
Infrared: a declarative tree decomposition-powered framework for
bioinformatics

Additional file 1

Hua-Ting Yao, Bertrand Marchand, Sarah J. Berkemer, Yann Ponty, Sebastian Will

Recall the following few definitions and notation from the main text. Given the cluster tree (T, χ, φ)
and a node u of T. If u has the parent v, then diff(u) = χ(u) \χ(v) and sep(u) = χ(v)∩χ(u); otherwise,
if u is the root, diff(u) = χ(u) and sep(u) = ∅. Moreover, we defined Tu as the subtree under node u,
χ(Tu) =

⋃
u′∈Tu

χ(u′) and diff(Tu) = χ(Tu) \ sep(u). We use the following lemma.
Lemma S1. {diff(Tc) | c child of u} is a partition of χ(Tu) \ χ(u) = diff(Tu) \ diff(u).
Proof. Let u be a node of the cluster tree (T, χ, φ), c and c′ be children of u, then diff(Tc)∩diff(Tc′) = ∅,
since—due to tree decomposition property (3)—any common element must be in χ(u) in contradiction
to the definition of diff on subtrees; moverover,⋃

{diff(Tc) | c child of u} =
⋃

c child of u
χ(c) \ sep(c)

=
⋃

c child of u
χ(c) \

⋃
c child of u

sep(c)

=
⋃

c child of u
χ(c) \ χ(u) = diff(Tu) \ diff(u).

1 Correctness of optimization
Proof of Proposition 1. We are going to show the correctness by structural induction on the cluster tree.
For the base case, let u be a leaf of the cluster tree. Sinc the subtree Tu is the node u itself, Eq. 3 for a
leaf u is written as

mu→v(x̄) = max
x̄′∈Adiff(u)
x̄∪x̄′ is valid

∑
f∈φ(u)

αff(x̄ ∪ x̄′).

Thus, Proposition 1 holds for leaves u, since they do not have children.
For the induction step, let u be an internal node of the cluster tree and assume Proposition 1 holds

for all children of u. Denote the children of u as c1 . . . , ck. We directly apply the induction hypothesis
to the r.h.s of the claim.

r.h.s. (4) = max
x̄′∈Adiff(u)
x̄∪x̄′ is valid

 ∑f∈φ(u) αff(x̄ ∪ x̄′)
+
∑
ci child of u max ȳi∈Adiff(Tci

)

x̄∪x̄′∪ȳi is valid

∑
f∈φ(Tci

) αff(x̄ ∪ x̄′ ∪ ȳi)


Our goal is to show equivalence to the r.h.s. of Eq. (3). By Lemma S1 set diff(Tu) \ diff(u) is disjointly
decomposed into diff(Tc1) . . . diff(Tck

); moreover, φ(Tu) \ φ(u) is partitioned into φ(Tci
), i = 1 . . . k. It

follows that for every fixed assignment x̄ ∪ x̄′, the maximizations over ȳi ∈ diff(Tci
) are independent for

different i; as well the sum over the functions of bag u is independent of the maximizations. Thus, we
can move the maximizations over the assignments ȳi in front of the summations.

= max
x̄′∈Adiff(u)
x̄∪x̄′ is valid

max
ȳ1∈Adiff(Tc1)

x̄∪x̄′∪ȳ1 is valid

. . . max
ȳk∈Adiff(Tck

)

x̄∪x̄′∪ȳk is valid

[∑
f∈φ(u) αff(x̄ ∪ x̄′)

+
∑
ci child of u

∑
f∈φ(Tci

) αff(x̄ ∪ x̄′ ∪ ȳi)

]

1

Then, we combine the maximizations over the single partial assignments ȳi; moreover we replace the
sums with a single sum ranging over the combined assignments ȳ of diff(Tu) \ diff(u).

= max
x̄′∈Adiff(u)

x̄∪x̄′∪ȳ is valid

max
ȳ∈Adiff(Tu)\diff(u)
x̄∪x̄′∪ȳ is valid

[∑
f∈φ(Tu) αff(x̄ ∪ x̄′ ∪ ȳ)

]
The last term equals r.h.s. of Eq. (3), showing the induction step.

2 Correctness of partition function computation
Proof of Proposition 2. Again, we will show the correctness by induction. Starting with the base case
where u is a leaf of the cluster tree, the subtree Tu is the node u and the child set of u is empty. Eq 5 is
then written as

mu→v(x̄) =
∑

x̄′∈Adiff(u)
x̄∪x̄′ is valid

∏
f∈φ(u)

exp(αff(x̄ ∪ x̄′))

which shows the correctness for leaves.
For the induction step, let u be an internal node of the cluster tree; we assume that the message

mci→u for all children ci, i ∈ {1, . . . , k} of u is correctly computed as in Proposition 2. Following the
scheme as in the previous proof, we first rewrite the r.h.s of the claim applying the induction hypothesis,

r.h.s. (6) =

∑
x̄′∈Adiff(u)
x̄∪x̄′ is valid

 ∏f∈φ(u) exp(αff(x̄ ∪ x̄′))
×
∏
ci child of u

∑
ȳi∈Adiff(Tci

)

x̄∪x̄′∪ȳi is valid

∏
f∈φ(Tci

) exp(αff(x̄ ∪ x̄′ ∪ ȳi))


As the set diff(Tu) \ diff(u) is disjointly decomposed into diff(Tc1) . . . diff(Tck

), the second term in the
bracket can be seen as the Cartesian product of k sets. We can move the summations in front of the
production,

=
∑

x̄′∈Adiff(u)
x̄∪x̄′ is valid

 ∏f∈φ(u) exp(αff(x̄ ∪ x̄′))
×
∑

ȳ1∈Adiff(Tc1)

x̄∪x̄′∪ȳ1 is valid

· · ·
∑

ȳk∈Adiff(Tck
)

x̄∪x̄′∪ȳk is valid

∏
ci child of u

∏
f∈φ(Tci

) exp(αff(x̄ ∪ x̄′ ∪ ȳi))


For every fixed assignment x̄∪ x̄′, the product over the functions of bag u is independent of the summa-
tions. Thus, we can move the summations over the assignments ȳi in front of the product,

=
∑

x̄′∈Adiff(u)
x̄∪x̄′ is valid

∑
ȳ1∈Adiff(Tc1)

x̄∪x̄′∪ȳ1 is valid

· · ·
∑

ȳk∈Adiff(Tck
)

x̄∪x̄′∪ȳk is valid

[∏
f∈φ(u) exp(αff(x̄ ∪ x̄′))
×
∏
ci child of u

∏
f∈φ(Tci

) exp(αff(x̄ ∪ x̄′ ∪ ȳi))

]

Then, we combine the summations over the single partial assignments ȳi; moreover we replace the
products with a single product ranging over the combined assignments ȳ of diff(Tu)\diff(u) as φ(Tu)\φ(u)
is partitioned into φ(Tci), i = 1 . . . k.

=
∑

x̄′∈Adiff(u)
x̄∪x̄′∪ȳ is valid

∑
ȳ∈Adiff(Tu)\diff(u)
x̄∪x̄′∪ȳ is valid

[∏
f∈φ(Tu) exp(αff(x̄ ∪ x̄′ ∪ ȳ))

]

The last term equals r.h.s. of Eq. (5), showing the induction step.

3 Correctness of sampling by stochastic traceback
Lemma S2. At edge u→ v, Alg. 3 choses a partial assignment x̄ ∈ Adiff(u) with probability

Palg(x̄ | x) = wu→v(x̄ | x)
mu→v(x)

2

where x is the partial assignment determined in the previous iterations and weight wu→v(x̄ | x) is defined
as

wu→v(x̄ | x) =
∏

f∈φ(u)

exp(αff(x∪x̄))
∏

c child of u
mc→u(x∪x̄) =

∑
ȳ∈Adiff(Tu)\diff(u)
x∪x̄∪ȳ is valid

∏
f∈φ(Tu)

exp(αff(x∪x̄∪ȳ)).

(S1)

Proof. Let us order the partial assignments x̄i in Adiff(u) with i from 1 to |Adiff(u)|, each is associated
with weight wu→v(x̄i | x) =

∏
f∈φ(u) exp(αff(x ∪ x̄i))

∏
c child of umc→u(x ∪ x̄i). Note that the sum of

all weights
∑|Adiff(u)|
i=1 wu→v(x̄i | x) equals to mu→v(x).

For a selected value t, Alg. 3 enumerates assignments x̄i starting from i = 1. In every iteration, it
subtracts the weight wu→v(x̄i | x). It is terminated as soon as t is negative, let this index be j, and
assigns x̄j to diff(u). In other words, x̄j is assigned to diff(u) if

j∑
i=0

wu→v(x̄i | x) ≤ t <
j+1∑
i=0

wu→v(x̄i | x)

with wu→v(x̄0 | x) is defined as 0 for i = 0. Since t is randomly and uniformly selected from 0 to
mu→v(x), the probability that Alg. 3 chooses x̄ is

Palg(x̄ | x) = wu→v(x̄ | x)
mu→v(x) .

Finally, the weight wu→v(x̄ | x) =
∏
f∈φ(u) exp(αff(x ∪ x̄))

∏
c child of umc→u(x ∪ x̄) can be seen as

a special case of Eq. 6 by replacing the partial assignment set Adiff(u) with a singleton {x̄}. Applying
Proposition 2 gives

wu→v(x̄ | x) =
∑

ȳ∈Adiff(Tu)\diff(u)
x∪x̄∪ȳ is valid

∏
f∈φ(Tu)

exp(αff(x ∪ x̄ ∪ ȳ)).

Proof of Proposition 3. Let us assume that the non-root nodes of the cluster tree are labeled in preorder
as u1, u2, . . . , u`. Alg. 3 assigns values in the order of diff(u1), . . . ,diff(u`); it finally generates a total
assignment since ∪`i=1 diff(ui) = X .

Let x∗ = x̄∗1 ∪ · · · ∪ x̄∗` be a total assignment where x̄∗i is a partial assignment of Adiff(ui) for i from 1
to `. The probability of x∗ can be written as product of conditional probabilities

P(x∗) = P(x̄∗1)P(x̄∗2 | x̄∗1) · · ·P(x̄∗` | ∪`−1
k=1x̄

∗
k) = ∪`i=1 P(x̄∗i | ∪i−1

k=1x̄
∗
k)

with the conditional Boltzmann probability

P(x̄∗i | ∪i−1
k=1x̄

∗
k) =

∑
x̄∈Adiff(ui+1)∪...∪diff(u`)

x̄ is valid

∏
f∈φall

exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ x̄))∑

x̄′∈Adiff(ui)
x̄′ is valid

∑
x̄∈Adiff(ui+1)∪...∪diff(u`)

x̄ is valid

∏
f∈φall

exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ x̄))

(S2)

where φall is the set of all network functions in the feature network. Note that for i = 1, the union
∪0
k=1x

∗
k is empty.

At the edge ui → v, where the variables diff(u1), . . . ,diff(ui−1) have been assigned by x̄∗1, . . . , x̄∗i−1,
the probability that Alg. 3 chooses x̄∗i for diff(ui) is given by Lemma S2 as

Palg(x̄∗i | ∪i−1
k=1x̄

∗
k) =

wui→v(x̄∗i | ∪i−1
k=1x̄

∗
k)

mui→v(∪i−1
k=1x̄

∗
k)

. (S3)

Our goal is to show that two conditional probabilities P(x̄∗i | ∪i−1
k=1x̄

∗
k) of Eq. S2 and Palg(x̄∗i | ∪i−1

k=1x̄
∗
k)

of Eq. S3 are actually the same.
We rewrite Palg of Eq. S3 using Eq. S1 and the definition of conditional partition function as in Eq. 5

3

Palg(x̄∗i | ∪i−1
k=1x̄

∗
k)

=

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄∗i∪ȳ is valid

∏
f∈φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ ȳ))∑

x̄′∈Adiff(ui)
x̄′ is valid

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄′∪ȳ is valid

∏
f∈φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ ȳ))

Comparing with P(x̄∗i | ∪i−1
k=1x̄

∗
k) of Eq. S2, only a subset of network functions φ(Tu) are taken into

account. We are going to bring the rest into the expression. First, let us consider the functions assigned
to the nodes that Alg. 3 has visited before edge ui → v, denoted by φvisited := ∪i−1

k=1φ(uk). Multiply-
ing nominator and denominator by partial partition function

∏
f∈φvisited

exp(αff(∪i−1
k=1x̄

∗
k)) restricted to

φvisited and the partial assignment ∪i−1
k=1x̄

∗
k gives

=

(∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄∗i∪ȳ is valid

∏
f∈φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ ȳ))

)(∏
f∈φvisited

exp(αff(∪i−1
k=1x̄

∗
k))
)

(∑
x̄′∈Adiff(ui)
x̄′ is valid

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄′∪ȳ is valid

∏
f∈φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ ȳ))

)(∏
f∈φvisited

exp(αff(∪i−1
k=1x̄

∗
k))
)

As diff(Tui) is disjoint to the dependency of any function of φvisited, we can further group the products

=

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄∗i∪ȳ is valid

∏
f∈φvisited∪φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ ȳ))∑

x̄′∈Adiff(ui)
x̄′ is valid

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄′∪ȳ is valid

∏
f∈φvisited∪φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ ȳ))

We consider now the rest of the network functions, denoted by φrest. These functions are assigned to
the cluster nodes, denoted by Urest, that have not been visited before the edge ui → v or are not in the
subtree of ui. Note that Tui ∪ Urest = {ui, . . . , u`}. The partial partition function restricted to φrest for
fixed partial assignment ∪i−1

k=1x̄
∗
k is∑

ȳ′∈A∪u∈Urest diff(u)

ȳ′ is valid

∏
f∈φrest

exp(αff(∪i−1
k=1x̄

∗
k ∪ ȳ′)).

Multiplying again the partial partition function on nominator and denominator gives

=

(∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄∗i∪ȳ is valid

∏
f∈φvisited∪φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ ȳ))

)
∑

ȳ′∈A∪u∈Urest diff(u)

ȳ′ is valid

∏
f∈φrest

exp(αff(∪i−1
k=1x̄

∗
k ∪ ȳ′))


(∑

x̄′∈Adiff(ui)
x̄′ is valid

∑
ȳ∈Adiff(Tui

)\diff(ui)

x∪x̄′∪ȳ is valid

∏
f∈φvisited∪φ(Tui

) exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ ȳ))

)
∑

ȳ′∈A∪u∈Urest diff(u)

ȳ′ is valid

∏
f∈φrest

exp(αff(∪i−1
k=1x̄

∗
k ∪ ȳ′))


Because of the disjointness between diff(Tui

) \ diff(ui) and ∪u∈Urest diff(u), we can group the products
and combine the partial assignments into one x̄ = ȳ ∪ ȳ′ as

=

∑
x̄∈Adiff(ui+1)∪...∪diff(u`)

x̄ is valid

∏
f∈φall

exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄∗i ∪ x̄))∑

x̄′∈Adiff(ui)
x̄′ is valid

∑
x̄∈Adiff(ui+1)∪...∪diff(u`)

x̄ is valid

∏
f∈φall

exp(αff(∪i−1
k=1x̄

∗
k ∪ x̄′ ∪ x̄))

.

Thus, Palg(x̄∗i | ∪i−1
k=1x̄

∗
k) = P(x̄∗i | ∪i−1

k=1x̄
∗
k).

4

	Correctness of optimization
	Correctness of partition function computation
	Correctness of sampling by stochastic traceback

