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S1. Additional figures and table

0.025 Quantile Median 0.975 Quantile
o, (10)  0.040 (15.336)  0.960 (37.655) 9.897 (106.646)
01(10) 0.126 () 0.270 (-) 0.509 (-)
0%(10) 0.004 (-) 0.054 (-) 0.146 (-)
a%(lo) 0.162 (-) 0.518 () 0.889 ()
091(10)  0.025 (-) 0.391 (-) 1.429 (-)
0104(10)  0.022 (-) 0.430 () 1.568 (-)
O 0.553 (0.582)  0.584 (0.615)  0.620 (0.651)

Table S1: Posterior summary of standard deviation parameters for the CO2 example in
Section 5.4. Results from M2 are shown in parenthesis.
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Figure S1: Figures (a,b) show covariance functions of the sGP with different «, where the
first argument in the covariance function is fixed at 3. Figures (c,d) display five sample paths
from the two sGPs. The frequency parameter o equals to 7/2 in (a,c) and 47 in (b,d), and
the SD parameter ¢ = 1 in both sGPs.
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Figure S2:  Average runtimes using the sB-spline approximation with k& = 30 (red) and
k = 60 (blue) for the two simulation settings in Section 4.1, when the sample size n varies.
Each average is computed from ten replications.
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Figure S3: Additional comparisons for Section 4.3. Frequentist ARIMA models fitted using
maximum likelihood estimation: (a) ARIMA with order fixed at (2,1,0); (b) ARIMA with

optimal order (4,0,1) selected based on AIC.
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Figure S4: Additional sensitivity analysis for Section 4.3. Posterior moments obtained from

the sGP model, with the median in the PSD prior varying over a range of possible values.
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S2. Derivation of the sGP covariance

Proposition S1 (Covariance Function of the Seasonal Gaussian Process). Let g ~ sGP,(0).
Then g has a covariance function:

C(x1, 1) = <£)2 {% cos(a(xy — 1)) —

cos(as) sin(axl)}

2 201 (1)
(e [ - (it

for any x1, x5 € Q such that r; < xs.
Proof. Tt is obvious that the differential operator L is linear. Define g,.,(z) = (g9(z), ¢ (z))"

and therefore g, () = (¢'(x), ¢"(x))", then the SDE can be rewritten in the vector form:

g;ug = Fgaug + JW? (2>

—a? 0 o

Using the result from [Sarkkéa and Solin| (2019) (section 4.3), the solution of the linear SDE
can be written as:

where F = [ 0 1} and J = {O]

Gaug(x) = exp(Fx)gauy(0) + /096 exp(F(z — 7)) JW (7)dr
= /Ofﬂ exp(F(z — 7)) JW (1)dr,

Fkgk
k ko

where exp(Fz) denotes the matrix exponential defined as exp(Fz) =

Note that F?* = (—a?)*I and F?* = (—a?)*F. With Taylor series, the first component of
Jaug(x) can be therefore written as:

g(x) = /Ofﬂ —sin(a(x — 7))W(T)dr. (4)

Assume arbitrary 0 < z; < w9, the covariance function can be computed for g as:

«

(2)2 {ﬂ cos(a(a — 1)) — cos(aurs) sin ()

20 ’

C(xy,20) = /Om1 g sin(a(xy — T))g sin(a(zy — 7))dr

~—
Ut
N

using properties of Gaussian white noise (Harvey, [1990).

S7



S3. Proof of the State-Space Representation
Theorem S1 (State Space Representation of the sGP). Consider g ~ sGP,(c), and let
s ={51,..., Sn} C Q be sorted with spacing dy = s; and d; = s; — s;—1 fori € {2,..,n}. Then
Gaug(si) = [9(si), ¢ (s:)]" can be written as a Markov model:

Gaug(Si+1) = Rit194,y(51) + €it1, (6)
where €; ind N(0,3;). The 2 x 2 matrices R; and ¥; = Qi_1 are respectively defined as:

1 [ d; sin(2ad;) sin? (ad;)

R, — | coslad) isin(adi)}’ s |\ T T T | ()
—a Sln(adi) COS(@di) sin?(ad;) 2ad;+sin(2ad;)
202 4o

Proof. To show the above Markov representation, note that the value of g(s;41) given g(s;)
can be written similarly as (Sarkka and Solin) 2019):

Sit+1
Gaug(Sit1) = exp(Fdi1)Gaug(si) +/ exp(F(s;41 — 7)) IW (7)dT.

Recall that F?* = (—a?)*T and F?*! = (—a?)*F, then apply the Taylor series expansion
for both components in the integral above. It then can be rewritten as:

Sit1
Gaug(5i+1) = exp(Fdit1)Gaug(si) + / exp(F(siy1 — 7)) IW(7)dr

Si

_ Sit1 ésin (a(sip1 — 7)) (8)
- Ri-‘rlgaug(si) + /Sz |: CcOoS (O{(Si_;.l - T ) UW(T)dT

= i+lgaug(8i) + €iy1.
Note that since each €;,; involves integration at disjoint intervals, their independence

follows from the property of Gaussian white noise (Harvey} [1990). To check its covariance
matrix X;41, note that:

N2 f:” 2L sin® (a(si1 — 7))dr éf;;“ sin (q(5i+1 — 7)) cos (a(sip1 — 7))dT
i 3 [osin (s — 7)) cos (s — 7))dT [ cos® (alsi — 7))
L di+1 o sin(2o¢di+1) sin2(adi+1) <()>
— 0.2 a? 2 4o 202
sin?(ad;11) 2ad;1+sin(2ad;11)
202 4o

which completes the proof.
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S4. Details of the Finite Element Method

The Finite Element Method (FEM) used to construct the finite-dimensional approximation
can be understood as the following procedures.

Given the stochastic differential equation (SDE) that defines the (standard) sGP model:

where L = a? + j—; is a linear differential operator and £(z) is the standard Gaussian white
noise process. Let @ C R* denotes a bounded interval of interest. Let By := {1;,i € [k]}
denote the set of k pre-specified basis functions, and let T, := {¢;,7 € [¢]} denote the set
of ¢ pre-specified test functions. We consider finite dimensional approximation with form
Wk() = Zle w;;(.). The weights w := [wy, ..., wy]T € R¥ is a set of random weights to be
determined.

In our FEM construction, we used the sB-splines defined over €2 as the basis functions,
and chose the test functions by Ty := {¢; = L1);,7 € [k]}, which is called a least squares
approximation in [Lindgren et al|(2011]). The distribution of the unknown weight vector can

be found by fulfilling the weak formulation at the test function spaces Ty, such that
(LWe(), di(2)) < (€(2), di(), (10)
for any test function ¢; € Ty. This equation can also be vectorized as:
(LWi(x), ds(w))i, = Hw,

where the 7j component of the k x k H matrix can be computed as H;; = (L1;(x), L (z))¥_;.
The inner product on the right (£(z), ¢;(x))¥_, will have Gaussian distribution with zero
mean vector and covariance matrix H by properties of Gaussian white noise (Harvey|, |1990)).

Therefore, the basis coefficients w will be multivariate Gaussian with zero mean and covari-
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ance H-'HH ' = H~!. Each element of the matrix H can be written as:

Hij = <ij>sz>

d*1; d?1);
= (a®y; + I @’y + W>
! 2, A, 2 d?1); d*; d*y;

hence H = aG + C + a®M with Gyj = (bi,1;), Cyy = (2% Ty and M, = (i,

dz? 7 dx?

<d27/)i

de Y

;) for each element of the matrices.
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S5. Proof of the Convergence Result

Theorem (Covariance Convergence of B-spline Approximation). Assume By, is a set of k cu-
bic B-splines constructed with equally spaced knots over 2, and gy denotes the corresponding

FEM approximation for sGP, (o), then for any x1,x9 € Q:

|C]€<C(71, 1‘2) - C(xlv C("2)|: O(l/k)’

where C(xy1,x2) is the covariance in|Proposition S1| and Cy(x1,x2) = Cov[gr(x1), gr(za)].

Proof. The proof of this theorem starts with a similar strategy as in |Lindgren et al.| (2011)).
Without the loss of generality, we assume the variance parameter of the sGP o = 1, Q = [0, 1]

and the initial conditions of the sGP are zero. We denote the 3rd order Sobolev space as

H3Q) ={f € L2(Q) : D1f € L2(Q) V|q|< 3} and the constrained Sobolev space H as:
H={f € HQ): f(0) = f(0) =0} C HQ).
Since Lf = 0 implies f € span{cos(ax),sin(ax)}, it is clear that
)y = L1, Lh)g = [ Lf(@)Lh(z)ds (12)

defines an inner product for f, h € H.
Define H;, = span{By;}, and note H; C H by our construction of the B-spline basis. Since
Hy, is a finite-dimensional subspace, for each f(x) € H there exists an unique projection

flx) =% wii(x) € Hy, which satisfies:

<f —f, 71>H = <f,fz>H - <f, iL>H — 0, Vh € Hy. (13)
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Based on the property of Gaussian white noise (Harvey, |1990), for any f,h € H we have:

Cov[(&, Lf)q (€ Lh)g] = (Lf, Lh)g = (f, )y - (14)

Since the FEM approximation gy € Hj, we know
(Grs [y = <§k,f—f+f>H = <§k7f>H+ <§k7f_f>H = <§k7f>H>

where the last equality follows as f is the projection of f. Using this result and the fact that

the FEM approximation g, is a least square solution, we have

(5 7), {301,
— Cov <Lgk,Lf> <Lgk,Lh> }
(o1

(e,
- (.48}, = (1),

Let Cs(x) = C(s,x) denote the covariance function of the sSGP defined at any s € ). Based

Cov [(gk,f)H : (gk,hm} = Cov

= Cov

on the previous result in [Proposition S1| we know Cy(2) € H and LC,(z) = L sinfa(s — z)7]

is the Green function of L. The projection of Cy(z) into H,, is denoted as C,(x).

Lemma 1. Given the same setting in the main theorem

C(wy,19) = (Cyy, Cx2>7{

(16)
Cr(xq1,29) = <C~x1,C~m2>H.

Proof. The first part directly follows from the proof in |[Proposition 51l The second part can

be proved using the fact that LC,, () is the Green function, which implies

(0 Car), = W0,Ca)y = {Lth, LCar g = i),
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for each v; € B;. The detailed proof proceeds as follow.

By construction of the B-spline approximation,

Ci(w1,32) = COV{ZW%‘(%% sz‘%(@) ]
= Cov {(I)(azl)T'w, @(xQ)Tw}
= ®(21) L ®(72)
= Vo1 T Yoz
where ®(z) = [t1(), ..., Yr(2)]T, and B, is defined in Section 3.2, and ~,, = X, ®(z1) and
Yoy = L P(22).

Since C,, () is the projection of Cy, (x) to Hy, Cu(x) = 3, w,, i0i(z) for some weights

Wy, = [Way 1y ey wxhk]T. The same argument can be used for C,,. Therefore

Cov[<§k,c~m>H , <§kaéx2>H:| = < ~x1aéxz>ﬂ

(18)
= (L®(z)" w,,, LB®(z) w,,),,
= 'wle;l'wm,
since [Y,'];; = (L, L), hence it only remains to show 7,, = w,,. Since
<éx1a ¢1>H = <Cx1>wi>}[ = 7702'(371)7
. i (19)
<Cx1 ) ¢1>H = <(I)(x)Twz1 ) ¢1>H = Z Wegy,j <Lw]'> LlMQ )
j=1
for each ; € By, we get X 'w,, = ®(x1). This lemma is hence proved. O
Using the above result and [Lemma 1], it suffices to prove that
‘ (CorsCa) = (ot Cuyy | = O(L/R). (20)
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For this step, we will use the following lemma on the spline approximation:

Lemma 2. Given the same setting in the main theorem, define the norm ||f||lu= (f, f);f
for f € H then
||Cs - C~s||7‘l = O(l/k‘), (QU

for each s € Q.

Proof. The proof of this lemma mostly follows from the result in Schultz| (1969)). First, since
D?*C,(x) is a continuous function on Q and differentiable everywhere except at = = s, Cy(x)
has week derivatives up to order 3. As the derivative of D?C,(z) is bounded and continuous
for z < s and x > s, we can conclude C; € H3(€2). Given H;, is a spline space with degree 3

and mesh size 1/k and C, € H?(Q2), by theorem 3.3 in Schultz (1969)) we have

A‘
DO
\)

—

. 1\ 3¢
1D, - Ellers e

for each 0 < ¢ < 2, where ¢, is a constant that only depends on ||Cs||g3(q). Note that

16, = Cull3, = aliCs = Culla+1DA(Cs = Co)l =20 ( (€, =€), DX(C. = C.) ),
(23)

< |Cs = Cl[22+ID*(Cs — Cl[Z+20] | D*(Cs — Co)l|2[[(Cs — Co) |2
where the second equality holds by Cauchy-Schwarz Inequality. The lemma hence proved.
O

Using [Lemma 2| [Eq. (20)| can be proved with an application of Triangle Inequality followed

with a use of Cauchy-Schwarz Inequality and the fact that the sequence ||Cy, || is bounded,

(CaCu), (€

= ‘ <CI1 - C:c1aca:2>7_[ - <Cz1,C$2 — C$2>H ‘
< NCor = CorlladlCoallse +11Cor = Corllyl Carllny 2V

< c/k,
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where ¢ is some constant independent of k. The theorem is hence proved. O]
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