018).

2783 185 Smits, J. & Permanyer, I. The subnational human development database. *Sci. Dat.* **6**,
2784 190038 (2019).

2785 186 The World Bank Group. GNI per capita, atlas method (current US \$).
2786 https://data.worldbank.org/indicator/NY.GNP.PCAP.CD (2015).

2787 187 Tatem, A. J. WorldPop, open data for spatial demography. *Sci. Dat.* **4**, 170004 (2017).

2788 188 Transparency International. Corruption perception index 2015.
2789 https://www.transparency.org/en/cpi/2015 (2015).

2790 189 Social Progress Imperative. Social progress index 2015. https://www.socialprogress.org/
2791 (2015).

2792 190 The World Bank Group. International tourism, number of arrivals.
2793 https://data.worldbank.org/indicator/ST.INT.ARVL (2015).

2794 191 Natural Earth. Populated places. https://www.naturalearthdata.com/downloads/10m-
2795 cultural-vectors/10m-populated-places/ (2009).

2796 192 United Nations, Methodology: Standard country or area codes for statistical use (M49) -
2797 overview. https://unstats.un.org/unsd/methodology/m49/overview/ (2017).

2798 193 Maffenini, L., Schiavina, M., Melchiorri, M., Pesaresi, M. & Kemper, T. GHS-DU-TUC
2799 user guide. Report No. JRC132762, Publications Office of the European Union,
2800 Luxembourg, 2023).

2801 194 European Commission & Eurostat. *Applying the Degree of Urbanisation : A
2802 Methodological Manual to Define Cities, Towns and Rural Areas for International
2803 Comparisons : 2021 Edition.* (Publications Office of the European Union, 2021).

2804 195 Schiavina, M., Melchiorri, M. & Freire, S., GHS-DUC R2022A - GHS degree of
2805 urbanisation classification, application of the degree of urbanisation methodology (stage
2806 II) to GADM 3.6 layer, multitemporal (1975-2030). European Commission Joint
2807 Research Centre (JRC) http://data.europa.eu/89h/f5224214-6b66-43df-a9c6-
2808 cc974f17d803 (2022).

2809 196 Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in
2810 random forests. *Stat. Comp.* **27**, 659–678 (2017).

2811 197 International Organization for Standardization. ISO 3166-1:2020 country codes.
2812 https://www.iso.org/standard/72482.html (International Organization for Standardization,
2813 2020).

2814 198 Breiman, L. Random forests. *Machin. Learn.* **45**, 5-32 (2001).

2815 199 Biau, G. & Scornet, E. A random forest guided tour. *TEST* **25**, 197-227 (2016).

2816 200 Meinshausen, N. Quantile regression forests. *J. Machin. Learn. Res.* **7**, 983-999 (2006).

2817 201 Francke, T., López-Tarazón, J. A. & Schröder, B. Estimation of suspended sediment
2818 concentration and yield using linear models, random forests and quantile regression
2819 forests. *Hydrolog. Process.* **22**, 4892-4904 (2008).

2820 202 Tyralis, H., Papacharalampous, G. & Langousis, A. A brief review of random forests for
2821 water scientists and practitioners and their recent history in water resources. *Water* **11**,
2822 910 (2019).

2823 203 Probst, P., Wright, M. N. & Boulesteix, A. L. Hyperparameters and tuning strategies for
2824 random forest. *WIREs Data Mining and Knowledge Discovery* *The Journal of Solid Waste*
2825 *Technology and Management* **9**, e1301 (2019).

2826 204 Hyndman, R. J. & Koehler, A. B. Another look at measures of forecast accuracy. *Int. J.*
2827 *Forecasting* **22**, 679-688 (2006).

2828 205 Chruszcz, A. National municipal waste compositional analysis in Wales.
2829 <http://www.wrapcymru.org.uk/sites/files/wrap/Wales%20Municipal%20Waste%20Composition%202015-16%20FINAL.pdf> (WRAP Cymru, Cardiff, Wales, 2016).

2831 206 Bridgwater, E., Fletcher, E., Scholes, R., Tomes, T. & Hedger, J. National household
2832 waste composition 2017. <https://wrap.org.uk/sites/default/files/2021-10/WRAP-national->
2833 [household-waste-comparison-2017.pdf](https://wrap.org.uk/sites/default/files/2021-10/WRAP-national-household-waste-comparison-2017.pdf) (Waste and Resources Action Programme,
2834 Bristol, 2019).

2835 207 Cascadia Consulting Group. 2014 disposal-facility-based characterization of solid waste
2836 in California. <https://www2.calrecycle.ca.gov/Publications/Download/1301> (California
2837 Department of Resources Recycling and Recovery (CalRecycle), Sacramento, USA,
2838 2015).

2839 208 BMK. Inventory of waste management in Austria - status report 2021 [in German].
2840 https://www.bmk.gv.at/dam/jcr:04ca87f4-fd7f-4f16-81ec-57fca79354a0/BAWP_Statusbericht2021.pdf (Federal Ministry for Climate Protection
2841 Environment Energy Mobility Innovation and Technology, Vienna 2021).

2843 209 Tetra Tech EBA Inc. 2015 Waste Composition monitoring program. Report No. 704-SWM.SWOP03013-01, [http://www.metrovancouver.org/services/solid-](http://www.metrovancouver.org/services/solid-waste/SolidWastePublications/2015_Waste_Composition_Report.pdf)
2844 [waste/SolidWastePublications/2015_Waste_Composition_Report.pdf](http://www.metrovancouver.org/services/solid-waste/SolidWastePublications/2015_Waste_Composition_Report.pdf) (Metro Vancouver,
2845 Vancouver, 2016).

2847 210 Putri, A. R., Fujimori, T. & Takaoka, M. Plastic waste management in Jakarta, Indonesia: evaluation of material flow and recycling scheme. *J. Mater. Cycles Waste Manage.* **20**, 2140-2149 (2018).

2850 211 Besen, G. R. & Fracalanza, A. P. Challenges for the sustainable management of
2851 municipal solid waste in Brazil. *Disp* **52**, 45-52 (2016).

2852 212 Sabedot, S. & Pereira Neto, T. Desempenho ambiental dos catadores de materiais
2853 recicláveis em Esteio (RS). *Engenharia Sanitária e Ambiental* **22**, 103-109 (2017).

2854 213 Schenck, C. J., Blaauw, P. F., Swart, E. C., Viljoen, J. M. M. & Mudavanhu, N. The
2855 management of South Africa's landfills and waste pickers on them: Impacting lives and
2856 livelihoods. *Devel. Southern Africa* **36**, 80-98 (2019).

2857 214 Velis, C. A. *et al.* An analytical framework and tool ('InteRa') for integrating the
2858 informal recycling sector in waste and resource management systems in developing
2859 countries. *Waste Manage. Res.* **30**, 43-66 (2012).

2860 215 Masood, M. & Barlow, C. Y. Framework for integration of informal waste management
2861 sector with the formal sector in Pakistan. *Waste Manage. Res.* **31**, 93-105 (2013).

2862 216 Chandramohan, A., Ravichandran, C. & Sivasankar, V. Solid waste, its health
2863 impairments and role of rag pickers in Tiruchirappalli city, Tamil Nadu, Southern India.
2864 **28**, 951-958 (2010).

2865 217 Oteng-Ababio, M. The role of the informal sector in solid waste management in The
2866 Gama, Ghana: Challenges and opportunities. *Tijdschrift voor economische en sociale*
2867 *geografie* **103**, 412-425 (2012).

2868 218 Medina, M. Serving the unserved: informal refuse collection in Mexico. *Waste Manage.*
2869 *Res.* **23**, 390-397 (2005).

2870 219 Gutberlet, J. & Baeder, A. M. Informal recycling and occupational health in Santo André,
2871 Brazil. *Int. J. Environ. Health Res.* **18**, 1-15 (2008).

2872 220 Zolnikov, T. R., da Silva, R. C., Tuesta, A. A., Marques, C. P. & Cruvinel, V. R. N.
2873 Ineffective waste site closures in Brazil: A systematic review on continuing health
2874 conditions and occupational hazards of waste collectors. *Waste Manage.* **80**, 26-39
2875 (2018).

2876 221 Mrkajić, V., Stanisavljevic, N., Wang, X., Tomas, L. & Haro, P. Efficiency of packaging
2877 waste management in a European Union candidate country. *Resour. Conserv. Recycl.*
2878 **136**, 130-141 (2018).

2879 222 Conke, L. S. Barriers to waste recycling development: Evidence from Brazil. *Resour.*
2880 *Conserv. Recycl.* **134**, 129-135 (2018).

2881 223 Botello-Álvarez, J. E., Rivas-García, P., Fausto-Castro, L., Estrada-Baltazar, A. &
2882 Gomez-Gonzalez, R. Informal collection, recycling and export of valuable waste as
2883 transcendent factor in the municipal solid waste management: A Latin-American reality.
2884 *J Clean Prod* **182**, 485-495 (2018).

2885 224 Navarrete-Hernandez, P. & Navarrete-Hernandez, N. Unleashing waste-pickers'
2886 potential: Supporting recycling cooperatives in Santiago de Chile. *World Devel.* **101**,
2887 293-310 (2018).

2888 225 Hartmann, C. Waste picker livelihoods and inclusive neoliberal municipal solid waste
2889 management policies: The case of the La Chureca garbage dump site in Managua,
2890 Nicaragua. *Waste Manage.* **71**, 565-577 (2018).

2891 226 Abledu, E. S. & Amfo-Otu, R. Contribution of Informal Sector Recycling Workers to
2892 Sustainable Landfill Management : The Case of Kpone Landfill Site in the Greater Accra
2893 Region. *PUCG Appl. Res. J.* **4**, 1-11 (2018).

2894 227 Vaidya, P., Kumar, R. & Sharma, D. Economics and environmental impacts of plastic
2895 waste recycling: A case study of Mumbai. *J. Solid. Waste. Tech. Manage.* **42**, 287-297
2896 (2016).

2897 228 Kamran, A., Chaudhry, M. N. & Batool, S. A. Role of the informal sector in recycling
2898 waste in eastern lahore. *Pol. J. Environ. Stud.* **24**, 537-543 (2015).

2899 229 Cunningham, R. N., Simpson, C. D. & Keifer, M. C. Hazards faced by informal recyclers
2900 in the squatter communities of Asunción, Paraguay. *Int. J. Occup. Environ. Health.* **18**,
2901 181-187 (2012).

2902 230 Bhaskar, A. & Chikarmane, P. The story of waste and its reclaimers: Organising waste
2903 collectors for better lives and livelihoods. *Indian Journal of Labour Economics* **55**, 595-
2904 620 (2012).

2905 231 Asim, M., Batool, S. A. & Chaudhry, M. N. Scavengers and their role in the recycling of
2906 waste in Southwestern Lahore. *Resour. Conserv. Recycl.* **58**, 152-162 (2012).

2907 232 Moniruzzaman, S. M., Bari, Q. H. & Fukuhara, T. Recycling practices of solid waste in
2908 Khulna City, Bangladesh. *J. Solid Waste Technol. Manage.* **37**, 1-15 (2011).

2909 233 Nzeadibe, T. C. & Ajaero, C. K. in *Handbook of Environmental Policy* (eds Johannes
2910 Meijer & Arjan Der Berg) Ch. 10, 243-262 (Nova Science Publishers, Inc., New York,
2911 USA, 2010).

2912 234 Scheinberg, A., Spies, S., Simpson, M. H. & Mol, A. P. J. Assessing urban recycling in
2913 low- and middle-income countries: Building on modernised mixtures. *Habitat. Int.* **35**,
2914 188-198 (2011).

2915 235 Sembiring, E. & Nitivattananon, V. Sustainable solid waste management toward an
2916 inclusive society: Integration of the informal sector. *Resour. Conserv. Recycl.* **54**, 802-
2917 809 (2010).

2918 236 Hernández Romero, D. A. *et al.* Respiratory symptoms among waste-picking child
2919 laborers a cross-sectional study. *Int. J. Occup. Environ. Health.* **16**, 124-135 (2010).

2920 237 Mitchell, C. L. Altered landscapes, altered livelihoods: The shifting experience of
2921 informal waste collecting during Hanoi's urban transition. *Geoforum* **39**, 2019-2029
2922 (2008).

2923 238 Zia, H., Devadas, V. & Shukla, S. Assessing informal waste recycling in Kanpur City,
2924 India. *Manage. Environ. Qual.* **19**, 597-612 (2008).

2925 239 Medina, M. in *Membership Based Organizations of the Poor (Routledge Studies in
2926 Development Economics)* (eds Martha Chen, Renana Jhabvala, Ravi Kanbur, & Carol
2927 Richards) Ch. 6, 125-141 (Routledge, Oxon, UK, 2007).

2928 240 Masocha, M. Informal waste harvesting in Victoria Falls town, Zimbabwe: Socio-
2929 economic benefits. *Habitat. Int.* **30**, 838-848 (2006).

2930 241 Kumari, S. *et al.* Recovery of consumer waste in India – A mass flow analysis for paper,
2931 plastic and glass and the contribution of households and the informal sector. *Resour.
2932 Conserv. Recycl.* **101**, 167-181 (2015).

2933 242 Matter, A., Ahsan, M., Marbach, M. & Zurbrügg, C. Impacts of policy and market
2934 incentives for solid waste recycling in Dhaka, Bangladesh. *Waste Manage.* **39**, 321-328
2935 (2015).

2936 243 King, M. F. & Gutberlet, J. Contribution of cooperative sector recycling to greenhouse
2937 gas emissions reduction: A case study of Ribeirão Pires, Brazil. *Waste Manage.* **33**, 2771-
2938 2780 (2013).

2939 244 Ezeah, C., Fazakerley, J. A. & Roberts, C. L. Emerging trends in informal sector
2940 recycling in developing and transition countries. *Waste Manage.* **33**, 2509-2519 (2013).

2941 245 Paul, J. G., Arce-Jaque, J., Ravana, N. & Villamor, S. P. Integration of the informal
2942 sector into municipal solid waste management in the Philippines - What does it need?
2943 *Waste Manage.* **32**, 2018-2028 (2012).

2944 246 Hamidul Bari, Q., Mahbub Hassan, K. & Ehsanul Haque, M. Solid waste recycling in
2945 Rajshahi city of Bangladesh. *Waste Manage.* **32**, 2029-2036 (2012).

2946 247 Steuer, B., Ramusch, R., Part, F. & Salhofer, S. Analysis of the value chain and network
2947 structure of informal waste recycling in Beijing, China. *Resour. Conserv. Recycl.* **117**,
2948 137-150 (2017).

2949 248 Linzner, R. & Salhofer, S. Municipal solid waste recycling and the significance of
2950 informal sector in urban China. *Waste Manage. Res.* **32**, 896-907 (2014).

2951 249 Guo, S., Zhang, H., Minghui, Z. & Lin, A. Y. 京城十万拾荒族忐忑面对被“收编”.
2952 <http://www.mbtsg.com/periodical/9e7d9fc1baa9b966e4c452bb5b598c9c.html> (2007).

2953 250 Li, X. Analysis of the reasons and ways of scavengers and their scavenging (in Chinese).
2954 *Manage. Engin.*, 58-61 (2013).

2955 251 Vose, D. *Risk Analysis: A Quantitative Guide*. 3rd Ed. edn, (John Wiley & Sons Ltd.,
2956 Chichester, UK, 2008).

2957 252 Wing Chau, K. The validity of the triangular distribution assumption in Monte Carlo
2958 simulation of construction costs: empirical evidence from Hong Kong. *Construct.*
2959 *Manage. Econ.* **13**, 15-21 (1995).

2960 253 SYSTEMIQ & The Pew Charitable Trust. Breaking the plastic wave.
2961 https://www.pewtrusts.org/-/media/assets/2020/07/breakingtheplasticwave_report.pdf
2962 (The Pew Charitable Trust, UK, 2020).

2963 254 Ahlers, J., Hemkhaus, M., Hibler, S. & Hannak, J. Analysis of extended producer
2964 responsibility schemes: Assessing the performance of selected schemes in European and
2965 EU countries with a focus on WEEE, waste packaging and waste batteries. https://erp-recycling.org/wp-content/uploads/2021/07/adelphi_study_Analysis_of_EPR_Schemes_July_2021.pdf
2966 (adelphi consult GmbH, Berlin, Germany, 2021).

2969 255 Sasaki, S. & Araki, T. Estimating the possible range of recycling rates achieved by dump
2970 waste pickers: The case of Bantar Gebang in Indonesia. *Waste Manage. Res.* **32**, 474-481
2971 (2014).

2972 256 Vaccari, M., Torretta, V. & Collivignarelli, C. Effect of improving environmental
2973 sustainability in developing countries by upgrading solid waste management techniques:
2974 A case study. *Sustainability* **4**, 2852-2861 (2012).

2975 257 Simatele, D. M., Dlamini, S. & Kubanza, N. S. From informality to formality:
2976 Perspectives on the challenges of integrating solid waste management into the urban
2977 development and planning policy in Johannesburg, South Africa. *Habitat. Int.* **63**, 122-
2978 130 (2017).

2979 258 Jaligot, R., Wilson, D. C., Cheeseman, C. R., Shaker, B. & Stretz, J. Applying value
 2980 chain analysis to informal sector recycling: A case study of the Zabaleen. *Resour.*
 2981 *Conserv. Recycl.* **114**, 80-91 (2016).

2982 259 Andrianisa, H. A., Brou, Y. O. K. & Séhi bi, A. Role and importance of informal
 2983 collectors in the municipal waste pre-collection system in Abidjan, Côte d'Ivoire.
 2984 *Habitat. Int.* **53**, 265-273 (2016).

2985 260 Lino, F. & Ismail, K. Analysis of the potential of municipal solid waste in Brazil. *Environ*
 2986 *Dev* **4**, 105-113 (2012).

2987 261 Zhou, Y. & Xiong, H. 北京市垃圾拾荒者的资源贡献及其经济价值估测. *Ecol.*
 2988 *Econom.*, 168-171 (2010).

2989 262 Burneo, D., Cansino, J. M. & Yñiguez, R. Environmental and socioeconomic impacts of
 2990 urban waste recycling as part of circular economy. The case of Cuenca (Ecuador).
 2991 *Sustainability* **12**, 3406 (2020).

2992 263 Cajamarca Cajamarca, E. S., Bueno Sagbaicela, W. R. & y Jimbo Días, J. S. De cero a
 2993 dinero: La basura como fuente principal para un negocio inclusivo de reciclaje en Cuenca
 2994 (Ecuador). *Retos Revista de Ciencias de la Administración y Economía* **9**, 71-87 (2019).

2995 264 Ferronato, N., Preziosi, G., Gorritty Portillo, M. A., Guisbert Lizarazu, E. G. & Torretta,
 2996 V. Assessment of municipal solid waste selective collection scenarios with geographic
 2997 information systems in Bolivia. *Waste Manage.* **102**, 919-931 (2020).

2998 265 Miranda, I. T., Fidelis, R., de Souza Fidelis, D. A., Pilatti, L. A. & Picinin, C. T. The
 2999 integration of recycling cooperatives in the formal management of municipal solid waste
 3000 as a strategy for the circular economy: The case of Londrina, Brazil. *Sustainability* **12**,
 3001 10513 (2020).

3002 266 Rutkowski, J. E. Inclusive packaging recycling systems: Improving sustainable waste
 3003 management for a circular economy. *Detritus* **13**, 29-46 (2020).

3004 267 Sasaki, S. *et al.* Recycling contributions of dumpsite waste pickers in Bantar Gebang,
 3005 Indonesia. *J. Mater. Cycles Waste Manage.* **22**, 1662-1671 (2020).

3006 268 Regional Initiative for Inclusive Recycling. Avances en el reciclaje y en la inclusión de
 3007 recicladores básicos en el Ecuador: Diagnóstico en las ciudades de Quito, Guayaquil,
 3008 Cuenca y Manta. <https://latitudr.org/wp-content/uploads/2016/04/Reciclaje-Inclusivo-y-Recicladores-de-base-en-EC.pdf> (Regional Initiative for Inclusive Recycling, 2015).

3010 269 Ogwueleka, T. C. & BP, N. Activities of informal recycling sector in North-Central,
 3011 Nigeria. *Energy. Nex.* **1**, 100003 (2021).

3012 270 Sasaki, S., Watanabe, K., Widyaningsih, N. & Araki, T. Collecting and dealing of
 3013 recyclables in a final disposal site and surrounding slum residence: the case of Bantar
 3014 Gebang, Indonesia. *J. Mater. Cycles Waste Manage.* **21**, 375–393 (2018).

3015 271 OECD.Stat, Global plastics outlook. <https://stats.oecd.org/> (2022).

3016 272 Dimitrakakis, E., Janz, A., Bilitewski, B. & Gidarakos, E. Small WEEE: Determining
 3017 recyclables and hazardous substances in plastics. *J. Hazard. Mater.* **161**, 913-919 (2009).

3018 273 Stenvall, E. Electronic waste plastics characterisation and recycling by melt-processing.
3019 Licentiate of Engineering. Thesis, Chalmers University of Technology (2013).

3020 274 Nonclercq, A. Mapping flexible packaging in a circular economy [F.I.A.C.E]. PDEng
3021 Chemical Product Design. Thesis, Delft University of Technology (2016).

3022 275 Cimpan, C., Bjelle, E. L. & Strømman, A. H. Plastic packaging flows in Europe: A
3023 hybrid input-output approach. *J. Ind. Ecol.* **25**, 1572-1587 (2021).

3024 276 Europur. Flexible polyurethane foam in mattresses and furniture: an overview of possible
3025 end of life solutions. https://elegant-williamson.46-242-128-94.plesk.page/wp-content/uploads/2022/03/factsheetPU_final.pdf (European Association of Flexible
3026 Polyurethane Foam Blocks Manufacturers, Brussels, Belgium, 2016).

3027

3028 277 Antonopoulos, I., Faraca, G. & Tonini, D. Recycling of post-consumer plastic packaging
3029 waste in the EU: Recovery rates, material flows, and barriers. *Waste Manage.* **126**, 694-
3030 705 (2021).

3031 278 Roosen, M. *et al.* Detailed analysis of the composition of selected plastic packaging
3032 waste products and its implications for mechanical and thermochemical recycling.
3033 *Environ. Sci. Technol.* **54**, 13282-13293 (2020).

3034 279 MBA Polymers UK Limited. Reliable, innovative, sustainable recycled plastics.
3035 <https://www.mbapolymers.co.uk/gb/> (2022).

3036 280 MGG Polymers GmbH. Sustainable plastics production. <https://mgg-polymers.com/>
3037 (2022).

3038 281 PRAKTIK system s.r.o. Electrical waste recycling.
3039 <https://www.praktiksystem.cz/electrical-waste-recycling/> (2022).

3040 282 Bage Plastics GmbH. Change perspective. Change the rules think sustainable.
3041 <https://bage-plastics.com/de/bage-plastics/> (2022).

3042 283 Yoshida, A. *et al.* E-waste recycling processes in Indonesia, the Philippines, and
3043 Vietnam: A case study of cathode ray tube TVs and monitors. *Resour. Conserv. Recycl.*
3044 **106**, 48-58 (2016).

3045 284 Haarman, A., Magalini, F. & Courtois, J. Study on the impacts of brominated flame
3046 retardants on the recycling of WEEE plastics in Europe., <https://www.bsef.com/wp-content/uploads/2020/11/Study-on-the-impact-of-Brominated-Flame-Retardants-BFRs-on-WEEE-plastics-recycling-by-Sofies-Nov-2020.pdf> (Sofies, 2020).

3047

3048

3049 285 Boudewijn, A. *et al.* Systematic quantification of waste compositions: A case study for
3050 waste of electric and electronic equipment plastics in the European Union. *Sustainability*
3051 **14**, 7054 (2022).

3052 286 Butturi, M. A., Marinelli, S., Gamberini, R. & Rimini, B. Ecotoxicity of plastics from
3053 informal waste electric and electronic treatment and recycling. *Toxics* **8**, 99 (2020).

3054 287 Owusu-Sekyere, K., Batteiger, A., Afoblikame, R., Hafner, G. & Kranert, M. Assessing
3055 data in the informal e-waste sector: The Agbogbloshie Scrapyard. *Waste Manage.* **139**,
3056 158-167 (2022).

3057 288 Chakraborty, P. *et al.* Baseline investigation on plasticizers, bisphenol A, polycyclic
3058 aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic
3059 waste recycling workshops and nearby open dumpsites in Indian metropolitan cities.
3060 *Environ. Pollut.* **248**, 1036-1045 (2019).

3061 289 Chruszcz, A. & Reeve, S. Composition of plastic waste collected via kerbside: Results of
3062 a waste compositional analysis of plastics at MRFs and PRFs.
3063 <https://wrap.org.uk/resources/report/composition-plastic-waste-collected-kerbside#download-file> (Waste and Resources Action Programme (WRAP), Banbury,
3064 2018).

3065 290 OECD. Global plastics outlook: Economic drivers, environmental impacts and policy
3066 options. <https://www.oecd-ilibrary.org/content/publication/de747aef-en> (OECD
3067 Publishing, Paris, France, 2022).

3068 291 Alencar, M. V. *et al.* How far are we from robust estimates of plastic litter leakage to the
3069 environment? *J. Environ. Manage.* **323**, 116195 (2022).

3070 292 Hernandez, J. & Fitzgerald, C. Searching for uncollected litter with computer vision.
3071 *arXiv:2211.14743* (2022). <https://ui.adsabs.harvard.edu/abs/2022arXiv221114743H>.

3072 293 Elliott, T. *et al.* Assessment of measures to reduce marine litter from single use plastics.
3073 https://ec.europa.eu/environment/pdf/waste/Study_sups.pdf (European Commission,
3074 Luxembourg, 2018).

3075 294 Eurostat. Municipal waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (2021).

3076 295 Walker, T., Wong, T. & Wootton, R. *Effectiveness of Street Sweeping for Stormwater
3077 Pollution Control.* (CRC for Catchment Hydrology, 1999).

3078 296 Department for Environment Food and Rural Affairs (Defra). Achieving improvements
3079 in street cleansing & related services. London, 2005).

3080 297 Coffey, M. & Coad, A. *Collection of Municipal Solid Waste in Developing Countries.*
3081 (United Nations Human Settlements Programme (UN-HABITAT), 2010).

3082 298 Yadav, V. *et al.* Framework for quantifying environmental losses of plastics from
3083 landfills. *Resour. Conserv. Recycl.* **161**, 104914 (2020).

3084 299 Samson, O., Oluwole, A. & Abimbola, S. On the physical composition of solid wastes in
3085 selected dumpsites of Ogbomosoland, South-Western Nigeria. *J. Wat. Res. Protect.* **3**,
3086 661-666 (2011).

3087 300 D-Waste *et al.* The world's 50 biggest dumpsites: 2014 report. <http://www.atlas.d-waste.com/Documents/Waste-Atlas-report-2014-webEdition.pdf> (D-Waste, 2014).

3088 301 Velis, C. A. & Cook, E. Mismanagement of plastic waste through open burning with
3089 emphasis on the global south: A systematic review of risks to occupational and public
3090 health. *Environ. Sci. Technol.* **55**, 7186-7207 (2021).

3091 302 Minnesota Population Center, Integrated public use microdata series international:
3092 Version 7.3. IPUMS https://international.ipums.org/international-action/extract_requests/download (2020).

3093

3097 303 Brazilian Institute of Geography and Statistics - IBGE. Demographic Census 2010: Characteristics of the population and the domiciles universe results.
 3098
 3099 <https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=793>
 3100 (Brazilian Institute of Geography and Statistics - IBGE, Rio de Janeiro, Brazil, 2011).

3101 304 Anguilla Statistics Department. Selected housing and household indicators – analytical brief. <https://unstats.un.org/UNSD/Demographic/sources/census/wphc/anguilla/AIA-2015-05-22.pdf> (Government of Anguilla, Anguilla, 2015).

3104 305 National institute of statistics and economic analysis. Main socio demographic and economic indicators of the borgou department (RGPH-4, 2013) [in French].
 3105 <https://instad.bj/images/docs/insae-statistiques/demographiques/population/Principaux%20Indicateurs%20avec%20projetcions%20RGPH4/Principaux%20indicateurs%20socio%20d%C3%A9mographiques%20et%20%C3%A9conomiques%20RGPH-4.pdf> (National institute of statistics and economic analysis (INSAE), Benin, 2016).

3111 306 INE – National Statistics Institute, Bolivia: Households according to department and solid waste treatment, 2011-2021. INE – National Statistics Institute
 3112 <https://www.ine.gob.bo/index.php/estadisticas-sociales/vivienda-y-servicios-basicos/encuestas-de-hogares-vivienda/> (2022).

3115 307 Statistics Botswana. Botswana demographic survey report 2017.
 3116 <https://www.statsbots.org.bw/sites/default/files/publications/Botswana%20Demographic%20Survey%20Report%202017.pdf> (Statistics Botswana, Gaborone, Botswana, 2018).

3118 308 Ministry of Finance & Economic management. Census of population and dwellings.
 3119 http://www.mfem.gov.ck/images/documents/Statistics_Docs/5.Census-Surveys/4.Census-Report/2011_Cook_Islands_Population_Census_Report.pdf (Government of Cook Islands, Rarotonga, Cook Islands, 2011).

3122 309 National Institute of Statistics and Censuses (INEC), Costa Rica: Status indicators and access to basic housing services by canton. National Institute of Statistics and Censuses (INEC) https://admin.inec.cr/sites/default/files/media/repoplaccenso2011-09.xls_0_2.xlsx (2015).

3126 310 National Office of Statistics and Information. Population and housing census Cuba 2012.
 3127 http://www.onei.gob.cu/sites/default/files/informe_nacional_censo_0.pdf (National Office of Statistics and Information, Havana, Cuba, 2014).

3129 311 National Office for National Statistics. National household survey: HOME-2015 - general report [in spanish].
 3130 <https://archivo.one.gob.do/Multimedia/Download?ObjId=29305> (National Office for National Statistics, Santo Domingo, Dominican Republic, 2016).

3133 312 Ministry of Health and Population, El-Zanaty and Associates & ICF International. Demographic and health survey 2014.
 3134 <https://dhsprogram.com/pubs/pdf/FR302/FR302.pdf> (Ministry of Health and Population & ICF International, Cairo, Egypt, 2015).

3137 313 General Directorate of Statistics and Census (DIGESTYC). Household survey 2019.
 3138 <https://www.transparencia.gob.sv/institutions/minec/documents/401354/download>

3139 (Ministry of Economy Government of the Republic of El Salvador General Directorate of
3140 Statistics and Censuses, Delgado, El Salvador, 2020).

3141 314 Central Statistical Agency. Welfare monitoring survey 2015/16: Indicators on living
3142 standard, accessibility, household assets - volume II.
3143 <https://catalog.ihsn.org/catalog/9223/download/92816> (Central Statistical Agency, Addis
3144 Ababa, 2016).

3145 315 Fiji Bureau of Statistics. 2017 Fiji population and housing census.
3146 <https://www.statsfiji.gov.fj/component/advlisting/?view=download&format=raw&fileId=5970> (Fiji Bureau of Statistics, Suva, Fiji, 2018).

3148 316 The Gambia Bureau of Statistics (GBoS). Environment statistics compendium.
3149 <https://www.gbosdata.org/downloads/environmental-statistics-61> (The Gambia Bureau of
3150 Statistics (GBoS), Serrekunda, The Gambia, 2020).

3151 317 Ghana Statistical Service. Population & housing census 2010.
3152 https://www2.statsghana.gov.gh/nada/index.php/catalog/51/related_materials (2012).

3153 318 National Institute of Statistics Guatemala, General household characteristics. 2018
3154 census: Table B6.1 - Households by main form of garbage disposal, by department [in
3155 Spanish]. National Institute of Statistics Guatemala
3156 <https://www.censopoblacion.gt/expo/TabB6.xlsx> (2018).

3157 319 Sub Directorate of Environmental Statistics. Environmental care behavior indicators
3158 2014.
3159 <https://www.bps.go.id/publication/2015/12/23/2cdc2ef08c706d6f205c69fc/indikator-perilaku-peduli-lingkungan-hidup-2014.html> (Central Bureau of Statistics, Jakarta,
3160 Indonesia, 2014).

3162 320 Statistical Institute of Jamaica (SIJ), 2011 census of population and housing - Jamaica.
3163 Statistical Institute of Jamaica (SIJ)
3164 <https://statinja.gov.jm/Census/PopCensus/2011%20Census%20of%20Population%20and%20Housing%20k.pdf> (2011).

3166 321 National Statistics Office. 2020 population and housing general report and results
3167 https://sdd.spc.int/digital_library/republic-kiribati-2020-population-and-housing-general-report-and-results (Ministry of Finance, Tarawa, Republic of Kiribati, 2021).

3169 322 National Statistical Office. 2018 Malawi population and housing census.
3170 http://www.nsomalawi.mw/index.php?option=com_content&view=article&id=226:2018-malawi-population-and-housing-census&catid=8:reports&Itemid=6 (National Statistical
3171 Office, Zomba, Malawi, 2020).

3173 323 National Institute of Statistics and Geography (INEG). Environmental information
3174 compendium. <https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825189518>
3175 (National Institute of Statistics and Geography (INEG), Aguascalientes, Mexico, 2020).

3176 324 Namibia Statistics Agency (NSA). Namibia population and housing census 2011.
3177 <https://nada.nsa.org.na/index.php/catalog/19/related-materials> (Namibia Statistics Agency
3178 (NSA), Windhoek, Namibia, 2012).

3179 325 National Institute of Development Information (INIDE). Housing report: Continuous
3180 household survey (ECH) 2019 - 2020 [In Spanish].
3181 https://www.inide.gob.ni/docs/Ech/2020/INFORME_DE_CARACTERISTICAS_DE_LAS_VIVIENDAS2019_2020.pdf (National Institute of Development Information
3182 (INIDE), Managua, Nicaragua, 2021).

3183

3184 326 National Statistics Institute (INE). Paraguay statistical yearbook 2019.
3185 <https://www.ine.gov.py/resumen/MTcz/anuario-estadistico-2019> (National Statistics
3186 Institute (INE), Fernando de la Mora, Paraguay, 2021).

3187 327 Samoa Bureau of Statistics. Samoa's experimental solid waste accounts FY2013-14 to
3188 FY2015-16.
3189 https://www.sbs.gov.ws/digi/Samoa's%20Experimental%20Solid%20Waste%20Arrounts_2013-2014%20to%202015-2016.pdf (Samoa Bureau of Statistics, Apia, Samoa, 2019).

3190

3191 328 Statistics Sierra Leone. Sierra Leone 2015 population and housing census: National
3192 analytical report.
3193 https://www.statistics.sl/images/StatisticsSL/Documents/Census/2015/2015_census_national_analytical_report.pdf (Statistics Sierra Leone, Freetown, Sierra Leone, 2017).

3194

3195 329 Department of Census and Statistics. Census of population and housing 2012: Provisional
3196 information based on 5% sample.
3197 <http://www.statistics.gov.lk/Population/StatisticalInformation/CPH2011/Census2012ResultsPopulationHousingBased5Sample> (Ministry of Finance and Planning, Colombo, Sri
3198 Lanka, 2012).

3199

3200 330 Central Statistics Office. 2010 population and housing census preliminary report
3201 (Updated April 2011). <https://catalog.ihsn.org//catalog/4328/download/56501> (Central
3202 Statistics Office, Castries, St Lucia, 2011).

3203 331 National Bureau of Statistics. Housing condition, household amenities and assets
3204 monograph: 2012 population and housing census volume IV.
3205 <https://www.nbs.go.tz/index.php/en/census-surveys/population-and-housing-census?start=10> (National Bureau of Statistics, Zanzibar, Tanzania, 2015).

3206

3207 332 Tonga Statistics Department. Tonga 2016 census of population and housing: Volume 1:
3208 Basic tables and administrative report - second edition.
3209 https://sdd.spc.int/digital_library/tonga-2016-census-population-and-housing-volume-1-basic-tables-and-administrative (Tonga Statistics Department, Nuku'alofa, Tonga, 2018).

3210

3211 333 Uganda Bureau of Statistics. Uganda national household survey 2016/2017 report.
3212 <https://catalog.ihsn.org//catalog/9249/download/92938> (Uganda Bureau of Statistics,
3213 Kampala, Uganda, 2018).

3214 334 Palestinian Central Bureau of Statistics. Population, housing and establishments census
3215 2017: Housing report - final results - Palestine. Report No. 2444,
3216 <https://www.pcbs.gov.ps/Downloads/book2444.pdf> (Palestinian Central Bureau of
3217 Statistics, Ramallah, Palestine, 2019).

3218 335 KANTAR. Burning in UK homes and gardens. Report No. PB 14644,
3219 <https://randd.defra.gov.uk/ProjectDetails?ProjectID=20159&FromSearch=Y&Publisher=>

3220 1&SearchText=AQ1017&SortString=ProjectCode&SortOrder=Asc&Paging=10#Descrip
3221 tion (Department for Environment Food and Rural Affairs, London, UK, 2020).

3222 336 Copping, S., Quinn, C. & Gregory, R. Review and investigation of deep-seated fires
3223 within landfill sites. Report No. SC010066,
3224 [https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_](https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291589/scho0307bmco-e-e.pdf)
3225 [data/file/291589/scho0307bmco-e-e.pdf](https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291589/scho0307bmco-e-e.pdf) (Environment Agency, Bristol, UK, 2007).

3226 337 Bates, M. Managing landfill site fires in Northamptonshire.
3227 <http://cfps.org.uk.surface3.vm.bytemark.co.uk/domains/cfps.org.uk/local/media/library/677.pdf> (Environment and Transport Scrutiny Committee: Northamptonshire County
3228 Council, Northampton, 2004).

3230 338 Dlamini, W. M. *et al.* National inventory on open burning practices and unintentional
3231 persistent organic pollutants (UPOPS) releases.
3232 [https://stopopenburning.unitar.org/site/assets/files/1089/eswatini-](https://stopopenburning.unitar.org/site/assets/files/1089/eswatini-inventory_report_for_open_burning_project-oct2017.pdf)
3233 [_inventory_report_for_open_burning_project-oct2017.pdf](https://stopopenburning.unitar.org/site/assets/files/1089/eswatini-inventory_report_for_open_burning_project-oct2017.pdf) (Swaziland Environment
3234 Authority (SEA), Swaziland, 2017).

3235 339 Wang, Y. *et al.* Atmospheric emissions of typical toxic heavy metals from open burning
3236 of municipal solid waste in China. *Atmos. Environ.* **152**, 6-15 (2017).

3237 340 IPCC, R. IPCC guidelines for national greenhouse gas inventories. *Prepared by the
3238 national greenhouse gas inventories programme*, 10-11 (2006).

3239 341 Wiedinmyer, C., Yokelson, R. J. & Gullett, B. K. Global emissions of trace gases,
3240 particulate matter, and hazardous air pollutants from open burning of domestic waste.
3241 *Environ. Sci. Technol.* **48**, 9523-9530 (2014).

3242 342 National Environmental Engineering Research Institute. Air quality assessment,
3243 emissions inventory and source apportionment studies: Mumbai.
3244 http://mpcb.gov.in/ereports/pdf/Mumbai_report_cpcb.pdf (Central Pollution Control
3245 Board - New Delhi, Mumbai, 2010).

3246 343 Białowicz, J. S., Rogula-Kozłowska, W. & Krasuski, A. Contribution of landfill fires to
3247 air pollution – An assessment methodology. *Waste Manage.* **125**, 182-191 (2021).

3248 344 Graedel, T. E. Material flow analysis from origin to evolution. *Environ. Sci. Technol.* **53**,
3249 12188-12196 (2019).

3250 345 Brunner, P. H. & Rechberger, H. *Practical Handbook of Material Flow Analysis: For
3251 Environmental, Resource, and Waste Engineers.* (CRC press, 2016).

3252 346 Meylan, G., Reck, B. K., Rechberger, H., Graedel, T. E. & Schwab, O. Assessing the
3253 reliability of material flow analysis results: The cases of rhenium, gallium, and
3254 germanium in the United States economy. *Environ. Sci. Technol.* **51**, 11839-11847
3255 (2017).

3256 347 Tanzer, J. & Rechberger, H. Setting the common ground: A generic framework for
3257 material flow analysis of complex systems. *Recycling* **4**, 23 (2019).

3258 348 Wang, Y. & Ma, H. W. Analysis of uncertainty in material flow analysis. *J Clean Prod*
3259 **170**, 1017-1028 (2018).

3260 349 Gottschalk, F., Scholz, R. W. & Nowack, B. Probabilistic material flow modeling for
3261 assessing the environmental exposure to compounds: Methodology and an application to
3262 engineered nano-TiO₂ particles. *Environ. Model. Software* **25**, 320-332 (2010).

3263 350 Kawecki, D. & Nowack, B. Polymer-specific modeling of the environmental emissions
3264 of seven commodity plastics as macro-and microplastics. *Environ. Sci. Technol.* **53**,
3265 9664-9676 (2019).

3266 351 Kawecki, D., Scheeder, P. R. W. & Nowack, B. Probabilistic material flow analysis of
3267 seven commodity plastics in Europe. *Environ. Sci. Technol.* **52**, 9874-9888 (2018).

3268 352 Kawecki, D. & Nowack, B. A proxy-based approach to predict spatially resolved
3269 emissions of macro- and microplastic to the environment. *Sci. Total Environ.* **748**,
3270 141137 (2020).

3271 353 Bornhöft, N. A., Nowack, B. & Hilty, L. M. Representation, propagation, and
3272 interpretation of uncertain knowledge in dynamic probabilistic material flow models.
3273 *Environmental Modeling & Assessment* **26**, 709-721 (2021).

3274 354 Sieber, R., Kawecki, D. & Nowack, B. Dynamic probabilistic material flow analysis of
3275 rubber release from tires into the environment. *Environ. Pollut.* **258**, 113573 (2020).

3276 355 Kawecki, D., Goldberg, L. & Nowack, B. Material flow analysis of plastic in organic
3277 waste in Switzerland. *Soil. Use, Manage.* **37**, 277-288 (2021).

3278 356 UNEP. Resolution adopted by the United Nations Environment Assembly on 2 March
3279 2022, UNEP/EA.5/Res.14.
3280 <https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/39764/END%20PLASTIC%20POLLUTION%20-%20TOWARDS%20AN%20INTERNATIONAL%20LEGALLY%20BINDING%20INSTRUMENT%20-%20English.pdf?sequence=1&isAllowed=y> (Nairobi, 2022).

3284 357 Kantai, T., Hengesbaugh, M., Hovden, K. & Pinto-Bazurco, J. F. Summary of the second
3285 meeting of the intergovernmental negotiating committee to develop an international
3286 legally binding instrument on plastic pollution: 29 May – 2 June 2023. *Earth. Neg. Bull.*
3287 **36**, 1-12 (2023).

3288 358 Mihai, F. C. *et al.* Plastic pollution, waste management issues, and circular economy
3289 opportunities in rural communities. *Sustainability* **14**, 20 (2022).

3290 359 Hoornweg, D. & Bhada-Tata, P. What a waste: A global review of solid waste
3291 management.
3292 https://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf (Urban Development & Local
3293 Government Unit - World Bank, Washington, DC, USA, 2012).

3295 360 Karak, T., Bhagat, R. M. & Bhattacharyya, P. Municipal solid waste generation,
3296 composition, and management: The world scenario. *Crit. Rev. Environ. Sci. Technol.* **42**,
3297 1509-1630 (2012).

3298 361 Hidalgo, D., Corona, F. & Martín-Marroquín, J., "Municipal waste management in
3299 remote areas of Spain: islands and rural communities" in Proceedings from 4th

3300 International Conference on Sustainable Solid Waste Management, Limassol (2016), pp.
3301 25.

3302 362 GADM, GADM data (version 4.1). GADM <https://gadm.org/data.html> (2022).

3303 363 Defra, Local authority collected waste statistics - local authority data. Department for
3304 Environment Food & Rural Affairs (Defra)
3305 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1144270/LA_and_Regional_Spreadsheet_202122.xlsx (2023).

3307 364 Taghipour, H., Amjad, Z., Aslani, H., Armanfar, F. & Dehghanzadeh, R. Characterizing
3308 and quantifying solid waste of rural communities. *J. Mater. Cycles Waste Manage.* **18**,
3309 790-797 (2016).

3310 365 Rajpal, A., Kazmi, A. A. & Tyagi, V. K. Solid waste management in rural areas nearby
3311 river Ganga at Haridwar in Uttarakhand, India. *J. Appl. Nat. Sci.* **12**, 592-598 (2020).

3312 366 Syafrudin, S., Masjhoer, J. M. & Maryono, M. Characterization and quantification of
3313 solid waste in rural regions. *Glob. J. Environ. Sci. Manag.* **9**, 337-352 (2023).

3314 367 Asgari, A. R. *et al.* Solid waste characterization and management practices in rural
3315 communities, Tehran and Alborz (Iran). *J. Solid. Waste. Tech. Manage.* **45**, 111-118
3316 (2019).

3317 368 Elhamdouni, D., Arioua, A., Karaoui, I., Baaddi, A. & Ouhamchich, K. A. Household
3318 solid waste sustainable management in the Khenifra region, Morocco. *Arab. J. Geosci.*
3319 **12**, 744 (2019).

3320 369 Edjabou, M. E., Møller, J. & Christensen, T. H. Solid waste characterization in Kétao, a
3321 rural town in Togo, West Africa. *Waste Manage. Res.* **30**, 745-749 (2012).

3322 370 Rodrigo-Ilarri, J., Vargas-Terranova, C. A., Rodrigo-Clavero, M. E. & Bustos-Castro, P.
3323 A. Advances on the implementation of circular economy techniques in rural areas in
3324 Colombia under a sustainable development framework. *Sustainability* **13**, 3816 (2021).

3325 371 Taboada-González, P., Aguilar-Virgen, Q., Ojeda-Benítez, S. & Armijo, C. Waste
3326 characterization and waste management perception in rural communities in mexico: A
3327 case study. *Environ. Eng. Manage. J.* **10**, 1751-1759 (2011).

3328 372 Emara, K. Sustainable solid waste management in rural areas: A case study of Fayoum
3329 governorate, Egypt. *Energy. Nex.* **9**, 100168 (2023).

3330 373 Bernardes, C. & Günther, W. M. R. Generation of domestic solid waste in rural areas:
3331 Case study of remote communities in the Brazilian Amazon. *Human Ecology* **42**, 617-623
3332 (2014).

3333 374 Ministry of Environment of The Republic of Moldova. National waste management
3334 strategy of The Republic of Moldova (2013-2027).
3335 https://serviciiocale.md/public/files/deseuri/2013_01_24_NATIONAL_WASTE_MANAGEMENT_STRATEGY_2013-27_ENG.pdf (Chisinau, Moldova, 2013).

3337 375 Collaguazo, G., Badea, A., Stan, C. & Pásztai, Z. Household wastes characterization and
3338 seasonal variations in Bihor County, Romania *Sci. Bullet. Ser. C - Electri. Eng. Comp. Sci.* **78**, 281-290 (2016).

3340 376 Ciuta, S., Apostol, T. & Rusu, V. Urban and rural MSW stream characterization for
3341 separate collection improvement. *Sustainability* **7**, 916-931 (2015).

3342 377 European Union. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste.
3343 https://eur-
3344 lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0031:EN:HTML (The
3345 Council of the European Union, 1999).

3346 378 OECD. Municipal waste, generation and treatment.
3347 https://stats.oecd.org/index.aspx?DataSetCode=MUNW (2022).

3348 379 Eurostat. Treatment of waste by waste category, hazardousness and waste management
3349 operations.
3350 https://ec.europa.eu/eurostat/databrowser/view/env_wastrt/default/table?lang=en (2022).

3351 380 Ding, Y. *et al.* A review of China's municipal solid waste (MSW) and comparison with
3352 international regions: Management and technologies in treatment and resource utilization.
3353 *J Clean Prod* **293**, 126144 (2021).

3354 381 Lu, J. W., Zhang, S., Hai, J. & Lei, M. Status and perspectives of municipal solid waste
3355 incineration in China: A comparison with developed regions. *Waste Manage.* **69**, 170-186
3356 (2017).

3357 382 Kovalenko, V. V. *et al.*, "Problem of municipal solid waste of Ukraine and ways to solve
3358 it" in IOP Conference Series: Earth and Environmental Science (2022).

3359 383 DBPR. Data from: A local-to-global emissions inventory of macroplastic pollution.
3360 INSERT DOI when created (Dryad, 2023).

3361 384 OECD.Stat. OECD.Stat: Regions and cities. https://stats.oecd.org/ (2023).

3362 385 Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M. *Sensitivity Analysis in Practice: A
3363 Guide to Assessing Scientific Models*. (John Wiley & Sons, Ltd, Chichester, UK, 2004).

3364 386 Sobol, I. M. Sensitivity estimates for nonlinear mathematical models. *Math. Model.
3365 Comp. Exper.* **4**, 407-414 (1993).