checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 1

Bond precision:	C-C = 0.0183 A	Ţ	Wavelength=0.71073			
Cell:	a=15.954(4)	b=28.0512	2(19)	c=26.982(3)		
	alpha=90	beta=90.4	162(9) gamma=90			
Temperature:	100 K					
	Calculated		Reported			
Volume	12075(3)		12074(3)			
Space group	P 21/n		P 1 21/n 1			
Hall group	-P 2yn		−P 2yn			
	4(C54 H78 Bi3 Ce3	Tl),	C54 H78 Bi4	1 Ce3 Tl, 2(C18		
Moiety formula	8(C18 H36 K N2 O6)	, C9 H14,	H36 K N2 O	5), 0.25(C9 H14),		
_	0.5(C6 H14),		0.25(C3 H			
Sum formula	C372 H621 Bi16 Ce	L2 K8 N16	C93 H155.25	5 Bi4 Ce3 K2 N4		
	048 Tl4 [+ solvent] 012 Tl					
Mr	12241.31		3060.30			
Dx,g cm-3	1.683		1.683			
Z	1		4			
Mu (mm-1)	8.359		8.359			
F000	5849.0		5849.0			
F000'	5775.64					
h,k,lmax	18,33,32		18,33,32			
Nref	21258		21239			
Tmin, Tmax	0.009,0.081		0.561,0.746	ō		
Tmin'	0.005					
Correction methodals AbsCorr = MULTI-	od= # Reported T Li -SCAN	mits: Tmi	n=0.561 Tmax	ĸ =0.746		
Data completeness= 0.999 Theta(max)= 25.000						

S = 1.062

Npar= 1139

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A

PLAT307_ALERT_2_A Isolated Metal Atom found in Structure (Unusual)

Bi4A Check

Author Response: This is an error of the software, which does not consider the (normal) Bi-Atom bond lengths as bonds. All Bi atoms are properly connected to other atoms.

PLAT307_ALERT_2_A Isolated Metal Atom found in Structure (Unusual)

Bi4B Check

Author Response: This is an error of the software, which does not consider the (normal) Bi-Atom bond lengths as bonds. All Bi atoms are properly connected to other atoms.

🍭 Alert level B

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min).

11 Note

Author Response: This is due to the geometry of our measurement device, but does not affect the validation of the data and the correctness of the refinement result.

Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.12 0.146 Rint given PLAT213_ALERT_2_C Atom C48 has ADP max/min Ratio 3.1 prolat PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 3.1 Ratio PLAT234_ALERT_4_C Large Hirshfeld Difference C24 --C25 . 0.16 Ang. --C44 PLAT234_ALERT_4_C Large Hirshfeld Difference C37 0.16 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference O1 --C56 0.17 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference O1 --C57 0.20 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C73 --C74 0.20 Ang. 'MainMol' Ueq as Compared to Neighbors of PLAT241_ALERT_2_C High C57 Check 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low K2 Check PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.01828 Ang. PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 4.834 Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.595 6 Report PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.01Ang From Bi4B 1.73 eA-3

```
PLAT977_ALERT_2_C Check Negative Difference Density on H1
                                                                        -0.53 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H9C
                                                                        -0.36 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H12B
                                                                        -0.33 \text{ eA}-3
PLAT977_ALERT_2_C Check Negative Difference Density on H19
                                                                        -0.36 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H21C
                                                                        -0.31 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H23A
                                                                        -0.31 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H50A
                                                                        -0.36 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H56A
                                                                        -0.31 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H58B
                                                                        -0.40 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H62B
                                                                        -0.32 eA-3
                                                                        -0.32 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H65A
PLAT977_ALERT_2_C Check Negative Difference Density on H81A
                                                                        -0.37 \text{ eA}-3
PLAT977_ALERT_2_C Check Negative Difference Density on H84A
                                                                        -0.36 \text{ eA}-3
                                                                        -0.34 \text{ eA}-3
PLAT977_ALERT_2_C Check Negative Difference Density on H89B
```

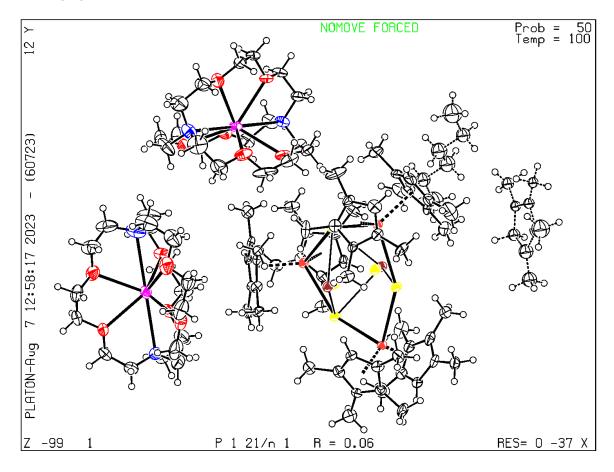
Alert level G

- Wielf level	G							
PLAT003_ALERT_2_G	Number of	Uiso or U	ij E	Restrained	non-H Atoms		3	Report
PLAT020_ALERT_3_G	The Value	of Rint is	s Gi	reater Than	n 0.12		0.146	Report
PLAT042_ALERT_1_G	Calc. and	Reported N	Moie	etyFormula	Strings Diff	er	Please	Check
PLAT045_ALERT_1_G	Calculated	d and Repor	rte	d Z Differ	by a Factor		0.250	Check
PLAT083_ALERT_2_G	SHELXL Sec	cond Parame	etei	n WGHT	Unusually Lan	rge	109.07	Why ?
PLAT186_ALERT_4_G	The CIF-Er	mbedded .re	es I	Tile Contai	ns ISOR Reco	rds	1	Report
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	Tl1A	Constrained	at	0.5	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	Tl1B	Constrained	at	0.5	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C91	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C92	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C93	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C94	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C95	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C96	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C97	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C98	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C99	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H91A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H91B	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H93A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H93B	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H93C	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H95A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H95B	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H95C	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H97A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	Н97В	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H97C	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H99A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H99B	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H99C	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C100	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	C101	Constrained	at	0.25	Check
PLAT300_ALERT_4_G					Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H10A	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H10B	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	${\tt Atom \ Site}$	Occupancy	of	H10C	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H10D	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H10E	Constrained	at	0.25	Check
PLAT300_ALERT_4_G	${\tt Atom \ Site}$	Occupancy	of	H10F	Constrained	at	0.25	Check

```
PLAT300_ALERT_4_G Atom Site Occupancy of H10G Constrained at PLAT300_ALERT_4_G Atom Site Occupancy of Bi4A Constrained at PLAT300_ALERT_4_G Atom Site Occupancy of Bi4B Constrained at
                                                                        0.25 Check
                                                                         0.5 Check
                                                                         0.5 Check
PLAT301_ALERT_3_G Main Residue Disorder ......(Resd 1 )
                                                                           2% Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 4 )
                                                                        100% Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 5 )
                                                                        100% Note
                                                                        100% Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 6 )
                                                                        100% Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 7 )
PLAT304_ALERT_4_G Non-Integer Number of Atoms in ..... (Resd 4 )
                                                                        5.75 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in ..... (Resd 6 )
                                                                        0.50 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in ..... (Resd 7 )
                                                                        0.50 Check
PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety .....
                                                                          C9 Check
PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety .....
                                                                         C39 Check
PLAT606_ALERT_4_G Solvent Accessible VOID(S) in Structure ......
                                                                           ! Info
PLAT722_ALERT_1_G Angle Calc
                                   111.00, Rep
                                                  109.50 Dev...
                                                                        1.50 Degree
                     -C99
                             -H99C
                                          1_555 1_555 1_555 # 974 Check
              C98
                                                   109.50 Dev...
PLAT722 ALERT 1 G Angle Calc 108.00, Rep
                                                                       1.50 Degree
                    -C99
                            -Н99В
                                          1_555 1_555 1_555
                                                                      975 Check
                                                                            2 Check
PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group #
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                           2 Note
              C18 H36 K N2 O6
PLAT822_ALERT_4_G CIF-embedded .res Contains Negative PART Numbers
                                                                            2 Check
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                           18 Note
PLAT868_ALERT_4_G ALERTS Due to the Use of _smtbx_masks Suppressed
                                                                           ! Info
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
                                                                       Please Do !
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still
                                                                          52% Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF ....
                                                                            1 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File
                                                                            4 Note
PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ......
                                                                       Please Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                        50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                            0 Info
```

- 2 ALERT level A = Most likely a serious problem resolve or explain
- 1 ALERT level B = A potentially serious problem, consider carefully
- 28 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
- 68 **ALERT level G** = General information/check it is not something unexpected
- 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 25 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 10 ALERT type 3 Indicator that the structure quality may be low
- 57 ALERT type 4 Improvement, methodology, query or suggestion
- 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/07/2023; check.def file version of 30/06/2023

