Supplementary Information

An RNA foundation model enables discovery of disease
mechanisms and candidate therapeutics

Contents

1

3

Modelling

1.1 Model architecture . . . . . . ... ...

1.2 Datasets . . . . . . . e
1.21 RNA-seq - . . o o o
1.2.2  RNA binding proteins . . . . . . ... ...
1.2.3 microRNA . . . . . L

1.3 Training and fine-tuning . . . . . . . .. ... Lo

1.4 Inference. . . . . . . . . . e
1.4.1 Strand-invariant predictions . . . . . . . ... ...
1.4.2 Higher-resolution predictions . . . . .. ... ... ... ....

1.5 Saliency scoring . . . . . . . . . .

Held-out performance evaluation

2.1 Gene expression . . . ... e
2.2 Differential gene expression between tissues . . . . .. ... ... ...
2.3 SLC7AS8 prediction visualization . . . . .. ... ... ... ... ...
2.4 RNA binding proteins . . . . . . . .. o
2.5 microRNA . . . . . . o

Variant effect on gene expression

3.1 Pathogenicity evaluation . . . . . . .. ... ... 0oL
3.1.1 Dataprocessing. . . . . . .. .. ..o
3.1.2  Predictive scores . . . . ... Lo
3.1.3 Evaluation - Statistical analysis . . . . . ... ... ... ....
3.1.4 Evaluation - Variants of unknown significance (VUS) analysis .

3.2 NAAI1O caseexample. . . . . . . . ...

3.3 Predicting the impact of disrupting polyadenylation sites . . . . . ..

3.4 Expression quantitative trait loci (eQTL) evaluation . . . . ... ...
3.4.1 Dataprocessing. . . . . . .. ... Lo
3.4.2 Predictive scores . . . . ... L
3.4.3 Evaluation . ... .. ... o

O O © 00T O WwWwww

11

11
11
12
12



4 Variant effect on splicing 19

4.1 Intron retention . . . . . . . . . ... L 19
4.1.1 Dataprocessing. . . . . . . . ... oo 19
4.1.2 Predictive scores . . . . . . .. 19
4.1.3 Evaluation . ... ... ... ... ... . 20
4.2 FExon skipping - MaPSy evaluation . . . ... ... ... ... ..... 20
4.2.1 Dataprocessing. . . . . . .. ... o o 20
4.2.2 Predictive scores . . . . .. ..o 21
4.2.3 Evaluation . . ... ... ... ... 22
4.3 ACADM variant effect on TDP-43 binding . . . . . .. .. ... ... 22
4.4 Validating variant effect of ATP7B mutation . . .. ... ... .... 22
4.5 Validating variant effect of ABCA/ mutation . . . ... .. ... ... 23
5 Designing steric blocking oligonucleotides (SBO) 24
5.1 Scoring SBOs for splicing effects . . . . . ... ... ... ... ... 24
5.2 LabChip exon skipping . . . . . . . . . .. ... o 24
5.3 Screening ATP7B exon 6 M645R SBOs . . . . . .. ... ... .... 24
5.4 Visualization of BigRNA predictions for wildtype vs. M645R variant vs.
oligonucleotide and M645R, variant in ATP7B . . . . . . .. ... ... 25
5.5 Identification of “N=1" variants associated with autosomal recessive
disorders . . . . . ... 26
5.6 Scoring expression increase SBOs . . . . . . ... L 26
5.6.1 SBO screen for PON1 . . . . . . .. .. ... ... .... 27
5.6.2 SBO screens for ATP7B, PRRT2, and SERPING1 . . . .. .. 28
Supplementary Figures 29
Supplementary Tables 38
Supplementary Notes 39
Scoring considerations for eQTL evaluation . . . . ... ... ... ..... 39



1 Modelling

This section describes the methodological details relevant to Fig. 1a.

Our models and training pipelines were implemented in TensorFlow [1].

1.1 Model architecture

We adapted the architecture of Enformer [2] and changed the width of the final head
layer to suit our training tasks. The input to BigRNA is a 196608bp DNA sequence
that is encoded as a 196608 x 4 one-hot matrix using the base labelling scheme A = 0,
C=1,G=2,and T = 3. Its output is a 896 x d matrix of predictions for d output
heads, corresponding to the centered 896 x 128 = 114688bp subsequence of the input,
given at 128bp resolution.

1.2 Datasets
1.2.1 RNA-seq

Each example in our training dataset contains (1) a pair of aligned genomic intervals
for the two haplotypes of a single individual (out of 70) and (2) aligned RNA-seq data
for each haplotype, for each tissue type available for that individual. Our full data
processing pipeline works as follows:

RNA-seq processing. First, we constructed genomic data tracks from the Genotype-
Tissue Expression (GTEx) project [3], which contains tissue-specific RNA-seq data
from a large number of individuals. This was done in the following steps:

1. GTEx download. We downloaded Sequence Read Archive (SRA) files from
GTEx. Then, we converted SRA to FASTQ format using SRA Toolkit 2.7.0 [4]
by calling: fastq-dump --split-3.

2. Comprehensive splice junction annotation. To minimize annotation bias' in
the alignment, we created a comprehensive set of annotation by combining splice
junctions from Gencode v25 [5] and Intropolis v1 [6]. To avoid false positives in
Intropolis (due to high sequencing depth), we further processed the dataset to
those that satisfy the following criteria:

® Supported by 2 or more samples

® Supported by 5 or more reads in aggregate

e At least one end is annotated in Gencode v25 [5]

e Spliced at least 0.01% of the time (among the junctions that share the same
annotated donor/acceptor)

3. HISAT?2 index. We called hisat2-build from HISAT2 2.0.4 [7] to generate the
genome annotation index, using human genome build GRCh37 release 75, Gencode
v25 [5], and the above mentioned comprehensive splice junction annotation. We
also incorporated dbSNP 146 to build a SNP-aware index.

! Annotation bias: preferential alignment to annotated vs. unannotated junction.


https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.13/

4. Pre-alignment QC. We used Cutadapt 1.10 [8] to trim adapter and low-quality
tail, and used Trimmomatic 0.36 [9] to remove reads with low quality window
(average quality score of 2 nt window below 10) as well as reads shorter than 30 nt.

5. Alignment. We used HISAT2 2.0.4 [7] to perform a two-pass alignment procedure.
Pass 1 aligned the last 40M of the paired end reads of the sample on the genome-
annotation index to discover sample-specific novel splice junctions.? Pass 2 aligned
all reads on the genome-annotation index that is augmented with the novel
junctions found in Pass 1.

6. Post-alignment QC. We discarded unmapped reads, multi-mapped reads, and
reads with edit distance larger than 2.> Alignments for paired and unpaired reads
were combined. Alignment was then sorted, compressed and indexed as BAM files.

7. Coverage and junction data. In addition to the BAM files produced from
the above step (which we’ll refer to as coverage data), for each sample in the
dataset, we also extracted all the spliced read alignments, which we’ll refer to as
junction data. To create training data track for coverage data, we used bedtools
genomecov to generate per-position coverage. To create training data track for
junction data, we processed the BAM files using an in-house pipeline, and counted
the number of spliced reads for each unique splice junction (either acceptor or
donor site).

Interval selection. We used the same intervals and training/validation/test split as
Enformer [2].

Haplotype construction. For each genomic region, we generated multiple training
examples, one for each individual. We used genotype data from GTEx [3] to query
variants overlapping the region for the particular individual, and constructed the
diploid genomic sequence by mutating the reference genomic sequence with the variants.
Since we did not have access to phasing information, we partitioned the set of variants
randomly? into two disjoint sets, and applied each set of variants to mutate the reference
genome to get two haplotype sequences, which we called haplotype 0 and haplotype
1. These two sequence can be of different lengths, and required further re-alignment
(discussed below).

RNA-seq data re-alignment. Since RNA-seq reads were aligned to reference genome,
we need to re-align the data to the two haplotypes. Given the above two haplotype
sequences, we constructed two position alignments, one between reference genomic
sequence positions and haplotype 0 sequence positions, and the other between reference
genomic sequence positions and haplotype 1 sequence positions. Given the alignment,
we constructed a mapping from positions in reference genomic sequence to the aligned

240M paired-end reads is considered a plenty representative subset of each sample to detect sample-specific
splice junctions.

3With each soft clipping treated as % mismatches.

4We partition the set of variants randomly onto each of the haplotype based on the following assumption:
if we decompose the total expression of a given transcript as the sum of two “wild-type” sequences, plus
individual additive effects of each variant, then the process of adding the output from both variants is
invariant to what haplotype each variant is assigned to. However, this procedure does not account for from
within-haplotype variant-variant genetic interactions, which requires phased data.



position in each haplotype, with insertion positions repeating data directly upstream
of the insertion interval. We applied the above mapping to translate RNA-seq data to
align with each of the two haplotypes.

Intra-haplotype alignment. After applying the variants, we have two DNA sequences
x¢ and x7, one for each haplotype of individual 1 < ¢ < 70. However, x¢ and x; may be
of different lengths or longer than the 196608bp expected by the model, so we need to
crop both sequences. For example, a simple strategy is to truncate x; to its first 196608
tokens. Once uniformly-sized intervals are chosen, for each haplotype, we can then read
off the targets as follows: we collect the dy RNA-seq samples obtained from the desired
haplotype of individual ¢, which ranges over a subset of 51 possible tissue types (so
dy < 51). Recall that each sample produces two tracks, coverage and junction, so there
are a total of 2dy tracks for individual £. We re-scale each track by Cs¢/C, where C' is
the coverage of the track’s sample and C'5 is the median coverage across all samples
in GTEx (including those from other individuals). Then, we read off the track data at
the center 114688bp of the haplotype sequence and pool it to a 128bp resolution, using
a mean-aggregation for coverage data and a sum-aggregation for junction data.® After
concatenating all samples and repeating the process for both haplotypes, we obtain
two 896 x 2dy target matrices Ty and T; for haplotypes x¢ and x1, respectively.

However, our initial choice of left-cropping both sequences x; may be suboptimal,
since the haplotypes may be mis-aligned. Because we can only learn the sum of both
haplotypes rather than the individual contributions of each (since we do not have allele-
specific data), we attempted to align the data together as much as possible given the
limitations of the 128bp resolution. For this, we greedily searched for a more optimal
cropping by considering progressively shifted crops of one of the haplotype sequences.
Formally, for k ranging from 0 to 31, we iteratively considered cropping the first 196608
tokens of one haplotype sequence and the (k4 1)-th to (k + 196608)-th tokens of the
other. We picked the cropping that maximizes the Pearson correlation r between the
entries of the derived haplotype targets Ty and T, but if a sufficiently-high correlation
(r > 0.999) is found at any step, then we terminated our search early.

Post-processing. In the preceding step, note that the second dimension of the target
matrices varies based on the individual that the haplotype pertains to. A final step is
then to pad the target matrices to a uniform shape across all examples. In particular,
we expanded each target T; into a matrix of shape

70
896 x (Z 2dy + 102) : (S1)

{=1

whose first 2d; columns specify the target data for individual 1, next 2ds columns
for individual 2, and so forth. The final 102 columns were reserved as communal
tracks, each corresponding to one of the 2 x 51 = 102 possible track types (coverage
and junction data for 51 tissues) across our dataset. For each track in the example,
we also populated the communal track of the matching type. Hence, the communal

5Sum-aggregation was used for junction data due to its sparsity.



tracks are always (partially) populated regardless of the individual that the example
is obtained from, so fitting a model on these tracks requires learning an individual-
agnostic sequence-to-phenotype mapping. Finally, a binary mask M of the same shape
was introduced to indicate which entries in the padded target matrix contain valid
data for training. In summary, each dataset example contains two haplotype sequences,
their corresponding (padded) target matrices, and a binary mask.

1.2.2 RNA binding proteins

In-vivo binding activity for 150 RNA binding proteins (RBPs) in two cell lines (K562
and HepG2), as measured by enhanced CLIP (eCLIP) assays, was reported in [10]. We
downloaded the processed datasets (BED format) from ENCODE [11]. The following
150 RBPs were included:

AARS, AATF, ABCF1, AGGF1, AKAP1, AKAPSL, APOBEC3C, AQR, BCCIP, BCLAF1,
BUD13, CDC40, CPEB4, CPSF6, CSTF2, CSTF2T, DDX21, DDX24, DDX3X, DDX42,
DDX51, DDX52, DDX55, DDX59, DDX6, DGCRS, DHX30, DKC1, DROSHA, EFTUD2,
EIF3D, EIF3G, EIF3H, EIF4G2, EWSR1, EX0SC5, FAM120A, FASTKD2, FKBP4,
FMR1, FTO, FUBP3, FUS, FXR1, FXR2, G3BP1, GEMIN5, GNL3, GPKOW, GRSF1,
GRWD1, GTF2F1, HLTF, HNRNPA1, HNRNPC, HNRNPK, HNRNPL, HNRNPM, HNRNPU,
HNRNPUL1, IGF2BP1, IGF2BP2, IGF2BP3, ILF3, KHDRBS1, KHSRP, LARP4, LARP7,
LIN28B, LSM11, MATR3, METAP2, MTPAP, NCBP2, NIP7, NIPBL, NKRF, NOL12,
NOLC1, NONO, NPM1, NSUN2, PABPC4, PABPN1, PCBP1, PCBP2, PHF6, POLR2G,
PPIG, PPIL4, PRPF4, PRPFS, PTBP1, PUM1, PUM2, PUS1, QKI, RBFOX2, RBM15,
RBM22, RBMS, RPS11, RPS3, SAFB, SAFB2, SBDS, SDAD1, SERBP1, SF3A3,
SF3B1, SF3B4, SFPQ, SLBP, SLTM, SMNDC1, SND1, SRSF1, SRSF7, SRSF9,

SSB, STAU2, SUB1, SUGP2, SUPV3L1, TAF15, TARDBP, TBRG4, TIA1, TIAL1,
TRA2A, TROVE2, U2AF1, U2AF2, UCHL5, UPF1, UTP18, UTP3, WDR3, WDR43,
WRN, XPO5, XRCC6, XRN2, YBX3, YWHAG, ZC3H11A, ZC3H8, ZNF622, ZNF800,
ZRANB2.

1.2.3 microRNA

The microRNA (miRNA) dataset was generated by curating publicly available AGO2
CLIP-Seq datasets from 12 different cell lines: 22RV1, A2780, A673, BC-1, BC-3, BCBL,
DG-75, HCT-116, HEK293, HeLa, hESC, and MCF7 [12-21]. The protocols used were
PAR-CLIP, HITS-CLIP, eCLIP and miR-eCLIP [22-25]. The mentioned protocols use
an antibody to pull down the AGO2 protein and sequence the corresponding RNA
fragments. miR-eCLIP has an additional step where only chimeric reads are kept and
both the RNA fragment and the corresponding miRNA are sequenced.

In order to process each dataset, we first trimmed the adapters from the sequenced
reads using fastp [26] with:

fastp --adapter_sequence [...] -w 16
--trim_poly_x --cut_tail 30 --trim_frontl [...] --trim_taill O.

adapter_sequence was set to the corresponding adapter sequence used in each CLIP
dataset, and trim_font1 was set to 5 for PAR-CLIP and 0 for the other protocols. We
then aligned the reads to the corresponding reference genome. For PAR-CLIP, we used
bowtie [27] with:



bowtie -v 2 -m 3 --best --strata --threads 32 -S -q.
For HITS-CLIP and eCLIP we used bowtie2 [28] with:
bowtie2 -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 -k 4 -p 32.

After aligning the reads, we used a peak caller to binarize the read pileups and identify
regions of the reference genome that have sufficient read pileups to represent an AGO2
binding site. For PAR-CLIP we used PARalyzer [29] peak caller and set the cutoff to a
minimum of 5 reads for a region to be classified as a peak. For HITS-CLIP and eCLIP
we first deduplicated the reads using picard [30] and used the clipper [31] peak caller.
All the data processing for miR-eCLIP data like adapter trimming, aligning, and peak
calling were done by eclipsebio [32].

Next, we combined peaks from multiple replicates of the same cell line by taking
a union of all the peaks, which we’ll refer to as the target. For PAR-CLIP there are
certain regions of the genome where there is read alignment but not sufficient enough
to pass the peak cutoff, these regions were treated as neither negative nor positive. For
HITS-CLIP, eCLIP and miR-eCLIP were peaks are then filtered based on the log-p-
value generated by the peak caller. Only peaks with —logp > 3 were considered as
high confidence while the other peaks were treated as low quality. For this, we created a
binary track which will be referred to as the mask. For model training, we multiplied the
target with the mask, which effectively set the target value at the masked positions to 0.

1.3 Training and fine-tuning

We trained a seven-model ensemble on the RNA-seq dataset (Section 1.2.1), and then
finetuned the first model of the ensemble on the RBP and miRNA datasets (Sections
1.2.2 and 1.2.3). In all subsequent sections, the former will be referred to as the BigRNA
ensemble (or simply as BigRNA), and the latter as the fine-tuned model. All training
was done on v3-32 TPUs with a batch size of 1 per device, which corresponds to an
effective global batch size of 32. We consider an epoch to be 1000 training steps, which
corresponds to 32,000 training examples.

Loss. We used the masked Poisson loss between the sum of the two predictions and
the average of the two targets. Formally, for a fixed example, let Yy and Y; be the
model predictions on both haplotypes, and Ty and T; be the respective targets, where
Y; and T; are of the shape in Supplementary Equation S1. Then the entry-wise losses
are computed by:

M ® <(Yo + Yl) — %(To + Tl) O] 10g(Y0 + Yl)) 5 (82)

where ©® denotes an entry-wise Hadamard product and log(-) is applied entry-wise.

RN A-seq training. We used the default Rectified Adam [33] optimizer from Ten-
sorFlow Add-ons, a linear learning rate warm-up over 5 epochs, and gradient norm
clipping. Since the RNA-seq dataset was not strand-specific, we also applied data aug-
mentation on each example whereby, with probability 0.5, the input DNA sequence was



replaced with its reverse-complement and the targets were reversed along the sequence
dimension.

Empirically, we found improved performance by ensembling over seven iterations of
our model, which used the same base architecture but differ minorly in their choices of
training hyperparameters. Supplementary Table S1 summarizes the differences between
the models and hyperparameters in our ensemble. We’'ll refer to this ensemble as M
throughout subsequent sections.

RBP and miRNA fine-tuning. We used the default Adam [34] optimizer from
TensorFlow, gradient norm clipping at 0.2, and the same random reverse-compliment
applied to the RNA-seq dataset. We also applied a random +64bp jitter to the input
sequence. For efficiency, this was done as a preprocessing transform on the dataset: we
applied the random shift over the base dataset 10 times independently, and concatenated
the results into a 10x larger dataset. The final head layer of the model was first trained
for 10 epochs with a learning rate of 2 x 10™%, and then the entire model was further
trained for another 30 epochs with a learning rate of 10~%.

1.4 Inference

BigRNA takes as input fixed-length DNA sequences and produces fixed-length outputs
at 128bp resolution (Section 1.1). To make predictions on an arbitrary-length genomic
interval (<114688bp), we pad it to 196608bp by expanding upstream 40960bp and
downstream by the remaining length. The number 40960 comes from the fact that
the BigRNA model makes predictions for the center 114688bp subsequence of the
input interval, so the outer %(196608 — 114688) = 40960bp of the input sequence serve
as context (Section 1.1). Hence, we are left-aligning the interval of interest to the
output of the model. Next, we extract the genomic sequence of the expanded 196608bp
interval and pass it through the model to get a 896 x d prediction matrix. Each value
in the prediction matrix gets repeated 128 times along the sequence dimension, and
the matrix is cropped to be of same length and aligned with the original interval of
interest, to facilitate downstream processing. Supplementary Fig. S1 summarizes the
inference procedure.

Afterwards, we may apply post-processing. For the ensemble models trained on
RNA-seq data, we often subset the predictions to its entries that correspond to some
output heads of interest, such as the coverage heads (i.e., all output heads that predict
coverage data), junction heads, or coverage or junction heads corresponding to a specific
tissue. We always used the heads corresponding to specific individuals rather than the
communal heads. In all subsequent sections, we will refer to selection of output heads
as T, which corresponds to particular indices in Supplementary Data 1:

® Output head selection 7 “coverage head” or “coverage data”

sample_type == "coverage" AND
averaged_across_multiple_subjects == False

e Output head selection 7 “junction head” or “junction data”
sample_type == "junction" AND
averaged_across_multiple_subjects == False



® QOutput head selection T: “coverage head in tissue X” or “coverage data in tissue

X”
sample_type == "coverage" AND
tissue == X AND
averaged_across_multiple_subjects == False
® Output head selection 7: “junction head in tissue X” or “junction data in tissue
X”
sample_type == "junction" AND
tissue == X AND
averaged_across_multiple_subjects == False

We can further combine multiple predictions in order to achieve strand-invariance
or higher resolutions. We describe these algorithms in the following subsections.

1.4.1 Strand-invariant predictions

The reverse-compliment augmentation during training (Section 1.3) encourages the
model to be strand-agnostic. However, to produce a truly strand-invariant prediction,
we can average the predictions on both the original interval and the corresponding one
on the opposite strand, whose sequence is just the reverse-complement of the original
sequence. We always apply strand-averaging unless specified otherwise.

1.4.2 Higher-resolution predictions

We can artificially produce more granular predictions by combining multiple coarser
predictions. To predict at an r-bp resolution (where 1 < r < 128), we construct (%1
shifted intervals with step size r and make a 128bp resolution prediction on each one.
These predictions are aligned back to the original interval and then min-aggregated, as
shown in Supplementary Fig. S2. We use min-aggregation instead of average to avoid
over-smoothing, which is important for predicting sharply peaked data such as the
RBP and miRNA tracks. Unless specified otherwise, we always predicted at a higher
resolution r = 64bp.

1.5 Saliency scoring

To guide the design of steric blocking oligonucleotides (SBO) (Section 5), we consider a
gradient-based saliency method inspired by [35, 36]. Formally, given a one-hot encoded
sequence X € {0, 1}196608%4 and BigRNA model ¢, let

f(X) = masked mean(p(X)) € R (S3)

be obtained by passing X through ¢ and then averaging the subset of output heads of
interest. Then, we compute a vector of scores for each token in X by:

G = Vf(X+X©0.1E), (S4)

4 4
1
Sy, X = E X,,i ® (GJ — 1 E G .,k> € R196608’ (85)
i=1 k=1



where G . ; denotes the i-th column of the matrix G, and E is a random matrix whose
elements are drawn independently from the standard Gaussian distribution.

To score an arbitrary-length interval (<114688bp), we can pad it to 196608bp and
then obtain position-wise scores as described above. However, this process may be
sensitive to how we choose the context surrounding the interval, so to construct a
more robust score, we average the scores from multiple such choices. Specifically, we
expand the interval such that it begins at the (40960 + 1 + k)-th position in X, for 100
equally-spaced values of k ranging from 0 to 2000, inclusive.

10



2 Held-out performance evaluation

To evaluate the performance of BigRNA, we used Gencode v29 [5] to select a held-out
set of genes G that are completely outside of the training and validation set, and each
overlaps an interval in the test set.

2.1 Gene expression
This section describes the methodological details relevant to Fig. 1b-c.

For a held-out gene and tissue of interest, we predicted the coverage by averaging
over all exons X in the gene, models in the BigRNA ensemble M (Section 1.3), and
coverage output heads 7 corresponding to the tissue. Let y, -, be the output of the
head 7 € T in the BigRNA model ¢ € M on the exon x € X, using the inference
procedure from Section 1.4. Then, the predicted coverage is computed as:

s=p{{p(yyre) I XEX,TET, peM}), (S6)

Here, u(-) denotes the mean of entries of its input, and will be used to simplify notation
throughout this text: for a finite set A of scalars or vectors,

1
HA)= g Y a (s7)

and for a vector or matrix A, we computed p(A) as if A were a set of its (scalar)
entries. The target value is computed similarly but using the processed RNA-seq data
instead of model outputs.

2.2 Differential gene expression between tissues
This section describes the methodological details relevant to Fig. le-f.

To assess performance on predicting differential expression between tissues, we con-
structed all pairwise tissue comparisons. Given a pair of tissues, let s; € RI9! be the
predicted coverage across the held-out genes for the i-th tissue, which is computed
following Section 2.1. Let t; € RI9! be the corresponding target coverage, with each
t (for one gene) summarized from the RNA-seq dataset in a similar way as the pre-
diction. Then we considered the correlation between the predicted and target log
fold changes, logy(s1) — logs(s2) and logs(t1) — logs(ta), respectively, where log,(-) is
applied entry-wise.

2.3 SLC7A8 prediction visualization

This section describes the methodological details relevant to Fig. 1d.

We used the GRCh38 genome build and Gencode v29 [5] annotation to query the
sequence in the genomic region of SLC7A8 gene. We made predictions using BigRNA as
discussed in Section 1.4. We averaged coverage output heads for “Brain - Hypothalamus”

11
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tissue to get a single value per position. For visualization, we multiplied the predicted
values by a factor of 2 to represent the predicted total coverage over two haplotypes
(reflecting the reference RNA-seq data).

2.4 RNA binding proteins
This section describes the methodological details relevant to Fig. 1g.

Using the RBP dataset (Section 1.2.2), we created one binary label for each 128bp
window. Over a single window, let t € R'?® be the targets and r € R'2® be the average
of two low-confidence replicates. We define the binary label as follows:

1, if p(t) > 0.25,
(=1, if p(t) = plx) = 0, (s8)
undefined, otherwise,

where p(-) denotes a mean and is defined in Supplementary Equation S7.

We computed the BigRNA predictions as described in Section 1.4 using the fine-
tuned model. For DeepRiPe [37], we downloaded the models from their repository® and
generated predictions for each base by feeding as input to the model a 128bp sequence
centered at the base (63bp upstream and 64bp downstream). For all predictions, we took
the mean within 128bp window as the predicted value. To compute average precision
score for each RBP dataset, we used the output head corresponds to the particular
RBP for BigRNA (Supplementary Data 2). We were not able to obtain output
RBP names from DeepRiPe, so we took the output index that maximize performance
of DeepRiPe for each RBP.

2.5 microRNA

This section describes the methodological details relevant to Fig. 1h.

We used the 3’ UTR sequences of the held-out genes for evaluation. Using the miRNA
dataset (Section 1.2.3), we created one binary label for each 128bp window. Over a
single window, let t € R'?® be the targets and m € {0,1}'?® be the mask. We define
the binary label as follows:

1, if p(t) > 0.25,
(=10, if p(t) = u(m) = 0, (39)
undefined, otherwise,

where p(-) denotes a mean and is defined in Supplementary Equation S7.

We computed the BigRNA predictions as described in Section 1.4 using the fine-
tuned model. For TargetScan [38], we downloaded the pre-computed predictions
from their website.” For all predictions, we took the mean within 128bp window

Shttps://github.com/ohlerlab/DeepRiPe/tree/master/Results/Encode models
"https://www.targetscan.org/vert_80/vert_80_data download/All Target Locations.hgl9.bed.zip

12
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as the predicted value, for the output head that correspond to the target cell line
(Supplementary Data 2).

13



3 Variant effect on gene expression

3.1 Pathogenicity evaluation

This section describes the methodological details relevant to Fig. 2a,d-f.

3.1.1 Data processing

Single nucleotide variants (SNVs) classified as pathogenic or likely pathogenic (P/LP)
in the 3’ and 5" UTR were obtained from [39]. The putative benign set of variants were
constructed separately for the 3’ and 5 UTR. For each transcript with a P/LP variant
in its respective UTR, SN'Vs classified as benign or likely benign in the same UTR of
the transcript were obtained from ClinVar (last accessed Oct. 20, 2022). To further
supplement the putative benign set, SNVs were obtained from gnomAD v3.0 [40].
For each transcript with a variant classified as P/LP in the corresponding UTR, the
genomic coordinates of all exons, based on NCBI RefSeq v110 annotations for Homo
sapiens [41] within the respective UTR were used to construct an SQL query to extract
variants within these regions from bigquery-public-data.gnomAD.v3_genomes__chrx
tables on BigQuery. Variants were further filtered to have a total allele frequency
greater than 0.001 (0.1%). We did this to attempt to match at least one putative
benign variant for every UTR, but in some cases this was not possible. This resulted
in the final dataset of 20 P/LP and 224 putative benign variants in the 3> UTR and 58
P/LP variants and 120 variants in the 5> UTR (Supplementary Data 3).

3.1.2 Predictive scores

BigRNA. We used the GRCh38 human reference genome sequence to build an interval
centered on the transcript. In the event that the length of the transcript exceeds the
model’s output length 114688, the interval is defined from the end of the relevant UTR
of the dataset with 2,000bp additional genomic sequence beyond the UTR end, and
extended into the transcript until the output length 114688 is reached.

We made predictions using BigRNA following Section 1.4 on all coding exon
intervals X within the transcript. We use the ensemble M (Section 1.3) and only its
coverage output heads 7. Given a model ¢ € M, head type 7 € T, and exon y € X,
let yy - € R be the prediction for head 7 obtained by passing through model ¢ the
wild-type exon x, where L is the length of y. Define y;w € R analogously for the
mutant-type (variant) exon. Then the per-model variant effect score is computed as:

¥y = b({yy- | 7€ T} € RY, (similarly for v with y' )

max abs{max abs(y}, — ¥) | x € X'} (810)

e = max{max(y,) | x € X} + 10

)

where p(-) denotes a mean and is defined in Supplementary Equation S7, and a pseudo-
count of 10 is added in the denominator of s,. Here, maxabs(-) denotes the element
with the maximum magnitude with signs preserved; formally, A = maxabs(A) for a
set A if and only if A € A and |A| > |«| for all @« € A. If a is a vector, then max abs(a)
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and max(a) are computed as if a were a set of its entries. Finally, the overall variant
effect score is computed by averaging the per-model scores over the ensemble M.

Enformer. Enformer weights were loaded from [2]. For each variant, two sequences
encompassing Enformer’s full context length were constructed: one centered at the
reference allele and one centered at the alternative allele. For each sequence, predictions
for the forward and reverse strand were made by Enformer, and the average was taken.

We made use of predictions from a subset of output heads 7 that correspond to
CAGE data within a local window of size 640 centered around the variant. For a head
type 7 € T, let y» € R0 be the prediction for head 7 by passing through the wild-
type sequence. Similarly define y’, € R4 for the mutant-type (variant) sequence. We
compute the variant effect score as:

640
s=u{lyL) —ty) | 7€ T, fly) =log, (Zyi>+1€R, (S11)

i=1

where p(+) denotes a mean and is defined in Supplementary Equation S7, and 1 is added
as a pseudo-count. This mirrors what was done by [2, 42] for variant effect predictions.

Saluki. For each 3’ UTR variant, we constructed a 6-dimensional track for the Saluki
[43] model, consisting of the one-hot encoded DNA sequence of the transcript, the
coding frame, and the splice site positions for the wild-type (reference) and mutant-type
(alternative) sequence, as described by the authors. We used 50 cross-fold validation
models (which we will refer to as the ensemble M) provided by the authors. For each
model in the ensemble ¢ € Mg, let y, € R be the prediction from passing the wild-
type track through the model. Define yfp € R similarly for mutant-type. The variant
effect score s is computed as the difference between the two, mean-aggregated over the
ensemble:

s = p({y, —yo | ¢ € M}), (S12)
where u(-) denotes a mean and is defined in Supplementary Equation S7.

FramePoolCombined. Predictions for 5 UTR variants were made using the Kipoi
interface provided for the FramePoolCombined model [44, 45] using the GRCh38
reference FASTA (last accessed Aug. 1, 2023) and GTF file of the GRCh38 NCBI
RefSeq (last accessed Aug. 1, 2023) table was downloaded from UCSC. Each variant
was predicted one at a time in its own VCF to yield individual variant effects. The
predicted mean ribosome load fold change reported by the model was used as the
variant effect score.

3.1.3 Evaluation - Statistical analysis

The receiver operator characteristic (ROC) curve and precision-recall curve (PRC)
was plotted for each predictor on each dataset and the area under the curves (AUC)
were calculated. Each curve was bootstrapped 10,000 times and the standard deviation
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from the bootstrap results was calculated. The mean true positive rate (TPR) with
one standard deviation and the mean precision with one standard deviation is plotted.
To calculate the significance between AUROC and AUPRC differences of the models,
a permutation test using 10,000 permutations was performed with the p-value being
reported.

3.1.4 Evaluation - Variants of unknown significance (VUS) analysis

Variants from ClinVar (last accessed Apr. 30, 2023) that were classified as VUS and in
3’ and 5 of the UTRs of the transcripts that they were reported in were extracted.
These variants were further filtered to those that were in the same genes as those
included in the benchmark datasets. These variants were predicted and scored with
BigRNA in the same manner as described in Section 3.1.2. Scores for these variants
are provided in Supplementary Data 4.

3.2 NAA10 case example

This section describes the methodological details relevant to Fig. 2b.

We made predictions using the BigRNA model (Section 1.4) on both wild-type and
mutant-type (variant) sequences around the NAA10 gene sequence. We took the
average across all coverage outputs, resulting in one track for the wild-type prediction
and one track for the variant prediction for visualization.

3.3 Predicting the impact of disrupting polyadenylation sites

This section describes the methodological details relevant to Fig. 2c.

To evaluate BigRNA’s ability to predict polyadenylation (poly(A)) sites, we conducted
an in-silico 11bp (a symmetric 5bp expansion centered on a 1bp site) N-mask tiling
analysis across each poly(A) region. Poly(A) sites were obtained from PolyASite 2.0,
a curated database containing inferred poly(A) sites from publicly available 3’ end
sequencing datasets [46]. PolyASite 2.0 was further filtered to include only those from
human, located in terminal exons, and belonging to transcripts that were less than
114,000bp to ensure that the entire transcript would be within BigRNA’s output length.
From this filtered dataset, we selected the top 200 poly(A) sites with the highest
average expression across all samples reported in PolyASite 2.0.

To define the poly(A) regions, we expanded each poly(A) signal sequence from
PolyASite 2.0 by +100bp to cover proximal regulatory elements. Subsequently, we
generated 11bp N-masked tiles across each resulting 206bp region, treating each tile
like a variant.® For each tile, we calculated the predicted change in gene expression by
comparing the BigRNA predictions for the N-mask (variant) and the poly(A) signal
sequence (wild-type).

We made predictions using BigRNA as described in Section 1.4, on the transcript
plus 500bp downstream.? We used the first model in the ensemble and all output heads
7. Given a head type 7 € T, let y, € RE be the prediction for head 7 € T obtained

8This effectively sets the one-hot encoded input to all zeros within the N-masked region.
9To capture expression/isoform changes that might occur if there is a shift to a more distal polyA isoform.
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by passing through the wild-type transcript, where L is the transcript length. Similarly
define y’. € R for the mutant-type (variant) transcript. We computed one score for
each variant by mean-aggregating over the transcript length and all output heads:

s=p({ply-)—nly,) 7T}, (S13)

where p(-) denotes a mean and is defined in Supplementary Equation S7. This yields
one track for each selected gene. For visualizing the average prediction across all selected
genes (Fig. 2c, bottom), we normalize the scores by their maximum magnitude across
all genes.

To visualize changes in expression for all possible point mutations around the
polyadenylation site (PAS) of NAA10 (Fig. 2c, top), we used NAA10 PAS and its
surrounding 100bp on either end and performed saturation mutagenesis by point-
mutating every nucleic acid base to every other nucleic acid base. The scoring was
done in the same way as mentioned above.

3.4 Expression quantitative trait loci (eQTL) evaluation

This section describes the methodological details relevant to Fig. 2g.

3.4.1 Data processing

To evaluate the ability of BigRNA to predict distal regulatory variation, we created a
benchmark of fine-mapped expression quantitative trait locus (eQTL) variants from
GTEx v8 [3]. This dataset contains true positive (TP) examples which consist of
eQTLs and true negative (TN) examples which have been matched for impactful
characteristics [47]. Publicly available fine-mapped eQTLs from the eQTL Catalog [48]
were used to define the positive class, which used SuSiE [47] to derive credible sets
from cis eQTL (£1 megabase (Mbp) of eGene) association statistics.!’ To arrive at a
set of high-confidence putative causal eQTL, we restricted the gene-variant pairs to
associations with a posterior inclusion probability (PIP) greater than 0.95 in at least
one tissue, nominally associated with gene expression (p < 5 x 107°), and amenable to
BigRNA prediction (£50kbp of transcription start site of the corresponding eGene).
The true negative class consisted of variants that were not associated (p > 0.05) with
expression of cis (£1Mbp) genes in any tissue from GTEx and amenable to BigRNA
prediction (£50kbp of transcription start site for the APPRIS [49] principal isoform of
the eGene). To avoid class imbalance and ensure similar characteristics between the
two groups, each true positive was matched to a true negative based on minor allele
frequencies (£10%) and distance to transcription start site (£10kbp) in the same gene
(Supplementary Fig. S11). The benchmark dataset consisted of 1,374 unique variants in
the true positive class and 1,162 unique variants in the true negative classes with a PIP
greater than 0.5. The benchmark contained 397 unique variants in the true positive
class with a PIP of greater than 0.95 and 356 paired negative control variants. We used
the higher confidence PIP threshold of 0.95 for subsequent analyses as this indicates

19¢QTL Catalog SuSIE Fine-mapping: http://£tp.ebi.ac.uk/pub/databases/spot/eQTL/susie/
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statistical confidence that each variant used in the positive set is causally driving the
association signal up to the definition of the p-credible set with here p set to 0.95.

We defined distal and proximal eQTLs based on standard nomenclature with a
10 kilobase (Kbp) cut off [50-52]. We calculated the distance between the variant
position in GRCh38 and the transcription start site of the eGene (or the eGene of the
paired positive eQTL variant). We used the APPRIS transcript of the eGene!® for
transcription start site calculations in all cases. This procedure led to 409 proximal
and 344 distal examples for bench-marking within subsets.

3.4.2 Predictive scores

We used BigRNA to predict the impacts of true positive and negative eQTL variants
on the expression of their eGenes. To do so, we used the GRCh38 human reference
genome sequence and the Gencode v41 [5] annotation set'? to build an interval of
length 114688bp (equal to the output length of BigRNA) centered on the variant. We
built intervals for Enformer in a similar way.

Using a similar strategy as [2], we computed the scores as described in Section
3.1.2 and Supplementary Equation S10, matching tissue type to the tissue where the
positive control has been fine-mapped as causally impacted expression of the eGene
(Supplementary Data 5). For more details on other scoring methods we considered,
see Scoring considerations for eQTL evaluation.

3.4.3 Evaluation

To calculate precision-recall (PRC) and receiver-operator (ROC) curves we used the
scores calculated in the previous section to segregate positive and negative, where labels
corresponding to the status of the variant as a fine-mapped eQTL or a negative control.

LLAPPRIS Transcript Definitions: https://appris.bioinfo.cnio.es/
12Gencode v41 annotation set: https://www.gencodegenes.org/human/release 41.html
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4 Variant effect on splicing

4.1 Intron retention

This section describes the methodological details relevant to Fig. 3d.

4.1.1 Data processing

Splicing variants [53] were downloaded from the SPCards database (release v1.0).13
Intron retention variants were manually curated by searching for entries with evidence
for intron retention, such as “...retains upstream intron...”. Each entry was individually
curated to ensure that the source publication supports the reported effects. Partial
intron retention events (e.g. extension of the upstream/downstream exon partially into
the intron) were excluded. For each variant in the above dataset, we searched within
50bp local neighbourhood to create a matching negative set of variants that do not
cause intron retention using gnomAD [54] v2.1. To deplete the negative set of variants
that may cause deleterious effects, we require the allele frequency to be larger than
0.001 in any population. After combing all positive and negative variants, we filtered
out the trivial variants that overlap the core dinucleotide.™*

4.1.2 Predictive scores

BigRNA. For each variant in the dataset, we made predictions using BigRNA (Section
1.4) on both wild-type and mutant-type sequences around the affected intron. We used
the ensemble M (Section 1.3) and only its coverage output heads 7. Given a head
type 7 € T and model ¢ € M, let y;, yu, and y, be the predictions for 7 obtained by
passing to ¢ the wild-type intron, upstream exon, and downstream exon, respectively.
First, we compute a ratio between the intron and its two flanking exons:

median(y;)
i %(max(yu) + max(yq)) + 1 (S14)

where median and max are taken over the entries of its argument. Define r’mp similarly
using predictions on the mutant-type sequences. The score is computed by aggregating
over output heads and models in ensemble by:

. Tr,

s=1— min u —£
!/

pEM o

where p(-) denotes a mean and is defined in Supplementary Equation S7.

TE T}) , (S15)

SpliceAI. We used the five-model ensemble from [55].1% Given a SpliceAl model ¢,
for each variant, we get the acceptor and donor strength prediction for both wild-type
and mutant-type by predicting on sequence centered at the affected intron. Let the

13http://www.genemed. tech/spcards/download
14 Core dinucleotide refers to GT on the donor site and AG on the acceptor site.
5https://github.com/I1lumina/SpliceAl
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predicted acceptor and donor strength for wild-type sequence be p, and py. Similarly
for mutant-type we have predictions p/, and p/;. We compute the difference between
wild-type and mutant-type predictions:

 Patpa PPy
S(p— 2 — 2 .

(S16)

The score is then computed as a mean-aggregated over the models ¢ in ensemble.
Curated variants, with target labels and scores can be found in Supplementary
Data 8.

4.1.3 Evaluation

We used ROC curves to evaluate model performance on classifying positive and negative
variants. To construct a confidence interval around each ROC curve, we boostrapped
1000 times and used the 34.1-th and 84.1-th percentiles as the lower and upper bounds,
which correspond to +1 standard deviation from the mean in a Gaussian distribution.

4.2 Exon skipping - MaPSy evaluation

This section describes the methodological details relevant to Fig. 3a.

4.2.1 Data processing

The MaPSy dataset [56] was downloaded from the MaPSy challenge website.!6 Exonic
disease mutations were screened in mini-gene system, both in-vivo (transfection in tissue
culture) and in-vitro (incubation in cell nuclear extract). The challenge is to predict
the degree to which a given variant causes changes in splicing. For each mutation,
MaPSy reports four values from the in-vivo assay: input wild-type a, spliced wild-type
b, input mutant ¢, and spliced mutant d. We compute the splicing odds ratio R with
x? 95% confidence intervals [C%, ., C%

vivo? vivo] .

(a+e)(d+e)
R="0TERETE)
(b+e)(c+e)
\/ LS . S S17
T Vate bte cte dte (817)
C*..., =exp(log R — 1.960),

Cévo = €exp (log R 4 1.960),
where € = 0.1 is a pseudocount for numerical stability. For the same mutation, MaPSy
also reports a quartet from the in-vitro assay, on which we can again use Supplementary
Equation S17 to compute an analogous confidence interval [C%;, ., C%o]-

To label each mutation as skipping or non-skipping, we used the above confidence
intervals from both in-vivo and in-vitro assays. Given a specified skipping level p, the

16http://www.genomeinterpretation.org/cagi5-mapsy.html
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mutation was assigned the binary label:

skipping, if C%,, <pand C%,, <1,
¢, = { non-skipping, ifp<CL<1<C¥< % for v € {vivo, vitro}, (S18)
undefined, otherwise.

For example, if p = 0.5 (50% skipping), to label the mutation as £y 5 = skipping, we
required that the in-vivo upper confidence limit to be less than 0.5, while applying
a less stringent threshold of 1 on the in-vitro upper confidence limit. To label the
mutation as £ 5 = non-skipping, we required both confidence intervals to be within
(0.5,2). To filter out mutations with low confidence, we generated binary labels at
multiple skipping levels p € {0.5,0.35,0.3,0.25,0.2,0.1} and filtered out mutations that
were labelled undefined at all levels. The processed high confidence dataset consists of
1816 mutations. For each of these mutations, we reconstructed the genomic coordinates
of their affected exon by aligning the artificial construct sequence to the reference
genome and locating the donor and acceptor sites.

4.2.2 Predictive scores

BigRNA. For each mutation in the dataset, we made predictions using BigRNA
(Section 1.4) on both the wild-type and mutant-type sequences on the affected exon.
We used the ensemble M (Section 1.3) and only its junction output heads 7. Given a
head type 7 € T and BigRNA model ¢ € M, let y be the predictions for the head
obtained by passing the wild-type sequence through ¢, and define y’ similarly for the
mutant-type. Then we compute the score as:

Sr.p = Max <,u(yy) - M(yy/,)) : (S19)

where p(+) denotes a mean and is defined in Supplementary Equation S7. We computed
the overall score by averaging over the collection of output heads 7 and models M in
the ensemble.

Enformer [2]. We used all CAGE output heads, computed the per-head score according
to Supplementary Equation S19, and averaged them over output heads to get a scalar
score.

SpliceAT [55]. We downloaded the command line tool from their repository.'” For
each mutation, the tool reports four positive values: acceptor gain ds_ag, acceptor loss
ds_al, donor gain ds_dg, and donor loss ds_d1. We first added back the sign for the
score corresponding to “gain”: —ds_ag, ds_al, —ds_dg, ds_d1, and took the score with
the maximum absolute value'®.

"https://github.com/I1lumina/SpliceAl
8max abs as defined in Supplementary Equation S10.
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4.2.3 Evaluation

A comparison of the three models for classifying skipping versus non-skipping variants
is shown in Supplementary Fig. S7, in which we show the other two models in addition
to BigRNA (Fig. 3a). Target value is the skipping binary label at threshold 0.5, as
defined in Section 4.2.1, and predictive scores are computed as described in Section
4.2.2 for each of the 3 models. Permutation test and p-value on ROC difference was
computed as described in Section 3.1.3, with 100,000 permutations. Curated variants
with all predictive scores can be found in Supplementary Data 7.

4.3 ACADM variant effect on TDP-43 binding

This section describes the methodological details relevant to Fig. 3b.

We made predictions using the fine-tuned BigRNA (Section 1.3), on both the wild-
type and the mutant-type (variant) sequence containing the c¢.468+7A>G variant
on the ACADM gene (Section 1.4). We visualized the output corresponding to the
TDP-43 binding profile in K562 cells for each of the wild-type and variant sequence
predictions (Fig. 3b, top). We then used the BigRNA model trained on RNA-seq
(Section 1.3) to predict on the same wild-type and variant sequences. We used the first
model in ensemble M (Section 1.3) and only its coverage output heads 7. Predictions
were averaged across output heads to yield an one-dimensional track for visualization
(Fig. 3b, bottom).

4.4 Validating variant effect of ATP7B mutation

This section describes the methodological details relevant to Fig. 3c.

We used CRISPR-Cas9 editing to generate HepG2 hepatoblastoma derived lines
carrying the ATP7B c.3243+5G>A mutation. We designed a CRISPR RNA (crRNA) to
cut at chromosome 13 position 52518240 (GRCh37). We designed 99bp single stranded
oligodeoxynucleotides (ssODNs) containing the mutation of interest as the template for
knock-in via homology directed repair. We conducted nucleofection using the Amaxa
4D nucleofector to introduce the crRNA and ssODNs to wild-type HepG2 cells. After
the cells recovered from the transfection, we performed limited dilution by diluting
the pool of edited cell lines to 5 cells/well and seeding into a 96 well (96W) plate. We
isolated genomic DNA and sent samples for Sanger sequencing to determine genotype.
We used a compound heterozygous line with a large deletion in the exon body which
has ~20% wild-type ATP7B.

For confirmation of exon 14 skipping, total RNA was extracted from the homozygous
ATP7B c.3243+5G>A HepG2 cell line 48 hours after seeding. cDNA was produced
using first-strand synthesis (High-Capacity cDNA Reverse Transcription Kit; Life
Technologies) and used as a template to perform PCR with primers targeting exons 13
and 15 (Fw: CACGGCTGTCATGGTGGG, Rev: CTGACTTTGCACCCAATTCC).
PCR products were analyzed by agarose gel electrophoresis.

We made predictions using BigRNA (Section 1.4) on both the wild-type and mutant-
type sequences on the affected exon. We used the ensemble M (Section 1.3) and only
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its coverage output heads 7. Predictions were averaged across output heads and models
in the ensemble to yield a one-dimensional track for visualization.

4.5 Validating variant effect of ABC' A4 mutation

This section describes the methodological details relevant to Fig. 3e.

WERI-Rb-1 cells containing the ABCA/ c.5714+5G>A mutation were generated using
CRISPR-Cas9 gene editing. A crRNA was designed to cut at chromosome 1 position
94476351 (GRCh37). 100bp ssODNs containing the mutation of interest were designed
as the template for knock-in via homology directed repair. 200,000 WERI-Rb-1 cells
(ATCC) were nucleofected with the cRNA and ssODNs using an Amaxa 4D nucleofector
and incubated for 72 hours at 37 °C, 5% CO2. Following incubation, cells were
transferred to 12 well plates. Cells were harvested after 18 days and plated at 1 or 5 cells
per well in 96-well plates. After 30 days, clonal populations were harvested. gDNA was
extracted from the cells using the Geneaid Tissue/Blood DNA Mini Kit and long-range
PCR (Fw: CCTCTTCTCCCTGCAGTTCG, Rev: GGTCAGGGAGTCAAACCAGG
and Fw: TCTGACTCCACTGACAGAGG, Rev: TGGAGGGATGACCATAGAGC)
was performed to verify the edit. Samples were run on the MinION (Oxford Nanopore
Technologies) to verify that a homozygous edit was generated. For RNA-seq, RNA
was extracted from cells using the RNeasy Mini Kit (Qiagen). RNA-seq libraries were
prepared with the NEBNext Ultra II Directional RNA preparation kit, with polyA
selection performed using the NEBNext Poly(A) mRNA Magnetic Isolation module.
Sequencing was carried out on a NovaSeq 6000 sequencer. Reads were aligned with
HISAT?2 v2.1.0 [7] and per-base coverage was calculated using the genomecov command
in bedtools v2.30.0 [57]. Coverage of the replicates was averaged (n = 3).

We made predictions using BigRNA (Section 1.4) on both the wild-type and mutant-
type sequences on the affected exon. We used the ensemble M (Section 1.3) and only
its coverage output heads 7. Predictions were averaged across output heads and models
in the ensemble to yield a one-dimensional track for visualization.
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5 Designing steric blocking oligonucleotides (SBO)
5.1 Scoring SBOs for splicing effects

This section describes the methodological details relevant to Fig. 4a.

Predicting an SBO as a variant. To predict the effect of each SBO, we simulate it
as a substitution variant. We replace genomic sequences within the SBO hybridization
region with a stretch of N’s of the same length as the region. This effectively sets the
one-hot encoded input to all zeros within the SBO hybridization region.

BigRNA predictive score. For each SBO in the dataset, we simulated it as a variant
as mentioned above. BigRNA scores were computed according to Section 4.2.2.

5.2 LabChip exon skipping

This section describes the methodological details relevant to Fig. 4b.

All target genes were screened in the HEK293T cell line (ATCC). Cells were seeded
at a density of 50,000 or 300,000 cells and transfected with 50 or 300pmol of SBO,
respectively. Total RNA was isolated 48h post-transfection and RT-PCR was performed
using high-capacity cDNA kit (Promega) and oligo-dT (IDT). PCR was performed with
custom primers designed to amplify around the exon of interest. The PCR product was
analyzed on an automated capillary electrophoresis separation (Perkin Elmer LabChip-
GX). The Labchip Software was used to extract high-resolution sizing and quantitation
for all DNA fragments, and a proportion spliced in (PSI) value was calculated for each
exon. SBOs were scored using BigRNA as described in Section 5.1.

SpliceAl predictive score. For each SBO in the dataset, we simulated it as a variant
as mentioned in Section 5.1. We made prediction using SpliceAl [55] model by passing
the sequence centered at the affected exon. Given a SpliceAl model ¢, let p, be the
predicted probability at the acceptor site of the wild-type sequence and pg be the
prediction at the donor site. Define p], and p/; analogously for the mutant-type. Then,
we compute the score as:

sp = max(£(pa) — £(py), £(pa) — £(Py)), (520)

where £(p) = log((p + €)/(1 — p + €)) is the logit, or inverse-sigmoid function, and
e = 10719 is added for numerical stability. We further averaged the scores across a
five-model ensemble to obtain the final score for the SBO. The models were obtained
from the SpliceAl repository.'?

For both models, Spearman correlation was calculated between the predicted SBO
effect and the average PSI-value.

5.3 Screening ATP7B exon 6 M645R SBOs

This section describes the methodological details relevant to Fig. 4c.

19https://github.Com/Illumina/SpliceAI. We were not able to directly apply the SpliceAIl VCF tool, since
it does not work with variants where the reference or alternate allele are longer than 1bp.
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In order to measure the effect of SBOs designed to rescue the splicing deficits caused
by the c¢.1934T>G mutation in ATP7B, compound heterozygous HepG2 cells were
generated. This monoclonal cell model harbored a knockout of one copy of ATP7B via
a large insertion of sequence in exon 6[58], and the ‘Spanish’ variant c.1934T>G on
the remaining copy.

Using these cells, a library of 55 SBOs were screened using quantitative PCR
(qPCR). Designed SBOs were reverse transfected into the mutant HepG2 cells using
Lipofectamine™ RNAIMAX. Following transfection, the cells were incubated for 48
hours, after which, cells were lysed in RLT buffer and RNA was extracted via the
RNeasy kit using the Qiacube automated system. RNA concentrations were determined
using an Agilent bioanalyzer (RNA nano). First-strand synthesis was performed using
a high capacity cDNA kit following the manufacturer’s recommendations.

To measure the effect of the SBOs, a qPCR assay was developed to measure
“full length” ATP7B transcripts which included exons 5, 6, and 7 (Fw: ATTGAG-
GAAATTGGCTTTCATGC, Rev: ACAGGAAAGACTTCTTCCACTGC). ATB7B
expression was normalized to the expression of the housekeeping gene TBP (Fw: GC-
CCGAAACGCCGAATATA, Rev: CGTGGCTCTCTTATCCTCATGA). gPCR was
performed using a 2x SYBR mix with the designed primers. Conditions were based on
the Quantstudio 5 qPCR machine.

SBOs were scored using BigRNA as described in Section 5.1. Spearman correlation
was computed between the BigRNA prediction and the average qPCR fold change. For
visualization purposes, BigRNA predictions were re-scaled to have a minimum of zero
and an 80th percentile matching the observed average fold change values.

5.4 Visualization of BigRNA predictions for wildtype vs. M645R
variant vs. oligonucleotide and M645R variant in ATP7B

This section describes the methodological details relevant to Fig. 4d.

For the M645R?" variant, we generated three sequences encompassing BigRNA’s full
context length: one centered at the reference allele (wild-type), one centered at the
alternative allele (variant), and one centered at the alternative allele with the sequence
corresponding to the designed hybridization site of the SBO (variant with SBO), as
described in Section 5.1. For each sequence, predictions using BigRNA were generated
as described in Section 1.4. We used the ensemble M (Section 1.3) and only its coverage
output heads 7. Predictions were averaged across output heads and models in the
ensemble to yield one-dimensional tracks (one for wild-type, one for variant, and one
for variant with SBO) for visualization.

In addition to visualizing BigRNA’s prediction, we also assessed different model’s
FPR at which this variant can be discovered as an exon skipping variant. We computed
BigRNA, SpliceAl and Enformer scores for the M645R variant in ATP7B, as discussed
in Section 4.2.2. BigRNA reports a score of 0.1586, which corresponds to discovery at
0.7% FPR (Supplementary Fig. S7). For SpliceAl, the score is 0.22 and this variant
can be discovered at 0.6% FPR. The Enformer score is 0.0045 and this variant can be
discovered at 21.02% FPR.

20M645R is chr13:52535985:A>C (h37) or chr13:51961849:A>C (h38).
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5.5 Identification of “N=1" variants associated with autosomal
recessive disorders

This section describes the methodological details relevant to Fig. 4e-f.

To generate a set of genes which are associated exclusively with autosomal recessive
(AR) disorders, we filtered OMIM [59] (last accessed Apr. 19, 2023) to select for AR
and exclude other inheritance modes. This resulted in a set of 2563 genes. Next, we
collected all pathogenic or likely pathogenic variants in the AR genes from ClinVar
(last accessed Apr. 30, 2023; n = 101, 448). GnomAD [40] allele frequencies (v3.1.2)
were employed to subset to variants with very low total worldwide disease prevalence
(p < 50), using the following estimates:

pn = f3 % P, (S21)
Pe =2 X fo X foxP, (S22)
P = pn+ pe; (523)

where pj, is homozygous prevalence, p. is compound heterozygous prevalence, f, is
the total allele frequency for the variant, f, is the total allele frequency for other
pathogenic/likely pathogenic variants in the gene, and P is an estimate for the global
population (8 billion).

These 5486 variants from 1549 genes were further filtered to select SNVs with
homozygous prevalence equal to 0 and allele frequencies less than or equal to 0.00002
in all individual GnomAD subpopulations, resulting in a final set of 1582 “N=1"
pathogenic variants from 863 genes associated with AR disorders. Synonymous variants
(n = 14), tolerated missense variants (SIFT [60] scores > 0.05, n = 56), intronic
variants (>8bp from splice sites, n = 15), and splice region variants (<8bp from splice
sites, excluding the core dinucleotides, n = 22) were prioritized for exon skipping SBO
design. Variants with annotation and BigRNA scores can be found in Supplementary
Data 9.

The c.2481-12A>G variant in MYOIFE (chr15:59163315:T:C h38) was predicted
to cause skipping of MYOI1FE exon 23. To assess whether the variant effect may be
amenable to rescue with an SBO, we performed an in-silico design of all possible
20-mers within 200bp of exon 23, as described in Section 5.1.

To visualize prediction of the lead SBO, we generated three sequences encompassing
BigRNA’s full context length: one centered at the reference allele (wild-type), one
centered at the alternative allele (variant), and one centered at the alternative allele
with the sequence corresponding to the designed hybridization site of the SBO (variant
with SBO), as described in Section 5.1. For each sequence, predictions using BigRNA
were generated as described in Section 1.4. We used the ensemble M (Section 1.3)
and only its junction output heads 7. Predictions were averaged across output heads
and models in the ensemble to yield one-dimensional tracks (one for wild-type, one for
variant, and one for variant with SBO) for visualization.

5.6 Scoring expression increase SBOs

This section describes the methodological details relevant to Fig. 4g-h.
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To evaluate the ability of BigRNA to identify SBOs that increase gene expression,
we used a combination of established saliency mapping techniques (Section 1.5), to
evaluate the contribution of each base in a transcript to the gene’s expression in
human liver (by using a subset of outputs that correspond to liver coverage data in
Supplementary Equation S3), yielding a sensitivity score for each base’s impact on
expression levels. Using this score, we ranked relevant inhibitory regions across the
transcript of interest by their propensity for SBO-induced gene expression increase.
To calculate the inhibitory score for an SBO, the minimum value of any overlapping
bases was taken as the overall SBO score. For lead SBOs and hits in SMN2, ATP7B,
PRRT2, and SERPING1, the inhibitory score was calculated for all candidate SBOs of
the same length targeting anywhere in the APPRIS principal transcript. The scores of
background SBOs and hits were compared with a Mann-Whitney U-test.

5.6.1 SBO screen for PON1

A library of 2981 steric blocking oligonucleotides (SBOs) with phosphorothioate back-
bone and 2’-O-methoxyethyl (PS-MOE) chemistry were designed against the human
PON1 gene, using a mix of proprietary machine learning models, experimental datasets,
and random tiling. The 2981 SBOs were reverse transfected into primary human hepa-
tocytes (PHH) at a dose of 100 nM. 18,000 PHH cells per well were reverse transfected
and plated in 384-well Collagen-I plates. PHH cells (BioIVT) were thawed using Cry-
opreserved Hepatocyte Recovery Medium (Thermofisher) and plated with InVitroGRO
CryoPlating Hepatocyte Medium (BioIVT). All SBOs and small interfering RNAs (siR-
NAs) were reverse transfected using Opti-MEM reduced serum medium (Thermofisher)
coupled with Lipofectamine™ RNAIMAX Transfection Reagent (Thermofisher). Sub-
sequent media changes (every two days) for cell maintenance were performed using
Cellartis Power Primary HEP Medium (Takarabio) over a culture window of 7 days.
After 7 days, cells were lysed with AlphaLysis buffer (Perkin Elmer) supplemented
with 1X HALT protease inhibitor with no EDTA (Thermofisher). Lysis was done by
one freeze-thaw cycle at —80 °C followed by thorough mixing of the lysates. Expres-
sion of PON1 was evaluated by AlphalLISA and expression levels were compared to a
non-targeting control SBO (19-mer designed to have no binding sites at edit distance 2
or lower) to generate fold change values.

The 264 SBOs with highest fold change from the initial screen were taken into a
hit confirmation screen, following the same protocol as the initial screen. The top 44
SBOs from the hit confirmation, along with one non-targeting control, were selected
and further validated in an eight-point dose-response curve from 400 nM to a 3.125
nM concentration.

Dose-response SBOs were identified as a hit if the max effect exceeded 1.3 fold
increase in PONI expression and the half maximal effective concentration (EC50) was
between 10 nM and 100 nM.
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5.6.2 SBO screens for ATP7B, PRRT2, and SERPING1

SBOs targeting PRRT2 and SERPING1 were screened by transfection at 50, 200, and
500 nM in Kelly and HuH-7 cells, respectively. SBOs targeting ATP7B were screened
by transfection at 50 and 200 nM in HepG2 cells. Each cell line was edited to insert
a HiBiT tag into the protein of interest[61], in order to measure endogenous protein
levels using luminescence. HiBiT tagged cells were created using CRISPR-Cas9 gene
editing. A ¢crRNA (IDT technologies) was designed to cut near the 5 end of each
target gene and a 190bp single-stranded oligonucleotide donor, containing the 33bp
HiBiT sequence and ~80bp of homology arm sequence, was designed as the donor
template for each target gene. Test and control SBOs, along with siRNAs, were reverse
transfected into HiBiT edited cells using the lipofectamine reagent RNAiMAX. 48
hours following transfection, PrestoBlue HS (ThermoFisher) reagent was added to
each well, and incubated following the manufacturer’s instructions, in order to measure
cell viability. Following incubation, a portion of the media/PrestoBlue mixture was
removed and pipetted into black 96 well plates. Fluorescence measurements at 560
nm excitation and 590 nm emission were made on either a Biotek Neo 2 or a Glomax
Discoverer instrument.

After fluorescence measurements, the remaining media/PrestoBlue reagent was
aspirated and the wells were gently washed once with phosphate-buffered saline (PBS).
A master mix of the HiBiT lytic buffer+reagents was made (Promega) and supplemented
with 1:100 large BiT (18kDa subunit of NanoBiT luciferase) protein and 1:50 of NanoGlo
HiBiT lytic substrate. PBS was aspirated from the washed wells, and the supplemented
HiBiT lytic buffer was added. Plates were incubated on a rocking platform for 10
minutes and 50 pL volumes from each well were removed and pipetted into opaque
white 96 well plates. Luminescence readings were made using either a Biotek Neo 2 or
a Glomax Discoverer instrument. The luminescence reading was then divided by cell
viability reading and normalized to non-targeting control SBOs, in order to calculate a
fold change for each SBO. SBOs with average fold change above 1.5 across the three
doses and average viability greater than 60% of non-targeting controls were classified
as hits.
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Supplementary Figures
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Supplementary Figure S1 BigRNA prediction on a genomic interval.
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Supplementary Figure S2 A high-resolution prediction, specifically, with resolution r = 64 bp.
This extends the procedure for predicting on a genomic interval that is described in Supplementary
Fig. S1.
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Supplementary Figure S3 Performance of BigRNA as compared to other deep learning models on
the ClinVar P/LP and putative benign variants benchmark. The area under the receiver operator
characteristic curve (AUROC) of each of the models at the classification task in the 3’ and 5’ UTR is
plotted. The p-value from a permutation test (n = 10,000) comparing the AUROC of BigRNA to
each of the other models’ AUROC is annotated.
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Supplementary Figure S4 Receiver operator (ROC) and precision-recall (PRC) curves showing the performance
of BigRNA and other deep learning models at classifying pathogenic/likely pathogenic (P/LP) variants from
ClinVar and putative benign variants in the 3’ UTR (a), 5° UTR for all P/LP variants (b) and 5> UTR P/LP
variants that impact expression (c). (a) All P/LP classified SNVs by [39] in the 3’ UTR (n = 20) against all the
matched putative benign variants from our dataset (n = 224). BigRNA has a significantly higher AUROC than
Enformer (p = 0.02, 10,000 permutations) and is comparable to Saluki (p = 0.27, 10,000 permutations). (b) All
P/LP classified SNVs by [39] in the 5 UTR (n = 58), regardless of mechanism against all the matched putative
benign variants from our dataset (n = 120). (c) The dataset is subset to just P/LP variants that impact expression
(as defined by altering transcription) or those whose mechanism is undefined (n = 29) and matched putative benign
variants in the matched UTR of this subset (n = 86). BigRNA’s AUROC is comparable to Enformer (p = 0.60,
10,000 permutations) and is significantly higher than FramePoolCombined (p = 0.002, 10000 permutations). The
fill around the lines represents one standard deviation of the true positive rate and precision, respectively, as
calculated from 10,000 bootstraps. AUROC, area under the receiver operator curve; AUPRC, area under the
precision-recall curve; TPR, true positive rate; FPR, false positive rate
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Fine-mapped (PIP > 0.5) eQTLs (n = 1265) vs. matched control (n = 1171) variants
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Supplementary Figure S5 Performance of BigRNA and Enformer on the general task of eQTL
classification from matched controls on the entire constructed dataset. We use 10,000 bootstrap
resampling iterations to establish significance between the estimates and find that BigRNA significantly
out-performs Enformer on the area under the receiver operator characteristic curve (AUROC 0.74
versus 0.70, p = 0.0047) however the models are not significantly different on the area under the
precision recall curve (AUPRC 0.73 vs 0.72, p = 0.64). Both models are displayed using tissue-specific
scores derived from the contiguous coding sequence and max aggregation was used over BigRNA
ensembles. For more details, see Scoring considerations for eQTL evaluation.
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Supplementary Figure S6 Performance of BigRNA at distinguishing distal (>10 kb) expression
quantitative trait loci (eQTLs) loci from matched negative controls compared to Enformer (p = 10-3
for difference). eQTLs were scored by using absolute differences in the contiguous coding sequence
(CDS) of the effector genes, across all affected tissue outputs, and taking the maximum difference
across all BigRNA models in the ensemble.

33
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Supplementary Figure S7 ROC of classifying skipping versus non-skipping variants from the

MaPSy dataset at a 50% skipping level.

34



Intron retention variants
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Supplementary Figure S8 Comparison with SpliceAl for classifying variants that cause intron
retention (n = 25) from a set of matched variants that do not impact splicing (n = 63). The differences
do not meet statistical significance.
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Supplementary Figure S9 a. Predicted effect of SBOs to remedy inclusion of a pseudo-exon
in ATM, caused by the c¢.5763-1050A>G variant. The blue box shows the position of the lead SBO
relative to the pseudo-exon. b. Spearman correlation between predictions and experimentally observed
splicing efficiencies of 27 SBOs from Kim et al. 2023 [62]. The x-axis shows the relative rank of the
BigRNA predictions for the 27 SBOs.
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Supplementary Figure S10 BigRNA inhibitory scores of all 26,901 possible 18-mers targeting
SMN2. Nusinersen is highlighted with a red dot, ranking in the top 2.28%.
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Supplementary Tables

Table S1 Training hyperparemters for the seven submodels of our individual-aware ensemble, in
ascending order of recency. Notably, model 6 was initialized from the trained Enformer weights [2].
All models are trained for a fixed number of epochs but we only retain the checkpoint with the
best validation performance, which is measured at the end of each epoch using the Pearson
correlation between the model’s predictions and targets on a few validation batches.

Model No. 0 1 2 3 4 5 6
Initialization random random random random random random Enformer
Max. epochs 180 170 180 100 100 100 100
Learning rate 10~4 5x 1075 5x107° 10~4 5x 1075 2x1075 2x10°°
Grad. Clip 0.2 0.05 0.05 0.1 0.1 0.1 0.05
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Supplementary Notes

Scoring considerations for eQTL evaluation

As a part of Section 3.4 a number of considerations were made for the exact scoring
methodology from raw predictions. This note describes these considerations and their
impacts on the observed performance of both BigRNA and Enformer.

To construct the evaluation benchmark, each positive control variant (fine-mapped
eQTL) was matched with a negative control variant with similar minor allele frequency
distance to the transcription start site of the effector gene (eGene). This was accom-
plished by iterating over each of the positive control variants (here defined as having a
causal impact on expression of an (eGene) with a PIP > 0.5 in one or more tissues).
The threshold of 0.5 was selected to indicate that the variant was the most probable
causal variant in its credible set. Additional fine-tuning downstream was performed
to narrow to the set of confident variants with a PIP threshold of > 0.95, indicating
that the variant was suspected of being the sole candidate causal variant in its credible
set. Matching was performed in a lenient manner to allow for the maximum number
of negative control variants from the same eGene. Minor allele frequencies were set
to match within 10% of the positive variant, and distance to TSS was set to match
within 5 kilo-basepairs (kbp) (Fig. S11). This matching procedure produces 1211 pairs
of positive / negative variants for the same eGene.
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Supplementary Figure S11 Distribution of positive eQTL variants and matched negative controls
for minor allele frequency (MAF) and distance to the transcription start site of their effector gene
(eGene).
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We use BigRNA and Enformer to predict the effects of these variants. We capture
100kb of sequence prediction centered on the variant of interest, creating an output ma-
trix for scoring ¢ with dimensionality Number of variants x Number of output heads x
Number of base pairs. Denote these dimensions V', H, and B respectively. To construct
a score from ¢ which intuitively represents the magnitude of the difference between
the reference and the alternate prediction, consider the two output matrices for the
reference sequence (4) and the sequencing containing the alternate, effect, allele (¢*).
Each eQTL has one or more "tissue(s) of origin” where it has been fine-mapped as pu-
tatively causal. Consider for a particular variant v € 1,...,V an indicator variable T,
which is an H-vector (that is, an indicator variable on the output heads corresponding
to the ones which are informative for the tissue of origin of variant v). The number
of such mapping tissues is available in Fig. S12. For variant v we take the effective
matrix of tissue-specific predictions for the alternate allele ¢f7 ner, and the reference

allele ¢§§heTv which is of dimensionality 1 x > T, x B. Take f to be an arbitrary ag-

gregation function which operates over the H axis of (;55”7 ner, and consider two possible

definitions (the mean and the max). We wish to use f to aggregate each ¢, per, such
that it is of dimesionality 1 x B. We use the given aggregation function to transform
@v.ner, to a1l x B vector for scoring denoted as 74 or 4 for alternate prediction and
reference prediction respectively.

1 H AR
AR _ {Mean, . Ty >izo ¢v,¢,b
o=

AR
Max, maxy, @, 7,5

In this formulation we consider then the B-vectors ¥4 and v for each variant
v € V for the purposes of scoring. The indices of these aggregated vectors represent
base pair positions from the output of each deep learning model. Note that after
experimentation, we see little difference in the performance of either BigRNA or
Enformer as a consequence of the decision of aggregation function f at this early stage
(data not shown). To construct a score for the variant we consider a subset of this
vector which is indicative of coding region of the eGene such that C' C B. Note that
the choice of C' as the coding region is arbitrary but was arrived at after empirical
testing. An alternate formulation would take C' as a single index corresponding to the
transcription start site and expand a fixed window around the index as in [2]. Later we
empirically evaluate the decision to use the contiguous coding sequence rather than this
transcription start site approach. The ”score” is then a function of the two aggregated
tracks such that

D _ A R
7= Tec T Mvec
D R
fyarg max; |[vP| Pyarg max; |y

D R
S(v" Yec) = e
R|

R
’Yarg max; |y

where c¢ is a constant. We use ¢ = 10 throughout for this evaluation.
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An additional area of nuance is that this score must be seperately calculated for
each of the seven ”ensemble” models which compose BigRNA. This gives us a score 5,
for each variant v which is a function of its aggregated reference and alternate B-vectors
7v® and 44 respectively. We must make a decision on a second aggregation function
to combine these seven scores, here called S¢ for each ensemble model e € 0,...,7.
We experiment with two such methods, namely the mean of the ensemble models and
the max of the ensemble models. An interpretation of these two scores would be that
the first captures the collective information from all ensemble nodes, while the second
indicates whether an effect is indicated in any ensemble node individually. This would
then simply be

157 i
gmean, max _ mean, 7 Zi:o Sv .
v - max garg max; 1S,
) v
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Supplementary Figure S12 Distribution of the number of effector tissues where each of the
positive eQTL variants had been fine-mapped.

We perform permutation bootstrapping to assess the improvement above Enformer
for various strategies including S5;7°*" versus S*** and find that S}'** leads to the
highest classification accuracy for the eQTL classification task (see Fig. 3.4 for more
details on evaluations, Supplementary Fig. S2). We assess other parameter’s impact on
the delta between the two models and additionally find significant differences between
the two primarily in the category with more eQTLs (PIP = 0.5) for distal eQTLs
(here defined as those which are more than 10 kilobases from their eGene). These
classifications do not reflect differences in scoring, but rather simply selecting different
sets of v C V.

To motivate the decision to calculate scores specific to a particular set of output
heads relevant to the tissue-of-origin (7, above being an indicator vector for each
variant v of relevant heads) we compare the performance of a matched tissue model to
an agnostic one (with all entries of T;, set to 1). Note that even when T, is a 1-vector, we
still score using only coverage heads from RNA-seq data (or matched CAGE-seq heads
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PIP TSS Score A AUROC A AUROCP A AUPRC A AUPRCP

0.5 Distal Mean -0.04 0.059 -0.043 0.144
0.5 Distal Max -0.072 0.001 -0.059 0.051
0.5 Proximal  Mean 0.003 0.87 0.033 0.193
0.5 Proximal Max -0.022 0.282 0.026 0.334
0.5 All Mean -0.019 0.185 0.0 0.992
0.5 All Max -0.046 0.002 -0.01 0.6

0.8 Distal Mean -0.042 0.155 -0.044 0.276
0.8 Distal Max -0.075 0.012 -0.06 0.148
0.8 Proximal  Mean 0.008 0.739 0.031 0.324
0.8 Proximal Max -0.018 0.496 0.029 0.425
0.8 All Mean -0.019 0.323 -0.001 0.977
0.8 All Max -0.044 0.025 -0.006 0.818
0.95 Distal Mean -0.047 0.215 -0.05 0.341
0.95 Distal Max -0.061 0.129 -0.051 0.355
0.95 Proximal Mean 0.017 0.574 0.04 0.353
0.95 Proximal Max -0.01 0.782 0.034 0.461
0.95 All Mean -0.014 0.563 0.004 0.897
0.95 All Max -0.033 0.203 0.002 0.959

Table S2 10,000 permutation tests were used to establish the difference between the area under
the receiver operator curve (AUROC) and area under the precision recall curve (AUPRC) for
BigRNA scored using one of three posterior inclusion probability (PIP), three distance to TSS, and
two ensemble aggregation methods.

from Enformer, see Supplementary Data 5). We compare classification performance
on the main eQTL dataset (PIP threshold of 0.5) and find a statistically significant
difference between tissue-informed and tissue-agnostic scores for both BigRNA and
Enformer (P = 0.0027 and P = 0.0026 respectively from 10,000 iterations of bootstrap
resampling; Supplementary Fig. S13)
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Fine-mapped (PIP > 0.5) eQTLs (n = 1265) vs. matched control (n = 1171) variants
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Supplementary Figure S13 Precision recall and receiver operator characteristic curves for BigRNA
and Enformer using tissue-specific and tissue-agnostic scoring methods. We use 10,000 bootstrap
resampling iterations to assess significant differences and find that the area under the receiver operator
characteristic curve (AUROC) is significantly improved by using tissue-specific rather than tissue
agnostic scores for BigRNA (p = 0.0029) and Enformer (p = 0.0015) but not the area under the
precision recall curve (AUPRC) for either BigRNA (p = 0.056) or Enformer (p = 0.071). For BigRNA,
max aggregation over output heads was used along with the CDS (rather than TSS) score.

In addition to the aggregation strategy and tissue-specificity, the choice of C' (the
region to evaluate for the purposes of scoring) has an impact on the classification
performance. To assess which of these scores is empirically supported by the data, we
calculate two versions of the score for both BigRNA and Enformer. We use the Appris
transcript (if available) for each of the eGenes (or eGene of matched eQTL in the
case of negative control variants) to compute a score as previously defined across the
contiguous coding sequence (CDS). We additionally take the transcription start site of
the eGene and create a window 196bp on either side for score computation (TSS). We
compare the performance of these scores and find that in both cases the CDS score
out-performs the TSS score for both AUROC and AUPRC (Supplementary Fig. S14).
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Supplementary Figure S14 Precision recall and receiver operator characteristic curves for BigRNA
and Enformer using either the transcription start site (T'SS) interval or the contiguous coding sequence
(CDS) disjoint interval for score calculation. The CDS score out-performs the TSS score on AUROC
(p = 0.0017, p = 0.0099 for BigRNA and Enformer respectively) but not on AUPRC (p = 0.161,
p = 0.107 for BigRNA and Enformer respectively) using 10,000 bootstrap resampling iterations to
assess significance. These evaluations use the "max” method for aggregating Ensembles and are tissue
specific.

In conclusion, this Supplementary Note described the rationale for constructing
scores for our eQTL evaluation. Additionally, the relative performance of the score
along three axis was evaluated. From this evaluation it can be concluded that i) the
CDS score out-performs the TSS score, ii) scoring in a tissue-specific manner is superior
to scoring in a tissue-agnostic manner, and iii) taking the maximum of the Ensemble
method scores is a superior approach to taking the mean of the Ensemble method scores.
We provide a fully enumerated comparison of all comparisons along three different PTP
cut offs (PIP = 0.5, 0.8, and 0.95) and distance thresholds (all, distal (> 10kb), and
proximal (< 10kb)) in Supplementary Data 6.
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