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S1. Additional figures and table

0.025 Quantile Median 0.975 Quantile
σtr(10) 0.040 (15.336) 0.960 (37.655) 9.897 (106.646)
σ1(10) 0.126 (–) 0.270 (–) 0.509 (–)
σ 1

2
(10) 0.004 (–) 0.054 (–) 0.146 (–)

σ 44
12
(10) 0.162 (–) 0.518 (–) 0.889 (–)

σ9.1(10) 0.025 (–) 0.391 (–) 1.429 (–)
σ10.4(10) 0.022 (–) 0.430 (–) 1.568 (–)
σϵ 0.553 (0.582) 0.584 (0.615) 0.620 (0.651)

Table S1: Posterior summary of standard deviation parameters for the CO2 example in
Section 5.4. Results from M2 are shown in parenthesis.

S2



0 1 2 3 4

−
0.

2
0.

0
0.

2
0.

4
0.

6

x1

C
(x

1, 
10

)

(a) α = π/2: Covariance
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(b) α = 4π: Covariance
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(c) α = π/2: Samples
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(d) α = 4π: Samples

Figure S1: Figures (a,b) show covariance functions of the sGP with different α, where the
first argument in the covariance function is fixed at 3. Figures (c,d) display five sample paths
from the two sGPs. The frequency parameter α equals to π/2 in (a,c) and 4π in (b,d), and
the SD parameter σ = 1 in both sGPs.
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Figure S2: Average runtimes using the sB-spline approximation with k = 30 (red) and
k = 60 (blue) for the two simulation settings in Section 4.1, when the sample size n varies.
Each average is computed from ten replications.
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Figure S3: Additional comparisons for Section 4.3. Frequentist ARIMA models fitted using
maximum likelihood estimation: (a) ARIMA with order fixed at (2,1,0); (b) ARIMA with
optimal order (4,0,1) selected based on AIC.
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Figure S4: Additional sensitivity analysis for Section 4.3. Posterior moments obtained from
the sGP model, with the median in the PSD prior varying over a range of possible values.
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S2. Derivation of the sGP covariance

Proposition S1 (Covariance Function of the Seasonal Gaussian Process). Let g ∼ sGPα(σ).
Then g has a covariance function:

C(x1, x2) =

(
σ

α

)2[
x1
2
cos(α(x2 − x1))−

cos(αx2) sin(αx1)

2α

]
=

(
σ

α

)2[
cos(αx2)x1

2
cos(αx1) +

(
sin(αx2)x1

2
− cos(αx2)

2α

)
sin(αx1)

]
,

(1)

for any x1, x2 ∈ Ω such that x1 ≤ x2.

Proof. It is obvious that the differential operator L is linear. Define gaug(x) = (g(x), g′(x))T

and therefore g′
aug(x) = (g′(x), g′′(x))T , then the SDE can be rewritten in the vector form:

g′
aug = Fgaug + JW, (2)

where F =

[
0 1

−α2 0

]
and J =

[
0
σ

]
.

Using the result from Särkkä and Solin (2019) (section 4.3), the solution of the linear SDE
can be written as:

gaug(x) = exp(Fx)gaug(0) +

∫ x

0

exp(F(x− τ))JW (τ)dτ

=

∫ x

0

exp(F(x− τ))JW (τ)dτ,

(3)

where exp(Fx) denotes the matrix exponential defined as exp(Fx) =
∑

k
Fkxk

k!
.

Note that F2k = (−α2)kI and F2k = (−α2)kF. With Taylor series, the first component of
gaug(x) can be therefore written as:

g(x) =

∫ x

0

σ

α
sin(α(x− τ))W (τ)dτ. (4)

Assume arbitrary 0 < x1 ≤ x2, the covariance function can be computed for g as:

C(x1, x2) =

∫ x1

0

σ

α
sin(α(x1 − τ))

σ

α
sin(α(x2 − τ))dτ

=

(
σ

α

)2[
x1
2
cos(α(x2 − x1))−

cos(αx2) sin(αx1)

2α

]
,

(5)

using properties of Gaussian white noise (Harvey, 1990).
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S3. Proof of the State-Space Representation

Theorem S1 (State Space Representation of the sGP). Consider g ∼ sGPα(σ), and let
s = {s1, ..., sn} ⊂ Ω be sorted with spacing d1 = s1 and di = si− si−1 for i ∈ {2, .., n}. Then
gaug(si) = [g(si), g

′(si)]
T can be written as a Markov model:

gaug(si+1) = Ri+1gaug(si) + ϵi+1, (6)

where ϵi
ind∼ N(0,Σi). The 2× 2 matrices Ri and Σi = Q−1

i are respectively defined as:

Ri =

[
cos(αdi)

1
α
sin(αdi)

−α sin(αdi) cos(αdi)

]
, Σi = σ2

 1
α2

(
di
2
− sin(2αdi)

4α

)
sin2(αdi)

2α2

sin2(αdi)
2α2

2αdi+sin(2αdi)
4α

 . (7)

Proof. To show the above Markov representation, note that the value of g(si+1) given g(si)
can be written similarly as (Särkkä and Solin, 2019):

gaug(si+1) = exp(Fdi+1)gaug(si) +

∫ si+1

si

exp(F(si+1 − τ))JW (τ)dτ.

Recall that F2k = (−α2)kI and F2k+1 = (−α2)kF, then apply the Taylor series expansion
for both components in the integral above. It then can be rewritten as:

gaug(si+1) = exp(Fdi+1)gaug(si) +

∫ si+1

si

exp(F(si+1 − τ))JW (τ)dτ

= Ri+1gaug(si) +

∫ si+1

si

[
1
α
sin (α(si+1 − τ))
cos (α(si+1 − τ))

]
σW (τ)dτ

:= Ri+1gaug(si) + ϵi+1.

(8)

Note that since each ϵi+1 involves integration at disjoint intervals, their independence
follows from the property of Gaussian white noise (Harvey, 1990). To check its covariance
matrix Σi+1, note that:

Σi+1 = σ2
[ ∫ si+1

si

1
α2 sin

2 (α(si+1 − τ))dτ 1
α

∫ si+1

si
sin (α(si+1 − τ)) cos (α(si+1 − τ))dτ

1
α

∫ si+1

si
sin (α(si+1 − τ)) cos (α(si+1 − τ))dτ

∫ si+1

si
cos2 (α(si+1 − τ))

]

= σ2

 1
α2

(
di+1

2
− sin(2αdi+1)

4α

)
sin2(αdi+1)

2α2

sin2(αdi+1)
2α2

2αdi+1+sin(2αdi+1)
4α

 , (9)

which completes the proof.
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S4. Details of the Finite Element Method

The Finite Element Method (FEM) used to construct the finite-dimensional approximation

can be understood as the following procedures.

Given the stochastic differential equation (SDE) that defines the (standard) sGP model:

LW (x) = ξ(x),

where L = α2 + d2

dx2
is a linear differential operator and ξ(x) is the standard Gaussian white

noise process. Let Ω ⊂ R+ denotes a bounded interval of interest. Let Bk := {ψi, i ∈ [k]}

denote the set of k pre-specified basis functions, and let Tq := {ϕi, i ∈ [q]} denote the set

of q pre-specified test functions. We consider finite dimensional approximation with form

W̃k(.) =
∑k

i=1wiψi(.). The weights w := [w1, ..., wk]
T ∈ Rk is a set of random weights to be

determined.

In our FEM construction, we used the sB-splines defined over Ω as the basis functions,

and chose the test functions by Tk := {ϕi = Lψi, i ∈ [k]}, which is called a least squares

approximation in Lindgren et al. (2011). The distribution of the unknown weight vector can

be found by fulfilling the weak formulation at the test function spaces Tk, such that

⟨LW̃k(x), ϕi(x)⟩
d
= ⟨ξ(x), ϕi(x)⟩, (10)

for any test function ϕi ∈ Tk. This equation can also be vectorized as:

⟨LW̃k(x), ϕi(x)⟩ki=1 = Hw,

where the ij component of the k×k H matrix can be computed asHij = ⟨Lψj(x), Lψi(x)⟩ki=1.

The inner product on the right ⟨ξ(x), ϕi(x)⟩ki=1 will have Gaussian distribution with zero

mean vector and covariance matrix H by properties of Gaussian white noise (Harvey, 1990).

Therefore, the basis coefficients w will be multivariate Gaussian with zero mean and covari-
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ance H−1HH−1 = H−1. Each element of the matrix H can be written as:

Hij = ⟨Lψj, Lψi⟩

= ⟨a2ψj +
d2ψj
dx2

, a2ψi +
d2ψi
dx2

⟩

= a4⟨ψj, ψi⟩+ a2⟨d
2ψj
dx2

, ψi⟩+ a2⟨ψj,
d2ψi
dx2

⟩+ ⟨d
2ψj
dx2

,
d2ψi
dx2

⟩,

(11)

hence H = a4G + C + a2M with Gij = ⟨ψi, ψj⟩, Cij = ⟨d2ψi

dx2
,
d2ψj

dx2
⟩ and Mij = ⟨ψi, d

2ψj

dx2
⟩ +

⟨d2ψi

dx2
, ψj⟩ for each element of the matrices.
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S5. Proof of the Convergence Result

Theorem (Covariance Convergence of B-spline Approximation). Assume Bk is a set of k cu-

bic B-splines constructed with equally spaced knots over Ω, and g̃k denotes the corresponding

FEM approximation for sGPα(σ), then for any x1, x2 ∈ Ω:

|Ck(x1, x2)− C(x1, x2)|= O(1/k),

where C(x1, x2) is the covariance in Proposition S1 and Ck(x1, x2) = Cov[g̃k(x1), g̃k(x2)].

Proof. The proof of this theorem starts with a similar strategy as in Lindgren et al. (2011).

Without the loss of generality, we assume the variance parameter of the sGP σ = 1, Ω = [0, 1]

and the initial conditions of the sGP are zero. We denote the 3rd order Sobolev space as

H3(Ω) = {f ∈ L2(Ω) : Dqf ∈ L2(Ω) ∀|q|≤ 3} and the constrained Sobolev space H as:

H = {f ∈ H3(Ω) : f(0) = f ′(0) = 0} ⊂ H3(Ω).

Since Lf = 0 implies f ∈ span{cos(αx), sin(αx)}, it is clear that

⟨f, h⟩H := ⟨Lf, Lh⟩Ω =

∫
Ω

Lf(x)Lh(x)dx (12)

defines an inner product for f, h ∈ H.

Define Hk = span{Bk}, and note Hk ⊂ H by our construction of the B-spline basis. Since

Hk is a finite-dimensional subspace, for each f(x) ∈ H there exists an unique projection

f̃(x) =
∑k

i=1wiψi(x) ∈ Hk which satisfies:

〈
f − f̃ , h̃

〉
H
=

〈
f, h̃

〉
H
−
〈
f̃ , h̃

〉
H
= 0, ∀h̃ ∈ Hk. (13)
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Based on the property of Gaussian white noise (Harvey, 1990), for any f, h ∈ H we have:

Cov[⟨ξ, Lf⟩Ω , ⟨ξ, Lh⟩Ω] = ⟨Lf, Lh⟩Ω = ⟨f, h⟩H . (14)

Since the FEM approximation g̃k ∈ Hk, we know

⟨g̃k, f⟩H =
〈
g̃k, f − f̃ + f̃

〉
H
=

〈
g̃k, f̃

〉
H
+
〈
g̃k, f − f̃

〉
H
=

〈
g̃k, f̃

〉
H
,

where the last equality follows as f̃ is the projection of f . Using this result and the fact that

the FEM approximation g̃k is a least square solution, we have

Cov

[
⟨g̃k, f⟩H , ⟨g̃k, h⟩H

]
= Cov

[〈
g̃k, f̃

〉
H
,
〈
g̃k, h̃

〉
H

]
= Cov

[〈
Lg̃k, Lf̃

〉
Ω
,
〈
Lg̃k, Lh̃

〉
Ω

]
= Cov

[〈
ξ, Lf̃

〉
Ω
,
〈
ξ, Lh̃

〉
Ω

]
=

〈
Lf̃, Lh̃

〉
Ω
=

〈
f̃ , h̃

〉
H
.

(15)

Let Cs(x) = C(s, x) denote the covariance function of the sGP defined at any s ∈ Ω. Based

on the previous result in Proposition S1, we know Cs(x) ∈ H and LCs(x) = 1
α
sin[α(s− x)+]

is the Green function of L. The projection of Cs(x) into Hk is denoted as C̃s(x).

Lemma 1. Given the same setting in the main theorem

C(x1, x2) = ⟨Cx1 , Cx2⟩H

Ck(x1, x2) =
〈
C̃x1 , C̃x2

〉
H
.

(16)

Proof. The first part directly follows from the proof in Proposition S1. The second part can

be proved using the fact that LCx1(x) is the Green function, which implies

〈
ψi, C̃x1

〉
H
= ⟨ψi, Cx1⟩H = ⟨Lψi, LCx1⟩Ω = ψi(x1),

S12



for each ψi ∈ Bk. The detailed proof proceeds as follow.

By construction of the B-spline approximation,

Ck(x1, x2) = Cov

[∑
i

wiψi(x1),
∑
i

wiψi(x2)

]
= Cov

[
Φ(x1)

Tw,Φ(x2)
Tw

]
= Φ(x1)

TΣwΦ(x2)

= γTx1Σ
−1
w γx2 ,

(17)

where Φ(x) = [ψ1(x), ..., ψk(x)]
T , and Σw is defined in Section 3.2, and γx1 = ΣwΦ(x1) and

γx2 = ΣwΦ(x2).

Since C̃x1(x) is the projection of Cx1(x) to Hk, C̃x1(x) =
∑

iwx1,iψi(x) for some weights

wx1 = [wx1,1, ..., wx1,k]
T . The same argument can be used for C̃x2 . Therefore

Cov

[〈
g̃k, C̃x1

〉
H
,
〈
g̃k, C̃x2

〉
H

]
=

〈
C̃x1 , C̃x2

〉
H

=
〈
Φ(x)Twx1 ,Φ(x)Twx2

〉
H

=
〈
LΦ(x)Twx1 , LΦ(x)Twx2

〉
Ω

= wT
x1
Σ−1

w wx2 ,

(18)

since [Σ−1
w ]ij = ⟨Lψi, Lψj⟩Ω, hence it only remains to show γx1 = wx1 . Since

〈
C̃x1 , ψi

〉
H
= ⟨Cx1 , ψi⟩H = ψi(x1),〈

C̃x1 , ψi

〉
H
=

〈
Φ(x)Twx1 , ψi

〉
H =

k∑
j=1

wx1,j ⟨Lψj, Lψi⟩Ω ,
(19)

for each ψi ∈ Bk, we get Σ−1
w wx1 = Φ(x1). This lemma is hence proved.

Using the above result and Lemma 1, it suffices to prove that

∣∣∣∣ 〈C̃x1 , C̃x2〉H
− ⟨Cx1 , Cx2⟩H

∣∣∣∣ = O(1/k). (20)
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For this step, we will use the following lemma on the spline approximation:

Lemma 2. Given the same setting in the main theorem, define the norm ||f ||H= ⟨f, f⟩1/2H

for f ∈ H then

||Cs − C̃s||H = O(1/k), (21)

for each s ∈ Ω.

Proof. The proof of this lemma mostly follows from the result in Schultz (1969). First, since

D2Cs(x) is a continuous function on Ω and differentiable everywhere except at x = s, Cs(x)

has week derivatives up to order 3. As the derivative of D2Cs(x) is bounded and continuous

for x < s and x > s, we can conclude Cs ∈ H3(Ω). Given Hk is a spline space with degree 3

and mesh size 1/k and Cs ∈ H3(Ω), by theorem 3.3 in Schultz (1969) we have

||Dq(Cs − C̃s)||L2≤ cq

(
1

k

)3−q
(22)

for each 0 ≤ q ≤ 2, where cq is a constant that only depends on ||Cs||H3(Ω). Note that

||Cs − C̃s||2H = α4||Cs − C̃s||2L2+||D2(Cs − C̃s)||2L2−2α
〈
(Cs − C̃s), D2(Cs − C̃s)

〉
Ω

≤ α4||Cs − C̃s||2L2+||D2(Cs − C̃s)||2L2+2α||D2(Cs − C̃s)||L2 ||(Cs − C̃s)||L2

(23)

where the second equality holds by Cauchy-Schwarz Inequality. The lemma hence proved.

Using Lemma 2, Eq. (20) can be proved with an application of Triangle Inequality followed

with a use of Cauchy-Schwarz Inequality and the fact that the sequence ||C̃x2||H is bounded,

∣∣∣∣ 〈C̃x1 , C̃x2〉H
− ⟨Cx1 , Cx2⟩H

∣∣∣∣ = ∣∣∣∣ 〈C̃x1 − Cx1 , C̃x2
〉
H
−
〈
Cx1 , Cx2 − C̃x2

〉
H

∣∣∣∣
≤ ||C̃x1 − Cx1||H||C̃x2||H + ||C̃x2 − Cx2||H||Cx1||H

≤ c/k,

(24)
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where c is some constant independent of k. The theorem is hence proved.
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