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S.1 Methodology summary

We present the first of two stages in the ‘Spatio-temporal quantification of plastic pollution
origins and transportation’ model (SPOT). This first stage begins when waste is generated
(created), meaning the part of the system where products and materials are ‘discarded’ by their
users, and ends when those materials are: recycled; recovered; stored in disposal facilities; or
‘emitted’. We use ‘emission’ to describe the flow of plastic from a state of ‘containment’
(control) to one where it is ‘uncontained’ (Extended data Fig. 1). By uncontained we mean that
plastic is in the ‘environment’, both built and natural, and is no longer subject to any form of
management; it is unintentionally present. We call the point between the contained and
uncontained states, the ‘emission boundary’ (Fig. S1). For clarification, we do not consider land
disposal facilities (landfills or dumpsites), to be in the environment because despite the very poor
level of control in some cases (dumpsites), they are nonetheless contained, they are intended to
be there. We also consider solid waste which is in sewerage (wastewater) to be uncontained
because despite its presence in a contained structure, it is unintentionally present, meaning that
the sewers were not designed to carry it.

I SPOT model Emission boundary I
| p < | |
I | |
| Contained in engineered or | - N |
| dedicated facilities | Uncontained in natural or built | |
| ; Emissions |
| (intended to be there) | environment !
| | > (unintentionally present) |
| | |
| [ Mismanaged ] | |
| | |
| | [ Unmanaged ] :
' Managed } ' \ J |
| | I
I - [ |
I | |

Stage 1: Emission inventory Stage 2: Transport

Fig. S1. The boundary between the present ‘upstream’ part and the next ‘downstream’ part of the
‘Spatio-temporal quantification of plastic pollution origins and transportation’ model (SPOT).

Emissions of plastic fall into two categories: 1) open burning (combustion in open, uncontrolled
fires); and 2) debris (physical material items, objects, and particles). Emissions through open
burning (calculated as the mass partially or completely combusted) are considered a system
endpoint. Emissions of debris are at risk of further transport through the terrestrial environment
(unmanaged system) via the action of wind or surface water, movement which is described in the
second stage of the SPOT model, and which will not be discussed further here.

Our objectives were achieved following a seven-step workflow illustrated in Fig. S2 according to
a series of methodological steps (MS).
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Fig. S2. Overview of steps in methodological process. Abbreviations: Solid waste management
(SWM); methodological step (MS).

Municipal level solid waste management data were obtained from both global (MS1a, Section
S.6.1) and national datasets (MS1b, Section S.6.2). Each record in these datasets was assigned a
spatial administrative area according to the area that the data is believed to represent (MS2,
Section S.6.3). Data, termed here primary input data, for seven solid waste management
variables, termed here primary input variables, (Section S.5), were extracted from each record
and harmonised to the most consistent basis possible (MS3a, Section S.6.4).

Primary input data were screened and corrected depending on the methodology used to obtain
them. This ensured comparability between and within datasets (MS3b, Section S.6.4). For
example, if the waste generation rate was considered to represent only collected waste, the value
was corrected to obtain the overall waste generation rate (including uncollected MSW) by
dividing it by the collection coverage. Following these necessary corrections, data in each record
were screened to remove values that were obviously incorrect, for instance, due to user error
during data input (MS3c, Section S.6.4). Variables, defined in Section S.5, such as formal dry
recycling, incineration, and other recovery were also manually checked for plausibility based on
a review of literature. For example, many cities report a ‘recycling rate’, but it is often unclear if
material is collected by the formal authorities or by informal recycling sector participants. The
plausibility review attempted to improve reliability by determining what each data point is likely
to represent, and therefore provide a justification for either accepting or rejecting it as formal dry
recycling. Further cleaning of the dataset was performed by manually assessing the plausibility

5



132  of outlier data points to remove those which were believed to be a result of error rather than
133  measured variation (Section S.6.4).
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134

135  Fig. S3. Derivation of data used in Stage 1 of the Spatio-temporal Quantification of Plastic

136  Pollution Origins and Transportation model (SPOT). Primary input data are activity data

137  measured at municipal level which have been quality checked, harmonised, and corrected. Blue,
138 orange, and green hoxes represent secondary data which are defined as follows: Additional data
139  sources are transfer coefficients that have been obtained from sources that are not directly

140  measured at municipal level and are assumed for modelling purposes; Assumed equivalence

141  indicates where, in the absence of measured data, we have used a coefficient from another part of
142  the model which is approximately equivalent to the data that would be expected in another;

143 Emission sub-models were used to approximate the flow of material from the contained to

144 uncontained state using a combination of activity data and abductive reasoning; Activity data
145  sub-models are similar to emission sub-models except that they are used to approximate mass or
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transfer coefficients within the model where measured data do not exist. Other definitions can be
found in Table S2 and Table S3. Abbreviations: Municipal solid waste (MSW).

Data indicating economic, social, geographical, and cultural status and development (hereafter
socioeconomic indicators) were assigned to each screened data record and to a global list ! of
administrative areas (MS4, Section S.7.1) that were assessed as those most likely to reflect the
municipal level data (Section S.6.6). These consisted of both national level socioeconomic
indicators and sub-national socioeconomic indicators. Missing socioeconomic indicators were
imputed using predictive mean matching method (Section S.7.2).

Primary input data alongside socioeconomic indicators (independent variables) were used to
train quantile regression random forest machine learning models for each of the seven primary
input variables (MSb5a, Section S.7.3). Ten-fold cross validation with five repeats tuned the
hyperparameters of each random forest model, before their suitability was assessed against a
holdout test dataset. The quantile regression random forest models were then able to be used to
predict solid waste management data for all global municipalities with data gaps, including
associated uncertainty (MS5b, Section S.7.3).

Whereas metrics such as waste generation, waste composition, and less so, waste collection
coverage, are routinely measured, there are flows in other parts of the waste management system
which are rarely documented. To account for these unrecorded and in some cases, neglected
material flows and phenomena, we have developed a series of sub-models which use a
combination of indirectly related, measured activity data and objective reasoning to approximate
SWM activity and mass (Fig. S3). Where appropriate, we have also used data from literature
which is assumed to be equivalent to data required in our model (e.g., proportion of plastic that is
rigid or flexible). For example, we assume that the open burning of rejects happens at the same
rate as the open burning of uncollected waste. These data, termed secondary data inputs in
combination with the primary data inputs allowed detailed information of municipal solid waste
(MSW) management and plastic waste to be quantified for every municipality in the world.
These sub-models and datasets were used in combination with machine learning outputs to feed
into probabilistic material flow analysis as illustrated in Fig. S3.

Primary input variables and secondary input variables within each administrative boundary
were assigned a probability distribution from which 5,000 random samples were drawn from
each as part of a probabilistic material flow analysis using Monte Carlo simulation. Results of
municipal level material flows were aggregated to generate results at multiple spatial scales such
as at national, regional, and global level, including an assessment of uncertainty (Section S.9).
This provided a harmonised global macroplastic pollution emission inventory suitable for
reporting and ongoing monitoring.

S.2 Scope

As with other global plastic pollution models?®, our global inventory model focusses on
municipal solid waste, meaning the flows of waste generated from households, commerce and
trade, small businesses, office buildings and institutions (schools, hospitals, government
buildings) following the UN-Habitat® definition which excludes construction and demolition,
industry and sewage treatment. We exclude textiles; electrical and electronic equipment waste;
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and waste material arising at sea. We model at municipal scale because that is the resolution at
which waste is managed and which waste data are measured. Quantification of municipal waste
flows begin at the point of waste generation. We do not consider upstream stages such as
production or consumption of goods because our method is focused on the waste management
phase.

‘Embedded plastics’, for example those as part of assemblies of items or appended or adhered to
non-plastic items are assumed to be included in our model, despite the uncertainty of their
inclusion in measured source data.

Plastics waste exports from high income countries (HICs) have been justifiably highlighted as a
potential contributor to plastic pollution in the Global South where rejects are at higher risk of
being mismanaged’. However, in recent years the global secondary materials markets have
changed substantially and we assert that they have become a distraction from more prevalent
emissions sources®.

We deliberately omit plastic waste exports from our analysis for two reasons: (1) Attributing
plastic waste exports to a municipal source and recipient is a complex task and the data to do
such analysis are not available; and (2) Since the near complete ban on imported plastic waste by
China in 2018°, more recent changes to the Basel Convention®, and to EU Regulation
1013/20061%, plastic waste exports from OECD countries to the Global South have plummeted to
less than 1.3 Mt-y* 1213 Based on the mean plastic waste emitted from recycling system rejects
across all the countries in the Global South (approximately 1 Mt), approximately 2% of the 50
Mt collected for recycling is emitted into the environment. From this we can approximate an
emission burden of 0.03 Mt-y* from HIC exports; virtually all of which (95%) can be attributed
to eight countries: Japan, Netherlands, United States, Germany, Belgium, United Kingdom,
Australia, and Italy. Although we acknowledge that these emissions may affect the per capita
burden in a few HICs, we argue that the overall contribution is negligible in the context of 52.5
Mt-y ! plastic waste emissions worldwide. Therefore, we concluded that the very large and
complex task of including exported plastic waste in our model framework was unjustified as the
proportion of emissions is comparatively exiguous.

The concept of ‘mismanaged waste’ is not used as the basis for modeling here. Instead, we
describe the complex flows of waste through the technosphere and the emission of waste plastic
from five separate sources into the unmanaged system (Fig. S1). Each source considers the type
of emission (with open burning of plastic distinct from particles of solid waste, termed here
‘debris”), as well as the format of the plastic (rigid versus flexible). Microplastics are omitted
from our analysis which focusses on the macroplastic fraction, items and particles >5 mm across
any spatial dimension*4,

S.3 Solid waste management data

Solid waste management data vary substantially in both availability and reliability®. In the
Global South, where waste is seldom weighed, waste generation is often estimated by counting
trucks entering the disposal sites and applying assumptions'®. Aside from the inaccuracy of this
method, it does not account for the many other pathways through which waste flows. For
example, waste which has not been collected is often burned, buried, dumped into waterways, or
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deposited on the surface of the land®. The informal recycling sector also collect valuable
materials, sometimes before they leave the premises of the household or business in which they
were generated!’. The reliability of waste composition data is also highly variable, particularly in
parts of the Global South?8, There is even evidence that some well-funded high income country
waste characterisation studies are carried out without consideration of statistical representation of
samples®®. Collection coverage is often estimated because it is not straightforward to measure
that which has not been managed. The number of households and businesses which do not
receive a service can be used as a proxy. Speculatively, in cases where waste management
services are minimal, the resources to make such estimations may also be lacking. Moreover,
there may be political interest in under- or over-reporting statistics. For instance in India, official
data include only a small proportion of MSW generated, and high collection coverage (95.4%)
throughout the country®. In practice the data exclude rural areas and many towns and villages,
meaning waste generation is underestimated by a factor of between 4 and 72°-22,

As we highlight in this study, measurement of waste generation and management takes place at
municipal or sub-municipal level, and in the Global South, it is focused primarily on urban areas.
National waste management datasets are created by aggregating these municipal
measurements?3, However, because there are often insufficient resources to keep records in all
municipalities, many are interpolated for the purposes of national scale aggregation'®. Whereas
all other plastic pollution models use nationally aggregated data, which are either distributed
(allocated) to a finer resolution (top-down approach), our model uses municipal scale data which
are scaled upwards (bottom-up approach). By doing so, we aim to represent observable local
scale variability between municipal waste management practices. As interventions to tackle
plastic pollution often require localised intelligence, our model can identify locations where
plastic pollution is most problematic and enable decisionmakers to target their scarce resources.

S.4 System maps

Flows of waste in 50,702 municipalities were mapped according to three distinct system maps
(Fig. S4-Fig. S8) using material flow analysis (MFA)?* as described in Sections S.4.1, S.4.2, and
S.4.3.

S.4.1 Tributary MFA

The first system map is a simplistic MFA, known hereafter as the ‘Tributary MFA’ (Fig. S4)
because it feeds the subsequent MFA where the results are calculated. This aimed to quantify the
major flows of MSW managed by formal systems in every municipality worldwide, using data
that is both directly measured by local authorities and commonly reported. For example,
municipal waste generation rate (tP1), collection coverage (tC1), controlled disposal (tC3) and
the proportions sent to various treatment and recovery facilities (tC2). Nomenclature is listed in
Supplementary Table 2.
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Fig. S4. Tributary material flow analysis (MFA) system map showing the major flows of
municipal solid waste (MSW) formally managed in a municipality. Orange arrows represent data
input points used to populate the processes and flows. Masses calculated for the pink process
boxes feed through into the Full MSW MFA (Fig. S5).

The population of each municipality was multiplied by the MSW generation rate (kg-cap™-y?) to
arrive at an estimate of waste generation (tP1). The collection coverage (tC1) dictates how much
waste is collected (tP2), and therefore enters the waste management system compared to the
amount that remains uncollected (tP8) and is assumed to be self-managed by residents and other
waste generators. Here, ‘self-management’ of waste includes ad-hoc activities carried out by
individuals (households/workplaces) in order to manage discarded materials (waste) in the
absence of formal managed service provision by a community, municipal or private entity.
Activities include open burning; burying; scattering (dumping|) on land; and dumping into
waterways and coastal waters. The amount of collected waste sent for incineration (tP4iii), dry
recycling (tP4i), and other recovery facilities (tP4ii) were summed to calculate the amount of
waste going to treatment or recovery (tP4), whereas the remaining collected waste was
transferred to land disposal (tP3) where it was further distributed by either controlled (tP5) or
uncontrolled (tP9) disposal (defined in Table S2, Section S.5).

S.4.2 Full MSW MFA

Whereas the Tributary MFA (Section S.4.1) provides a simplistic overview of the major MSW
flows within a municipality, it is not detailed enough to quantify all MSW flows and therefore
describe all plastic emission sources.
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Fig. S5. Full municipal solid waste (MSW) material flow analysis (MFA) system map (Full
MSW MFA). Orange arrows represent data input points used to populate the processes and flows
of the MFA. The masses associated with the pink process boxes are populated from those in the
Tributary MFA (Fig. S4).

Flows such as those which represent the amount of material collected by the informal recycling
sector (IRS) (i.e., waste pickers) can be substantial across municipalities in the Global South?,
but are often unreported because they occur outside of the formal waste management system?®,
Emissions of solid waste into the environment are also largely unreported because measuring
them is challenging and most municipalities are not compelled or motivated to do so. For
example, emissions are often spatially and temporally dispersed, can be orders of magnitude
lower in mass than collected flows, and frequently depend on human behaviour and practices
which are challenging to quantify (e.g., open burning). Nonetheless, quantification of flows that
are neglected from formal reporting are required to estimate plastic emissions into the
environment. The ‘Full MSW MFA’, incorporates these neglected flows to provide a more
detailed map of MSW flows in each municipality (Fig. S5).

The Full MSW MFA uses the masses calculated in the Tributary MFA as inputs, as shown by the
pink process boxes. Assignment of mass in this manner ensured that these processes match as
closely as possible to the masses measured by municipalities. The remaining flows and processes
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were calculated from these using transfer coefficients as described in Section S.9. A full system
of equations describing the MFA calculations is presented separately in Supplementary Table
2.

S.4.3 Plastics MFA

The final system map is the ‘Plastics MFA’, shown in Fig. S6, Fig. S7 and Fig. S8. This MFA
takes system MSW endpoints from the Full MSW MFA, converts them to plastic material flows,
and then disaggregates them by rigid and flexible format according to the definitions proposed
by Charles and Kimman?'. Plastic flows are calculated at these system endpoints rather than for
the Full MSW MFA to incorporate the plastic compositions which vary at different parts of the
solid waste management system. For example, the proportion and composition of plastic in litter
is likely to be different to the proportion and composition of plastic generated at the household
level. Alternatively, if plastic flows were mapped throughout all the system, transfer coefficients
on aspects such as the proportion of plastics sent to composting or incineration would need to be
sourced. Data to evidence these parts of the system would be challenging to obtain and are
largely irrelevant to the overall analysis. However, given the amount of plastic in MSW (CO0) is
commonly measured, we considered it advantageous to obtain these data to calculate plastic
waste generation. Additionally, it provided a reliable proxy for plastic compositions at system
ends points in situations where no other data were available.
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The plastic sorting processes carried out by the formal and informal recycling sectors were
disaggregated into both rigid and flexible plastic formats before assigning transfer coefficients on
aspects such as the reject (loss) rate (Fig. S7: C23aa, C23ab, C24aa, C24ab). Here we define
these reject rates as the amount of plastic collected for recycling that is subsequently discarded
during sorting operations at the sorting or reprocessing stages. These transfer coefficients were
derived via a sub-model described in Section S.8.3 which considers recyclability and value of
plastics to approximate the probability of material being positively selected for reprocessing.

There are 20 points in the MFA system where plastic is emitted into the environment
(uncontrolled system), though these can be simplified to five generic ‘emission sources’ as
shown in Table S1.

Table S1. System emissions: generic sources and specific components.

Generic emission source Material format and mode of emission
. Generic system emission component  Debris Burned
ID# Description - .
Rigid Flex Rigid Flex
. P20a P21a
GES-01 Uncollected waste Uncollected plastic
P20aa P20ab P2laa P21ab
. - P2a -
GES-02 Litter Uncollected plastic litter
P2aa P2ab - -
. . . L P6a -
GES-03 Collection system Collection system plastic emissions
P6aa P6ab - -
. . . P19a P17a
GES-04 Disposal system Uncontrolled disposal of plastic

P19aa P19ab P17aa P17ab

Formal P33aa P33ab P32aa P32ab

GES-05 Sorting and reprocessing Mismanaged sorting rejects
Informal ~ P3laa P31lab P30aa P31lab

S.5 Data inputs

Data on solid waste management was collected at a municipal level using existing published data
sources, as discussed in Sections S.6.1 and S.6.2. This data was required to populate the MFAs
from Section S.4 and can be divided into two main categories:

Primary data inputs Data on solid waste management that is widely measured by municipalities and of which
large amounts of data exist.

Secondary data inputs Data on solid waste management that are infrequently measured by municipalities, and
for which limited data exists yet is critical to include in plastic pollution quantification.

The Tributary MFA was populated solely by the primary data inputs, as shown in Table S2.

Further description on the sources and methods use to collect, harmonise, and clean the data is
discussed in Section S.6.

16



355

356
357

358
359
360
361
362
363

364

Table S2. Primary data inputs used to populate the Tributary MFA.

ID Name Unit Description Source
Pop  Population People Number of people living within a specified boundary 28
tPlpc MSW generation rate kg-cap-d Waste generated from households, commerce and trade, small
businesses, office buildings and institutions (schools, hospitals,
government buildings). It also includes bulky waste (e.g., white goods,
old furniture, mattresses) and waste from selected municipal services,
e.g., waste from park and garden maintenance, waste from street
cleaning services (street sweepings, the content of litter containers,
market cleansing waste), if managed as waste.
tC1  Collection coverage % wt. of MSW  Waste that has been collected with the intention or purported intention
generated to transport it to a place for treatment or disposal. Waste can be
collected by public authorities, commercial entities.
tC2i  Formal collection of % wt. of Waste collection by the formal sector with the intention, or purported
MSW for dry formally intention of delivering it to a facility where it can be sorted and or
recycling collected MSW reprocessed to recover material value.
tC2ii  Formal collection of % wt. of Waste collection by the formal sector with the intention, or purported 203
MSW for other formally intention of delivering it to a facility where it can be treated or
recovery collected MSW processed through composting, anaerobic digestion, or processes which
recover energy or materials other than incineration or recycling.
tC2iii Formal collection of % wt. of Waste collection with the intention, or purported intention of delivering
MSW for incineration formally it to a combustion facility where it will be processed with or without
collected MSW energy recovery. This definition also includes solid recovered fuel
production, regardless of where the combustion takes place.
tC3  Controlled disposal of % wt. of A facility to which waste is transported for the purposes of material or
MSW formally energetic recovery or disposal. Controlled facilities are operated under
collected MSW basic, improved, or full control according to the Ladder of waste
for disposal management facilities’ control level defined in the UN-Habitat® Waste
Wise Cities Tool.
Co Plastic in MSW* % wt. of MSW  Proportion (wt. as received.) of plastic material as proportion of total
generated waste.
COa Rigid plastic in % wt. of MSW  Proportion (wt. as received.) of rigid format plastic material as
MSW* plastic generated proportion of all plastic.

* These inputs were not used in Tributary MFA but are still grouped as a Primary data input as they widely measured data points
and collected from the same datasets as above.

The mass calculated for each process in the Tributary MFA was assigned to the Full MSW MFA
and Plastics MFA, with the secondary data inputs (Table S3) used to populate the remaining
flows and processes. Sourcing of the inputs relied on a combination of assigning any existing
data to archetypes (e.g., country income categories), modelling based on available data and
known relationships, or as a last resort, assumptions. Details of the sources used, and analysis is
discussed further in Section S.7.

Table S3. Secondary data inputs used to populate Full MSW MFA and Plastics MFA.

ID Name Unit Description Source

WP Number of People The number of people engaged in waste collection activities Modelled based on
informal waste (for the purposes of waste recovery or as a service) who do not available data
pickers operate under contracts with formal authorities or are (Section S.7)

unlicensed to carry out such activities.

WP, Productivity of tonnes-cap>y? The average amount of waste that is collected by informal
informal waste waste pickers.
pickers
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ID Name Unit Description Source
C1 Uncollected litter % of MSW Waste generated on-the-go (in the public domain) that is
generation discarded directly by humans into the environment without
having previously been concentrated or containerised and
which is not collected and managed.

C3 Debris emissions % of collected  Waste that has been concentrated and presented for collection
from collection MSW or which has been collected and which subsequently escapes
system from containers or vehicles prior to being deposited at a

transfer, storage, treatment, or disposal facility.

C8 Open burning of % of Waste that has been deposited in an uncontrolled disposal Based on 6%
uncontrolled uncontrolled facility and which is subsequently combusted in an open (Section S.7)
disposal disposal of uncontrolled fire, accidentally, intentionally, or spontaneously.

MSW

Cc9 Debris emissions % of Waste that has been deposited in an uncontrolled disposal Modelled based on
from uncontrolled uncontrolled facility which has not been combusted in open uncontrolled available data
disposal of MSW  disposal of fires and which is subsequently emitted from that uncontrolled (Section S.7)

MSW unburned facility into the environment through the action of wind,
surface water or gravity.

C10  Uncollected MSW % of uncollected Material that has not been collected and which is subsequently
openly burned MSW combusted in an open uncontrolled fire, accidentally,

intentionally, or spontaneously.

Cl1 Plasticin % of uncollected The proportion of waste material which is characterised as 36
uncollected litter litter plastic.

Cl12 Plasticin % of uncollected The proportion of uncollected waste material which is Assumed same as
uncollected MSW MSW openly  characterised as plastic, and which is openly burned. plastic in MSW
openly burned burned (C0)

C13 Plasticin % of collection The proportion of collection system debris emissions which is
collection system system debris  plastic.
debris emissions  emissions

Cl14 Plasticin disposal % of disposal ~ The proportion of debris emissions from uncontrolled disposal Assumed (Section
debris emissions  debris emissions of MSW which is characterised as plastic. S.7)

C15 Plastic collected % of informal  The proportion of waste collected by informal waste pickers ~ Modelled based on
by informal sector collection which is characterised as plastic. available data
recycling sector ~ of MSW for dry (Section S.7)

recycling

C16 Plastic collected % of formal The proportion of waste collected for recycling by the formal %7
by formal sector collection sector which is characterised as plastic.
recycling sector  of MSW for dry

recycling

C17  Plasticin % of The proportion of waste material which is deposited in Assumed same as
uncontrolled uncontrolled uncontrolled disposal sites and openly burned, and which is plastic in MSW
disposal of MSW  disposal of characterised as plastic. (Co)
openly burned MSW openly

burned

C18 Plasticin % of uncollected The proportion of waste material that has not been collected
uncollected MSW MSW unburned and which is dumped as debris into the environment, and which
unburned is characterised as plastic.

Clla Rigid plastic in % of uncollected The proportion of plastic waste in uncollected litter which we 36
uncollected litter  plastic litter describe as ‘rigid’, according to the definitions proposed by

Charles and Kimman?’,

Cl2a Rigid plastic in % of uncollected The proportion of uncollected rigid plastic waste which is Assumed same as
uncollected plastic plastic openly  burned in open uncontrolled fires. rigid plastic in
openly burned burned MSW (C0a)

Cl3a Rigid plastic in % of collection The proportion of collection system plastic debris emissions

collection system
debris emissions

system plastic

debris emissions

which is rigid.
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ID Name Unit Description Source
Cl4a Disposal system 9% of disposal ~ The proportion of disposal system plastic debris emissions Assumed (Section
rigid plastic debris system plastic ~ which is rigid. S.7)
emissions debris emissions
Cl7a Rigid plastic in % of The proportion of plastic waste in the disposal system which is Assumed same as
uncontrolled uncontrolled burned in open uncontrolled fires and which is rigid. rigid plastic in
disposal of plastic disposal of MSW (C0a)
openly burned plastic openly
burned
Cl18a Rigid plastic in % of uncollected The proportion of uncollected plastic waste which is rigid.
uncollected plastic plastic unburned
unburned
C2la Rigid plastic in % of informal ~ The proportion of plastic waste collected by the informal Modelled based on
informal collection sector collection recycling which is rigid. available data
for recycling of plastic for dry (Section S.7)
recycling
C22a Rigid plastic in % of formal The proportion of plastic waste collected by the formal Assumed same as
formal collection  sector collection recycling which is rigid. rigid plastic in
for recycling of plastic for dry MSW (C0a)
recycling
C23aa Informal sector % of rigid The proportion of informal sector rigid plastics, collected for ~ Modelled based on
sorting rejects of  plastic collected recycling, which is rejected at the sorting or reprocessing stage. available data
rigid plastic by informal (Section S.7)
sector for dry
recycling
C23ab Informal sector % of flexible  The proportion of informal sector flexible plastics, collected for
sorting rejects of  plastic collected recycling, which is rejected at the sorting or reprocessing stage.
flexible plastic by informal
sector for dry
recycling
C24aa Formal sector % of rigid The proportion of formal sector rigid plastics, collected for
sorting rejects of  plastic collected recycling, which is rejected at the sorting or reprocessing stage.
rigid plastic by formal sector
for dry recycling
C24ab Formal sector % of flexible The proportion of formal sector flexible plastics, collected for
sorting rejects of  plastic collected recycling, which is rejected at the sorting or reprocessing stage.
flexible plastic by formal sector
for dry recycling
C25aa Unmanaged rigid % of informal ~ The proportion of sorting rejects from rigid plastic waste Assumed (Section
plastic sorting sector rigid collected for recycling by the informal sector, which is S.8.3)
rejects by informal plastic sorting  unmanaged, meaning it is not collected and transferred to a
sector rejects facility (controlled or otherwise).
C25ab Unmanaged % of informal ~ The proportion of sorting rejects from flexible plastic waste
flexible plastic sector flexible  collected for recycling by the informal sector, which is
sorting rejects by  plastic sorting  unmanaged, meaning it is not collected and transferred to a
informal sector rejects facility (controlled or otherwise).
C26aa Unmanaged rigid % of formal The proportion of sorting rejects from rigid plastic waste
plastic sorting sector rigid collected for recycling by the formal sector, which is
rejects by formal  plastic sorting  unmanaged, meaning it is not collected and transferred to a
sector rejects facility (controlled or otherwise).
C26ab Unmanaged % of formal The proportion of sorting rejects from flexible plastic waste
flexible plastic sector flexible  collected for recycling by the formal sector, which is
sorting rejects by  plastic sorting  unmanaged, meaning it is not collected and transferred to a
formal sector rejects facility (controlled or otherwise).
C27aa Open burning of % of informal  The proportion of unmanaged rigid plastic rejected during Assumed same as

unmanaged rigid
plastic sorting
rejects by informal
sector

sector
unmanaged rigid
plastic sorting
rejects

sorting and reprocessing by the informal recycling sector that is C10
subsequently burned in open uncontrolled fires.
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ID Name Unit Description Source
C27ab Open burning of % of informal  The proportion of unmanaged flexible plastic rejected during
unmanaged sector sorting and reprocessing by the informal recycling sector that is
flexible plastic unmanaged subsequently burned in open uncontrolled fires.

sorting rejects by
informal sector

flexible plastic
sorting rejects

C28aa Open burning of
unmanaged rigid
plastic sorting
rejects by formal

% of formal The proportion of unmanaged rigid plastic rejected during
sector sorting and reprocessing by the formal recycling sector that is
unmanaged rigid subsequently burned in open uncontrolled fires.

plastic sorting

sector rejects

C28ab Open burning of % of formal The proportion of unmanaged flexible plastic rejected during
unmanaged sector sorting and reprocessing by the formal recycling sector that is
flexible plastic unmanaged subsequently burned in open uncontrolled fires.

sorting rejects by
formal sector

flexible plastic
sorting rejects

S.6
cleaning

Primary data collection, harmonisation, correction, and

S.6.1 Global municipal-level solid waste management primary input data

sources (MS1a)

Solid waste generation and management data for municipalities across the world were obtained
from four sources?®3? as shown in Table S4.

Table S4. Global municipal-level solid waste management primary input data sources.

Quality Primary input data Data Scale  Number of Methodology and quality assurance

assurance source year(s) locations

hierarchy (records)

1 Waste Wise Cities 2019 - 2022 Global 38" Primary data collection as described in the WaCT
Tool (WaCT)?® user manual®. Quality assurance is checked based on

data coherence and comparison against other datasets
(e.g. What a Waste 2.0 data®).

2 Wasteaware Cities 2007 - 2018 Global 71 Secondary data used with some quality assurance
Benchmark Indicators checks by waste management experts®
(WABI)3!

3 What a Waste 2.0 2018 Global 368 Combination of secondary data collected by literature
(WaW2.0) cities reviews and questionnaire. Data quality assessment
data3? unclear but believed to be via data coherence

calculations (e.g. percentages sum to 100).
4 United Nations 1989 - 2019 Global 237" Data submitted by cities viaa questionnaire provided

Statistics Division
(UNSD) Cities Waste
data3?

by UNSD?®. Data quality assessed via data coherence
calculations (e.g. percentages sum to 100).

* As of April 2023; ** Latest available year

Data for 714 municipalities in 180 countries were extracted from the global datasets, although
this number reduced to 553 municipalities after removal of duplicate locations or during the
screening and cleaning stages (Section S.6.4).
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All global data sources had variable data years, dating back to 1989 in the case of the UNSD
waste data. Data older than 15 years (2006 at time of analysis) was excluded as it was assumed
that waste management has changed substantially since then, thereby reducing its relevance. This
exclusion had only limited impact as most locations had data for more recent years. Following
the data cleaning phase, the mean and median year of the primary data inputs was 2015. With
further efforts in data collection occurring at a rapid pace in recent years, particularly as part of
the UN-Habitat® Waste Wise Cities Tool official data collection effort associated with the
quantification and monitoring of the SDG target 11.6.1 of environmentally sound management of
solid waste in cities, it is envisaged that more up to date data can be harnessed in the future.
However, at present we maximised data quantity and quality over data year relevance.

Each global data source had its own methodology for data collection (Table S4), which had to be
understood so that data could be harmonised and corrected where necessary (Section S.6.4).
Quality assurance measures implemented by the data source administrators and investigators
were also assessed. This enabled us to prioritise records which were duplicated across multiple
datasets and to inform the data-cleaning phase. The WaCT data were assumed to have the
highest quality because they were recently obtained using a standardised primary sampling
method® and then quality checked for coherence by experts. The WABI data were assumed the
next highest quality because it was checked by waste management experts alongside wider
additional checks®°. The quality assurance for Waw?2.0 city data and UNSD city waste data is
believed to mainly be via data coherence calculations only, for example, where percentages are
checked to sum to 100%. Based on our own assessment of the data quality, we assigned a higher
priority to the WaW2.0 data compared to UNSD city waste data.

S.6.2 National municipal-level solid waste management data sources (MS1b)

In addition to the four global-scale data sources (Waw2.0, WaCT, WABI and UNSD),
municipal level data were extracted from two national databases as shown in Table S5.
Specifically, the national waste databases of Indonesia® and China*® were included due to
previous works?? highlighting these countries as key contributors to plastic pollution and only
limited municipal-level data being available for these from the four global datasets.

Table S5. National municipal-level solid waste management primary input data sources.

Primary input data source Data Scale Number of locations Methodology and quality assurance

year(s) (records)
Sistem Informasi 2020 Indonesia 502 Data are uploaded by representatives from
Pengelolaan Sampah (10 records extracted) municipalities. Data quality assurance is not reported.
Nasional (SIPSN)3*
Ministry of Housing and 2019 China 676" Data provenance is unclear, though it is assumed that
Urban-Rural Development (47 records extracted) records are submitted to the Ministry by the
(MoHURD)3 municipalities. Data quality assurance is not reported.

* Sub-Provincial level

Data record extraction from the national databases of China and Indonesia was limited to 2% of
the total national records to avoid overrepresentation and potential biasing in the subsequent
machine learning steps (Section S.7). Records were chosen at random and filtered according to
the following conditions:

e Only data for urban areas was selected (as discussed in Section S.7.1).
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e Only data with a high level of certainty with regards to administrative area matching were
selected (>60% similarity for China municipalities or score of 1 for Indonesian
municipalities, as discussed in Section S.6.3)

The motivation behind the selection of only urban data points was to ensure compatibility with
the four global datasets, which predominantly included data for urban areas, whereas the other
filter was applied to ensure data quality.

The most recent published year was chosen for each of the countries at the time of analysis,
giving data from 2020 for Indonesia and 2019 for China. Data quality assurance and provenance
for the two datasets was not clearly stated by either. It is assumed that data are uploaded directly
by municipal authorities, and assessment of the content infers that only limited quality assurance
is carried out in each case. We assessed each of these datasets in full, flagging anomalies and
suspected data entry errors; only including data that appeared to be entered correctly.

S.6.3 Assignment of administrative areas (MS2)

The Global Administrative Areas (GADM) dataset V3.6 is a geographical information systems
(GIS) database including 386,733 polygons that represent up to five administrative area levels
within each country.

The number of boundaries used by national administrations to organise their political, economic,
and social affairs varies between countries, with some having just a single national boundary
(Level 0) and others having many thousands of districts (L04) and sub-districts (L05), as is the
case with France or Rwanda.

Although the data extracted from the sources outlined in Table S4 and Table S5 were
predominantly municipal level data, our analysis found the specific spatial boundary to which
these data relate to be unclear in many cases. For example, data provided for ‘London’ may
relate to either the City of London (population ~ 8,000) or Greater London (population ~ 9
million).

Each municipal waste data record (i.e. from Waw2.0, WaCT, WABI, UNSD, SIPSN or
MoHURD) was assigned to a GADM administrative area® by comparing the similarity between:
1) The population reported alongside the original primary data record and the population
calculated by summing GIS population rasters for the years 2010, 2015 and 2020284 across each
GADM polygon; and 2) The urban extent of the city on a Google Maps hybrid layer with the
GADM polygon boundary. Once a decision had been made about which administrative area best
matched the data record, the GADM ID of that boundary was assigned to the data record.
Additionally, a ‘GADM match’ score was assigned to denote how well we believed the data
record matched the administrative area (Table S6).

Data for China published in the MoHURD dataset® were analysed slightly differently to those
outlined in Table S6 because of major discrepancies between those reported by MoHURD and
those in the GADM V3.6 dataset!. This is for two main reasons: 1) MoHURD reports data in
Chinese script for which translations into Roman Script have undergone methodological changes
in recent years and are subject to the interpretation of software or human translator*?; and 2) The
Chinese Authority has implemented substantial reclassification of its sub-provincial
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administrative areas over recent decades®, resulting in a mismatch between areas reported in
MoHURD and in the GADM.

Table S6. Criteria for level of correlation between administrative areas! and municipal waste
data records.

Administrative
area match score Criteria

1 The difference in population between that reported in data record compared to that calculated via GIS for the
administrative area and for the nearest reported year is less than 20% or has plausibly increased or decreased
during the intervening years. Additionally, the administrative area correlates well with the urban area based
on Google Maps hybrid layer.

2 The difference in population between that reported in data record compared to that calculated via GIS for the
administrative area and for the nearest reported year is greater than 20%, but the administrative area
correlates well with the urban area based on Google Maps hybrid layer.

Alternatively, the difference in population between that reported in data record compared to that calculated
via GIS for the administrative area and for the nearest reported year is less than 20%, but the administrative
area correlates poorly with the urban area based on Google Maps hybrid layer.

3 The difference in population between that reported in data record compared to that calculated via GIS for the
administrative area and for the nearest reported year is greater than 20%, and the administrative area
correlates poorly with the urban area based on Google Maps hybrid layer. Despite this, it is reasonable to
conclude the data and administrative area refer broadly to the same location.

4 Unable to find appropriate match between the data record and administrative areas.

To address these challenges, the Chinese script names of the administrative areas (n=708)
reported by MoHURD were translated into Roman Script using the Google Translate function
within Google Sheets. Of these, 32 are reported by MoHURD as provinces and therefore
assigned to Level 1, the remaining 676 were assumed to be Level 2 or 3 and were assigned to the
closest matching GADM polygon following a four-step approach (Table S7).

Table S7. Description of steps taken to assign incineration and collection data from ministry of
Housing and Urban Rural Development (MoHURD)? into the administrative areas according to
the Database of Global Administrative Areas (GADM)™.

Number of
Number of municipalities ~ municipalities assigned
Removed
Step Description (merged) Added LO1 LO2 LO3 Total
la Level 1 names matched 27 27
1b Level 1 names adjusted 4 4
1 1c Level 1 Xinjiang merged with Xinjiang Uygur -1 0 0
Translated Roman script names matched with either Level 2
2a or 3 unique IDs and population within 60% 113 228 341

Translated Roman script names matched with either Level 2
or 3 unique IDs. Population below 60% match but
correlation of GADM polygon with conurbations indicated
2 2b thesame area 68 96 164

Translated names in Roman script or original Chinese script
compared with Google, Google maps and GADM layer
then adjusted as necessary and allocated to Level 2 or 3 if
3a population within 60% 11 107 118

Translated names in Roman script or original Chinese script
compared with Google, Google maps and GADM layer
then adjusted as necessary. Population below 60% match
but correlation of GADM polygon with conurbations
3 3b indicated the same area 6 27 33
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Number of
Number of municipalities ~ municipalities assigned
Removed
Step Description (merged) Added L0l LO02 LO3 Total
Municipalities listed by MoHURD did not match with
GADM but fell within another GADM boundary, therefore
4a records combined with other validated records -10 0 0
Municipalities reported by MoHURD (n=4) matched with
two GADM municipalities, so data distributed between
4b them by population -4 8 8 8
Reassessment of population in the context of Level 3
municipalities already allocated showed good match at
4  4c Level 2 6 6

Totals -15 8 31 204 466 701

Municipalities reported by MoHURD were assigned to GADM V3.6 polygons sequentially according to the steps detailed. The
number of municipalities assigned to each Level during each step are listed under L01, L02, L03. Data for some municipalities
had to be merged in steps 1c, 4a and 4b as the GADM reported areas that had since been split into smaller administrative areas by
the Chinese authorities. Data for other municipalities had to be redistributed into two municipalities in Step 4b because the
Chinese authorities have merged municipalities since creation of the GADM. Abbreviations: Global Administrative Database of
Municipalities (GADM).

S.6.4 Data harmonisation (MS3a), correction (MS3b) and quality screening
(MS3c)

Municipal waste management data reported by each of the six primary input data sources (Table
S4 and Table S5) were not collected using consistent criteria and therefore had to be harmonised
to enable aggregation into a combined dataset that contained parameters with approximately
equivalent basis. Within each dataset, we also took steps to assess: the methods by which data
were collected; the quality of the data; and whether data quality assurance had already been
carried out by the researchers who compiled them. As shown in Table S4 and Table S5, most of
the data sources had only limited quality assurance, meaning substantial cleaning was required.

Numerous authors have highlighted that data reported by municipalities is often
incorrect!>163945 For example, municipalities often estimate MSW generation by measuring the
amount of waste that arrives at a disposal site. However, if some waste is uncollected in the
municipality, or if the informal recycling sector collect material before it reaches the disposal
site, then that measured quantity would be underreported. Therefore, we corrected some reported
MSW generation rates to approximately account for unrecorded material.

This section details the harmonisation, correction, and quality screening steps for each of the six
primary input data sources used in our model.

S.6.4.1  Waste Wise Cities Tool (WaCT)

The WaCT was developed by UN-Habitat® to assist and enable consistent and scientific
collection of municipal level waste management related data across the world. The tool guides
users through a series of steps aimed at quantifying the flows of waste through municipal solid
waste systems, including household and commercial surveys. A WaCT Data Collection
Application (DCA) assists users with collecting and analysing data. Summary results of data
collected are available online via a dedicated data portal?®.
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MSW generation rate (tP1pc), collection coverage (tC1) and controlled disposal (tC3) were
extracted directly from the WaCT DCA to obtain higher precision than the summarised numbers
reported in the WaCT portal UN-Habitat?°,

In the present work, we define controlled disposal using the WACT?® definition of facilities
‘operated under basic, improved or full control according to the Ladder of waste management
facilities’ control level’. We then made a series of assumptions (Sections S.6.4.2 - S.6.4.6) about
how we harmonised other data source definitions with ours.

Additional inputs taken from the WaCT DCA include the percentage of plastic in MSW (C0) and
the percentage of that plastic that is rigid (COa), termed ‘dense plastic’ in WaCT. As these are
only provided for household composition which we assume to be equivalent to MSW plastic
composition. This is a reasonable approximation given that households usually produce the bulk
of MSW generation (assumed as 70% wt. in WaCT as a default).

The primary inputs of formal collection of MSW for dry recycling (tC2i), formal collection of
MSW for other recovery (tC2ii) and formal collection of MSW for incineration (tC2iii) are not
directly reported by WaCT as they all fall within the tools aggregated category of ‘recovery
facilities’. Despite this, an assessment of formal collection of MSW for incineration (tC2iii) can
be made by analysing the recovery facility data available in the WaCT DCA and summing the
mass input to any facility classified as incinerators, before dividing this by the collected mass to
achieve the correct basis. This approach cannot be applied for formal collection for dry recycling
(tC2i) or formal collection of MSW for other recovery (tC2ii) due to many of the sorting and
recovery facilities including contributions from both formal and informal collections. As such,
no data was extracted for these data points.

The SDG indicator 11.6.1, ‘the proportion of municipal solid waste collected and managed in
controlled facilities out of total municipal waste generated, by cities’, is not a direct input to the
MFA’s used in this work, but instead is an output calculated from the MFA’s. To ensure that the
values of SDG 11.6.1 calculated in this work match those of the official WaCT tool, the values
for managed in controlled facilities were also extracted from the WaCT DCA. These are
subsequently used to override the predictions as calculated based on the MFAs in this work for
municipalities having conducted WaCT analysis, thereby ensuring parity with the official
statistics. No further harmonisation, screening, or correction of WaCT data was required.

S.6.4.2  Wasteaware Benchmark Cities Indicators (WABI)

The Wasteaware Cities Benchmark Indicators (WABI) were first developed as a means to
compare cities waste management performance as part of the UN-Habitat flagship publication
Solid Waste Management in the World’s Cities*®, although not yet under the WABI name and
documented by Wilson, et al.*’. Later adaptions of the methodology saw the development of
WABI as a complete framework and set of indicators to enable consistent solid waste data
collection and reporting which would enable assessments and comparison of waste management
systems around the world for their effectiveness at controlling waste, social inclusion in waste
management and environmental sustainability®®. Since its publication, the indicators have been
used as a basis for over 70 studies, examples of which can be found in3%47-6°,

WABI data used in this analysis is available from Velis, et al.*°, with additional data sourced
based on reports that used the WABI framework in China®?, Egypt®®, Ethiopia and South
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Africa®. Wasteaware also provided supplementary information on case studies to aid in the
analysis, particularly to ensure consistency across the different versions of the tool. Data years
for the WABI dataset were assumed 3 years prior to the publication date of the data for each
municipality as reported by Velis, et al.*°. A data year for Ethiopian cities was only provided for
Bishoftu, therefore it was assumed all other Ethiopian cities were profiled in the same year.

The MSW generation rate (tP1pc) was calculated from the above data by dividing the reported
waste generation (t-y1), by the population provided in the dataset, and converting the units to
kg-cap*-d*. Similarly, collection coverage (tC1) and plastic in MSW (CO0) was reported as a
percentage of MSW generation, therefore no further processing was necessary.

We assumed that the definition of controlled treatment and disposal facilities defined by
indicator 2E used in the WABI®® is equivalent to the definition of controlled disposal used in this
analysis. Although this indicator relates to both treatment and disposal facilities, in practice the
indicator is mainly used to describe disposal facilities only. Similarly, as the units of this
indicator in WABI are as a percentage of waste destined for treatment or disposal, the units
matched closely with that required for the controlled disposal input (tC3), therefore no further
processing was needed.

The primary data inputs of formal collection of MSW for dry recycling (tC2i), formal collection
of MSW for other recovery (tC2ii) and formal collection of MSW for incineration (tC2iii) are
not directly reported as part of the WABI. Instead, the WABI reports a recycling rate that
includes dry recycling by both formal and informal sectors, plus organics valorisation (e.g.,
composting, anaerobic digestion and animal feeding). Supplementary information associated
with the WABI case studies* allowed many of the recycling data points to be disaggregated
between the proportion that was reported as formal recycling compared to that which was
informally collected. Though the informal sector is involved in recycling some wet wastes, it is
predominantly focused on dry material, therefore, we assumed that all informal recycling
reported in WABI was dry recycling. This enabled the WABI recycling rate to be adjusted so
that it only included formal recycling, thereby becoming closer to that required by the primary
data inputs. Importantly, informal recycling rates are included in our analysis, however, these are
modelled and added on as part of the secondary data inputs (Section S.7). Lastly, to enable
complete harmonisation with the primary data inputs of formal recycling (tC2i) and other
recovery (tC2ii), the formal recycling rate was split into the proportion that is related to dry
recycling, and the proportion sent for organics valorisation (‘other recovery’). As this was not
explicitly recorded for many records in the WABI dataset, we obtained evidence from literature
for each municipality to estimate this split (Table S8).

Table S8. Review of evidence for municipalities in the Wasteaware Cities Benchmark Indicators
(WABI) dataset with reported formal recycling with the aim to understand the split between
formal dry recycling and other recovery.

Proportion of WABI
formal recycling

Municipality Country  that is dry recycling Justification Source
62% dry recycling and 18% composting reported as a percentage of
Adelaide Australia  77.5% waste generation 66

Evidence of a recycling facility in Varna processing household waste
for recycling but no mention of any other recovery facility type,
Varna Bulgaria  100% therefore allocated completely to dry recycling 67
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Municipality Country

Proportion of WABI

formal recycling

that is dry recycling Justification

Source

Although the reference suggest both dry recycling and composting
facility exist, the latter is reported to have negligible flows. As such,
dry recycling is assumed to represent the entire amount of the WABI

Bahrain Bahrain 100% recycling value. 68
Evidence of formal cooperative waste pickers working alongside

Belo informal waste pickers. No evidence of other recovery such as

Horizonte Brazil 100% composting so all assigned to dry recycling. 69

Victoria- Paper, plastics and glass reportedly recycled. No evidence of

Gastez Spain 100% composting, therefore all recycling assigned to dry recycling. 0

57.7%
Rotterdam  Netherlands Based on 15% composting and 11% dry recycling in South Holland ™
Northern

Belfast Ireland 59.1% 15.9% dry recycling and 11% composting 2

Athens Greece 99.6% 99.6% dry recycling with only 0.4% composting of restaurant waste 73
Dry recycling reportedly performed largely by the informal sector.
NGO’s encouraged to perform composting, therefore all formal

Delhi India 0% recycling allocated to composting. “
Evidence of a composting plant in operation along with collection

Dhaka Bangladesh 0% services for market waste 4
Evidence of some formal dry recycling facilities present in Castries

Castries StLucia  2.5% therefore it is plausible that the 2.5% is formal &
Approximated from a chart — Singapore includes several non-
municipal sources so the reported rate of 59% was adjusted by
deducting construction waste (29%) and slag (8.5%) — leaving 21.5%.
Of this, the combined proportion of horticultural waste and food waste
was 4%; assumed composted or sent for anaerobic digestion. This
means the formal dry recycling rate was 81.4% of all formal MSW

Singapore  Singapore 81.4% recycling 76
Evidence that although some collection of dry recyclables occurs by
the formal sector, this is mixed together with residual waste at the

Curepipe Mauritius - transfer station and taken to disposal sites, therefore omitted. 46
Separate collection of inorganic recyclables available in about 15% of

Canete Peru 100% the municipality. 46
Unable to source reliable data to justify the 5% reported, however
both waste banks and compost facilities are reported to exist.

Jakarta Indonesia - Therefore omitted. "
A small amount of plastics are sorted for recycling formally at the
landfill site. Although compost pits are also present at the landfill site,
it is reported they have difficulty selling this due to glass
contamination. As such, the dry recycling is assumed the dominant

Ghorahi Nepal 100% part of formal recycling. 46
Formal barangay collectors are reported to have material recovery
facilities for dry recycling but also collect biodegradable waste for
composting. It is unclear of the relative split between these activities,

Quezon City Philippines - therefore an equal split is assumed. 46
Believed to be due to waste picker cooperatives therefore assigned to

Managua Nicaragua 100% dry recycling 46
Reported there is a strong formal sector with five recycling companies

Luskau Zambia 100% collection paper, plastics and metal. 46

Surat India - Unable to source reliable data therefore omitted

Bangalore  India - Unable to source reliable data therefore omitted

Warangal India - Unable to source reliable data therefore omitted
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Proportion of WABI
formal recycling
Municipality Country  that is dry recycling Justification Source

Material flow analysis suggest 500 tonnes per year are composted
formally, whereas 7500 tonnes per year of paper goes to recycling
factories directly (assumed formal). Therefore 93.75% of formal

Bishkek Kyrgyzstan 93.75% recycling is dry recycling .
Lahore Pakistan 0% All formal recycling is composting &
Dry recyclables reportedly collected. No evidence of composting or

Castries StLucia  100% other recovery s
San

Francisco USA 72.2% 72.2% dry recycling with the remainder composting 80
Tompkins Evidence of material recovery facilities and mixed dry recyclables
county USA 100% collection at source but no mention of other recovery facilities. 81

Abbreviations: Municipal solid waste (MSW); non-governmental organisation (NGO); WasteAware Benchmark Indicators
(WABI).

The splits found in Table S8 were used to disaggregate the WABI formal recycling rate by dry
recycling and other recovery. As the units of the WABI recycling rate are as a percentage of

waste generation, the values were further divided by the reported collection coverage to convert
the units to a percentage of collected waste, thereby matching those required for tC2i and tC2ii.

Lastly, incineration is not directly reported as part of the WABI dataset. To populate the primary
data input of ‘collected for incineration’ (tC2iii), we gathered evidence to determine whether
incineration was taking place in each municipality. The municipalities in which incineration was
found to occur is shown in Table S9.

Table S9. Amount of waste incinerated in municipalities profiled using the WABI method.

Proportion MSW incinerated

Municipality Country Mass incinerated (t-y) (% of MSW generation) Source
Kunming China 1,382,368 73

Bengbu China 369,619 73

Lanzhou (Lan'Zhou)  China 870,459 100 -
Suzhou China 1,898,138 77

Taian (Tai'an) China 413,755 64

Xian (Xi’an) China 140,750 94

Rotterdam Netherlands 76.232 46
Singapore Singapore 38 76

2 pased on the statement that all residual waste is incinerated with only 1% of residues sent to landfill and 23% recycling,
anaerobic digestion and composting reported in the WABI dataset Abbreviations: municipal solid waste (MSW).

In all cases, collection coverage reported for municipalities which incinerate waste was 100%,
therefore, the units of percentage of MSW generation are equivalent to the units of percentage of
MSW collected. As such, no further processing was required and the values in Table S9 were
used directly as input tC2iii.

S.6.4.3  What a Waste 2.0 (WaW2.0)

The What a Waste 2.0 dataset provided by Kaza, et al.*° reported waste data collected from 367
cities covering nearly every country. Data were obtained by Kaza, et al.* from literature and
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conversations with waste agencies and authorities. Data sources in WaW?2.0 are listed in the
‘City level codebook’ that accompanied the report.

S.6.4.3.1 Collection coverage

The WaW?2.0 dataset includes four fields which are used to report collection coverage using
different units. For some cities no data are reported in any field, others just one field and others
two, three, or four. We assumed they were all equivalent estimates to collection coverage as a
percentage of MSW generation by mass (tC1), and selected them for inclusion in our dataset
according to the following order of the following preference:

% wt. of waste

% of population

% of households

% of geographical area

el A

S.6.4.3.2 MSW generation rate

The amount of MSW generated in each municipality is reported by Waw?2.0 in t-yX. We divided
these rates by the population reported in the dataset itself and then multiplied by (1000/365) to
adjust the units to kg-cap™*-d?.

Approximately 30% of the waste generation entries also report whether scales are used to weigh
the mass of waste collected, and the location at which it was measured. For example, of the 100
cities that reported the measurement method, 69 reported scales were used at the point of
disposal, five at the point of aggregation (e.g., transfer stations), 16 did not have a measurement
method, and ten reported ‘other’. It was assumed that the MSW generation rates were based on
measurements taken from these weighbridges when provided. This implies that many of the
reported waste generation rates represent collected waste only. Therefore, if collection coverage
is less than 100%, the total MSW generation rate has been underreported.

There is evidence that some municipalities and countries may correct their waste generation data
on the basis of waste collection and other factors, for instance for some municipalities in
Brazil®2. There is also some evidence that waste generation is reported as that which has been
‘collected and transported’, for instance by National Bureau of Statistics of China®®. Without
checking each individual record by either re-requesting the information from the municipality or
following up the published source, it was not possible to determine whether the data had already
been corrected. Moreover, for most records (n = 267) in the WaW2.0 city database, the point of
measurement was left blank, creating uncertainty over where the waste was measured and also
whether it was corrected.

To address the potential underestimation of waste generation rates, we carried out a cautious
adjustment by dividing the waste generation rate by the collection coverage. For cities in high-
income countries (HICs), the difference between the reported and adjusted waste generation was
negligible because most cities in HICs reported collection coverage at or close to 100%. For
cities in upper-middle income countries (UMCSs), lower-middle income countries (LMCs) and
low income countries (LICs), the difference between the adjusted waste generation rate and the
original waste generation rate was progressively greater as the collection coverage negatively
correlated with income category, a commonly observed trend>,
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Analysis of the central tendency and spread of the adjusted waste generation data showed that for
some records, cities in UMCs, LMCs and LICs generated substantially more waste than in many
HIC municipalities (Table S10). Whilst parts of some wealthier cities in the Global South may
approach comparability with some poorer cities in HICs, we assumed that it is unlikely that the
median waste generation would exceed that in HICs. Therefore, to control for potentially
overestimated waste generation rates, we screened the adjusted waste generation data to assess
the plausibility of our corrections according to the following criteria:

1. Adjusted waste generation rates for cities in LIC and LMC countries that were greater
than the median waste generation mass for HICs (1.02 kg-cap™*-d*; n = 60) were assumed
to be overcorrected and flagged for potential reversion to the original reported figure.

2. Adjusted waste generation rates for cities in UMC and HICs that exceeded 1.5 times the
interquartile range from the 75" percentile®* were assumed to be outliers (n = 5) and
flagged for potential reversion to the original reported figure.

Cities flagged for a potential correction were screened to identify plausible explanations for a
high waste generation, for instance, for extremely high tourism. Three cities: Hanoi (Vietnam),
San Pedro (Belize) and Honiara (Solomon Islands) were identified as being major tourist
destinations. For each of these three, tourist arrivals statistics were compared with the resident
population to see if there was a substantial inferred increase in population for long enough to
affect the waste generation mass. In each case, we decided that the increase was not great enough
to warrant the increase. Therefore, all the flagged records were reverted (n = 65), reducing the
spread of the data.

Table S10. Side by side comparison of central tendency and spread for waste generation mass
reported in the WAW?2.0 dataset®® compared to mass adjusted by collection coverage (kg-cap™-d-

1).

Dataset Central tendency and spread LIC LMC UuMC HIC

25 percentile 0.27 0.43 0.66 0.65

L Median 0.48 0.58 1.01 1.01
Original data .

75 percentile 0.70 0.85 1.26 141

Inter quartile range 0.43 0.42 0.59 0.76

25t percentile 0.34 0.47 0.74 0.66

. Median 0.67 0.75 1.06 1.02
Adjusted (‘corrected’) .

75™ percentile 1.37 1.32 1.38 141

Inter quartile range 1.03 0.85 0.65 0.75

As shown in Table S11, the 75" percentile for cities in LICs and LMCs of adjusted waste
generation rate with the 65 outliers removed reduced substantially, whereas the data for UMCs
and HICs were barely affected.

Table S11. Central tendency and spread of waste generation mass reported in the WAW?2.0
dataset®, adjusted by collection coverage with the adjustment reverted for some records to
control outliers.

Dataset Central tendency and spread LIC LMC UuMC HIC
25t percentile 0.34 0.46 0.70 0.66

Corrected with some .

corrections reverted Median 0.55 0.64 1.06 1.02
75t percentile 0.75 0.88 1.34 141
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Dataset Central tendency and spread LIC LMC UuMC HIC

Inter quartile range 0.41 0.43 0.64 0.75

S.6.4.3.3 Plastic in MSW

The composition of MSW is reported in WaW2.0, including a category for plastics. If the
summation of the compositions did not equal 100%, values were normalised then assigned to
‘plastic in MSW’ (CO0).

S.6.4.3.4 Recovery and controlled disposal

The proportion of waste that was treated and disposed of is reported in WaW?2.0 under 12
categories for 247 cities. Although the questionnaire used by WaW?2.0 stated that respondents
should report these categories as a proportion of waste generation, we assumed that, for the
majority of cases, it was reported as a proportion of ‘formally collected waste’. Our assumption
is further supported by the fact that 59 cities reported informal recycling rates (as a percentage of
waste generation), yet only six of these cities ensured that the summation of this informal
recycling with the formal treatment and disposal options equaled 100%. By contrast, most of the
cities with data on informal recycling reported that the other 12 treatment and disposal options
summed to 100% (n = 32), whilst the remainder (n = 21) summed to less than 100%. Examples
such as this indicated inconsistencies and errors, which fell into four main groups:

1. In approximately half of cases, the ‘unaccounted for’ category appeared to represent
‘uncollected waste’ rather than material collected and transported. This implies that
some municipalities had followed the instructions and reported proportions as a
percentages of waste generation, whilst the other half had used it to represent collected
waste for which the data to describe the treatment and disposal pathway was not known.

2. Data for informal sector recycling were reported as a proportion of waste generation (n
= 59), yet when combined with the 12 other treatment and disposal options, the majority
(n =53) did not sum to 100%.

3. Only recycling was reported (n = 5) and the other categories were left blank.

4. The sum of categories added up to more or less than 100% (n = 50).

To approximately correct the inconsistent use of the ‘unaccounted for’ field (1), we assumed that
if the sum of ‘unaccounted for’, ‘waterways marine’ and ‘collection coverage’ fields were within
10 percentage points of 100%, then the ‘unaccounted for’ field represented ‘uncollected waste’
(n =65). In all other cases we assumed that the ‘unaccounted for’ field represented collected and
transported waste that had been deposited in an unknown, uncontrolled facility (n = 302).

If data for informal recycling sector collection (2) was within 10% of the reported
‘waste_treatment_recycling_percent’ field, it was assumed both fields represent informal
recycling and therefore the data point was removed from the analysis (informal sector recycling
was instead estimated using a modeling approach to ensure more consistent estimations.

Where only the ‘recycling’ field was reported (3), data were left intact, and the other categories
were left blank exactly as entered. Where the sum of the proportions was less than or greater than
100% (4), we normalised each of the reported categories to 100%. If the summation of the
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treatment and disposal options prior to normalisation summed to 100%, but some of the inputs
were left blank, it was assumed that no other treatment and disposal methods were present in that
municipality. The blank treatment and disposal options were therefore allocated zeros instead of
blanks. If the pre-normalised values did not sum to 100% the blanks were unchanged.

Each of the treatment and disposal types in WaW?2.0 were assigned primary data variables
according to The World Bank® country income category of the municipality (Table S12). The
primary data inputs for formal collection for dry recycling (tC2i) and incineration (tC2iii) each
relate to only a single WaW2.0 category, therefore the proportions reported were used following
the above corrections. Other recovery (tC2ii) was calculated as the sum of the proportions
allocated to the ‘composting’, ‘anaerobic digestion’ and ‘advanced thermal treatment” WaW2.0
categories. As the units for these were assumed as a percentage of collected waste, no further
processing was required. By contrast, the primary data input variable of ‘controlled disposal’
(tC3) is a proportion of waste collected for disposal, therefore this input was calculated as the
sum of the percentages assigned as controlled disposal, divided by all percentages assigned to
disposal.

Table S12. Classification of municipal solid waste treatment and disposal categories reported in
What a Waste 2.0 (WaW2.0)%° by country income categories.

WaWw?2.0 treatment and disposal Classification assigned in this work by income category of country

categories HIC UMC, LMC, LIC

Recycling Formal collection for dry recycling (tC2i) Formal collection for dry recycling (tC2i)
Compost Other recovery (tC2ii) Other recovery (tC2ii)

Anaerobic digestion Other recovery (tC2ii) Other recovery (tC2ii)

Advanced thermal treatment Other recovery (tC2ii) Other recovery (tC2ii)

Incineration Incineration (tC2iii) Incineration (tC2iii)

Landfill gas system Controlled disposal (tC3) Controlled disposal (tC3)

Controlled landfill Controlled disposal (tC3) Controlled disposal (tC3)

Landfill unspecified Controlled disposal (tC3) Uncontrolled disposal

Open dump Uncontrolled disposal Uncontrolled disposal

Other Controlled disposal (tC3) Uncontrolled disposal

Marine / river Uncontrolled disposal Uncontrolled disposal

Unaccounted * Uncontrolled disposal or uncollected Uncontrolled disposal or uncollected

tAnalysis of the City Dataset reported in Waw?2.0% indicates confusion amongst some of the respondents to the survey.

In approximately half of the cases, it appears that the ‘unaccounted for’ field was used to represent ‘uncollected waste’, whereas
in the other half of cases it was used to represent collected waste for which the data to describe the treatment and disposal
pathway was not known. To correct these inconsistencies, we assume that if the sum of ‘unaccounted for’ and ‘collected’ waste is
within 10 percentage points of 100%, then the ‘unaccounted for’ field represents uncollected waste. In all other cases, we assume
that the ‘unaccounted for’ field represents collected waste that has been deposited in an uncontrolled facility. Abbreviations:
high-income country (HIC); upper-middle income country (UMC); lower-middle income country (LMC); low-income country
(LIC); What a Waste 2.0 (WaW?2.0).

S.6.4.3.5 Formal dry recycling

On the basis that anaerobic digestion and composting are reported separately in Waw2.0%, it
was assumed that the recycling rate reported is for dry recycling only.

While anaerobic digestion and particularly composting have become more common in LICs,
LMCs and UMCs®, collection of dry recyclate by the formal sector is uncommon or small in
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comparison to the informal sector®. As we will show in this section, this is except for some
cities in UMCs that have begun to implement small-scale formal recycling collection systems.
Thus, the majority of WaW?2.0 records for cities in LICs, LMCs and UMCs that included data for
‘recycling’ are likely to represent waste collected by the informal sector rather than by the formal
sector. We suggest that this may even be the case for the cities where the informal sector
recycling field was left blank due to insufficiently defined reporting between the formal and
informal sector activities, making disaggregation challenging.

To assess whether the recycling rate in WaW?2.0 represents formal collection for recycling, the
following assumptions and data verification steps were conducted:

1. Recycling rates reported for cities in HICs were assumed to describe formal collection for
dry recycling collection as a proportion of waste collection.

2. Recycling rates reported for cities in LICs and LMCs were assumed to describe informal
recycling sector dry recycling collection as a proportion of waste collection. In these
cases, formal collection for dry recycling was marked as zero.

3. For cities in UMCs, evidence was collated from municipal websites, reports, and
academic articles to determine whether formal collection for dry recycling was being
carried out in the municipality (Table S13). This consisted of three tests:

a. Is there evidence that the formal sector recycling is taking place in the
municipality?

b. Is the recycling rate reported so high that it is implausible that it is entirely carried
out by the formal sector?

c. Isthe recycling rate low enough that it is implausible that it only represents
informal collection and is therefore more likely to represent a small formal
operation?

Records marked as ‘plausible’ were assumed to be representative of formal recycling; ‘unlikely’
were assumed to represent informal recycling and marked with a zero; and ‘uncertain’ data
points, where it was unclear what the data represented, were removed.

Table S13. Evidence that formal recycling takes places in the municipalities reported by What a
Waste 2.0%,
Municipality = Country Reported Plausibility = Reason Ref

recycling rate  that recycling
(% of collected rate is formal

waste)?

Vlora Albania 10 Unlikely Thriving informal sector and no evidence of 87
formal sector recycling

Algiers Algeria 10 Unlikely No evidence of formal recycling and evidence of 88
strong informal sector

Cordoba Argentina  0.68 Plausible Recycling rate low and evidence that formal 89
recycling takes place

Ciudada Argentina 7.2 Unlikely Thriving informal sector and little evidence of 89

Autonomous De formal sector recycling

Buenos Aires
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Municipality  Country Reported Plausibility = Reason Ref
recycling rate  that recycling
(% of collected rate is formal

waste)?
Grodno Belarus 0.6 Plausible Recycling rate low and evidence that formal 90
recycling takes place
Distrito Federal, Brazil 5.94 Unlikely Thriving informal sector and little evidence of o
Brasilia formal sector recycling
Rio De Janeiro Brazil 0.5 Plausible Recycling rate low and some small evidence that 92
formal recycling takes place
Bogota Colombia 17 Plausible Evidence that informal sector has become fully 939
formalised
Medellin Colombia 16 Plausible Evidence that informal sector has become fully
formalised
Cali Colombia 15 Plausible Evidence that informal sector has become fully
formalised
San Jose CostaRica 5.2 Plausible Some evidence that formal recycling takes place  97:%
Alajuela CostaRica 0.42 Plausible Recycling rate low and some small evidence that 7.9
formal recycling takes place
Quito Ecuador 6 Unlikely No evidence of formal recycling and evidence of 99100
strong informal sector
Guatemala City Guatemala 5 Unlikely No evidence of formal recycling and evidence of 101
strong informal sector
Tehran Iran, Islamic 4 Plausible Evidence of formal recycling 102
Rep.
Beirut Lebanon 5 Unlikely No evidence of formal recycling and evidence of 1%
strong informal sector
Saida Lebanon 20 Plausible Evidence of formal recycling 104
Skopje Macedonia, 3 Unlikely No evidence of formal recycling and evidence of 73105
FYR strong informal sector
Kuala Lumpur Malaysia  10.4 Plausible Evidence of formal recycling 106
Mexico City Mexico 14.19 Plausible Potentially plausible, but recycling rate is perhaps 5597
too high to be carried out formally for a UMC.
However, as references claim that IRS is
prohibited in Mexico City, it was therefore
assumed plausible)
Guadalajara Mexico 8 Unlikely Evidence that it is informal recycling 107
Cusco Peru 0.3 Plausible Recycling rate low and evidence that formal 9
recycling takes place
Cluj-Napoca ~ Romania 13.72 Uncertain Evidence for formal recycling is very weak and 108
slightly stronger evidence of a thriving informal
sector. Uncertain that such a high recycling rate
would be entirely form formal recycling in an
UMC
Bucharest Romania  9.44 Plausible Evidence for a strong formal sector recycling 73,109
effort
Moscow Russian 4 Unlikely Evidence for a strong formal sector recycling 110
Federation effort
St. Petersburg ~ Russian 10 Unlikely Evidence of some small scale formal recycling 111112
Federation initiatives such as bring sites
Kemerovo Russian 19 Plausible Evidence for a strong formal sector recycling 13
Federation effort
Novi Sad Serbia 2 Unlikely Evidence that formal recycling is around 0.4% so %4
2% is assumed too high
Bangkok Thailand 11.85 Unlikely Strong evidence for informal sector and recycling 1°

rate likely too high fora UMC
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Municipality  Country Reported Plausibility = Reason Ref
recycling rate  that recycling
(% of collected rate is formal
waste)?
Vavau Tonga 5.1 Strong evidence for formal recycling system 116
Sakarya Mm  Turkey 2.49 Evidence for formal recycling system in place 7
Caracas Venezuela, 0.9 According to source, recycling is the 118

RB

‘responsibility’ of the municipality but seems to
be limited in scope and coverage —therefore such
a small amount seems plausible

1 Although recycling rates were supposedly reported as a percentage of waste generation, it is assumed that most municipalities

reported their recycling rates as a percentage of collected waste for reasons previously discussed.

S.6.4.3.6

Incineration

Data reported in WaW?2.0 dataset under the ‘incineration’ category were sense checked for
plausibility using several databases and other sources''® listed in Table S14. Where incinerators
with sufficient capacity to process the amounts likely to be generated in a city existed near the
municipality, we considered them plausible. In two cases (Angers-Loire Metropole and Trnava),
no incinerator was close-by, however the proportions reported were very small, so it was
plausible that small amounts or, perhaps, hazardous waste were being transported to incinerators
which were in nearby municipalities. Therefore, it was considered plausible that the amounts
stated were being incinerated.

Table S14. Evidence that incineration takes places in municipalities reported by What a Waste

2 030
Municipality Data Incineration Plausibility of Justification Reference
Name Country Name Year rate incineration
Baku waste to energy plant installed 2012 ;¢
Baku Azerbaijan 2013 39.97 Plausible cap 550,000 t-y*
Intradel Herstal plant installed 2009 cap  (98)
Liege Belgium 2014 26.00 Plausible 320,000 t-yt
Incineration in 2019 was 54%?3, and 33
although it does not go back to 2015, 8%
is commensurate with the general
increase in Incineration over the past
Beijing China 2015 8.00 Plausible decade!?°,
Paris France 2015 77.50 Plausible Eight MSW incinerators located in Paris  1°
Incinerators at Nates and Chinon, far but 119
Angers-Loire within reasonable proximity to process
Metropole France 2015 0.23 Plausible such a very small amount of waste
Incinerator with 3.6 M t-y! capacity since 1°
Berlin Germany 2015 65.00 Plausible 1967
Hulladékhasznosité Mii (HHM) has 17 19
Budapest Hungary 2014 52.00 Plausible Mt capacity since 2005
Delhi has one incinerator operational 19
since 2011 with 225,000 t-y1, so it cannot
be plausible that it has treated half the
waste in the city in 2014. At least one is
functional since, but it was not ready at
Delhi India 2014 52.04 Unlikely the time.
Kanpur India 2016 42.86 Unlikely No record found of an incinerator here %9
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Municipality Data Incineration Plausibility of Justification Reference

Name Country Name Year rate incineration
Islamic Republic No record found of an incinerator here 119

Tehran of Iran 2014 250 Unlikely

Incinerator with 1.4 Mt-y! capacity 119
Milano Italy 2015 4347 Plausible reported here

Nine incinerators reported to be 119
Osaka Japan 2015 78.07 Plausible operational in the municipality

Five incinerators reported to be 19
Kobe Japan 2015 72.60 Plausible operational in the municipality

Clean Center Naha Haebaru incinerator 19
Naha Japan 2015 81.50 Plausible operational since 2006 170,00 t-y*

Clean Center Toyama incinerator 270,000 1%°
Toyama Japan 2015 68.21 Plausible t-yL operational since 2003

Three incinerators operational in the 19
Kitakyushu Japan 2015 64.92 Plausible municipality

Four incinerators operational in the 19
Yokohama Japan 2015 65.55 Plausible municipality

Five incinerators operational in the 19
Seoul Korea, Rep. 2012 8.00 Plausible municipality

Two incinerators operational in the 19
Oslo Norway 2013 57.85 Plausible municipality

BIR Avfallsenergi AS incinerator 19

operational since 1999 and upgraded in
Bergen Norway 2014 39.10 Plausible 2010
Lahore Pakistan 2017 6.15 Unlikely No record found of an incinerator here %9

Proximity to Bratislava which has an 19

incinerator suggests that such a small

quantity could be plausibly transported
Trnava Slovak Republic 2010 0.34 Plausible there

Incinerator with 135,000 t-y ! capacity =~ 1'°
Bratislava Slovak Republic 2013 41.02 Plausible reported here

Incinerator with 314,000 t-y-‘capacity 19
Madrid Spain 2014 10.00 Plausible reported here

Incinerator with 700,000 t-y* capacity =~ 11°
Stockholm Sweden 2013 71.01 Plausible reported here

Incinerator with 109,000 t-y* capacity =~ 11°
Boras Sweden 54.62 Plausible reported here

Incinerator with 450,000 t-y* capacity =~ 11°
Kiev Ukraine 2016 2457 Plausible reported here since 1988

At least one incinerator and several fuel ~ °
producing MBT plants reported here
London United Kingdom 2012 46.34 Plausible during the timescale

Nam Son solid waste treatment complex %9
(SWTC) incinerator has 100,000 t-y*
Hanoi Vietnam 2014 6.59 Unlikely capacity reported here

775 Abbreviations: Million tonnes (Mt); mechanical biological treatment (MBT); municipal solid waste (MSW).

776  S.6.4.3.7 Data Year

777  The years that data were collected for WaW2.0 records were recorded by the World Bank in a
778  downloadable ‘city level codebook’*?*. Years were provided for both the population and the year
779  of waste generation; however, the other data points were not assigned a data year. Here, we

780  assumed the data year for the waste generation also applies to all other waste data points of that
781  record, albeit we acknowledge there is uncertainty in this assumption. When the year of waste
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generation was not available, the data year was left blank, but the records were retained in the
analysis to maximise the number of data points.

S.6.4.4  UNSD City Waste Data

Municipal solid waste management data®? was provided by the United Nations Statistical
Division (UNSD) on the 23" April 2021.

The data forms part of the UNSD Environmental Indicators database, populated by national
statistic offices and ministries of environment and collected by means of a biennial
questionnaire®®. The raw data includes information for 237 cities across the World for multiple
years spanning from 1989 to 2019; however, not all cities submit complete records for all years.
According to their operation protocols, data are accepted by UNSD without further adjustment
aside from basic data coherence checks (e.g., percentages sum to 100%). As such, some data
entries appear to have been erroneously entered by respondents necessitating thorough cleaning,
as described in this section.

S.6.4.4.1 Waste generation rate

The municipal waste generation rate of a municipality was calculated using three different
methods, prioritised in the following order:

Method 1: The total amount of MSW generated and population of the municipality for the
corresponding year were used to calculate the MSW generation rate per capita
(tP1pc) for the most recent available year.

Method 2: Total MSW collected was divided by the collection coverage to estimate total
MSW generated and then divided by the population reported for the
corresponding year to calculate the MSW generation rate per capita (tP1pc). If the
collection coverage was not reported, the total MSW collected was not used as
this would exclude any uncollected waste.

Method 3: For cities that did not report data for the total MSW collected, but instead
provided information of the amounts entering treatment and disposal facilities, it
was assumed that the summation of the amounts entering the treatment and
disposal facilities is equal to the total amount of MSW collected. The same
process as method two was then repeated.

Only 31 cities reported waste generation according to Method 1, of which four of these (Lalitpur,
Kathmandu, Biratnagar and Niamey) reported values inconceivably low (< 1.0 kg-cap™-y*) and
were therefore removed. The waste generation rate was estimated using Method 2 for a further
73 cities, although again four of these data points (Escuintla, Coban, Huehuetenango, Rusape)
were removed during initial screening due to the values being inconceivably high (> 10 kg-cap
L.d1. Lastly, an additional six cities relied on Method 3 for calculation of waste generation rate,
of which one (Masvingo) was removed during screening based on an implausibly low value
(0.04 kg-cap*-d1). In total, this resulted in 101 data points for MSW generation rate.

S.6.4.4.2 Collection coverage

Collection coverage is reported in the UNSD dataset as percentage of population served. The
most recent year was taken for this variable when available, resulting in 135 inputs for collection
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coverage. To increase this further, the collection coverage was also calculated for cities that did
not report collection coverage but did report the amounts entering treatment and disposal
facilities, and the amounts generated overall. This resulted in a further 7 cases for which the
collection coverage had not been previously reported.

S.6.4.4.3 Formal dry recycling

The UNSD waste questionnaire®® asks respondents to detail the amounts of waste going to
‘recycling’, ‘composting’, ‘incineration’ (with a subset for ‘incineration with energy recovery’),
‘landfill” (with a subset for ‘controlled landfill’), and ‘other’.

The primary data input in this work of formal collection for recycling (tC2i) has units of
percentage of collected waste. Accordingly, the mass entries provided for recycling in the UNSD
dataset were divided by the data point for mass of collected waste. However, in many cases,
inconsistencies in the reported data meant this had to be done cautiously. The following rules and
priorities were used in calculating the recycling rate:

1. If the sum of the five recovery and disposal options summed to within £20% of the mass
reported as collected, the recycling rate was taken as the mass reported for recycling
divided by the mass collected. Data calculated in this manner were assumed the most
reliable and used as priority.

2. Occasionally, data records reported a mass collected from households but did not provide
an overall collected amount. When the sum of the treatment and disposal options were
within £20% of this household collected mass, it was assumed the household collected
mass was misaligned and was instead taken as overall mass collected. Recycling rates
were then calculated in the same manner as in 1.

3. If mass was provided only for recycling and collected waste (i.e., no other treatment and
disposal options were recorded), the recycling rate was calculated based on the recycling
mass divided by the collected mass.

4. In cases where the sum of the treated and disposed mass was not within £20% of the
collected waste, the recycling rate was still calculated but instead using the treated and
disposed mass as the denominator. Deviation of masses does not necessarily reflect
incorrect data as the masses may deviate due to either rounding errors, based on
deviations from sampling, or due to import / export of waste between municipalities. As
such, recycling was still calculated in this manner, but only used when the above options
were not possible.

5. If no mass was provided for recycling, but the sum of the treatment and disposal options
were within £20% of the collected waste, it was assumed that no recycling occurs and
therefore the recycling rate was set as 0%.

No distinction is given in the UNSD definition® provided for recycling on whether this includes
informal sector recycling or not. Given the questionnaire states that the treatment and recovery
values should sum up to the amounts of waste collected (minus exports), and that this collected
waste is defined as that collected ‘on behalf of municipalities (by public or private companies)’;
it is assumed the mass provided for recycling is intended to relate to formal recycling only. It is
unclear whether respondents also took this to be the case and therefore whether the recycling
rates reported include informally recycled material or not. The recycling rates calculated as per
the above were therefore adjusted in the same manner as for the WaW?2.0 dataset. Namely, the
28 LMC and LIC cities that had a non-zero recycling were assumed to be reporting informally
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collected waste for recycling, particularly given many of the rates calculated were comparable to
those of HIC. The recycling rates for these cities were therefore set to zero for tC2i — formal
collection for recycling. Alternatively, the recycling rates for HIC were assumed to represent
formal collection for recycling and therefore taken directly, whilst data points greater than zero
in UMC were checked for plausibility by means of gathering evidence (Table S15).

Table S15. Evidence that formal recycling takes places in the municipalities reported in UNSD
city waste data®.

Municipality

Country

Reported
recycling rate
(% of collected
waste)

Year

Plausibility Reason

Reference

Adrar

Algeria

10.00

2015

Unlikely

Some evidence of the formal sector, however,
seems that the informal sector still manages the
bulk of the countries recycling. Government
initiatives in place to increase reuse but seems
to be limited focus on recycling.

122,123

Djelfa

Algeria

10.00

2015

Unlikely

Noted as being an area with thriving informal
recycling sector. Formal initiatives seem to
focus on reuse not recycling.

122,124

Algiers

Algeria

10.00

2015

Unlikely

Little evidence of formal recycling and
evidence of strong informal sector. Sorting sites
have little structure, and it is reported that many
of these are no more than just a landfill.

124,125

Wahran
(Oran)

Algeria

10.00

2015

Unlikely

Seem to be some initiatives in Oran for formal
recycling but most of these appear to have been
reported more recently than this data. Still
seems to be a large informal sector in the
municipality.

126-128

Qacentina
(Constantine)

Algeria

10.00

2015

Unlikely

Shortcomings in any formal processes that are
in place and most recycling is done through the
informal sector.

129

El Djazair
(Algiers)

Algeria

10.00

2015

Unlikely

Little evidence of formal recycling and
evidence of strong informal sector. Sorting sites
have little structure, and it is reported that many
of these are no more than just a landfill.

124,125

Minsk

Belarus

20.28

2019

Plausible

26% recycling rate reported in Minsk. Unclear
if this is all from the formal sector but it does
seem that the government are trying to provide
recycling facilities in the area. On the other
hand, there is some evidence of the informal
recycling sector in Minsk.

130-132

Zenica

Bosnia and
Herzegovina

4.76

2009

Plausible

Evidence 5% recycling rate for formal sector in
the municipality.

133

Gaborone

Botswana

0.24

2017

Unlikely

Francistown

Botswana

0.25

2017

Unlikely

Evidence suggests that all recycling is collected
by informal sector.

134

Brasilia

Brazil

2.49

2015

Unlikely

Thriving informal sector and little evidence of
formal sector recycling.

91,135

Salvador

Brazil

0.48

2011

Unlikely

Evidence that selective collection did not exist
in any formal sense before 2014, therefore this
is unlikely to be formally collected.

Séo Paulo

Brazil

0.98

2015

Unlikely

25 coops are authorised in Sao Paulo — it is
assumed the reported recycling rate relates to
these cooperatives

137
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Reported
recycling rate
(% of collected
Municipality Country waste) Year Plausibility Reason Reference

Bulk of the recycling is via the informal
recycling sector, with formal efforts only at a
very small scale — the 0.09% is therefore
Rio de Janeiro Brazil 0.09 2015 Plausible  plausible 94,138

Evidence of a strong informal sector. Though
there is an indication in the reference that some
formal recyclates are collected, however it
doesn’t appear enough to justify the 3.42%
Porto Alegre  Brazil 3.43 2015 Unlikely stated. 139

Evidence of both government sanctioned and

organised recycling and sloe buy-back centres

commensurate with a relatively low recycling
Camagliey Cuba 3.86 2017 Plausible  rate as reported 140

Evidence that formal recycling takes place and

will increase in the future, but also evidence of

a strong informal sector across Ecuador. Given

the low proportion, too low to represent a large

informal sector, it is suggested here that the data
Quito Ecuador 0.86 2012 Plausible  represent formal operations rather than informal 141-143

Evidence of Bring sites in the municipality but
not formal collection by municipality — the very
low rate reported indicates it cannot be the

Cuenca Ecuador 0.50 2012 Plausible informal sector as too low 144
References indicate that formal recycling is not
Iran, Islamic carried out and that the informal sector is
Tehran Rep. 39.62 2017  Unlikely thriving 145,146

Though some evidence of formal recycling
exists, it does not appear to be substantial
enough to justify 13.14% - therefore this is 146,147
Iran, Islamic assumed to be a mixture — but classed as
Mashhad Rep. 13.14 2017  Unlikely ‘unlikely’ for this screening process

Evidence of a type of mixed waste sorting
facility — the mechanism for collection is
Iran, Islamic unclear, but the rate reported is low enough for
Esfahan Rep. 6.72 2017 Plausible this to be plausible. 148

The national statistics bureau indicates an

10.9% recycling rate nationwide in 2019 and

20.5% in 2020 - in Astana, a waste and

recycling programme was proposed in 2006, so
Astana Kazakhstan 16.41 2019 Plausible it is plausible that it is functioning now 149,150

Various government websites extol the

countries efforts to recycle one of which repots

a 23% recycling rate for Almaty — the rate of

10.21 appears plausible for formal recycling, if
Almaty Kazakhstan 10.21 2019 Plausible alittle high for a municipality of 2 million 151

Though some news articles have indicated that
Lebanon has plans to introduce formal
recycling and it appear it has been done in some
institutions, there is no historical evidence for
formal recycling but strong evidence of an

Tripoli Lebanon 5.47 2012  Unlikely informal sector and various charitable initiatives 152153
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Reported
recycling rate
(% of collected
Municipality Country waste) Year Plausibility Reason Reference

Though some news articles have indicated that
Lebanon has plans to introduce formal
recycling and it appear it has been done in some
institutions, there is no historical evidence for
formal recycling but strong evidence of an
Beirut Lebanon 4.00 2012  Unlikely informal sector and various charitable initiatives 103152153

Callao Municipality publishes a register of
private companies and cooperatives who are
licensed to selectively collect waste. |It is
suggested that the 1.14% reported equates to
their activities as they can’t be disaggregated
and we consider the cooperatives to be

Callao Peru 1.14 2019 Unlikely informal, we have scored as ‘unlikely’ 154

Evidence of a sorting station (Yanahuara
Recycling Plant) that has been implemented to
replace previous waste picker activity on the
dumpsite. As they were previously informal
workers we will classify as unlikely to be

Arequipa Peru 1.14 2019 Unlikely formal here 155

Evidence of some formal activity but still
dominated by informal sector — some token
bring banks are evident as the proportion is very
low, it is suggested that it represents formal

Lima Peru 0.64 2019 Plausible  activities 156,157
9.82% x (1 - Plausible Evidence indicates that formal recycling takes
Soweto South Africa 0.238) = 7.48% 2017 place, though: 1) It is only provided directly by

Plausible the municipality in about 24% of cases on
average across South Africa; and 2) Only
approximately 23% and 16% of the residents of
Cape Town and Johannesburg respectively
report that they separate material for recycling.
These two basic assertions do not seem to
justify the quantities reported (11.26%).
Therefore, we surmise that the figures reported
by UNSD for Soweto and Cape Town include
both formal and informal collection.

The evidence also includes an estimate that says
23.8% of waste is collected by itinerant buyers.
We therefore deducted this proportion from the
11.26% x (1 - proportion recycled reported by UNSD
Cape Town  South Africa 0.238) =8.58% 2017 approximate the proportion formally collected. 158

Often the value for recycling was left blank by the user. In cases where the amounts recorded as going to treatment and disposal
options were within 20% of the collected waste (or household collected waste if collected waste was not provided), it was
assumed that all mass had been accounted for by the user and therefore this blank was treated as a zero.

S.6.4.4.4 Incineration

The amount of waste going to incineration is a data point in the UNSD waste data® along with a
subset for the amount of that incineration with energy recovery. A similar approach was taken as
with the recycling data point, whereby the incineration rate as a percentage of collected waste
(tC2iii) was calculated first by dividing the mass reported incinerated by the mass reported as
collected. In a small number of cases, the amount collected was reported as household collection
instead of overall collection. In these instances, the incineration rate was calculated as the mass
incinerated divided by the amounts collected from households. Lastly, if data on the amount
collected were not reported, but data on the amount going to each facility were, it was assumed
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that the sum of the amount going to recovery and disposal facilities equalled the amount
collected. This summed value was then used as the denominator in the calculation of the
incineration rate.

In total, 67 records yielded an incineration rate, although only 21 of these reported a non-zero
rate. However, analysis of the dataset suggested that some records of MSW incineration may
have been because of a misclassification. For instance, small amounts of medical (hazardous
waste), or waste that is open burned may have been included. As we were only interested in
modelling full scale MSW incineration, we assessed the plausibility that incineration was
actually taking place in each of these 21 cities by corroborating the assertion with other sources
which we have detailed Table S16.

Table S16. Evidence that incineration takes places in the municipalities reported in UNSD city
waste data®?.

Calculated
incineration rate
(% of collected

Municipality ~ Country waste) Year Plausibility Reason Reference
Evidence of incineration with energy
Baku Azerbaijan 44.8 2019 Plausible recovery in Baku. 159

No evidence of incineration of MSW,
but there is for incineration of

Thimphu Bhutan 15.0 2017 Unlikely hazardous medical waste. 160,161
Gaborone Botswana 0.4 2017  Unlikely No evidence of incineration. Perhaps
confused with open burning which is
Francistown Botswana 0.3 2017  Unlikely reported to occur. 134
Brasilia Brazil 0.3 2009  Unlikely No evidence of incineration in Brazil.
Small percentages here may relate to
Rio de Janeiro  Brazil 0.02 2009  Unlikely hazardous waste incineration. 162
Shanghai China 65.6 2019 Plausible
Chonggqing China 50.6 2019 Plausible . o . .
Evidence of incineration for each city
Beijing China 48.9 2019 Plausible in national statistics. 3
China, Macao
Special
Administrative
Macao Region 98.5 2015 Plausible Evidence of incineration in Macao. 8

Evidence of incineration project being
Zagrab Croatia 0.1 2012  Unlikely scrapped due to public opposition. 164

No evidence of incineration. Small
percentages here may relate to
Cuenca Ecuador 0.2 2011  Unlikely hazardous waste incineration. 19

Although there are no incineration

plants in Liechtenstein it is reported

that much waste is exported to

Switzerland for incineration, hence
Schaan Liechtenstein ~ 47.1 2019 Plausible this is assumed plausible. 165

Original value reported exceeds

100%. It is believed this is a typo and

the value of 130,000 tonnes/year was

replaced with 30,000 tonnes/year.

Regardless, there is evidence of

widespread incineration with energy
Monaco Monaco 89.9 2017 Plausible recovery in Monaco. 166
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Calculated
incineration rate
(% of collected

Municipality =~ Country waste) Year Plausibility Reason Reference
Incineration plant opened in 2017

Yangon Myanmar 1.9 2017 Plausible with plans to develop further. 167

Zinder Niger 1.0 2006  Unlikely No evidence of incineration. Small
percentages here may relate to

Niamey Niger 1.0 2006  Unlikely hazardous waste incineration. 19

As of 2013, one incineration plant
was operation in Kiev although this
reportedly incinerating only 1% of
MSW in Kiev and was beyond its
designed lifespan. It is plausible that

Kiev Ukraine 13.8 2019 Plausible this has since been upgraded. 168

Songea Tanzania 0.8 2015  Unlikely No evidence of incineration. Small
values may represent hazardous waste

Moshi Tanzania 0.2 2015  Unlikely incineration such as medical waste. ~ 1°

No evidence of incineration in 2015
although a plant has recently been
Kwekwe Zimbabwe 7.9 2015  Unlikely approved. 169

Abbreviations: municipal solid waste (MSW).

As with formal recycling, blank values were treated as zero if the sum of the treated and disposed
waste summed to within 20% of the collected waste.

S.6.4.4.5 Other recovery

The primary data input ‘formal collection of MSW for other recovery’ (tC2ii) is composed of
two categories from the UNSD waste data, namely ‘composting’ and ‘other treatment methods’.
The overall recovery rate as a percentage of collected was first calculated in the same manner as
that for incineration. The collected waste was first prioritised as the denominator, followed by
household collected waste, and lastly treated and disposed waste. Likewise, blank values were
treated as zero if the sum of the treated and disposed waste summed to within 20% of the
collected waste.

S.6.4.4.6 Controlled disposal

The definition for ‘controlled landfill’ in the UNSD waste questionnaire states ‘final placement
of waste into or onto the land in a controlled landfill site’. No clarification is provided on what
constitutes ‘control’. As such, a respondent’s decision about whether a disposal site is controlled
is likely to be subjective and cannot be directly correlated with the definition used in the present
work. In the absence of this clear definition, given the use explicit use of term ‘controlled’, we
assumed that the definition for controlled landfill provided in the UNSD dataset matches that
used in the present work.

The proportion of waste collected for disposal that is sent for controlled disposal (tC3) was
calculated by dividing ‘controlled landfill’ by total ‘landfill’, provided that the sum of the mass
going to treatment and disposal facilities was within + 20% of the mass of collected waste (n =
113). As before, due to the incorrect assignment of values to household collected waste instead
of total collected waste by some respondents, ‘controlled disposal’ was also calculated using the
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‘household collected waste’ as the denominator. This was only used if the previous method was
not available (n = 7). This gave 120 records for controlled disposal (tC3) from the UNSD dataset.

If a value for ‘landfill” was provided but the value for ‘controlled landfill> was left blank by the
user, it was assumed that no waste was assigned to ‘controlled landfill’ and therefore set as zero.

S.6.45  SIPSN Data

Municipal level solid waste management data for Indonesia is recorded as part of a national
dataset entitled Sistem Informasi Pengelolaan Sampah Nasional’**, hereafter referred to as
SIPSN. Data is recorded at the municipality / Regency level of which there are 514 in Indonesia;
however, not all of these have data available. Data for the year 2020 was used in this analysis.

The mass of waste generated in tonnes per day is directly recorded in SIPSN. This was converted
to a per capita waste generation rate by dividing by the population of the Regency as obtained
from the 2020 BPS census!™.

Collection coverage is not reported in the SIPSN data. This may be due to the highly
decentralised nature of waste collection in Indonesia meaning collection of waste and
transportation to transfer stations (TPS) is the responsibility of neighbourhood associations
(Ruken Warga)!'172, Despite this, the SIPSN dataset records the amount of waste entering
disposal sites (TPA) and the amounts recovered at transfer stations with material recovery
facilities (TPS3R). The collection coverage was therefore estimated for each Regency by
summing the amount of waste entering disposal sites with the amount of waste recovered at
TPS3R sites, before dividing by the reported mass of waste generation.

To avoid double counting, it was ensured that the recovered mass at TPS3R sites did not include
any residuals that would later be transferred to disposal sites. Similarly, the SIPSN dataset
reports the mass of recyclables collected by informal recyclers at disposal sites. This too is
subtracted from the mass collected, as informal recycling collection is modelled within this work
and added on as part of the Full MSW MFA (Section S.7). Again this avoided any double
counting.

The mass of recyclate recovered by the formal sector was calculated from the SIPSN data by
summing the amounts of ‘dry recycling’ recovered at TPS3R’s by the formal sector with the
mass of ‘inert recovery’ recorded at the disposal sites. We chose this summation on the basis that
it would be closest to the way that formal recycling is reported in the other datasets (for example:
WaW2.0 and UNSD). Informal sector recovery at the disposal sites and ‘organic recovery’ are
recorded as separate data points in the SIPSN dataset, therefore it can be assumed that the
summed values reflect that of formal dry recycling only. The calculated mass of recyclate
recovered by the formal was divided by the mass of collected waste to give the formal dry
recycling rate as a percentage of formally collected waste (tC2i).

Similarly, the primary data input for formal collection of MSW for other recovery (tC2ii) was
calculated by summing the mass of ‘composting’ occurring at TPS3R’s with the mass of ‘organic
recovery’ at the disposal sites, before dividing this by the mass of collected waste.

The composition of MSW is not provided in the SIPSN waste dataset, therefore the primary data
input ‘plastic in MSW” (C0) was unable to be calculated. Small amounts of waste were reported
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to be processed using ‘waste-to-energy’ in 37 municipalities in the SIPSN. We assumed that all
of these were misclassifications as Terzidis!'® reported no operational large scale MSW
incinerators in Indonesia.

The level of environmental control at the disposal sites is reported by the SIPSN data according
to three categories: ‘sanitary landfill’, ‘controlled landfill> and ‘open dumping’. It is unclear how
these categories are defined, with it perhaps being subjective to the respondent. The definition
for controlled disposal of MSW (tC3) used in the present work is ‘basic’, ‘improved’, or ‘full
control’ according to the ‘Ladder of control level for landfill sites’ in the Waste Wise Cities
Tool®. This states that to achieve the status of basic control, amongst other things the site must
have a functioning weighbridge in use and have perimeter drainage maintained around the site.
The SIPSN dataset details for each disposal site whether a weighbridge is in use and whether the
site has drainage, therefore this data was used to cross check the response provided. If the
Regency recorded their disposal site as a ‘sanitary landfill’ or ‘controlled landfill’, but also stated
they did not have either a functioning weighbridge or perimeter drainage, then the disposal site
class was downgraded to an uncontrolled site. If the disposal site was recorded as ‘open
dumping’, this was automatically assigned uncontrolled, regardless of the presence of
weighbridges or perimeter drainage, given the WaCT ladder of control also specifies a degree of
cover is required for basic control. As such, a disposal site was only classified as controlled if it
was recorded as a ‘sanitary landfill’ or ‘controlled landfill’ and had both a functioning
weighbridge and perimeter drainage. The mass of waste going to controlled disposal sites in each
regency was divided by the total mass of waste going to disposal to arrive at an estimate for tC3:
controlled disposal as a percentage of disposed waste.

The entire SIPSN dataset was not used, but instead a sample (n = 10) was extracted to ensure
Indonesia was not being overrepresented in the subsequent machine learning steps. Details of
this procedure are described in Section S.6.2.

S.6.46  MoHURD Data

The Ministry of Housing and Rural Development (MoHURD) in China release an annual dataset
entitled ‘Urban Construction Statistical Yearbook’3. The 2019 version of this was used in this
analysis, specifically the data points relating to mass of waste collected and transported by each
municipality and the masses incinerated. The other inputs required for this work were either not
reported (collection coverage), were unreliable (controlled disposal), or do not feature sufficient
distinction (cannot differentiate between recycling and composting).

S.6.4.6.1 Waste generation

To estimate the primary input of waste generation rate (tP1pc) the mass collected and transported
was used as a starting point. However, this does not include waste that was generated and not
collected, and therefore required correction by dividing by the collection coverage. Given the
collection coverage is not a variable specified in the MoHURD dataset, an alternative approach
was used for this correction. Initially, the collection coverage was estimated for each
municipality based on the machine learning random forest process outlined in Section S.7. The
collected and transported mass were then divided by predicted collection coverages to arrive at
an estimate of total waste generation. This could then be divided by the population of the
municipality as reported in the MOHURD dataset to arrive at a per capita waste generation rate.
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S.6.4.6.2 Incineration

The percentage of collected waste that was incinerated (tC2iii) was derived by dividing the mass
of waste going to incineration by the reported mass of waste collected and transported. In some
cases, ambiguous administrative boundaries meant that it was difficult to assign incineration data
to a specific GADM polygon. In these cases, the amount of waste reported as incinerated for the
province was distributed amongst the polygons within it using its population.

The MoHURD dataset provided a full record of incineration for China, so we used these values
directly in the probabilistic MFA, replacing any predictions from the machine learning steps
(Section S.9.1.2.7). In contrast to the waste generation rate, a subset of the China incineration
data was not randomly extracted from the from the MoHURD dataset for use in the machine
learning steps (Section S.6.2). This was to avoid overly influencing (i.e., introduce bias) the
training data with data for China, particularly given incineration in other UMCs is uncommon.

S.6.5 Data consolidation and deduplication

Following the initial data collection, harmonisation, correction, and preliminary screening phase
described in Section S.6.4, data were combined into a single dataset with 691 municipal records.
Each data record included:

A unique data ID, linking the record to the source dataset

Country name and ISO3 code

Income category of the country for the year of the data record

Name of the municipality (as per the original dataset)

A unique administrative area ID identifying which GADM polygon the data record was
assigned to (if any)

e GADM Level, administrative area match score, and any notes associated with the
boundary matching

Data records also included one or more of the following:

Waste generation rate (tP1,c) and year (n = 582)

Collection coverage (tC1) and year (n = 498)

Plastic in MSW (CO0) and year (n = 397)

Rigid plastic (COa) and year (n = 38)

Formal dry recycling (tC2i) and year (n = 422)

Other recovery (tC2ii) and year (n = 422)

Incineration (tC2iii) and year (n = 441)

Controlled disposal (tC3) and year (n = 458)

SDG11.6.1 — MSW collected and managed in controlled facilities (n = 38)

Following consolidation, municipalities which were unable to be assigned a GADM boundary
match (boundary match score of 4 as per Table S6) were removed from the analysis (n = 15).
Likewise, data points older than 15 years (2006 at time of analysis) were also removed as it was
assumed these data points were no longer relevant because waste management is likely to have
changed substantially since then (n = 22). As an exception, a minority (n = 13) of Waw?2.0
records older than 2006 were retained due to the underlying uncertainty around the year of data
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collection for data points other than waste generation rate (Section S.6.4.3.7) and to maximise
data availability. All except one of these data records retained were post-2000.

95 municipalities had more than one record (n = 201) which either had to be merged or removed.
Data were prioritised based on most recent year of data collection and dataset quality in the
following quality assurance hierarchy 1) WaCT; 2) WABI; 3) WaW2.0; and 4) UNSD, the
justification of which is detailed in Table S4 (Section S.6.1). Most recent data were selected first
unless data from a higher quality data point was available within three years. If a record was
missing a data point, then one from and older or lower quality dataset was used. Only one
duplicate, Taian in China, existed for the records sampled from the national datasets. In this case,
the MoHURD data were prioritised over that of the WABI dataset because the year was more
recent. Records which were constructed from multiple data sources were given a new data id
with prefix ‘CD’.

S.6.6 Default GADM Level selection

Of the 254 countries covered by the GADM dataset!, 175 of these had at least one data record
associated with it. The remaining 79 countries were mainly small countries and island states with
small population or entirely uninhabited. Whilst these would be likely to have negligible impact
on our global analysis, the lack of data indicates the need for data collection in less populous
nations.

For the 175 countries with municipal level waste data, 134 had data records with a consistent
GADM Level that had previously been assigned in MS2 (Section S.6.3). In these cases, the
consistent GADM Level was assigned as that country’s municipal Level, described hereafter as
the ‘default GADM Level . Some countries (n = 41) had data records that were assigned to more
than one GADM Level. In these cases, the default GADM Level was assigned as the Level for
which the majority of that country’s data records represented.

Data records that had been assigned a GADM Level that was more granular that the default
GADM Level were removed from the analysis (n = 4), whereas data records at a less granular
level were added alongside the default GADM Level by merging the underlying polygons (n =
39) (Table S17). Additionally, a few records (n = 12) were allocated multiple GADM
administrative boundaries at the same Level as this better matched the area for which the record
represented (e.g., data for Melbourne was better represented by combining multiple Level 2
GADM polygons rather than choosing Level 1 which referred to the wider State). In these cases,
the GADM polygons were merged into a single polygon and assigned the unique ID of the
lowest numerical unique 1D of the merged polygons along with the subscript ‘Merged’ to
highlight changes had occurred compared to the original GADM dataset.

A small number (n = 22) of data records were allocated multiple GADM Levels because the
administrative boundary was identical across different Levels. Typically, but not exclusively, this
occurred for capital cities that have special administrative areas (e.g., cities that are both
provinces and municipalities). In these cases, the data record was assigned the same Level as that
of the default GADM Level.

Of the 79 countries for which no data existed, the majority of these countries (n=65) were small
island states which had either no resident population, no subnational administrative divisions, or
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only a single subnational administrative division. The default GADM Level was therefore
assigned for these as the most granular GADM Level available (either Level 0 or Level 1). The
remaining countries without data were instead assigned the default GADM Level thought most
likely to represent the municipal Level. All these allocations of default GADM Levels are
documented in the Supplementary Table 1 (cleaning, combining and deduplication steps).

Table S17. Municipal records which were assigned to a newly created merged polygon.

Country Municipality Default GADM Level Data record Unique ID of data
Level point
Bangladesh Dhaka 3 2 BGD.3.1_1
Bangladesh Chittagong 3 2 BGD.2.4_1
Benin Porto Novo 2 1 BEN.10_1
Bosnia and Herzegovina Sarajevo 3 2 BIH.2.6_1
Burundi Bujumbura 2 1 BDI.2_1
Cambodia Sihanoukville 2 1 KHM.13 1
Cambodia Phnom Penh 2 1 KHM.16 1
Cameroon Douala 3 2 CMR.54 1
Cameroon Yaounde 3 2 CMR.2.7_1
Canada Vancouver 3 2 CAN.2.14 1
China Lanzhou 3 2 CHN.5.7_1
China Suzhou 3 2 CHN.15.7_1
China Shanghai 3 2 CHN.24.1 1
China Chongging 3 2 CHN.3.1 1
China Beijing 3 2 CHN.2.1 1
Cuba Havana 2 1 CuB4_ 1
Czech Republic Prague 2 1 CZE.11 1
Egypt Cairo 2 1 EGY.11_1
Egypt Suez City 2 1 EGY.15_1
Ethiopia Addis Ababa 3 2 ETH.1.1 1
France Paris 3 2 FRA.8.3_1
Greece Athens 3 2 GRC.3.1 1
Guatemala Guatemala City 2 1 GTM.7_1
India Chennai 3 2 IND.31.2 1
India Greater Mumbai 3 2 IND.20.18 1
Indonesia Jakarta 2 1 IDN.7_1
Mexico Mexico City 2 1 MEX.9_1
Nigeria Lagos 2 1 NGA.25_1
Pakistan Karachi 3 2 PAK.8.2 1
Peru Lima 3 2 PER.15.1 1
Peru Callao 3 2 PER.7.1 1
Russia Moscow 2 1 RUS.43 1
Rwanda Kigali 2 1 RWA5_1
Senegal Dakar 4 1 SEN.1_1
Serbia Belgrade 2 1 SRB.3_1
Slovakia Bratislava 2 1 SVK.2_1
Tajikistan Dushanbe 3 2 TIK.1.1 1
Tanzania Dar es Salaam 2 1 TZA2 1
Thailand Bangkok 2 1 THA3_1
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Country Municipality Default GADM Level Data record Unique ID of data

Level point
Ukraine Kiev 2 1 UKR.11 1
United Kingdom London 3 2 GBR.1.36_1
Vietnam Hanoi 2 1 VNM.27_1
Vietnam Ho Chi Minh City 2 1 VNM.25 1

A vector layer was created from the GADM dataset * that included the default GADM Level
assigned for each country as well as the above modifications. In total this resulted in 50,702
default GADM Level polygons that represent the municipalities of the world (Fig. S9). The
default GADM Levels varied from Level 0 (national Level) in the case of small island states, to
Level 4 for the cases of Finland and Nepal.
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Fig. S9. Locations of primary input data by source dataset. Size of circles indicates number of data points in each location.
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S.6.7 Data cleaning via outlier identification

Although initial data screening was performed on each individual dataset as described in Section
S.6.4, this was primarily checking for obvious errors in the way the data was reported by users
(e.g., wrong units) and making educated assumptions around what the data they reported was
likely representing (plausibility checks). This section instead describes the checks applied to
assess the reliability of the data via outlier identification, and, as such, was only performed once
all the data had been combined into a single dataset.

Box and whiskers plots for each of the seven waste related primary data variables (Fig. S10)
enabled visualisation of trends in the data and gave a first indication of potential outliers using
the rule proposed by Tukey®, which states that outliers are those data points which are more than
1.5 times the interquartile range distance from the 25" or 75" percentiles. However, this alone
was deemed insufficient for potential outlier detection due to the data being often skewed. For
example, waste generation rate is bound by zero therefore tends to have a long positive tail.
Similarly, the dependent variables with units of percentages are bound between 0 and 100,
therefore also tend to show either skewed distributions or bimodal distributions as many values
fall at the limits. Setting outliers as 1.5 times the interquartile range in these situations often
causes the whiskers to exceed the bounds of the data therefore failing to identify potential
outliers. To overcome this, the fences as proposed by the 1.5 the interquartile range definition
were used as guides along with expert opinion of the authors on what values should be
crosschecked for potential implausibility. In general, the fences were set more conservatively
than that proposed by the interquartile range rule, to ensure all potential outliers were screened
for plausibility. This process was carried out for each dependent variable by income category of
the country, with details of the fences used shown in Table S18.

Data points identified as potential outliers were not automatically removed from the dataset, but
instead screened for plausibility (Fig. S10). This manual approach to removal of outliers was
deemed preferential to automatic outlier removal as the global data was derived from many
different socio-economic conditions, therefore one would expect some outlying values to be true
values. Plausibility checks were based on expert opinion of the authors alongside as assessment
of the data source reliability and context of the municipality that could be potentially resulting in
an outlying value (e.g., tourism levels, whether it is a capital city or major commercial hub, and
comparison to other values from that country).
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Table S18. Upper and lower fences set based on expert opinion for which values outside these

values were screened for plausibility.

ID Primary data  Unit Country  Total Lower Upper Outlier Outlier Outlier cases
input income data fence  fence cases below cases above removed for
category”  points lower fence upper fence implausibility
tPl,e MSW kg-capt-d? LIC 80 0.2 137 5 5 9 out of 10
generation rate LMC 171 0.3 153 4 14 9 out of 18
uMcC 162 0.4 207 7 5 5 out of 12
HIC 82 0.7 249 7 5 4 outof 12
tC1  Collection % of MSW LIC 72 20 80 5 24 14 out of 29
coverage generated LMC 173 40 100 13 0 1 outof 13
uMC 111 70 100 14 0 11 out of 14
HIC 55 100 100 9 0 3outof9
tC2i Formal % wt. of formally LIC 65 0 0 0 1 Ooutofl
collection of collected MSW LMC 131 0 5 0 0 0 out of 0
MSW for dry
recycling uMcC 97 0 5 0 13 0 out of 13
HIC 71 0 50 0 6 6 out of 6
tC2ii  Formal % wt. of formally LIC 65 0 10 0 1 Ooutofl
collection of collected MSW LMC 133 0 15 0 26 11 out of 26
MSW for other
recovery uMC 97 0 20 0 4 3 out of 4
HIC 66 0 20 0 5 0 out of 5
tC2iii Formal % wt. of formally LIC 68 0 0 0 1 Ooutofl
collection of collected MSW | mc 138 0 0 0 1 0 out of 1
MSW for
incineration uMcC 104 0 0 0 11 loutof 1l
HIC 68 0 0 0 26 2 out of 26
tC3  Controlled % wt. of formally LIC 68 0 0 0 13 3outof 13
diSpOSﬁl of collected MSW LMC 155 0 50 0 48 7 out of 48
MSW for di |
or cisposa umC 106 50 100 47 0 4 out of 47
HIC 66 100 100 22 0 18 out of 22
co Plastic in MSW % wt. of MSW  LIC 69 3 20 7 4 4 outof 11
generated LMC 133 3 25 13 1 10 out of 14
uMcC 87 5 25 2 4 out of 9
HIC 69 5 25 6 4 7 out of 10

*Abbreviations: High-income country (HIC); upper-middle income country (UMC); lower-middle income country

(LMC); low-income country (LIC).

The cleaning process resulted in the removal of 136 (35%) out of 386 outlier data points.
Removal of these data points had minimal impact on the central values (mean and median) or
quartiles of input data (Fig. S10). Combined with the non-outliers, there were 553 cleaned
records (municipalities with data) and 2,688 individual data points. Although the 553 records
represent only 1.1% of global municipalities, approximately 904 million people live in them
based on 2015 populations. This represents 12.2% of the 2015 global population, with similar
coverage levels spanning all four income categories (LIC: 12.0%, LMC: 11.4%, UMC: 13.5%,
HIC: 11.2%). Records are distributed across 172 countries and many major cities, as shown in
Fig. S9. We are therefore confident that the data collected represents the most widespread and
quality checked municipal level data on municipal solid waste management to date. A summary

of the data collection and cleaning process is shown in Fig. S11.
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Fig. S10. Central tendency and spread
of primary data inputs by country
income category prior to outlier
removal (red box plots) and post
outlier removal (blue box plots). Dots
represent outliers according to the 1.5
x interquartile range rule®. Crosses
represent the mean value. The
distribution of data as shown in the
box plots was used to set fences
around which outliers were identified
and checked for plausibility (Table
S18). Abbreviations: high-income
country (HIC); upper-middle income
country (UMC); lower-middle income
country (LMC); low-income country
(LIC).

1004
804
G604

40

Formal dry recycling (% of collected MSW)

204 . .
11 I
1!

o] Sese e XX

Lic Lwc umc HIC

Waste generation rate (% of generated MSW)

Other recovery (% of collected MSW)

—(H

504

404

304

It

Plastic in MSW (% of generated MSW)

53

LIC LMC uMc HC LIC LMC umc HIC
1004 1004 .
L] L]
: —
804 < 804
7]
= .
' o
& :
.
601 o 804
" =
[&]
; k- . .
S -
. 2 . |
404 [ | Z 404
[=]
. . ' N g
. - g
¢ 2 . . = .o
204 g 204 * x|[*
i . . ' £
N . (I | {1
] 1 -t L
) X X
ol X ¥ X X
0o i = —_—— 04
LI LMC UM HIC Ll LMC umc HIC

Collection coverage (% of generated MSW)

Controlled disposal (% of disposed MSW)

1004

804

604

40

204

1004

804

604

404

204

l O *F
.
X
x
. .
x | x
e T ]
| ]
X .
ad :
.
uc LMC umMc HIC
- .
1] [H P
.
—_ L.
X
-
< || %
.
X
x
.
x .
- x
2 . =
Lc LMC UMC HIC




149

Wasteaware

~

Waste Wise Benchmark What a Waste UNSD City
Cities Tool  Cities Indicators 2.0 Waste Data SIPSN MoHURD
Data collection 38 municipalities 71 municipalities 367 municipalities 171 municipalities 305 municipalities 713 municipalities
with waste data with waste data with waste data with waste data with waste data with waste data )

v

v

Harmonization &
preliminary screening

38 municipalities
266 data points

J

71 municipalities
487 data points

365 municipalities

) (¥

data points} [

160 municipalities
716 data points

J

50 data points

10 municipalities* 47 municipalities™
47 data points

~\

v

v

v v

v

v

Data consolidation

691 municipal data records
3,296 data points

v

No GADM boundary
match or data

676 municipal data records
3,281 data points

v

Old-data removal

676 municipal data records
3,266 data points

\- * >y
s ™\
. 567 municipal data records
Duplicate removal
upl v | 2,854 data points )
( 63 municipal d d B
563 municipal data records
Incorrect level removal 2,836 data points
.
tP15c: Waste tC1: Collection CO: Plastic in MSW  COa: Rigid tC2i: Formal tC2ii: Formal tC2iii: tC3: Controlled SDG:
generation rate coverage plastic dry recycling other recovery Incineration disposal 11.6.1
e ™
Pre-outlier removal 495_data 411 _data 359 _data 37 Qata 363_data 360 _data 378.data 396_dala 38 t_:iata
points points points points points points points points points
(" ™
468 data 382 data 334 data 37 data 357 data 346 data 375 data 364 data 38 data
points points points points points points points points points

Final cleaned dataset
(Post outlier removal)

v

v

v

A

v

v

v

v

.

553 municipal data records
2,688 data points

* Municipal records relate to a subset of sampled municipalities
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150  Fig. S11. Summary of data collection, consolidation, and cleaning process. Blue and yellow boxes represent harmonisation and preliminary screening
151  of the raw global and national datasets respectively; purple boxes represent cleaning steps following consolidation of data; and the green boxes
152  represent the final cleaned dataset (Supplementary Table 1).
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S.7 Machine learning for prediction of primary data input variables

We created a new machine learning model to predict data across all global municipalities using
our cleaned dataset (Supplementary Table 1).

A commonly used method to estimate municipal solid waste management data is to base the
prediction on the socioeconomics of the area. Waste generation rate is the most frequently
estimated variable with several studies predicting global MSW generation at a country level
using regression analysis and with gross domestic product (GDP) as the independent
variable?!%9173 Qthers have expanded this further by using more sophisticated machine learning
techniques (for example: artificial neural networks, supported vector machine, decision trees,
gradient boosted regression trees, and K-nearest neighbours) to arrive at waste generation
predictions, although these have so far been restricted to the national scale or below and often for
forecasting time-series waste generation for a single location!’4180,

Aside from MSW generation and composition, very few studies have attempted to assess other
aspects of municipal solid waste management performance that relate to the primary inputs in
this work (i.e., collection coverage, levels of treatment and recovery, controlled disposal).
Lebreton and Andrady*8! used country level data from Waste Atlas'®? (a database of user
submitted waste management data, without quality control checks) alongside regression analysis
to estimate global plastic waste generation and its mismanagement. ‘Mismanaged plastic waste’
was defined as the waste that goes to ‘unsound disposal’, plus 1% to account for littering. More
recently, Velis, et al.*® demonstrated that variability in cities waste management progress, as
measured via Wasteaware Cities Benchmark Indicators, can be modelled by various socio-
economic variables using both univariate non-linear regression and multivariate random forest
approaches. The variables of waste generation rate, collection coverage, quality of collection
services, controlled disposal and environmental protection tested by Velis, et al.** are highly
relevant to the present work and therefore provide the justification that data gaps can be
sufficiently estimated using socioeconomic data (indices) modelled through machine learning
approaches.

S.7.1 Independent variables (MS4a)

Independent variables used for predicting gaps in the primary data inputs were initially selected
based on those that Velis, et al.*° had found to show high importance. To enable the in-country
variability of solid waste management data to be described, sub-national independent variables
were also sourced (Table S19) to ensure we had explanatory power across a range of economic,
cultural, social, touristic, and geographic factors. We restricted our selection of independent
variables for the random forest process to those which had near global coverage to minimise data
gaps. With the exception of a few data points of independent variable highlighted in Table S19,
we chose the nearest reference year for each variable to be as close to 2015 as possible because
this is the median year of the cleaned primary data inputs.

A global spatial raster of population count data at 100 m resolution was sourced for the year
2020 from the Global Human Settlement Population dataset (GHS-POP)®, The zonal statistics
tool in QGIS version 3.2.1 was used to sum the population count across each administrative area
to calculate the 2020 population for each municipality. This was repeated for data from the year
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1194 2015 to assess historical populations of municipalities and allow comparison with the

1195 populations provided in older data records when performing the administrative area matching
1196  process (Section S.6.3). Although population was not used as an independent variable in the
1197  machine learning, it was still required to calculate other independent variables such as the
1198  number of international annual tourists as a percentage of national population.

1199  Table S19. Independent variables and their properties.

Category  Variable Unit Format Year Type Scale Resolution Ref.
Economic  GDP per capita GDP per Spatial raster 2015 Continuous Global Subnational 184
capita PPP in (5 arc-min)
constant 2011
int. USD
Human development index - Spatial raster 2015 Continuous Global Subnational 184,185
(HDI) (5 arc-min)
Gross National Income Current US$  Excel 2015* Continuous Global National 186
(GNI) Per Capita, Atlas
Method
Income category - Excel 2015 Categorical Global National 8
Developing country Y/N Excel 2015 Categorical Global National
Small island developing  Y/N Excel 2015 Categorical Global National
country
Demographic Population density People-km?  Spatial raster 2015 Continuous Global Subnational 187
/ Social / (unconstrained UN- (30 arc seconds)
Cultural adjusted)
Corruption Perceptions - Excel 2015* Continuous Global National 188
Index (CPI)
Social Progress Index - Excel 2015 Continuous Global National 189
(SPI)
Touristic International tourist People Excel 2015* Continuous Global National 190

arrivals as % of population
(calculated)

Geographic  Major city YIN Spatial NA  Categorical Global Subnational 91
vector
Sub-region - Excel NA  Categorical Global National 192
Degree of Urbanisation - Spatial 2015 Categorical Global Subnational 103
vector (municipal level)

1200 * Or nearest year to 2015 (up to three years away) if country data point not available for 2015.

1201  We classified each default municipality to characterise its level of urbanisation according to the
1202  Global Human Settlement Global Degree of Urbanisation Classification of administrative units
1203  (GHS-DUC) methodology®*. The GHS-DUC provides classification for administrative areas
1204  according to two levels. Level 1 includes three classes represented by a numeric ID: (1) rural; (2)
1205 town/semi-dense area; and (3) city. Level 2 includes eight classes: (30) city; (23) dense town;
1206  (22) semi-dense town; (21) suburban / peri-urban; (13) village; (12) dispersed rural area; (11)
1207  mostly uninhabited area; and (10) water.

1208  The GHS-DUC is not available for GADM V3.6 (the version used here), so we applied the
1209  GHS-DU-TUC toolkit'®® to calculate urbanisation (for Level 1 and 2) for our own default
1210  municipality vectors using the GHS Settlement Model grid (GHS-SMOD)!*® and GHS-POP
1211  raster'® for the years 2015 and 2020.
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The Level 1 categorical classifications were used as an independent variable in our machine
learning. The Level 2 classifications were used to calculate the proportion of the population that
lives each settlement typology in each municipality using the GHS-DU-TUC toolkit'®3. The rural
classes (10-13) were combined into a single ‘Rural_share’ category. The population in the
Rural_share category and all of the other Level 2 classes were used to calculate street sweeping
efficiency (Section S.8.5.2) and the Rural_share alone was used to correct data for rurality
(Section S.9.1.2).

We also used several other sub-national independent variables to train the random forest model
including: sub-national GDP per capita (PPP in constant 2011 international USD) and
subnational human development index (HDI) for the latest available year of 2015 as per Kummu,
et al.’8 Additionally, sub-national HDI data was also obtained from Smits and Permanyer*®® for
the year 2015 to fill any data gaps in Kummu, et al.'®*, Likewise, population density per km? for
the year 2015 was further obtained from WorldPop*®’. Each of these independent variables was
in raster form therefore the value for each municipality was summarised as the mean value,
calculated using the QGIS zonal statistics tool.

Data on whether a municipality was a capital city, world city, or mega city was sourced from the
Natural Earth populated places dataset'®!. These were aggregated into one overall indicator
termed here ‘major city’ to reduce the number of independent variables and avoid overly
correlated variables as this can impact the measure of variable importance via the permutation
method*®.

In addition to the sub-national independent variables, national level independent variables were
allocated to each municipality using their 1SO3 country code!®’ as detailed in Table S19. The
international annual tourist arrivals were calculated as a percentage of the national population as
determined from GHS-POP.

S.7.2 Imputation of independent variables (MS4b)

Occasionally, independent variables were not available for some administrative areas. At
national level this was mainly because the World Bank does not recognise certain countries
included in GADM (e.g., Taiwan, Kosovo), or does not report data for them (e.g., Small Island
Developing States), but also because some data are not collated and published (e.g., international
touristic arrivals). Any omissions in an independent variable were small, accounting for 2% of all
administrative areas or less.

The random forest process described in Section S.7.3 requires a complete set of independent
variables with no data gaps. Therefore, missing values were imputed using predictive mean
matching (pmm) method implemented with the R package ‘MICE’ (version 3.14.0). We used the
mean of five iterations, however when the imputed values for national level independent
variables differed for the same country, we used the median to ensure consistency within a
country.

S.7.3 Quantile regression random forest (MS5a and MS5b)

Random forest is a supervised machine learning method developed by Breiman'®. A random
forest is an ensemble of decision trees whereby each tree is grown from a bagged version of the
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training dataset and the predictor variables used for splitting are selected at random at each node
of the decision tree. In regression problems, the predictions are the average of the response of
each tree, whereas in classification problems the majority result is taken.

Since its development, random forest has been used extensively for both classification and
regression problems due to their wide suitability, simplicity, ability to deal with small sample
sizes, minimal requirement for tuning and reduced risk of overfitting! 1% It has also recently
been used for modelling solid waste management indices by Velis, et al.*° who found that it
outperformed non-linear regression models in all but one indicator.

Potential drawbacks of random forest regression are that they can be computational demanding;
do not allow for extrapolation outside of the training data range; that variable importance metrics
can be unreliable when dealing with highly correlated predictors; and that important information
on the distribution of responses is neglected when the mean value of responses is taken?0-2%2, To
overcome this last disadvantage, Meinshausen®® developed a variant of the random forest model
originally presented by Breiman'® whereby the value of all responses is retained, rather than just
the mean. Termed ‘quantile regression forests’, the comprehensive retention of this information
allows the distribution of responses to be expressed as quantiles, and therefore the uncertainty
around predictions quantified. Quantification of uncertainty around primary input data
predictions was used in this work by feeding it into the Monte Carlo probabilistic material flow
analysis (Section S.9).

We implemented quantile regression random forest independently for each of the seven primary
input variables in R using the package ‘caret’ (version 6.0-92). Twelve imputed independent
variables shown in Table S19 were used as the predictor variables. Hyperparameters of the
random forest process include the number of trees in the forest (ntree), the number of input
features to randomly sample at each split (mtry) and the minimum number of observations in a
terminal node (min.node.size). Probst, et al.?%® performed a literature review on the impact of
these parameters on the performance of random forest and concluded that mtry is the most
important parameter to tune, whereas ntree should be set high, but has diminishing value as more
trees are added.

To limit potential overfitting and reliably estimate the predictive ability of the random forest
models, the dataset was initially split into a training and test dataset (80:20) using the caret
function createDataPartition. Training data was then used to tune the hyperparameters using
grid search with 10-fold cross validation and five repeats. Hyperparameters tested were mtry
between 1 and 12 (the maximum number of predictors), and min.node.size between 5 and 10.
The number of trees ntree was kept constant at the default of 500 trees. Suitability of the random
forest models in the tuning process were assessed by calculating the root mean squared error
(RMSE), with the optimal model for each dependent variable chosen as the one where RMSE
was minimised. The optimised model was then used to predict the unseen test dataset and again
the RMSE was calculated. Similar values of RMSE between the cross-validation and testing data
signified that the model was not overfitting (Table S20). Finally, once the error and overfitting
checks were considered acceptable, the random forest model was retrained on the full dataset
using the optimum hyperparameters. This process was repeated for each of the dependent
primary input variables.
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Table S20. Results of hyperparameter optimisation including optimum model parameters and
root mean squared error (RMSE) values from cross-validation and testing on a holdout dataset.

Optimum model Cross
parameters Input data range \ 5idation Test data
ID Variable Unit mtry  min.node.size Min Max RMSE* RMSE
tPlpc MSW generation rate  kg-cap-d* 3 5 0.2 3.13 0.32 0.37
Co Plastic in MSW % wt. of MSW generated 1 7 1.0 31.8 4.78 5.29
tC1  Collection coverage % wt. of MSW generated 4 5 7.0 100.0 1547 13.84
Formal collection of % wt. of formally collected
tC2i  MSW for dry recycling MSW 2 10 0.0 49.9 6.07 5.95
Formal collection of % wt. of formally collected
tC2ii  MSW for other recovery MSW 1 5 0.0 40.0 6.46 5.26
Formal collection of % wt. of formally collected
tC2iii  MSW for incineration ~MSW 3 6 0.0 100.0 1297 11.76
Controlled disposal of % wt. of formally collected
tC3  MSW MSW for disposal 2 7 0.0 100.0 35.38 34.92

* Of optimal model from cross-validation. Abbreviations: municipal solid waste (MSW).

The performance of random forest was assessed using the RMSE values presented in Table S20.
Given RMSE has the same units as the dependent variable, the range of input data for each
variable is also provided for comparison. Alternate metrics, such as the mean absolute
percentage error (MAPE) or the symmetric mean absolute percentage error (SMAPE), were
avoided because much of the data includes zeros, or values close to zero, and these metrics are
known to become undefined or unstable respectively in these cases?®*. RMSE values were further
compared to the RMSE values reported by Velis, et al.*° for the comparable variables of waste
generation rate (0.31 adjusted to kg-cap-d), collection coverage (10.17) and controlled
disposal (27.96). The RMSE values in the present work are broadly comparable to those
achieved by Velis, et al.*%, albeit slightly higher. It should be noted, however, that the Velis, et
al.** analysed a limited dataset from a single primary data generating methodology (WABI),
consisting of only 40 cities (maximum), and as such, their dataset was not tested on a holdout
dataset and is therefore more at risk of overfitting. Likewise, the dataset used in this work is
much larger than that used in Velis, et al.**. Although this is useful for improved learning by
random forest, it is also likely to exhibit higher levels of noise, especially as it was collated from
multiple sources (WaCT, WABI, WaW?2.0, UNSD, SIPSN, MoHURD), despite efforts to
compatibilize them (Section S.6).

The RMSE values presented in Table S20 were considered acceptable for use in this work,
especially given the wide range, noise and complexity of the waste management data that it
predicts. Controlled disposal had the worst predictive capability with an RMSE of 35%,
however, given its bimodal nature, the method for predicting controlled disposal was adapted to
be treated as a classification problem rather than a regression one, as discussed in Section
S.9.1.1.

Whilst the economic independent variables score highly for importance across all dependent
variables, in many cases it is the social, cultural, or touristic independent variables that show the
highest importance (Fig. S12). This signifies that models that only use GDP or other economic
metrics for prediction are perhaps excluding other important metrics.
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Fig. S12. Relative importance measure for each dependent variable as determined through the
permutation method in quantile regression random forest.

S.8 Secondary data collection and processing (MS6)

In addition to the primary data inputs used to populate the Tributary MFA, secondary data was

required to complete the more detailed Full MSW MFA and Plastics MFA. These secondary

inputs build upon the Tributary MFA and enable three key areas to be explored in more detail,

namely:
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1. Converting MSW flows to plastic and rigid plastic flows at the Tributary MFA system

ends.

Allowing further description of the formal and informal recycling processes.

3. Estimating emissions of plastic into the environment at specific parts of the system,
including both debris emissions and open burning emissions.

N

Municipalities rarely report on the secondary data inputs, and in some cases, such as emissions
of plastic from different parts of the solid waste management system, no reliably measured data
yet exists. These data limitations mean that it was not possible to collate a database of secondary
data inputs per municipality as done with the primary data inputs. Instead, available data is
summarised either by archetypes (e.g., based on the income category of the country), or by
modelling approaches.

Material flow analysis calculations in this work used a probabilistic approach based on Monte
Carlo Analysis (Section S.9). This relies on the variability of each data input being specified in
the form of a probability density function (PDF). Quantile regression random forest enabled the
primary data inputs to be specified as PDFs (Section S.7.3), however, for the secondary data
inputs different approaches were used, as detailed below.

S.8.1 Proportion of plastic that is rigid (C0a)

The ratio of rigid to flexible plastic at different points of the system helps to determine the
probability of material being emitted from different system components through the action of
wind and surface water and in subsequent terrestrial transport models. In the absence of reliable
measured data, we assume that the ratio of rigid to flexible plastic in waste generated is
equivalent to C12a, C13a, C17a, C18a and C22a. For LICs, LMCs, and UMCs, the WaCT?®
provides verifiable, quality checked data for 37 municipalities which we used to approximate
these proportions as normal distributions (Table S21). Due to only four data points being
available for LICs, these were combined with LMC data.

Table S21. Proportion of rigid format material in upper-middle (UMC) and lower-middle / low
income (LMC / LIC) countries based on household surveys from WaCT?°.

Rigid plastic
Income category Number of data points (% wt. of plastic generation)

Mean Standard deviation
uMC 7 444 3.9
LMC/LIC 30 41.8 10.3

For HICs, we used a normal distribution based on the mean (61.7%) and standard deviation
(8.7%) of composition data from five sources which reported on approximately the same basis
(Table S22).

Table S22. Proportion of rigid and flexible format material in selected high-income countries.

Geographical Rigid Flexible

Source context Data type Method Basis %wt) (% wt)
Chruszcz?% Wales Primary Waste characterisation MSW  63.6 36.4
Bridgwater, et al.?% England Secondary Synthesis HH 64.0 36.0
Cascadia Consulting Group?”’ California Primary Waste characterisation MSW"  60.9 39.1
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Geographical Rigid Flexible

Source context Data type Method Basis (%wt) (% wt)

BMK28 Austria Secondary Not stated MSW*  72.0 28.0

Tetra Tech EBA Inc.?%® Vancouver Primary Waste characterisation MSW  48.1 51.9
Mean 61.7 38.3
Median 63.6 36.4
Standard deviation 8.7 8.7

* Although it was not specifically described as municipal solid waste (MSW), we assumed it based on the context and narrative in
the study report. Abbreviations: Municipal solid waste (MSW); household waste (HH).

S.8.2 Informal sector recycling (P14)

A sub-model was developed to estimate the amount of waste collected by the informal recycling
sector (IRS) (P14) worldwide (Fig. S13), based on a two-stage process originally developed by
Lau, et al.>: (1) Estimate the number of informal recyclers in each area; and (2) Estimate the
productivity of those recyclers, and hence how much waste they collect and reclaim for
recycling.

Use survey data to estimate number of
waste pickers in every municipality
according to income group

Assign estimates of informal sector waste collection Approximate composition of
productivity according to collection modality waste which is plastic & rigid
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Fig. S13. Sub model used to estimate the quantity of plastic collected for recycling by the
informal recycling sector.

S.8.2.1  Informal recycling sector population

Estimates for the proportion of informal recyclers in the urban populations of 102 municipalities
and countries around the world were collated (Table S23) and categorised by World Bank
income category (Fig. S14).
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1375  Table S23. Population engaged in informal waste collection as a proportion of total urban
1376  population in cities and countries.

Proportion of waste pickers

ISO3  Country Income category Municipality in urban population Source
BRA  Brazil uMcC Sorocaba 0.194 92
IDN Indonesia LMC Jakarta 0.378 210
BRA Brazil UMC 0.192 a1
BRA  Brazil uMcC Esteio 0.186 212
ZAF South Africa uMcC 0.136 213
PHL Philippines LMC Metro Manila 0.156

PHL Philippines LMC Quezon City 0.072 214
ARG  Argentina HIC Rauch 0.233

PAK Pakistan LMC Lahore 0.188 215
PAK Pakistan LMC Lahore (UC 16) 0.189

IND India LMC Tiruchirappalli 0.021 216
CHN China umcC Urban Area 0.668

CHN  China umcC Beijing 1.373

CHN  China umcC Guangzhou 1.159

CHN China umcC Shenzhen 2.179

CHN China uMcC Suzhou 1.482

CHN China uMcC Wuhan 0.262

MNG  Mongolia LMC Ulaanbaatar 0.757

IND India LMC Urban Area 0.412

IND India LMC Ahmedabad 0.675

IND India LMC Amritsar 0.281

IND India LMC Bangalore 0.708

IND India LMC Delhi 1.280

IND India LMC Kanpur 0.615

IND India LMC Kolkata 0.511

IND India LMC Mumbai 0.694

IND India LMC Pune 0.248

IDN Indonesia LMC Bandung 0.133 %
IDN Indonesia LMC Jakarta 0.224

PHL Philippines LMC Manila 0.191

PHL Philippines LMC Quezon City 0.485

BGD Bangladesh LMC Dhaka 0.133

PAK Pakistan LMC Lahore and Allama Igbal Town  0.333

VNM  Vietnam LMC Ho Chi Minh City 0.338

KHM  Cambodia LMC Phnom Penh 0.134

MEX  Mexico UMC Mexico City 0.121

MEX  Mexico UMC Monterrey 0.038

PER Peru uMcC Urban Area 0.441

PER Peru umcC Callao 0.178

PER Peru uMcC Canete 0.358

PER Peru uMcC Lima 0.186

BRA Brazil umcC Urban Area 0.364

BRA Brazil UMC Belo Horizonte 0.157

BRA Brazil UMC Rio de Janeiro 1.301
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Proportion of waste pickers

ISO3  Country Income category Municipality in urban population Source
BRA Brazil UMC Santo Andre 0.303

BRA Brazil UMC Sao Paulo 0.177

CcoL Colombia UMC Bogota 0.252

ARG  Argentina HIC Buenos Aires 0.222

URY Uruguay HIC Montevideo 0.907

ETH Ethiopia LIC Addis Ababa 0.204

EGY Egypt, Arab Rep. LMC Cairo 0.321

TZA Tanzania LIC Dar-es-Salaam 0.024

ZMB  Zambia LMC Lusaka 0.039

ROU ROMANIA UMC Cluj-Napoca 1.044

GHA  Ghana LMC Accra metropolitan area (GAMA) 0.031 a7
MEX  Mexico UMC Monterrey 0.033

MEX  Mexico UMC Guadalupe 0.087

MEX  Mexico umcC San Nicolas 0.040

MEX  Mexico uMcC Mexico City 0.100 218
MEX  Mexico uMcC Tultitlan 4.564

MEX  Mexico UuMC Nezahualcéyotl 0.055

MEX  Mexico UMC Tultepec 0.026

BRA  Brazil umcC Santo Andre 0.303 219
BRA  Brazil umcC 0.114 220
SRB Serbia uMcC 0.339 221
BRA  Brazil umcC 0.303 222
MEX  Mexico uMcC Celaya 0.422 223
CHL  Chile HIC Santiago de Chile 0.111 224
NIC Nicaragua LMC Managua 0.117 225
GHA  Ghana LMC Kpone Katamanso District 0.143 226
IND India LMC Mumbai 1.206 227
PAK  Pakistan LMC Halimar Town 0.037 228
PRY Paraguay uMcC Asuncion 0.096 229
IND India LMC Pune 0.028 230
PAK  Pakistan LMC Al Ima Igbal Town 0.333 21
BGD  Bangladesh LMC Khulna 0.134 232
NGA  Nigeria LMC Lagos 0.063 233
EGY Egypt, Arab Rep. LMC Cairo 0.227

ROU  ROMANIA UMC Cluj 0.849

PER Peru UumMC Lima 0.227 -
ZMB  Zambia LMC Lusaka 0.039

IND India LMC Pune 0.295

PHL Philippines LMC Quezon 0.406

IDN Indonesia LMC Bandung 0.129 235
COL  Colombia umcC 0.290 236
VNM  Vietnam LMC Hanoi 0.136 237
IND India LMC Kanpur 0.226 238
IND India LMC Calcutta 0.167

PHL Philippines LMC Manila 0.128 239
MEX  Mexico UMC Mexico City 0.088
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Proportion of waste pickers

ISO3  Country Income category Municipality in urban population Source
ZWE  Zimbabwe LIC Harare 0.084 210
ZWE  Zimbabwe LIC Bulawayo 0.296
IND  India LMC New Delhi 0.106 241
BGD  Bangladesh LMC Dhaka 0.973 242
BRA  Brazil uMC Metropolitan region of Sdo Paulo 0.094 243
IND India LMC 0.514 24
PHL Philippines LMC loilo City 0.060 245
BGD  Bangladesh LMC Rajshahi City 0.156 246
CHN  China uMcC Beijing-Haidian District (North)  0.757 247
CHN  China uMcC Urban Area 0.668 248
CHN  China uMcC Beijing (North) 0.073 249
CHN  China uMcC Cities in China 0.455 250
1377
1378  We assumed a Beta-PERT distribution for the informal recycling sector population data with a
1379  default shape factor of four ?°*. The shape factor controls the weighting of the most likely value.
1380  We chose the Beta-PERT distribution for two reasons: (1) Beta-PERT distributions require only
1381  three, easily obtainable parameters (minimum plausible value, most likely value, maximum
1382  plausible value), and are therefore suitable in situations where the available data are not
1383  sufficient to provide a more accurate distribution shape or when parameters rely on expert
1384  judgement; and (2) Beta-PERT distributions overcome some of the disadvantages of the
1385 triangular distribution, often favoured in such situations, because triangular distributions assign
1386  higher probabilities to the extremities of fat-tailed distributions?®2.
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1388  Fig. S14. Central tendency and spread of estimated proportion of waste pickers in municipalities
1389  and countries (n = 102).
1390 Informal recycling sector population data were grouped by income category (Fig. S14). For the
1391  LICs, LMCs and UMCs, the most likely value was taken as the median, and the lower and upper
1392  plausible limits were taken as the range of values excluding outliers, defined as being greater
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than 1.5 times the inter-quartile range distance from each quartile. Four data points were
available for HICs, all for countries in South America (Argentina, Chile and Uruguay) which, at
the time the data were collected, had relatively recently entered the HIC category. For this
reason, we considered that they are not necessarily representative of other countries in HICs, and
therefore an assumption used by Lau, et al.® of mid-0.005% (range 0.0045-0.0055) was adopted.

S.8.2.2  Informal recycling sector productivity

Productivity data from 18 municipalities first reported by Lau, et al.® indicated a range of between
3.525-19.27 t-y! of waste (all types of recyclate) collected for recycling by selective collectors
(Fig. S15A). This productivity data was converted to a PDF by assuming a uniform distribution.
Multiplication of estimated number of waste pickers in a municipality with the expected
productivity of each waste picker and a working year of 235 days, enabled the mass collected by
the informal recycling sector to be approximated. This was undertaken within the probabilistic
MFA detailed in Section S.9 to incorporate the uncertainty as represented by the above PDFs.
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Fig. S15. Central tendency and spread of (A) daily productivity of informal recyclers in
municipalities (n = 18); (B) proportion of waste collected by informal recyclers that is plastic (n
=29); and (C) proportion of plastic waste collected by informal recyclers that is rigid format.

S.8.2.3  Proportion of plastic collected by informal recycling sector (C15)

The proportion of waste collected by informal recyclers that was plastic (C15) in UMCs, LMCs,
and LICs was based on 30 sources of data collected in 30 municipalities (Table S24). A Beta-
Pert distribution was assumed with central value of 30% and a range of 2.3-60% (Fig. S15B).

There is little data available on the proportion of plastic collected by informal recyclers in HICs
where plastic recycling is driven by regulation and financial subsidies rather than unsupported
market forces?>3. Financial incentives such as producer responsibility?®* are out of reach of
informal recyclers and because they are light and have low value (by weight) relative to the cost
of living, we assume they are barely targeted if at all on a weight basis. Using a Beta-Pert
distribution as with the Global South Countries, we chose the lower end of the range 2.3% as our
central value, multiplied by 2 for the upper and of the range (4.6%) and a zero for the lower end.
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Table S24. Plastic proportion of waste collected by informal recyclers.

Year data Proportion waste collected by
Country Municipality collected informal recyclers that is plastic (%) Source
Brazil Esteio 2017 20.76 212
Indonesia Bantar Gebang 2014 87.00 255
India Tiruchirappalli 2010 60.00 216
Brazil Santa Rita 2012 32.80 256
India Dhanbad 2018 43.00 178
South Africa Johannesburg 2017 25.97 257
Egypt Cairo 2016 13.00 258
Pakistan Halimar Town 2015 32.00 228
India Kanpur 2008 33.00 238
Cote d'Ivoire Abdjan 2016 47.00 29
Bangladesh Rajshahi City 2012 2.25 246
Brazil Campinas 2013 24.80 260
China Beijing-Haidian District (North) 2017 17.80
China Beijing-Haidian District (North) 2017 6.80 247
China Beijing (North) 2010 10.50 261
Ecuador Cuenca 2020 25.00 262
Ecuador Cuenca 2019 22.10 263
Bolivia La Paz 2020 20.70 264
Brazil Belo Horizonte 2021 28.00 69
Brazil Londrina, Parana state 2020 20.07 265
Brazil 2020 11.00 266
Indonesia Bantar Gebang 2020 87.21 267
Ghana Greater Accra Metropolitan Area 2023 87.12 59
Ecuador Quito 2015 42.00
Ecuador Guayaquil 2015 42.00
Ecuador Cuenca 2015 37.00
Ecuador Manta 2015 46.00
Ecuador Average of 4 cities 2015 42.00 268
Nigeria Abuja 2021 36.47 269
Brazil Ribeirdo Pires, Sdo Paulo 2013 15.91 243
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S.8.2.4  Proportion of plastic collected by informal recycling sector that is rigid (C21a)

The proportion of plastic collected by informal recyclers that is rigid (C21a) was based on 10
sources that presented data on 11 municipalities (Table S25). Due to the paucity of data and
large spread, we were not confident to assign a central value and therefore chose a uniform
distribution between the range 11-95% (Fig. S15C) for all countries.

Table S25. Proportion plastic waste collected by informal recyclers that is rigid.

Location of cohort

Location of cohort (country) (municipality) Year of publication Rigid (%) Source
Indonesia Bantar Gebang 2019 20.0 270
Indonesia Jakarta 2018 95.0 210
Indonesia Bantar Gebang 2014 11.0 255
India Tiruchirappalli 2010 77.0 216
India Dhanbad 2018 815 178
Pakistan Halimar Town 2015 84.0 228
60.6
India Kanpur 2008 28.2 238
Ecuador Cuenca 2020 35.1 262
Ecuador Cuenca 2019 65.2 263
Brazil na 2020 67.9 266
Indonesia Bantar Gebang 2020 25.7 267

S.8.3 Rejects of rigid and flexible plastic from sorting and reprocessing by
formal (C24aa C24ab) and informal (C23aa, C23ab) sectors

We estimated plastic mass rejects (sometimes referred to in the literature as ‘losses’) at the
sorting and reprocessing steps by creating a sub-model which used a set of logical assumptions
about the economic value and recyclability of different polymers and formats. We used these to
assign the probability that different types of plastic waste would be selected for recycling rather
than screened for recovery or disposal. As summarised in Fig. S16, we applied these reject rates
to baseline data for the amount of plastic waste collected for recycling in the Global North and
South.
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Fig. S16. Sub-model for estimating rejects (sometimes referred to in the literature as ‘losses’)
(wt. as received (ar) reporting basis) from plastic waste that has been collected for recycling.

S.8.3.1  Step 1: Establish baseline plastic waste collected for recycling

The OECD provided us with polymer specific data on the amount of MSW plastic waste
collected for recycling from their ENV-Linkages model (‘Global Plastics Outlook”), which
underlies a dataset that is published online in a summarised format®’*. Textiles were excluded for
congruence with our model. We developed our assumptions according to three municipal
categories: packaging; electrical and electronic; and consumer and institutional. Data for LDPE
used in electrical and electronic equipment was excluded, because LDPE is rarely used in
electrical and electronic equipment?’2273, For simplification, we assumed that OECD members
are HICs, which collect formally, and non-OECD countries are LMICs, which collect informally.

The ENV-Linkages model does not differentiate between flexible and rigid material collected for
recycling. Therefore, we used European plastic packaging consumption data as a proxy,
calculating the amount of flexible plastic consumed in each polymer category reported by
Nonclercg?’* as a proportion of plastic consumption reported by Cimpan, et al.?” (Table S26).
Data to indicate the proportion of each polymer collected for recycling which is flexible were not
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available for LMICs. Therefore, we calculated a ratio between the mean proportion of flexible
packaging for Europe (Table S26) and the median proportion of flexible material reported by
WaCT data points. We applied this ratio to each of the proportions calculated for Europe.

Table S26. Estimated flexible plastic packaging as a proportion of all plastic packaging.

Proportion of total plastic Proportion of total plastic

Total consumption Flexible consumption packaging that is flexible packaging that is flexible
Polymer (Mt in 2014)%™ (Mt in 2014)%™ in HICs (%) in LMICs (%)
HDPE 3.30 0.23 6.97 9.66
LDPE® 5.79 5.79 100.00 100.00
OTHER 1.37 0.24 17.50 24.25
PET 3.29 0.16 4.87 6.75
PP 3.78 0.88 23.31 32.30
PVC 0.38 0.08 20.79 28.82
Total 17.91 6.42 35.86 57.14

3L DPE includes LLDEPE. All flexible consumption was reported by Nonclercgq?”* except LDPE which was all assumed to be
flexible. Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene
terephthalate (PET); polyvinyl chloride (PCV); polypropylene (PP); high income counties (HIC); low- and middle-income
countries (LIMIC).

Polyurethane (PUR) collected for recycling is assumed to be used as bonding or coating and
therefore rigid, except for in consumer and institutional category where it was assumed to be
flexible and used as foam in mattresses and furniture?’®. We assumed that PVC collected under
consumer and institutional was entirely rigid. We applied the proportions of flexible plastic
packaging (Table S26) to the OECD polymer specific data for each category as shown in Table
S27.
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1473  Table S27. Estimated mass of municipal solid waste plastic collected for recycling in high
1474 income countries and low-middle income countries based on MSW data underlying the ENV-
1475  Linkages model (‘Global Plastics Outlook’)?"*. Rigid and flexible plastics were estimated using
1476  European packaging data provided by Cimpan, et al.?”> and Nonclercg?’* as a proxy, as detailed
1477  in Table S26.

Sector/ Plastic type by dominant Rigid & flexible mixed as reported  Rigid Flexible Rigid Flexible
application polymer HIC (Mt) LMIC (Mt) Total (Mt) HIC (Mt) LMIC (Mt)
HDPE 0.86 1.04 191 0.86 0.00 1.04 0.00
LDPE, LLDPE 0.62 0.75 1.38 0.00 0.62 0.00 0.75
Other 0.01 0.02 0.03 0.01 0.00 0.02 0.00
Consumer & PET 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Institutional
Products PP 1.27 1.54 2.82 1.27 0.00 154 0.00
PS 0.16 0.19 0.36 0.16 0.00 0.19 0.00
PUR 0.07 0.08 0.15 0.00 0.07 0.00 0.08
PVvC 0.08 0.09 0.17 0.08 0.00 0.09 0.00
Consumer & Institutional Products Total 3.08 3.72 6.80 2.39 0.69 2.89 0.84
HDPE 0.08 0.08 0.16 0.08 0.00 0.08 0.00
LDPE, LLDPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other 0.02 0.02 0.03 0.02 0.00 0.02 0.00
Electrical/ PET 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electronic PP 0.28 0.27 0.55 0.28 0.00 0.27 0.00
PS 0.05 0.05 0.10 0.05 0.00 0.05 0.00
PUR 0.03 0.03 0.05 0.03 0.00 0.03 0.00
PVC 0.04 0.04 0.09 0.04 0.00 0.04 0.00
Electrical/Electronic Total 0.51 0.49 1.00 0.51 0.00 0.49 0.00
HDPE 5.20 6.59 11.79 4.84 0.36 5.96 0.64
LDPE, LLDPE 3.00 3.90 6.90 0.00 3.00 0.00 3.90
Other 0.01 0.01 0.01 0.00 0.00 0.01 0.00
. PET 4.24 5.39 9.63 4.04 0.21 5.02 0.36
Packaging
PP 3.00 3.80 6.80 2.30 0.70 2.57 1.23
PS 0.21 0.27 0.48 0.21 0.00 0.27 0.00
PUR 0.01 0.02 0.03 0.01 0.00 0.02 0.00
PVC 0.13 0.16 0.29 0.10 0.03 0.12 0.05
Packaging Total 15.81 20.14 35.95 11.51 4.30 13.96 6.18
Grand total 19.40 24.35 43.75 14.40 4.99 17.34 7.01

1478 Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene
1479 terephthalate (PET); polyvinyl chloride (PCV); polypropylene (PP); high income counties (HIC); low- and middle-income
1480  countries (LIMIC).

1481 S.8.3.2 Step 2 and 3: Identify empirical or assumptive data on rejects or use abductive
1482 reasoning to estimate

1483 S.8.3.2.1 General assumptions, data, and abductive reasoning

1484  We used a combination of empirical data, reported assumptions and abductive reasoning to

1485  estimate rejects at the sorting and reprocessing stages. For simplification of this step, plastic
1486  waste collected for recycling in LMICs was assumed to be collected exclusively by the informal
1487  sector, despite a few examples identified and discussed in Section S.6.4.3.5 and Section

1488  S.6.4.4.3. We also simplify what is a complex continuum of processes into two basic stages of:
1489 1) Sorting; and 2) Reprocessing, which would otherwise be overly challenging to model at global
1490  scale.
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Table S28. Empirical data, assumptions and abductive reasoning underlying decisions made on
the mass of rejects for material collected for recycling through formal and informal systems.

Sector / Formal collection, sorting Informal collection and sorting
application
Packaging  Assumptions Assumptions
¢ Predominantly collected alongside a mixture of non- e Material is manually selected at the point of collection
plastics or, where collected separately, as a mixture of meaning that subsequent rejects are likely to be very
plastics. small — waste pickers are unlikely to expend effort
e Almost never collected as separate stream except for ~ selecting and carrying substantial amounts of material
LDPE wrap from commercial sources which is that is not likely to return value.
generally collected separately when collected for o Therefore, rejects consist mainly of closures, plastic
recycling. labels and some soiled material rejected by junkshops.
Reject rates applied Reject rates applied
¢ PS, PVC, PUR and ‘other’ plastics not separated for e As there are no published studies on this aspect of the
recycling therefore 100% rejects across sorting and informal sector, we assume informal sector rejects as
reprocessing stages. twofold:
o Non-LDPE films not separated for recycling therefore 1) We used an assumption from Lau, et al.® that 5% of
100% rejects across sorting and reprocessing stages. material collected for recycling by the informal sector is
e Reject rates at sorting stage for other plastics are mean  rejected during sorting; and
reported by Antonopoulos, et al.?”” for European and  2) That rejects at the reprocessing stages are
UK materials recovery facilities: commensurate with analysis of data reported by Roosen,
oPET 19% et al.?’® and Antonopoulos, et al.?’7 presented in Section
oPP  43% S.8.3.2.2.
o LDPE 42%
o HDPE 24%
Rejects at the reprocessing stage are based on analysis
of data reported by Roosen, et al.?’8, presented in
Section S.8.3.2.2.
Electrical & Assumptions Assumptions
electronic e The mass of plastic collected for recycling is part of e As with formal system, informal reclaimers are focused

the complex assemblies of items that constitute
electrical and electronic equipment and cabling.
e Several sorting businesses now exist in Europe?7-282,

on the most valuable constituents of WEEE, the metals.

e There is some evidence that they recycle plastics in

some locations?®, but in others they are simply burned

and presumably elsewhere across HICs, but separation  due to lack of market access?’.

of plastics in these plants is commercially nascent.

e Sorting is predominantly by comminution and optical
or electrostatic separation?®,

¢ Of the mass collected for recycling, only a very small
proportion is likely to be recoverable for reprocessing

due to its potentially hazardous characteristics, and the

co-processing conditions which hinder purity?84285,

Reject rates applied

¢ On the basis of evidence that markets for secondary
post-consumer PU and PS packaging are weak and
that recovery rates are low when processed?”?, we
assume that recovery of PU and PS from WEEE are
likely to be low or non-existent given that recovery
from WEEE sources is more technically challenging.
Therefore, we assume 100% reject rate at the sorting
stage.

« In the absence of strong data, assuming that formal
WEEE reclaimers have advanced conservatively in
the previous decade, and that the majority of material
is too contaminated to be recycled, we apply a 90%
reject rate for sorting and reprocessing to all non-PUR
and PS WEEE plastics.

o Informal recyclers work harder to reclaim more material

if it is technically possible. They are also likely to have
less awareness of the hazardous nature of some WEEE
plastics and therefore are less selective about which
plastics to reclaim.

Reject rates applied
¢ PVC is mainly used in cabling in WEEE, and the

informal sector is unlikely to strip and recover it due to
the extensive time taken. Evidence suggests it is almost
always burned in open uncontrolled fires?8. Therefore,
we attribute a 100% reject rate for PVC at the sorting
stage.

e On the basis that informal sector workers make more

effort to recover less concentrated materials but that

they have less technical capability to do so, we assume

the following:

o For PS and PU, 100% rejects at the sorting stage for
the same reason as HICs.

o For HDPE, PP and other plastics, recovery rates
slightly higher than HICs of 85% across the sorting
and reprocessing stages.
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Sector /
application

Formal collection, sorting

Informal collection and sorting

Consumer & Assumptions

institutional e Items include all non-packaging plastics consumed
domestically, commercially, and institutionally.
Examples include toys, garden furniture, household
and commercial furniture (i.e., all plastic items that
are not electrical and electronic, part of a vehicle,
packaging, used in agriculture, or part of a building
construction).

o If recovered for recycling, these items are likely to
exist in a format that is much larger than most
packaging items.

o All material collected for recycling will be rigid
format and many items and objects will be assemblies
of items and materials.

Reject rates applied
¢ In the absence of any empirical data, we assumed the
same reject rates as plastic packaging across the
sorting and reprocessing stages for all materials
except the following:
o PUR is mostly collected in foam format as part of
mattress collections. In many cases it is likely to be

incinerated or landfilled, but there is strong evidence

of recycling too, therefore we assign an assumption
of 80% reject rate at the sorting stage.

o PVC occurs in this category as furniture, often as a
single, un-bonded or assembled material. Therefore,

we suggest that the reject rates are relatively low and

apply a 50% reject rate at the sorting stage.

Assumptions

e Unlike electrical and electronic waste, items in this
category are unlikely to be collected for recycling unless
the collector intends to recycle them. This is because
they do not generally occur as bonded assemblies with
other more valuable materials such as metals.

Reject rates applied

o For this category we apply the same rate of 5% at the
sorting stage as for packaging.

o We applied rejects at the reprocessing stage using
analysis of data reported by Roosen, et al.?® and
Antonopoulos, et al.?”” (for PVC and PS) presented in
Section S.8.3.2.2.

Abbreviations: Million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); polyethylene
terephthalate (PET); polystyrene (PS); polyvinyl chloride (PCV); polypropylene (PP); polyurethane (PUR); waste electrical and
electronic equipment (WEEE); high income counties (HIC); low- and middle-income countries (LIMIC).

S.8.3.2.2 Material rejects at reprocessors

Chemical and physical characterisation of plastic packaging item data reported by Roosen, et
al.2’® was used to estimate potential rejects at reprocessors for rigid HDPE, PET and PP using a
three step process: (1) We calculated the content of the target plastic component, meaning
material targeted for recycling, as a proportion of total plastic (Table S29); (2) We deducted an
assumed 1% process reject rate, to account for spillages and extrusion rejects (wastage); (3) We
used the ratio of bottles to pots tubs and trays (excluding black plastics) reported in a weighted
compositional analysis of plastic packaging collected for recycling in the UK?® to approximate
the proportion of each, and hence weight the anticipated rejects during reprocessing (Table S30).
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Table S29. Non-target (not targeted for recycling) plastics sampled at plastics reprocessors as a
proportion of total plastics processed based on item characterisation reported by Roosen, et al.?8,

. . As proportion of plastic Reject rates adjusted for 1%
Plastic Non-plastic : .
Target . - excluding non-plastic wastage
residues residues .
Item type residues
Residue Residue
0, [0)
Mean Mean Mean Target (%) (rejects) (%) Target (%) (rejects) (%)
PET bottle 81.60 11.60 6.80 87.55 12.45 86.55 13.45
PET tray 79.20 12.50 8.30 86.37 13.63 85.37 14.63
PE Bottle 77.50 13.60 8.90 85.07 14.93 84.07 15.93
PP Bottle 76.90 19.60 3.50 79.69 20.31 78.69 21.31
PP tray 91.30 1.00 7.70 98.92 1.08 97.92 2.08
Film 90.8 9.2 100.00 0.00 99.00 1.00

Abbreviations: polyethylene terephthalate (PET); polypropylene (PP); polyethylene (PE).

Table S30. Process of estimating the amount of material which is rejected for each item type
listed in Table S29 at the sorting and reprocessing stages according to typical ratio of bottles to
pots, tubs and trays after Chruszcz and Reeve?®®,

Dominant Composition reported Normal_is_ed Assigned  Item descriptor Rejgct rate
Item type Colour by Chruszcz and composition target rate from Roosen, et per item
polymer Reeve?™ (96) (%) (%) al2r8 type (%)
HDPE Milk bottle Natural 13.20 61.1 84.07 PE Bottle 9.734
HDPE Non-milk bottles Jazz 7.70 35.6 84.07 PE Bottle 5.678
HDPE Pots, tubs & trays Natural 0.10 0.5 97.92 PP tray 0.010
HDPE Pots, tubs & trays Jazz 0.60 2.8 97.92 PP tray 0.058
Total HDPE 21.60 100.0 Weighted average rejects HDPE 15.5
PP Bottles Jazz 0.4 4.0 78.69 PP Bottle 0.844
PP Pots, tubs & trays Natural 4.4 43.6 97.92 PP tray 0.908
PP Pots, tubs & trays Jazz 53 52.5 97.92 PP tray 1.093
Total PP 10.1 100.0 Weighted average rejects PP 2.8
PET Bottles Natural 26.4 65.5 86.55 PET bottle 8.809
PET Bottles Jazz 31 7.7 86.55 PET bottle 1.034
PET Pots, tubs & trays Natural 10.3 25.6 85.37 PET tray 3.740
PET Pots, tubs & trays Jazz 0.5 1.2 85.37 PET tray 0.182
Total PET 40.3 100.0 Weighted average rejects PET 13.8

Abbreviations: High density polyethylene (HDPE); polyethylene terephthalate (PET); polypropylene (PP).

For PET film, HDPE film, PP film, rigid PS and rigid PVC, we used arithmetic mean reject rates
reported by Antonopoulos, et al.?’” (Table S35). In the absence of better data, the reject rate for
PUR and Other was assumed the same as PVC. We assumed the same reject rates at the
reprocessing stage for materials collected for recycling by the formal and informal sectors.
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Table S31. Summary of plastic packaging reject rates at the reprocessing stage.

Rigid Flexible

Plastic type by dominant polymer Reject rate (%0) Data source Reject rate (%) Data source
HDPE 15.48 (Table S30) 29.00 2r

LDPE, LLDPE 1.00 (Table S29)
Other 20.00 2r 29.00 2r

PET 13.76 (Table S30) 29.00 2r

PP 2.84 (Table S30) 29.00 2r

PS 34.00 2r

PUR 20.00 2r

PVC 20.00 2r 29.00 2r

Abbreviations: High density polyethylene (HDPE); low density polyethylene (LDPE); linear low-density polyethylene (LLDPE);
polyethylene terephthalate (PET); polystyrene (PS); polyvinyl chloride (PCV); polypropylene (PP); polyurethane (PUR).

S.8.3.3  Step 3: Apply evidenced or assumed reject rates to the mass of plastic collected
for recycling

Reject rates at the sorting and reprocessing stages were applied to the mass of plastic under each
industrial sector / application and plastic type as shown in Table S33. The mass of each category
was then summed for rigid and flexible material for the formal and informal sectors to provide
weighted average reject rates for each category. The reject rates for each process flow are
summarised in Table S32.

Table S32. Summary of rejects calculated for each process.

Proportion of collected for recycling that is

Formality Format System component rejected (lost) before conversion
Rigid C24aa 40.74

Formal Flexible C24ab 58.08
Rigid C23aa 18.84

Informal Flexible C23ab 14.90

Beta-PERT distributions were assigned for rejects taking the value reported in Table S32 as the
most likely value, and assigning a £20% uncertainty to each for the upper and lower plausible
bounds, and assuming a shape factor of four.
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Table S33. Reject rates applied to main plastic types for three municipal solid waste industrial sectors / applications.

Post reprocessing

Reprocessin rejects as proportion of

g reject

Plastic type ) _ ) ) rates (%) Post reprocessing mass collected for recycling
Industrial sector / by Collected for recycling mass (Mt) Sorting reject rates (%) Post sorting mass (Mt) (Mt) (%)
application dominant Form Form Form. +
polymer . Inf. .I+f Form. Inf. Form. Inf. Form. Inf. Inf. ' Form. Inf. Form. Inf.
nf.
Rig. & flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex. Rig. Flex.
HDPE 086 104 191 086 000 104 0.00 24 100 5 5 0.66 0.00 099 0.00 1548 29.00 055 0.00 0.84 0.00 3576 na 19.71 na
LDPE* 062 075 138 000 0.62 0.00 075 v 42 na 5 000 036 000 0.72 na 1.00 0.00 036 000 071 na 42.58 na 5.95
Other 0.01 002 0.03 0.01 000 002 0.00 100 na 5 na 0.00 0.00 001 0.00 na na 0.00 0.00 0.01 0.00 100.00na 5.00 na
Consumer & PET 0.00 000 000 0.00 0.00 0.00 0.00 na na na na 0.00 000 0.00 0.00 13.76 29.00 0.00 000 0.00 0.00 na na na na
institutional PP 127 154 282 127 000 154 0.00 43 na 5 na 0.73 000 146 0.00 284 29.00 0.71 0.00 142 0.00 4462 na 7.70 na
PS 016 019 036 0.16 0.00 019 0.00 100 na 5 na 0.00 000 0.18 0.00 34.00 29.00 0.00 0.00 0.12 0.00 100.00na 37.30 na
PUR 0.07 008 0.15 0.00 0.07 0.00 0.08 na 80 na 5 0.00 001 000 0.08 na 29.00 0.00 0.01 0.00 0.06 na 85.80 na 32.55
PVC 008 009 0.17 0.08 0.00 0.09 0.00 50 na 5 5 0.04 000 0.09 0.00 20.00 29.00 003 0.00 0.07 0.00 60.00 na 24.00 na
Consumer & institutional total 3.08 3.72 6.80 239 069 289 084 na na na na 142 037 274 079 na na 129 037 247 0.76 4594 46.84 1454 857
HDPE 0.08 008 0.16 0.08 0.00 0.08 0.00 90 na 85 na 001 000 0.01 0.00 na na 0.01 000 0.01 0.00 90.00 na 85.00 na
LDPE* 0.00 000 000 0.00 0.00 0.00 0.00 na na na na 000 000 0.00 0.00 na na 0.00 000 0.00 0.00 na na na na
Other 002 002 003 002 0.00 0.2 0.00 90 na 85 na 0.00 0.00 0.00 0.00 na na 0.00 000 0.00 0.00 90.00 na 85.00 na
Electrical/ electronic PET 0.00 000 000 0.00 0.00 0.00 0.00 na na na na 000 000 0.00 0.00 na na 0.00 000 0.00 0.00 na na na na
PP 028 027 055 028 0.00 027 0.00 90 na 85 na 0.03 000 0.04 0.00 na na 0.03 000 0.04 0.00 90.00 na 85.00 na
PS 005 005 010 0.05 0.00 0.05 0.00 100 na 100 na 0.00 0.00 0.00 0.00 na na 0.00 0.00 0.00 0.00 100.00na 100.00 na
PUR 003 003 005 003 0.00 0.03 0.00 100 na 100 na 0.00 0.00 0.00 0.00 na na 0.00 0.00 0.00 0.00 100.00na 100.00 na
PVC 0.04 004 009 0.04 0.00 0.04 0.00 90 na 100 na 0.00 0.00 0.00 0.00 na na 0.00 0.00 0.00 0.00 90.00 na 100.00 na

Electrical/ electronic total 0.51 049 100 051 0.00 049 000 na na na na 0.04 0.00 006 0.00 na na 0.04 000 0.06 0.00 9157 na 88.68 na

HDPE 520 659 11.79 484 036 596 064 24 100 5 5 368 000 566 061 1548 29.00 3.11 0.00 478 0.43 3576 100.0019.71 32.55
LDPE* 3.00 390 6.90 000 3.00 0.00 390 na 42 na 5 000 174 0.00 371 na 1.00 0.00 173 0.00 3.67 na 42.58 na 5.95
Other 001 001 001 000 0.00 0.01 000 100 100 5 5 000 000 0.01 0.00 20.00 29.00 0.00 0.00 0.00 0.00 100.00100.0024.00 32.55
Packaging PET 424 539 963 404 021 502 036 19 100 5 5 327 000 477 035 1376 29.00 282 0.00 4.12 0.25 30.15 100.0018.08 32.55
PP 300 380 680 230 070 257 123 43 100 5 5 131 000 245 117 284 29.00 1.27 0.00 238 083 4462 100.007.70 32.55
PS 021 027 048 021 000 0.27 000 100 100 5 na 0.00 0.00 0.26 0.00 34.00 na 0.00 0.00 0.17 0.00 100.00 na 37.30 na
PUR 001 002 003 001 0.00 0.02 000 100 100 5 na 000 000 0.01 0.00 20.00 na 0.00 000 0.01 0.00 100.00na 24.00 na
PVC 013 016 029 010 003 012 005 100 100 5 5 0.00 000 0.11 0.04 20.00 29.00 0.00 0.00 0.09 0.03 100.00100.0024.00 32.55

Packaging total 15.81 20.14 35.95 11.51 4.30 13.96 6.18 na na na na 826 1.74 1326 587 na na 720 173 1155 521 37.41 59.88 17.29 15.76

Grand total 19.40 24.35 43.75 14.40 499 1734 701 na na na na 9.72 212 16.06 6.66 na na 854 209 14.07 597 40.74 58.08 18.84 14.90

High income countries are assumed to be formal and non-high-income countries are assumed informal. *LDPE includes LLDPE. Abbreviations: Formal (Form.), informal (Inf.); rigid (rig.); flexible
(flex.); million tonnes (Mt); high density polyethylene (HDPE); low density polyethylene (LDPE); linear low-density polyethylene (LLDPE); polyethylene terephthalate (PET); polystyrene (PS);
polyvinyl chloride (PCV); polypropylene (PP); polyurethane (PUR).
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S.8.3.4  Mismanagement of rejects from sorting and reprocessing (C25aa, C25ab, C26aa,
C26ab)

To understand the proportion of rejects which are mismanaged, we created a further sub-model
which used collection coverage and street sweeping efficiency to approximate mismanagement
activity data (Fig. S17).
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Fig. S17. Sub-model to estimate the quantity of rejects from sorting and reprocessing which are
mismanaged.

We assumed that rejects from sorting and reprocessing (C25aa, C25ab, C26aa, C26ab) were
connected to waste management collection coverage and street sweeping efficiency using
Equation S1 .

S .
M, = (100 — C2) x (1 _ W) Equation S1

Where:

e C2is the collection coverage from the Full MSW MFA;

e Sisthe assumed street sweeping efficiency (%) as sampled from a Beta-PERT
distribution according to the parameters in Table S35;

e Myis the rate of mismanagement of sorting and reprocessing rejects for rigid plastic
collected by informal sector (C25aa); flexible plastic collected by the informal sector
(C25ab); rigid plastic collected by the formal sector (C26aa); and flexible plastic
collected by the formal sector (C26ab).
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S.8.4 Proportion of plastic in formal sector collection for recycling

The amount of waste collected by the formal recycling sector is an input (tC2i) to the Tributary
MFA. The proportion of this waste that is plastic (C16) was estimated at 8.5% based on data for
the UK from Department for Environment Food and Rural Affairs (Defra)®’. As no uncertainty
was provided in the original source, an assumed 50% error for both low and high estimates was
assigned and modelled with a Beta-PERT distribution. The amount of rigid plastic in formally

collected material for recycling as a percentage of plastic collected (C22a) was assumed the same

as COa.

S.8.5 Uncollected litter (C1)

Litter is often used as a generic term to describe waste that is in the environment with no
distinction given to its emission source (point of initial release). In this work we adopt a
definition which states that litter must originate from littering, defined here as: ‘the act of
discarding items of waste generated on-the-go (in the public domain) directly into the
environment without it having previously been concentrated or containerised’. This distinguishes
more sparsely generated, usually single item deposits from larger deposits into the environment
(open dumping), each of which will have different factors affecting the probability of movement,
and the magnitude and frequency of their occurrence.
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Published littering data is usually a measure of litter that has been collected, either via street bins,
street cleansing (litter picking) or irregular environmental clean-ups (e.g., beach cleaning)®*°.
However, the amount of litter which is uncollected is challenging to measure because it does not
pass through any system of management and often becomes dispersed soon after it is
emitted?%1.292,

To estimate the amount of uncollected litter (C1), we developed a sub-model as illustrated in
Fig. S18. First, we calculated the amount of litter deposited on the floor that is subsequently
collected by a municipality using measured data from Europe, termed here the littering rate
(Section S.8.5.1). We then corrected the littering rate to estimate of total litter (Lt) by dividing
by an assumed street sweeping efficiency (S) for these European cities (Section S.8.5.2). Finally,
as we had used European data to calculate the littering rate, we had to adjust it to be relevant for
the Global South by assuming that waste receptacle provision and collection quality and
efficiency was less comprehensive. We then divided the complement of the assumed street
sweeping efficiency percentage to calculate the fraction which was uncollected litter (C1)
(Section S.8.5.3).

S.8.5.1  Littering rate

We began by classifying data on collected litter according to the point in the system at which
litter was measured, and the temporal and geographical context using a typology proposed by
Elliott, et al.?® as follows:

e Collection point — Litter is typically either measured based on what is placed in public
waste bins (bin litter), or what is collected from the environment (ground litter, river litter
etc.).

e Waste stream — Street cleansing teams may collect fly-tipped (informal open dumping
on land) waste, side-waste (waste placed alongside bins), green waste (e.g., leaves), or
perform street sweeping which will likely have high amounts of soil, vegetation as well
as small amounts of litter. Understanding what waste streams are included in a
measurement is important for both the mass and the composition.

e Collection group — Litter may be collected either by municipal street cleansing crews or
by other groups such as commercial operators or volunteer organisations.

e Area— In order to extrapolate littering rates, the residential and visiting population of an
area must be determined and related to a geographical area.

e Time — The time since any previous litter collection is important to understand to be able
to infer the rate of littering.

As we required the littering rate to be equivalent to litter deposited on the floor, we needed to
exclude other wastes which are commonly reported within the same category such as: waste
deposited in bins; naturally occurring litter (e.g., leaves); non-littering sources such as fly tipping
(informal open dumping); and waste which had overflowed from non-litter bins. Elliott, et al 2%,
reported littering rates from five European locations, excluding litter deposited in bins, natural
litter (for example leaves, tree debris, soil, and insects) and fly-tipping (informal open dumping)
(Table S34). Waste from overflowing bins was not mentioned therefore is likely included in the
measurements, potentially resulting in double counting in our model. However, considering the
data was collected across the EU where bins are relatively well managed, it is assumed this
contribution is negligible.
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For consistency, the littering rate was converted from per capita rates to as a proportion of MSW
generation as used in other works?3. This was sampled according to a normal distribution with
mean of 0.81 and standard deviation 0.15 (Table S34).

Table S34. Littering rates in European cities and countries.

Location Date Per capita littering rate  MSW generation Per capita littering
(kg-capt-yh) rate™ (kg-capt-y?) rate (% of MSW
generation)
Bristol, UK Approx. 2016 4.8 479 0.99
Scotland, UK Approx. 2012 3.3 483 0.68
East Lothian, Scotland, UK Approx. 2012 4.8 483 0.99
Flanders, Belgium 2013 2.72 436 0.62
Flanders, Belgium 2015 3.17 412 0.77
Mean - 3.76 - 0.81
Standard deviation - 0.87 - 0.15

* as reported by Elliott, et al.?; ** linearly interpolated to correct year based on data reported in Eurostat®®*; Abbreviations:
Municipal solid waste (MSW).

S.85.2  Total litter (L)

The littering rate discussed in Section S.8.5.1 relates only to litter that was deposited on the
ground and subsequently collected by the municipality; therefore, it excludes litter that remained
uncollected in the environment. To better approximate the total litter, including the uncollected
proportion, we created another sub-model to estimate street sweeping efficiency (S), defined as
the amount of litter that is collected as a proportion of total litter generation.

In reality, street sweeping efficiency is affected by many factors including: the method used to
clean the streets; the frequency and timing of cleaning; access to the waste (including the
presence of obstacles such as parked cars and vegetation); environmental conditions (e.g., wind
and frequency of rainfall); and the pollutant that is being collected (e.g., litter, sediment, and
leaves)?®52%, However, data to evidence each of these factors are not available at global scale, so
we based our model on two broad assumptions:

1. Anecdotally, street sweeping activities are more likely to occur in highly frequented and
prominent places such as city centers, around tourist attractions, financial centers and in
commercial areas, whilst rural areas may have less frequent street cleansing if at all. We
therefore assume that street sweeping is more efficient in urban and less in rural areas.

2. By weight, the cost of street sweeping outweighs that of collection of concentrated waste
from containers, particularly if drains are cleansed®®’. Given countries in the Global
South often lack the funds to carry out basic waste collection services, it is appropriate to
assume that on average, formal street sweeping activities are less comprehensive in
lower income countries.

Street sweeping efficiencies and uncertainty assumed in the present work are shown in Table
S35 according to the country income category and the settlement typology of each municipality,
as determined via data from the Global Human Settlement — Settlement Model (GHS-SMOD)*%
(Section S.7.1). Many of the efficiencies were assigned as negatively skewed (long tails to the
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Fig. S19. Sub-model to estimate street sweeping efficiency across the world’s municipalities.

Given the street sweeping efficiencies in Table S35, the littering rate, which is based solely on
European data (Table S34), was corrected to an estimate of total litter by dividing by the street
sweeping efficiency, as sampled for a HIC assuming a semi-dense urban settlement typology and
a Beta-PERT distribution.

Table S35. Assumed street-sweeping efficiencies (% wt. ar) by country income category and
settlement typology*®®.

Income Settlement typology =~ Minimum efficiency (%)  Most likely efficiency (%) Maximum efficiency (%)
category
HIC Urban centre 90 99 100
Dense urban 80 97.5 99
Semi-dense urban 70 95 97.5
Suburban 60 925 95
Rural 50 90 925
UuMcC Urban centre 80 95 100
Dense urban 50 80 85
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Income Settlement typology ~ Minimum efficiency (%) Most likely efficiency (%) Maximum efficiency (%0)
category

Semi-dense urban 20 70 75
Suburban 0 50 55
Rural 0 20 25
LMC Urban centre 50 80 90
Dense urban 20 60 70
Semi-dense urban 0 20 30
Suburban 0 10 20
Rural 0 5 15
LIC Urban centre 0 20 30
Dense urban 0 0 5
Semi-dense urban 0 0 5
Suburban 0 0 5
Rural 0 0 5

Abbreviations: Low-income country (LIC); high income country (HIC); lower middle-income country (LMC); upper middle-
income country (UMC).

S.8.5.3  Uncollected litter (C1)

The proportion of uncollected litter (C1) for each municipality was divided by the complement
of the street sweeping efficiency to calculate total litter. Street sweeping efficiencies (S) were in
turn calculated for each municipality by sampling from Beta-PERT distributions according to the
values in Table S35 and weighting these by the percentage of the population living in each
settlement typology. GHS-SMOD level two rural classifications of ‘rural cluster’, ‘low density
rural’, ‘very low density rural’ and ‘water’ were simplified here to a single ‘rural’ classification.

The total litter calculated in Section S.8.5.2 is based on European data and cannot be assumed
representative of all global municipalities, particularly given many municipalities may provide
fewer public waste infrastructure than for the European cities. Accordingly, a further correction
was required to estimate the total litter for all global municipalities. In the absence of data on the
provision of public waste infrastructure, the collection coverage (tC1) of the municipality was
used as a proxy. The uncollected litter for each municipality was then estimated using Equation
S2.

Cl =Ly X (1 + log (@)) X (1 - i) Equation S2

tC1 100

Where:

e Lristhe total litter (% of MSW generation) estimated based on European data as
described in Section S.8.5.2.

e tC1lis the collection coverage, used here to estimate total litter in a global context.

e Sis the street sweeping efficiency (%) calculated as the weighted sum of its population
by settlement typology as sampled from a Beta-PERT distribution according to the values
in Table S35.
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S.8.6 Proportion of plastic and rigid plastic in uncollected litter (C11 and
Clila)

The secondary data inputs relating to the proportion of litter that is plastic (C11) and rigid plastic
(C11a) were obtained from a study of the composition of litter in Wales®. The author sampled
litter both in waste bins and that picked from the ground. The composition of litter picked from
the ground is likely to be more applicable to the uncollected litter used here, therefore only this
data was used in this analysis. On a weight basis and excluding the collection sacks, plastic as a
proportion of litter (C11) was on average 17.7% with a minimum of 13.8% and maximum of
20.4%. On the other hand, the proportion of this plastic that is rigid was on average 72.9% with a
minimum of 69.1% and a maximum of 76%. These values were converted into PDFs for the
probabilistic MFA using a Beta-PERT distribution with shape factor of four.

S.8.7 Uncollected MSW (C2)

Uncollected MSW differs from littering in that it has been concentrated (i.e., not an individual
item), usually in a premises (household or business) and occurs in the context where waste
collection services are either un-affordable or unavailable. Likewise, unlike littering, uncollected
waste may be open burned or purposely dumped in a specific location (e.qg., rivers, disused land
etc.). The mass of uncollected waste was determined based on the complement of the collection
coverage (C2) and as such is calculated directly in the Full MSW MFA as part of process P4 (Fig.
S5). The proportion of uncollected waste that is openly burned compared to dumped into the
environment as debris emissions is discussed in Section S.8.11.1

S.8.8 Debris emissions from collection system (C3)

The act of storing, collecting, and transporting MSW to recovery or disposal facilities is grouped
here by the term ‘collection system’. Emissions of debris can occur at several points in this
system; for example, by blowing out of bins, being dropped as it is loaded into vehicles, or by
falling from collection vehicles. The authors have found no reliable quantification of these
emissions into the environment; therefore, emissions were estimated via a sub-model (Fig. S20).
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Fig. S20. Sub-model to estimate emissions from collection systems.
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Firstly, we assumed that emissions from the collection system were proportional to the quality of
the collection. This quality of collection is an indicator measured in the Wasteaware Cities
Benchmark Indicators (WABI) toolkit® based on assessment of criteria, including the
appearance of waste collection points and the effectiveness of transport. Recent analysis has
demonstrated the strong link between socio-economic development, as measured through
relevant indices, and solid waste management performance as measured by WABI for waste
generation, collection coverage, quality of collection, controlled recovery and disposal and
environmental protection®. Non-linear regression identified the strongest predictor for waste
collection quality was that of the corruption perception index (CPI). Municipal data on CPI
(Section S.7.1) was therefore used to predict the quality of collection for all municipalities
according to the curve described by Equation S3, as derived from Velis, et al.*°:

Quality of collection = 20.7 + 35.41og(CPI) Equation S3

The quality of collection was used to predict emissions from the collection system as a
proportion of waste collected prior to any street sweepings (C3i) by linearly interpolating
between assumed emissions for a best (100% quality collection) and worst (0% quality of
collection) scenario. It was estimated that in a best-case scenario, 0% of the waste for collection
is emitted into the environment, whereas for a worst-case scenario 5% of waste for collection is
emitted (1% low estimate, 15% high estimate). A Beta-PERT distribution was used to model the
uncertainty around these emissions.

Lastly, to account for waste which was emitted from the collection system and then subsequently
collected, the sampled emission rate (C3i) was multiplied by the complement of the street
sweeping efficiency for the relevant settlement typology and income category listed in Table
S35. This is summarised in Equation S4.

S .
= [ X (1 ——= Equation S4
3= 03 ( 100) a
Where:
e C3is the emissions from the collection system (after street sweeping) — (% of collected
waste)
e Ca3iis the emissions from the collection system (before street sweeping) — (% of collected
waste)

e S isthe street sweeping efficiency (% of emitted waste)

The proportion of the collection system emissions that is plastic (C13) was assumed equal to the
proportion of MSW that is plastic (CO0). Likewise, the proportion of these plastic emissions that
are rigid plastic (C13a) was assumed to be the same as the proportion of rigid plastic in MSW
(Co0a).

S.8.9 Debris emissions from uncontrolled disposal of MSW (C9)

Solid waste is emitted into the environment from uncontrolled disposal sites in two ways: 1) as
debris (physical material); and 2) via open burning (combustion in open uncontrolled fires). As
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far as we are aware, no works have reliably measured these emissions from land disposal sites.
Yadav, et al.®® proposed a conceptual framework for estimating debris emissions from specific
land disposal sites based on their physical structure, geographical and topological context and
meteorological conditions. Gathering that level of data for all global land disposal sites would be
infeasible. Therefore, we developed a simplified conceptual model to estimate the probability of
debris emission because of how much plastic waste was exposed to wind and surface water
runoff and therefore how much is likely to mobilise and be transported into the environment
(Fig. S21).
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Fig. S21. Sub-model for estimating emissions from uncontrolled disposal.

We assumed that most emissions occur on freshly deposited waste whilst it is still relatively
loose and before any settling or compaction (natural or mechanical) takes place. Therefore, only
the ‘working area’ (‘working face’) was quantified, meaning the part of the site where waste is
deposited, manipulated, or in the case of sites where the informal sector operate, recovered from.

To calculate the proportion of waste that is exposed, assumptions about typical dimensions of the
working area of uncontrolled disposal sites were posited. These included the dumpsite shape,
working area, bulk density, and exposure depth (Fig. S22). Simple geometry calculations
enabled the volume, mass, and surface area of the dumpsite to be derived, the latter of which was
multiplied by the exposure depth and bulk density to arrive at an approximation for exposed
mass. This exposed mass was multiplied by an assumed emission rate to derive the mass emitted,
which when divided by the overall mass gives the emissions as a percentage of uncontrolled
unburned disposal (C9).

A hemisphere shape was chosen based on its simplicity and broad similarity with dumpsite
profiles, whilst the bulk density (p) was assumed constant at 450 kg-m3 2%3%) The working
area radius (r), exposure depth (e) and emission rate for exposed waste are all highly uncertain
parameters, and therefore were varied according to best estimates to provide low, mid and high
point estimates. For instance, as the working area radius increases, the surface area to volume
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ratio decreases, leading to lower exposed mass as a percentage of total mass. The low emission
estimate had a larger working radius of 50 m, as opposed to 30 m in the central estimate and 10
m in the high estimate. Alternatively, as the exposure depth increases, so do the calculated
emissions, therefore a low estimate assumed a value of 10 cm, mid estimate of 20 cm and high
estimate of 30 cm. These values are all on the same order of magnitude as typical waste items
under the assumption that once an item is covered by another, its exposure to wind and surface
water is nullified. Lastly, the emission rate was assumed as 1% in a low estimate, 2% mid-
estimate and 3% high estimate. These values gave the overall emissions from uncontrolled
disposal as a proportion of disposed waste as: 0.006% (low-estimate), 0.04% (mid-estimate) and
0.45% (high-estimate) which were assigned a Beta-PERT distribution. Although these numbers
may seem small, it should be noted that disposal sites contain large amounts of waste, therefore
even small emission rates can lead to large overall masses of waste being emitted into the
environment. Similarly, the distribution of estimates shows that whilst the central estimate of
0.04% is relatively small, the high estimate leads to a high right-skewed distribution signifying
large emission rates may be possible although less likely.

y iy

€\

/ n=A50kn/m3

Fig. S22. Conceptual model for calculation of exposed mass in an uncontrolled disposal site.
Abbreviations: r is the dumpsite working radius (m), p is the bulk density of waste (450 kg-m),
d is the exposure depth (m) and e is the emission rate (% of exposed waste).

S.8.10 Plastic (C14) and rigid plastic (C14a) in disposal debris emissions

The proportion of the uncontrolled disposal debris emissions that are plastic (C14) was assumed
based on the hypothesis that lighter materials are those most susceptible to release, particularly
by wind. It is therefore likely that both paper and plastic are the items predominantly released at
disposal sites. Without any available data to inform this split, it was assumed 50% of emissions
are plastic (40% minimum, 60% maximum). Likewise, given that plastic most susceptible to
movement by wind are likely plastic films, the proportion of plastic emissions taken to be rigid
plastic (C14a) was assumed as 10% (5% minimum, 15% maximum). Lastly, each of these
disposal debris emission variables were converted into PDFs by assuming a Beta-PERT
distribution.
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S.8.11 Open burning
S.8.11.1 Open burning of uncollected waste (C10)

Data to estimate the mass of MSW burned in open uncontrolled fires (C10) are scarce and
seldom robust, being driven by assumptions and expert judgement®%t, Therefore, it was necessary
to build a sub-model which combined activity data from census and surveys with income
category and settlement typology data to estimate the prevalence of the practice in each of the
world’s municipalities (Fig. S23).
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Fig. S23. Sub-model for estimating open burning emissions from uncollected waste.

We collected census and health survey data that queried waste management practices in 44
countries, spanning from 1996-2021392-334 In the absence of data on the mass of waste burned in
open uncontrolled fires, we used these activity data as a proxy for the amount of waste burned. In
agreement with several authors>3*?®° we found that the amount of uncollected waste in a system
reduces as a country’s income increases (Fig. S24A) and that uncollected waste is far higher in
rural areas compared to urban areas (Fig. S24B). In this context, we also make three observations
about the amount of waste burned in the Global South: (1) The range of data for both open
burning (as proportion of uncollected waste) and uncollected waste in LMCs is large, indicating
huge variation in practices within that income category; (2) As a proportion of the total waste
generated in LICs (where waste collection rates are generally higher in major cities but virtually
absent in many rural areas - Fig. S24B), waste burning is slightly lower than LMCs, which in
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turn are slightly higher than UMCs (Fig. S24C); and (3) As a proportion of uncollected waste
(Fig. S24E), the amount of waste burned appears to increase as collection coverage increases.
Observations (2) and (3) indicate a development of practices and behaviour that approximately
correlates with increased wealth. It appears that as economic development progresses, societies
focus their efforts on reducing terrestrial and aquatic dumping rather than open burning. Two
reasons are suggested: (A) That regulators and policy-makers concentrate on reducing terrestrial
and aquatic debris due to its visual unsightliness rather than on open-burning which rightly or
wrongly is consider to have made the waste ‘disappear’; and (B) That the open-burning of waste
is overlooked by waste authorities and treasuries, because it reduces the cost of collection,
treatment and disposal.

The rate of open burning (as proportion of total waste) in LMCs and UMCs is much higher in
rural areas (Fig. S24D), whereas in LICs, rural burning occurs at a slightly lower rate compared
to urban. It is suggested that this is because LICs have less capacity to enforce regulation on
open burning in cities, with this only improving once a country has sufficient resources to fund
its environmental regulators sufficiently.

The narrative that open burning varies with income category and settlement typology is
plausible, and we have substantial data to support it circumstantially®°>33, However, the data do
not fit a normal distribution and the ranges are large in some cases. On the basis that our model
requires open burning data using uncollected waste as a denominator, and acknowledging the
large range, we applied a uniform distribution between the ranges (excluding outliers defined as
values greater than 1.5 times the interquartile range distance from the 25" and 75" percentiles)
for each of the income categories and urban-rural contexts presented in Fig. S24F. This decision
allows for the observed variation between and within countries to be incorporated into the
probabilistic MFA, whilst acknowledging the variation between income categories and
settlement typology. The uniform distribution for each municipality was weighted by the urban
to rural population.

Data to evidence the amount of waste which is open burned in HICs is extremely limited, and we
found a large range (1.2-66.7% wt. of uncollected waste) between the three data points we
obtained02304308 gl of which were for small island states (Anguilla, Trinidad and Tobago and
Cook Islands). Urban-rural data were unavailable, and there are arguments that indicate that
waste is burned in both cities and the countryside within high income countries. For instance,
KANTAR?®® reported similar rates of outdoor burning in the UK between urban and rural areas
and the difference between indoor burning. Therefore, we applied the range (1.2-66.7% wt. of
uncollected waste) to both urban and rural areas with a uniform distribution for all HICs.
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Fig. S24. National average census and survey data (n=44 countries) and country level urban-
rural data (n=22 countries) showing: (A, B) proportion of householders who reported that waste
is uncollected; (C, D) proportion of householders who reported burning their waste in open
uncontrolled fires; (E, F) proportion of householders who reported burning their waste in open
uncontrolled fires, as a proportion of households whose waste is uncollected. Abbreviations:
Low-income country (LIC); lower middle-income country (LMC); upper middle-income country
(UMC); high-income country (HIC); inter-quartile range (IQR)3.
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S.8.11.2 Open burning of rejects from sorting and reprocessing (C27aa, C27ab, C28aa,
C28 ab)

As the open burning of mismanaged rejects from sorting and reprocessing is generally an illegal
practice, there is no data to estimate its prevalence. Therefore, here, as an approximation we
assumed that it takes place at the same rate as for open burning of uncollected waste at
household level for rigid plastic collected by informal sector (C27aa); flexible plastic collected
by the informal sector (C27ab); rigid plastic collected by the formal sector (C28aa); and flexible
plastic collected by the formal sector (C28ab).

S.8.11.3 Open burning at uncontrolled disposal sites (C8)

Determining the mass of waste burned at uncontrolled disposal sites is a highly challenging
exercise. Landfill / dumpsite fires may be started deliberately or spontaneously?®, with a high
variability between events, influenced by management practices which vary substantially
between and within countries and regions®. Anecdotally, most dumpsites have at least one daily
fire, and many are permanently on fire*®. Even in HICs with highly controlled systems such as
the UK, it has been reported that there is at least one fire ablaze on a landfill somewhere3¥’.

Five estimates of the mass of waste open burned are presented in Table S36, alongside the
methods used to determine them. All these methods result in highly uncertain outcomes, being
strongly driven by assumptions or the judgement of the authors. The Swaziland model®® is the
only one to have modelled at a local scale. The assumptions were based on interviews with the
officials who operated the land disposal sites, so the data are considerably more robust than the
other models which used assumptions. Moreover, because the data were provided across all the
states in the country, we were able to determine the range. We therefore took the mean mass
combusted for the whole country (8.6% wt.) and the upper and lower quartiles (0% and 80.2%
wt.) and assumed a Beta-PERT distribution.

Table S36. Estimates of waste plastics mass open burned in land disposal sites worldwide.

Country Year Income Proportion  Statistic Denominator Method Source
category (wt.)
China 2017 38% Not stated Dumpsites Not stated 339
Global 2014 LMC, LIC, 60% Mean Dumpsites Material flow analysis based on 34
uMcC IPCC34 assumptions
HIC 13%
India 2010 LMC 10% Mean Dumpsites Interviews with officials 342
Poland 2021 HIC 4.3% Mean Landfilled Extrapolation from firefighting 34
waste service records reported by
Bihalowicz, et al.3*3 combined
Swaziland 2017 LMC 8.6% Mean Dumpsites Used waste management data, 338
(0%, 80.2%) (Upper, lower combustibility estimates based on
quartiles of composition and estimates of how
provincial much waste is burned
estimates)
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S.9 Probabilistic material flow analysis (MS7)

Material flow analysis is a well-established method for the quantification of material flows
within a system. It has been used extensively in many disciplines, for example to quantify the
flow of materials through societal systems or for assessing exposure to harmful substances in the
environment3*, A core feature of material flow analysis is the conservation of mass, which
requires the modeller to find ways to account for all material within the system boundary®*. This
means a great deal of data may be required to model complex systems, which can be challenging
to obtain®*. Frequently, assumptions are used in place of measured process (activity) data®*’
which can result in greater uncertainty in models34.

Probabilistic material flow analysis overcomes some of these challenges by ascribing uncertainty
to the input parameters of a model**°. This uncertainty is then propagated through the system to
enable the user to assess the probability distribution around the various flows and processes. One
way to achieve probabilistic material flow analysis is to perform Monte Carlo analysis, a
stochastic method that requires probability density functions to be applied to model inputs. The
material flow model is then repeated for many iterations, each one sampling randomly from the
input PDFs. Results are then summarised as probability distributions which can be analysed
according to the requirements of the user. Probabilistic material flow analysis has been applied
successfully to assess plastic pollution, circular economy and many other material and substance
flow systems39-3%,

As described in Section S.4 (Fig. S4 - Fig. S8), material flows were quantified across three
systems using probabilistic material flow analysis. Predictions from the random forest were used
as its inputs to the Tributary MFA so that the major, measured, and readily reported formal flows
of MSW could be quantified. The process masses calculated in the Tributary MFA were then
used as inputs into the second MFA, the Full MSW MFA. This MFA builds upon the Tributary
MFA to include flows that are not typically measured by municipalities, such as informal sector
collection of recyclables, and emissions of waste into the environment. These extra processes
were calculated using the coefficients described in Section S.7, informed by sub-models
described in Sections S.8.2, S.8.3, S.8.3.4, S.8.5, S.8.5.2, S.8.8,S.8.9, S.8.11.1 and S.9.1.2.

The results of the Full MSW MFA were used to populate the Plastics MFA which converted the
full MSW fraction to plastic in both rigid and flexible formats. These conversions were again
achieved using the coefficients described in Section S.7. A full list of equations used in all the
MFAs is included in Supplementary Table 2.

The probabilistic nature of the MFA was implemented using Monte Carlo analysis with 5,000
iterations. This meant that each of the 50,702 municipalities had 5,000 separate MFAS generated,
whereby the input data for each MFA was randomly sampled from probability density functions
and random forest predictions (Section S.9.1). The minimum, lower quartile, median, mean,
upper quartile and maximum values of the MFA results for each municipality were then used to
summarise the outputs and uncertainty.

The number of iterations deemed suitable was deduced by repeatedly implementing the
probabilistic MFA with increasing number of iterations and recording the point at which the
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average overall plastic emissions into the environment varied by less than 0.1% compared to the
previous iteration (Fig. S25).
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Fig. S25. Comparison of global plastic emissions (Mt-y™) versus number of iterations used in the
probabilistic material flow analysis (MFA) showing results stabilise ~5000 iterations.

S.9.1 Data inputs

We chose 2020 as the baseline year for our model to enable best relevance to the UN Treaty on
Plastic Pollution, agreed in 2022 through Resolution UNEP/EA.5/Res.14%% and being negotiated
by the International Negotiating Committee (INC)**’ in 2023. The choice of year was adopted
tentatively as it is towards the top of the range (2006-2021) of our primary input data, which
would ideally have been more recent. Though our decision introduced some small error to our
model because waste management practices and behaviours change over time, we balanced that
against the need to apply our data to a contemporary demographic. Therefore, population and
settlement typology for the year 2020 was calculated for each municipality from the Global
Human Settlement Population dataset (GHS-POP)# according to the method described in
(Section S.7.1). It is anticipated that future iterations of our model will be implemented with
more up-to-date primary data collected using the UN-Habitat® SDG11.6.1 estimator Waste Wise
Cities Tool (WaCT) data collection protocol, which is currently deployed world-wide, and with
which our approach is fully compatible.

S.9.1.1 Random sampling of primary input data

The quantile regression random forest method (Section S.7.3) was chosen as it allows
uncertainty to be incorporated into the random forest predictions used in the Tributary MFA
(Section S.4.1) by retaining the full conditional distribution of each response variable. Samples
were randomly drawn from the conditional distribution with replacement equal to the number of
iterations. Sample values that were more than 1.5 times the interquartile range from the upper
and lower quartiles (i.e., outliers) were replaced with randomly sampled non-outlier values to
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avoid biasing the probabilistic results, for instance by having an overly large influence on the
mean value of bounded variables. Occasionally random samples of the predictions for formal
recycling (tC2i), other recovery (tC2ii) and incineration (tC2iii) summed to over 100%. To
ensure mass balance in the material flow analysis these values were normalised to 100%.

A demonstrable example of the need for this correction of outliers would be our sampling of
collection coverage (tC1) for an affluent urban municipality in a HIC. The input data related to
such a municipality would suggest a collection coverage of 100%, and indeed the random forest
predictions may predict 100% collection coverage in most samples. However, a few predictions
may be below 100%, perhaps because an influential independent variable was not randomly
selected during decision tree construction (remembering quantile regression forest retains the full
conditional response). In this example, these few predictions would slightly reduce the mean
collection coverage. However, because emissions are sensitive to collection coverage in our
model (Section S.10), they would be overestimated in some cases. We argue this phenomenon is
an inevitable artifact of the stochastic nature of the quantile regression random forest and
probabilistic material flow analysis. We therefore believe that the correction is valid. It should
be noted that when genuine uncertainty exists in a variable’s predictions (e.g., the predictions of
collection coverage for a municipality have high variance), the interquartile range would be large
therefore the number of outliers would likely be minimal, and this correction would have
negligible impact.

The correction for outlier values was applied to all primary input variables except for waste
generation rate (tP1,c) and controlled disposal (tC3). For waste generation rate, a density
function of the full conditional response was estimated using the ‘density’ function in R and
assuming a bandwidth determined by the ‘nrd0’ method and a Gaussian smoothing kernel.
Samples were then randomly drawn from the density function and outliers removed as with other
primary input variables. This adapted method, applied to the waste generation rate, has the
advantage that predictions do not necessarily have to be the same as those supplied in the
training data, but instead can vary according to the fitted density function. On the other hand, this
approach was not applied to the other primary input variables as they are percentages between
0% and 100%, and often have a high frequency of values located near the bounds. For example,
many of the data for incineration had a value of 0%, whereas many of the collection coverage
values were reported as 100%. Fitting a Gaussian density function to these values would assign
high probabilities to the values approaching the bound, leading to these being sampled to a
greater extent. Referring again to the example of collection coverage, when most predictions for
a municipality equalled 100%, practically this meant values of 99% and above were sampled
instead of 100%. Although this was a small difference, even small amounts of uncollected waste
can have big implications on the overall emissions predicted; therefore, this approach was
avoided.

Of the 361 primary input data points for controlled disposal of MSW (tC3), 303 (84%) were
either 0% or 100%. This meant that the full conditional response of predictions often spanned the
entire range as it was highly probable that at least some trees in the random forest would predict
both bounds. To avoid artificially high uncertainty of predictions, as would be the case with a
bimodal distribution of the data, the prediction was treated in a similar manner to a classification
problem whereby the majority result was used. This meant that uncertainty was not predicted for
the uncontrolled disposal variable, however, it resulted in relatively high accuracy with 82% of
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the predicted values matching the actual value for the random forest test dataset. If this approach
had not been used, and instead the full conditional response used as with other primary input
variables, many of the iterations of the probabilistic MFA would have artificially predicted
uncontrolled disposal in countries where this is highly unlikely and vice versa.

S.9.1.2  Correction of primary input variable predictions by settlement typology

Waste management data collection in rural areas of the Global South is a largely neglected
endeavour, despite evidence that rural areas have generally poor waste management services and
are a source of plastic pollution®*®. As a consequence, most of our primary input data were
obtained from urban areas (Section S.6.1-S.6.2), meaning rural areas were under-represented in
our dataset. Given this data paucity, it was infeasible to expand the primary input data to include
more rural areas. Instead, we corrected each randomly sampled prediction (V) using a sub-
model (Fig. S26).
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Fig. S26. Sub-model used to correct prediction bias in rural municipalities using correction
multipliers based on income category and settlement typology.

We applied Equation S5 to each primary input variable as listed in Table S37. Similar
corrections have been made in other works %82,

Pop.- o Equation S5
Vr=Vux<1—( pm)xm—cm) g

100
Where:

¢/ is the primary input variable predictions after correction for settlement typology
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2026 eV, isthe primary input variable predictions prior to correction for settlement typology (Section
2027 S.9.1.1)

2028  ePopy, % is the rural population as a percentage of the municipality’s population (Section S.7.1)
2029 e CFis the rural correction multiplier as randomly sampled from the distributions and

2030 parameters outlined in Table S37.

2031  Table S37. Correction multipliers were used to adjust randomly sampled predictions for selected
2032  variables in rural administrative areas. Parameters 1,2 and 3 for Beta-PERT distributions are the
2033  minimum, most likely, and maximum respectively, with a default shape factor of 4 used in all
2034  cases. For normal distributions, Parameters 1 and 2 are the mean and standard deviation

2035  respectively.

ID Variable name Income category PDF Parameter 1 Parameter 2 Parameter 3
tP1pc MSW generation rate  HIC Beta-PERT 0.95 1.08 1.15
umcC Normal 0.62 0.21 -
LMC Normal 0.47 0.25 -
LIC Normal 0.47 0.25 -
Cco Plastic in MSW HIC Beta-PERT 0.9 1.00 1.00
uMC Normal 0.73 0.36 1.00
LMC Normal 0.69 0.38 -
LIC Normal 0.69 0.38 -
tC1 Collection coverage HIC Beta-PERT 1.00 1.00 1.00
uMcC Beta-PERT 0.43 0.53 0.63
LMC Beta-PERT 0.36 0.46 0.56
LIC Beta-PERT 0.44 0.54 0.64
tC2i Formal collection of HIC Beta-PERT 0.90 1.00 1.00
MSW for dry recycling "ypmc Beta-PERT 0.40 0.50 0.60
LMC Beta-PERT 0.00 0.00 0.00
LIC Beta-PERT 0.00 0.00 0.00
tC2ii Formal collection of HIC Beta-PERT 0.90 1.00 1.00
MSW for other UMC Beta-PERT 0.40 0.50 0.60
recovery LMC BetaPERT 0.0 0.00 0.00
LIC Beta-PERT 0.00 0.00 0.00
tC2iii Formal collection of HIC Beta-PERT 0.90 1.00 1.00
MSW for incineration "\ Beta-PERT 0.00 0.00 0.00
LMC Beta-PERT 0.00 0.00 0.00
LIC Beta-PERT 0.00 0.00 0.00
tC3 Controlled disposal of HIC Beta-PERT 1.00 1.00 1.00
MSW uUMC Beta-PERT 0.90 1.00 1.00
LMC Beta-PERT 0.00 0.00 0.00
LIC Beta-PERT 0.00 0.00 0.00

2036 Abbreviations: Low-income country (LIC); high income country (HIC); lower middle-income country (LMC); upper middle-
2037  income country (UMC); municipal solid waste (MSW).

2038  The correction in Equation S5 scales the primary input variable predictions according to the
2039  percentage of the population in each municipality that is classed as rural (Section S.7.1) and a
2040  primary input variable specific correction multiplier (with uncertainty accounted for by
2041  representing this as a PDF and randomly sampling from it). The parameters of the rural
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correction multiplier PDFs for each primary input variable are shown in Table S37 and justified
in Sections S.9.1.2.1-S.9.1.2.6.

S.9.1.2.1 MSW generation rate (tP1pc)

MSW generation rates (tP1,c) are thought to vary according to rurality (degree of urbanisation),
however the data to evidence this is limited. It is widely assumed that in the Global South, waste
generation in rural areas is less, for example both Hoornweg and Bhada-Tata**° and Kaza, et al.*°
assumed it is approximately 50% less than in urban areas whilst acknowledging that the data to
support such an assumption are sparse. This is also supported by much of the data reported in
Karak, et al.*®°, although considerable variation around this value was demonstrated depending
on the case study. On the other hand, Lau, et al.®> assumed no difference between waste
generation in rural and urban areas of HICs and Hidalgo, et al.*®* found only non-significant
differences in Spain.

High income countries

For HICs, we classified UK local Unitary and Collection Authorities by Level 1 settlement
typology using the GHS-DUC!* results for GADM V4.13%2, ignoring any blanks due to
differences between the local authority and GADM boundaries. We summed local authority
collected waste reported by Defra®®® and divided it by the GHS population for 2020%* to express
on a per capita basis.

Rural areas generated approximately 7.6% (central estimate) more waste compared with urban
areas. Analysis of the same dataset®® shows that this difference is largely due to higher rates of
‘green’ waste (garden/ yard waste) which were 57% higher in rural areas compared to urban
areas, accounting for 24% and 18% of household waste generation respectively. We assumed a
Beta Pert distribution with a shape factor of 4, an upper limit that was double the central estimate
(15%) and rounded the central estimate to 8% (Table S37). For the lower limit, we assumed a
slightly lower waste generation rate on the basis that the UK is unlikely to be typical for all HICs
and that many of them will have lower rural waste generation rates.

Low- and middle-income countries

Robust and granular waste generation data such as that analysed for the UK was not available for
countries in the Global South. Therefore, we collected 40 data points (13 from UMCs, 26 from
LMCs, and 1 from LICs) from 13 studies®®+27® of 11 countries, where rural waste generation was
reported. For 11 of the data points, urban waste generation was calculated so we were able to
calculate a ratio directly. For the remaining 29 data points, we calculated the ratio between rural
waste generation and the mean urban waste generation for that country from our own cleaned
primary input data. We grouped countries by income category and calculated the mean and
standard deviation for each, assuming a normal distribution for the model input (Table S37). As
there was only one data point for LICs, we merged LIC and LMC categories.

S.9.1.2.2 Plastic in MSW (C0)

Little data exist to evidence a difference in plastic composition between rural and urban areas in
HICS. Lebreton and Andrady*®! also found no statistically significant relationship between per
capita GDP and the proportion of plastic in MSW. It is unclear if this lack of relationship with
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GDP also applies sub-nationally; however, we argue that the amount of plastic in MSW may be
lower in rural areas compared to those in cities because of higher proportions of Green (garden
yard) (Section S.9.1.2.1).

For HICs, we assumed plastic compositions the same as those for urban areas, as the central and
maximum estimates (highly unlikely they produce more plastic as % in rural than urban). We
chose the lower bound of the BETA-PERT distribution to be 0.9, as HIC may produce more
garden waste (Table S37). For LMICs, we carried out the same analysis as described in Section
S.9.1.2.1, using a sub-set of nine of the same articles®64-368371-373:376 (\which reported plastic waste
composition).

S.9.1.2.3 Collection coverage (tC1)

Kaza, et al.** reported that urban areas have higher collection coverage than rural areas, with this
also depending on the income level of the country. HICs for instance had rural collection
coverages almost comparable to urban levels (98% of urban collection rate). This proportion
decreases for UMCs to 53% of urban collection rates, 46% in LMCs and 54% in LICs
(equivalent to 26% rural collection coverage in LICs). These factors were used as the central
estimates for the collection coverage rural correction factors with £10% assigned as the
uncertainty in all income groups except HIC. For HICs, no correction was made to the predicted
values to account for settlement typology as applying the 0.98 factor from Kaza, et al.** would
likely lead to an unrealistic overestimation of uncollected waste in HICs.

S.9.1.2.4 Formal collection of MSW for dry recycling (tC2i) and other recovery (tC2ii)

Both formal collection of MSW for dry recycling (tC2i) and formal collection of MSW for other
recovery (tC21ii) were assigned the same rural correction factors. This assumed that HICs have
the resources and regulatory imperative to extend recycling and recovery operations to rural
areas (albeit with a lower uncertainty value assigned of 0.9). Conversely, LIC and LMC
countries are highly unlikely to have the resources to implement formal recycling or recovery
operations in rural areas, as poor road networks and high transportation costs create barriers to
doing s0%%®. As such, a correction factor of zero was applied to these LICs and LMCs, thereby
assuming that fully rural municipalities (rural population percentage equal to 100%) have no
formal recycling or other recovery. For UMCs we assumed more variation as there is evidence
that formal recycling and recovery begins to be implemented along with growing resources
(Table S8, Table S13, Table S15), and it is therefore plausible that these activities take place in
some UMC rural municipalities (particularly if close to an urban centre). Therefore, a correction
multiplier of 0.5 with £0.1 uncertainty was assigned to sit in-between those of HICs and LICs.

S.9.1.25 Formal collection of MSW for incineration (tC2iii)

Incineration in HICs was treated the same as for formal dry recycling and other recovery;
however, all other income categories were assigned a rural correction factor of zero. Further
correction to the incineration data is discussed in Section S.9.1.2.7.

S.9.1.2.6 Controlled disposal of MSW (tC3)

No rural correction was applied to controlled disposal in HICs due to regulations often enforcing
controlled disposal regardless of their settlement typology, for example Directive 1999/31/EC®"7.
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A similar assumption was also applied to UMC (albeit with a lower uncertainty value of 0.9),
whereas both LMC and LIC had a value of zero assumed for the rural correction factor. Notably,
a rural correction factor of one does not mean all predictions of controlled disposal are classed as
controlled, but instead that the original prediction for the municipality is not altered based on its
settlement typology. Accordingly, municipalities in both HICs and UMCs can still be predicted
to have uncontrolled disposal.

S.9.1.2.7 Replacement of primary input predictions for formal collection of MSW for
incineration (tC2iii)

Both the training and test datasets were generally effective at distinguishing between
municipalities which incinerate waste compared to those that do not. However, in a few cases,
the primary input predictions suggested that a municipality does not incinerate its waste when in
fact it does and vice versa.

To correct these anomalies, we used data from OECD3®, Eurostat®”®, Ding, et al.®®, and Lu, et
al.%®! to assess which countries report more than 1% of their municipal solid waste being
incinerated between 2017 and 2020. These were: Austria, Belgium, Canada, China, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, Norway,
Poland, Portugal, Romania, Singapore, Slovak Republic, Slovenia, South Korea, Spain, Sweden,
Switzerland, Taiwan, United Kingdom, and United States. We removed predictions for countries
reporting less than 1%, assuming that their incinerators were being used to treat hazardous or
healthcare waste, neither of which are relevant to the model.

Although there are some incinerators in cities that are not within the countries above, for
example, Kyiv in Ukraine has an incineration plant that handles around a quarter of Kyiv’s solid
waste*®2, these countries were purposely not included in the above list. This was to avoid
potentially accepting predictions of incineration throughout the whole country when incineration
is not widespread. This omission of countries with small amounts of incineration is mitigated
somewhat as the replacement of predictions with primary input data (Section S.9.1.3) takes
priority over the above correction, therefore, cities such as Kyiv that are included in the primary
input data will still have incineration represented.

In the case of China, incineration as a percentage of collected waste was taken directly from the
MoHURD dataset®? and replaced any predictions, as discussed in Section S.6.4.6.2.

S.9.1.3  Sampling of secondary data inputs

Secondary data inputs were sampled according to the probability density functions and
parameters as described throughout Section S.7, each of which was randomly sampled 5,000
times. A summary of all secondary data inputs is shown in Table S3.

S.9.2 Material flow analysis

Material flow analysis was carried out for the system maps as shown in Fig. S4 - Fig. S8
according to the equations described in Supplementary Table 2 and across all 50,702 global
municipalities. The probabilistic Monte Carlo analysis approach meant that each of these
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municipal MFA results had 5,000 iterations to assess the uncertainty. As such, a large amount of
raw output data was generated. Ideally, the full set of raw data outputs would have been retained
to assess the probability density functions of all outputs, however, this was too computationally
demanding. Instead, the raw results for each iteration were retained for only select
municipalities, as specified in Model Inputs®2, These are used to demonstrate the variability and
shape of distributions of per capita plastic emissions as shown in Figure 3. For easier
interpretation and comparability, all results were summarised by their minimum, lower quartile,
median, mean, upper quartile and maximum values, as displayed in the result tables of
Supplementary Table 3, 4 and Model Inputs®3,

In total, for each of the 50,702 municipalities, 81 processes and 42 transfer coefficients were
quantified. An additional 59 outputs were also calculated from these results, such as total
emissions into the environment, or the number of people without waste collection services.
Outputs relate to values calculated from the processes or coefficients, for instance, the
summation of all emission source processes to give the overall emissions or the division of an
emission source by the overall emissions to represent it as a percentage. To represent the
uncertainty of outputs (e.g., by quantiles), these calculations had to be performed on the raw
results of 5,000 iteration as opposed to on the summarised results. As such, we caution the reader
against calculating their own outputs based solely on the summarised data. If further outputs are
required, all data and code required to run the model is available to download from DBPR3?,

S.9.2.1  Spatial aggregation

A unique aspect of the methodological approach described here was the bottom-up approach
whereby results could be aggregated to different spatial extents (e.g., national or regional level)
or groupings (e.g., by country income category).

To ensure the implementation of the probabilistic material flow analysis was computationally
feasible, the Monte Carlo analysis iterated across the municipalities, with the results summarised
and raw data removed after each iteration. A consequence of this would have meant that only
mean values could have been aggregated, whilst information on the quantiles would have been
lost. To avoid this, the probabilistic MFA was run a second time, but following a different
approach. Firstly, a single iteration of the MFA was calculated for each municipality with all raw
outputs retained. The processes were then summed up by the relevant groupings, before then
only retaining the result at this aggregated level. This process was then repeated n times, where n
is the number of overall iterations, before finally summarising the aggregated results by their
minimum, lower quartile, median, mean, upper quartile and maximum values. A comparison of
the two approaches is shown in Fig. S27.

Both approaches are a variation of the same method and should have converging results as n—oo.
This was found to be the case with the mean global plastic emissions varying by less than 0.01%
with 5,000 iterations. The groupings over which results were aggregated in this work include
country level (national), UN regions (including sub-regions and intermediate regions)!®?, OECD
regions®®*, income categories®® and globally - Supplementary Table 3, 4 and DBPR%?,
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Fig. S27. Comparison of methods used for calculating probabilistic MFA results with uncertainty
at municipal and aggregated levels. *Summary statistics are the mean, median, 5" and 95"
quantile

S.10 Sensitivity analysis

In the absence of measured data of emissions into the environment to use as model validation,
we carried out sensitivity analysis®® to assess the most influential parameters of the model, in a
similar manner to Lau, et al.>.

The Sobol method for sensitivity analysis is a global sensitivity variance-based method suitable
for non-linear models®®. We applied the sobolmartinez function within the R-package sensitivity
version 1.28.1 for Monte Carlo estimation of Sobol’ indices using 10,000 iterations. Both first-
order (main effect) and total effect indices were estimated. Main effect indices relate to the
influence one input parameter has on the output, whereas the total effect indices relate to the
impact an input parameter has on the output, including all higher-order interactions.
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Fig. S28: Main effect and total effect Sobol” indices for total plastic emissions aggregated to the
global scale. Abbreviations: tP1pc = Waste generation rate per capita (kg-cap™-d?), CO = plastic
in MSW (% of generated MSW), tC1 = MSW collection coverage (% of generated MSW), C8 =
open burning of uncontrolled disposal (% of uncontrolled disposal).

Sobol indices were estimated individually for each of the 50,702 municipalities and all uncertain
inputs. To summarise each of these sensitivity analysis results, we aggregated the first and total
order indices across all municipalities by calculating the mean value, weighted by the total
emissions of the municipality (Fig. S28). Inputs with a total effect <0.01 are removed for
simplicity given these have negligible influence of plastic emissions.

Four input parameters had an influence on the amount of plastic emission (Fig. S28), which
were, in order of importance from high to low: (1) Proportion of MSW that is plastic (C0); (2)
Waste generation rate per capita (tP1pc); (3) Collection coverage (tC1); and (4) Open burning of
uncontrolled disposal (C8). Three of these (CO, tP1pc, and tC1) were derived from our cleaned
primary input data and relate to parameters that can be physically measured and therefore
validated.

It is self-evident that inputs which affect the overall mass of plastic in the system, such as the
proportion of MSW that is plastic (C0) and waste generation rate (tP1pc), will influence plastic
emissions. In agreement with other models®, we also found collection coverage (tC1) to be highly
influential. This is partly because collection coverage takes place very early in the system and
because the scattered and highly distributed nature of uncollected waste (the complement of
collection coverage) means its entire mass becomes an emission.

Although the open burning of uncontrolled disposal (C8) coefficient is implemented lower down
in the MFA compared to the other three influential data inputs (CO, tP1pc, and tC1), it is still
highly influential because of the large mass of material which flows through that part of the
model. Land disposal is still the predominant system endpoint for solid waste worldwide*® and
therefore it is unsurprising that our model is sensitive to it. We postulate that controlled disposal
(C5) itself is also a highly influential parameter. However, due to the classification problem
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highlighted in Section S.9.1.1 and subsequent corrections, no uncertainty was applied to
controlled disposal (C5) meaning we could not calculate a Sobol index for it.
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Fig. S29: Main effect and total effect Sobol’ indices > 0.01 for total plastic emissions aggregated
according to the income-categories. Abbreviations: tP1pc = Waste generation rate per capita
(kg-cap™-d?t) CO = plastic in MSW (% of generated MSW), tC1 = MSW collection coverage (%
of generated MSW), C8 = open burning of uncontrolled disposal (% of uncontrolled disposal),
C3i = emissions from the collection system prior to street sweepings (% of collected waste), LT
= littering rate (% of MSW generation), S = street sweeping efficiency (%).

We also aggregated municipal level Sobol indices on an income-category basis to assess the
influence of wealth on our model’s sensitivity (Fig. S29). The results for LIC, LMC and UMC
broadly matched those of the global analysis (Fig. S28) with the same four influential parameters
(tP1pc, CO, tC1, C8). The results for HIC showed that three additional parameters were also
influential on plastic emissions, the four previously listed, plus the emissions from the collection
system prior to street sweepings (C3i); the littering rate (LT); and the street sweeping efficiency
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(S). The influence of these inputs highlights the stark differences between the causes of plastic
pollution in HICs compared to the Global South, the former of which is related to comparatively
small emissions from littering and escape from the collection system, and the latter of which nis
predominantly a result of uncollected waste. We acknowledge that measured data to support
these additional sensitive inputs for HICs (C3i, LT, S) is lacking, and therefore recommend
increased efforts to focus on improving the quality of data to enable more accurate modelling of
the HIC context. However, on a global scale, these inputs were not influential and therefore the
uncertainty around their values does not affect the overall plastic pollution emission estimates or
conclusions.

S.11 Conversion of emission mass to item count

Assuming an average plastic item mass of 5-10 g, 52.5 Mt-y is equivalent to 5.2-10.5 trillion plastic items
released as debris or through open burning every year. Based on a global population of 7.8 billion people,
the same mass would be approximately 2-4 plastic items emitted per person per day (note: a large proportion
of emissions take place after collection, for example, by open burning at dumpsites).
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